1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
71 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
72 * for saving names from getname(). */
73 #define AUDIT_NAMES 20
75 /* Indicates that audit should log the full pathname. */
76 #define AUDIT_NAME_FULL -1
78 /* no execve audit message should be longer than this (userspace limits) */
79 #define MAX_EXECVE_AUDIT_LEN 7500
81 /* number of audit rules */
84 /* determines whether we collect data for signals sent */
87 /* When fs/namei.c:getname() is called, we store the pointer in name and
88 * we don't let putname() free it (instead we free all of the saved
89 * pointers at syscall exit time).
91 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
94 int name_len
; /* number of name's characters to log */
95 unsigned name_put
; /* call __putname() for this name */
105 struct audit_aux_data
{
106 struct audit_aux_data
*next
;
110 #define AUDIT_AUX_IPCPERM 0
112 /* Number of target pids per aux struct. */
113 #define AUDIT_AUX_PIDS 16
115 struct audit_aux_data_mq_open
{
116 struct audit_aux_data d
;
122 struct audit_aux_data_mq_sendrecv
{
123 struct audit_aux_data d
;
126 unsigned int msg_prio
;
127 struct timespec abs_timeout
;
130 struct audit_aux_data_mq_notify
{
131 struct audit_aux_data d
;
133 struct sigevent notification
;
136 struct audit_aux_data_mq_getsetattr
{
137 struct audit_aux_data d
;
139 struct mq_attr mqstat
;
142 struct audit_aux_data_ipcctl
{
143 struct audit_aux_data d
;
145 unsigned long qbytes
;
152 struct audit_aux_data_execve
{
153 struct audit_aux_data d
;
156 struct mm_struct
*mm
;
159 struct audit_aux_data_socketcall
{
160 struct audit_aux_data d
;
162 unsigned long args
[0];
165 struct audit_aux_data_sockaddr
{
166 struct audit_aux_data d
;
171 struct audit_aux_data_fd_pair
{
172 struct audit_aux_data d
;
176 struct audit_aux_data_pids
{
177 struct audit_aux_data d
;
178 pid_t target_pid
[AUDIT_AUX_PIDS
];
179 uid_t target_auid
[AUDIT_AUX_PIDS
];
180 uid_t target_uid
[AUDIT_AUX_PIDS
];
181 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
182 u32 target_sid
[AUDIT_AUX_PIDS
];
183 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
187 struct audit_tree_refs
{
188 struct audit_tree_refs
*next
;
189 struct audit_chunk
*c
[31];
192 /* The per-task audit context. */
193 struct audit_context
{
194 int dummy
; /* must be the first element */
195 int in_syscall
; /* 1 if task is in a syscall */
196 enum audit_state state
;
197 unsigned int serial
; /* serial number for record */
198 struct timespec ctime
; /* time of syscall entry */
199 int major
; /* syscall number */
200 unsigned long argv
[4]; /* syscall arguments */
201 int return_valid
; /* return code is valid */
202 long return_code
;/* syscall return code */
203 int auditable
; /* 1 if record should be written */
205 struct audit_names names
[AUDIT_NAMES
];
206 char * filterkey
; /* key for rule that triggered record */
208 struct audit_context
*previous
; /* For nested syscalls */
209 struct audit_aux_data
*aux
;
210 struct audit_aux_data
*aux_pids
;
212 /* Save things to print about task_struct */
214 uid_t uid
, euid
, suid
, fsuid
;
215 gid_t gid
, egid
, sgid
, fsgid
;
216 unsigned long personality
;
222 unsigned int target_sessionid
;
224 char target_comm
[TASK_COMM_LEN
];
226 struct audit_tree_refs
*trees
, *first_trees
;
235 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
236 static inline int open_arg(int flags
, int mask
)
238 int n
= ACC_MODE(flags
);
239 if (flags
& (O_TRUNC
| O_CREAT
))
240 n
|= AUDIT_PERM_WRITE
;
244 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
249 unsigned n
= ctx
->major
;
250 switch (audit_classify_syscall(ctx
->arch
, n
)) {
252 if ((mask
& AUDIT_PERM_WRITE
) &&
253 audit_match_class(AUDIT_CLASS_WRITE
, n
))
255 if ((mask
& AUDIT_PERM_READ
) &&
256 audit_match_class(AUDIT_CLASS_READ
, n
))
258 if ((mask
& AUDIT_PERM_ATTR
) &&
259 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
262 case 1: /* 32bit on biarch */
263 if ((mask
& AUDIT_PERM_WRITE
) &&
264 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
266 if ((mask
& AUDIT_PERM_READ
) &&
267 audit_match_class(AUDIT_CLASS_READ_32
, n
))
269 if ((mask
& AUDIT_PERM_ATTR
) &&
270 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
274 return mask
& ACC_MODE(ctx
->argv
[1]);
276 return mask
& ACC_MODE(ctx
->argv
[2]);
277 case 4: /* socketcall */
278 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
280 return mask
& AUDIT_PERM_EXEC
;
286 static int audit_match_filetype(struct audit_context
*ctx
, int which
)
288 unsigned index
= which
& ~S_IFMT
;
289 mode_t mode
= which
& S_IFMT
;
294 if (index
>= ctx
->name_count
)
296 if (ctx
->names
[index
].ino
== -1)
298 if ((ctx
->names
[index
].mode
^ mode
) & S_IFMT
)
304 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
305 * ->first_trees points to its beginning, ->trees - to the current end of data.
306 * ->tree_count is the number of free entries in array pointed to by ->trees.
307 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
308 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
309 * it's going to remain 1-element for almost any setup) until we free context itself.
310 * References in it _are_ dropped - at the same time we free/drop aux stuff.
313 #ifdef CONFIG_AUDIT_TREE
314 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
316 struct audit_tree_refs
*p
= ctx
->trees
;
317 int left
= ctx
->tree_count
;
319 p
->c
[--left
] = chunk
;
320 ctx
->tree_count
= left
;
329 ctx
->tree_count
= 30;
335 static int grow_tree_refs(struct audit_context
*ctx
)
337 struct audit_tree_refs
*p
= ctx
->trees
;
338 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
344 p
->next
= ctx
->trees
;
346 ctx
->first_trees
= ctx
->trees
;
347 ctx
->tree_count
= 31;
352 static void unroll_tree_refs(struct audit_context
*ctx
,
353 struct audit_tree_refs
*p
, int count
)
355 #ifdef CONFIG_AUDIT_TREE
356 struct audit_tree_refs
*q
;
359 /* we started with empty chain */
360 p
= ctx
->first_trees
;
362 /* if the very first allocation has failed, nothing to do */
367 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
369 audit_put_chunk(q
->c
[n
]);
373 while (n
-- > ctx
->tree_count
) {
374 audit_put_chunk(q
->c
[n
]);
378 ctx
->tree_count
= count
;
382 static void free_tree_refs(struct audit_context
*ctx
)
384 struct audit_tree_refs
*p
, *q
;
385 for (p
= ctx
->first_trees
; p
; p
= q
) {
391 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
393 #ifdef CONFIG_AUDIT_TREE
394 struct audit_tree_refs
*p
;
399 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
400 for (n
= 0; n
< 31; n
++)
401 if (audit_tree_match(p
->c
[n
], tree
))
406 for (n
= ctx
->tree_count
; n
< 31; n
++)
407 if (audit_tree_match(p
->c
[n
], tree
))
414 /* Determine if any context name data matches a rule's watch data */
415 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
417 static int audit_filter_rules(struct task_struct
*tsk
,
418 struct audit_krule
*rule
,
419 struct audit_context
*ctx
,
420 struct audit_names
*name
,
421 enum audit_state
*state
)
423 int i
, j
, need_sid
= 1;
426 for (i
= 0; i
< rule
->field_count
; i
++) {
427 struct audit_field
*f
= &rule
->fields
[i
];
432 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
437 ctx
->ppid
= sys_getppid();
438 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
442 result
= audit_comparator(tsk
->uid
, f
->op
, f
->val
);
445 result
= audit_comparator(tsk
->euid
, f
->op
, f
->val
);
448 result
= audit_comparator(tsk
->suid
, f
->op
, f
->val
);
451 result
= audit_comparator(tsk
->fsuid
, f
->op
, f
->val
);
454 result
= audit_comparator(tsk
->gid
, f
->op
, f
->val
);
457 result
= audit_comparator(tsk
->egid
, f
->op
, f
->val
);
460 result
= audit_comparator(tsk
->sgid
, f
->op
, f
->val
);
463 result
= audit_comparator(tsk
->fsgid
, f
->op
, f
->val
);
466 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
470 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
474 if (ctx
&& ctx
->return_valid
)
475 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
478 if (ctx
&& ctx
->return_valid
) {
480 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
482 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
487 result
= audit_comparator(MAJOR(name
->dev
),
490 for (j
= 0; j
< ctx
->name_count
; j
++) {
491 if (audit_comparator(MAJOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
500 result
= audit_comparator(MINOR(name
->dev
),
503 for (j
= 0; j
< ctx
->name_count
; j
++) {
504 if (audit_comparator(MINOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
513 result
= (name
->ino
== f
->val
);
515 for (j
= 0; j
< ctx
->name_count
; j
++) {
516 if (audit_comparator(ctx
->names
[j
].ino
, f
->op
, f
->val
)) {
524 if (name
&& rule
->watch
->ino
!= (unsigned long)-1)
525 result
= (name
->dev
== rule
->watch
->dev
&&
526 name
->ino
== rule
->watch
->ino
);
530 result
= match_tree_refs(ctx
, rule
->tree
);
535 result
= audit_comparator(tsk
->loginuid
, f
->op
, f
->val
);
537 case AUDIT_SUBJ_USER
:
538 case AUDIT_SUBJ_ROLE
:
539 case AUDIT_SUBJ_TYPE
:
542 /* NOTE: this may return negative values indicating
543 a temporary error. We simply treat this as a
544 match for now to avoid losing information that
545 may be wanted. An error message will also be
549 security_task_getsecid(tsk
, &sid
);
552 result
= security_audit_rule_match(sid
, f
->type
,
561 case AUDIT_OBJ_LEV_LOW
:
562 case AUDIT_OBJ_LEV_HIGH
:
563 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
566 /* Find files that match */
568 result
= security_audit_rule_match(
569 name
->osid
, f
->type
, f
->op
,
572 for (j
= 0; j
< ctx
->name_count
; j
++) {
573 if (security_audit_rule_match(
582 /* Find ipc objects that match */
584 struct audit_aux_data
*aux
;
585 for (aux
= ctx
->aux
; aux
;
587 if (aux
->type
== AUDIT_IPC
) {
588 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
589 if (security_audit_rule_match(axi
->osid
, f
->type
, f
->op
, f
->lsm_rule
, ctx
)) {
603 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
605 case AUDIT_FILTERKEY
:
606 /* ignore this field for filtering */
610 result
= audit_match_perm(ctx
, f
->val
);
613 result
= audit_match_filetype(ctx
, f
->val
);
620 if (rule
->filterkey
&& ctx
)
621 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
622 switch (rule
->action
) {
623 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
624 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
629 /* At process creation time, we can determine if system-call auditing is
630 * completely disabled for this task. Since we only have the task
631 * structure at this point, we can only check uid and gid.
633 static enum audit_state
audit_filter_task(struct task_struct
*tsk
)
635 struct audit_entry
*e
;
636 enum audit_state state
;
639 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
640 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
, &state
)) {
646 return AUDIT_BUILD_CONTEXT
;
649 /* At syscall entry and exit time, this filter is called if the
650 * audit_state is not low enough that auditing cannot take place, but is
651 * also not high enough that we already know we have to write an audit
652 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
654 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
655 struct audit_context
*ctx
,
656 struct list_head
*list
)
658 struct audit_entry
*e
;
659 enum audit_state state
;
661 if (audit_pid
&& tsk
->tgid
== audit_pid
)
662 return AUDIT_DISABLED
;
665 if (!list_empty(list
)) {
666 int word
= AUDIT_WORD(ctx
->major
);
667 int bit
= AUDIT_BIT(ctx
->major
);
669 list_for_each_entry_rcu(e
, list
, list
) {
670 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
671 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
679 return AUDIT_BUILD_CONTEXT
;
682 /* At syscall exit time, this filter is called if any audit_names[] have been
683 * collected during syscall processing. We only check rules in sublists at hash
684 * buckets applicable to the inode numbers in audit_names[].
685 * Regarding audit_state, same rules apply as for audit_filter_syscall().
687 enum audit_state
audit_filter_inodes(struct task_struct
*tsk
,
688 struct audit_context
*ctx
)
691 struct audit_entry
*e
;
692 enum audit_state state
;
694 if (audit_pid
&& tsk
->tgid
== audit_pid
)
695 return AUDIT_DISABLED
;
698 for (i
= 0; i
< ctx
->name_count
; i
++) {
699 int word
= AUDIT_WORD(ctx
->major
);
700 int bit
= AUDIT_BIT(ctx
->major
);
701 struct audit_names
*n
= &ctx
->names
[i
];
702 int h
= audit_hash_ino((u32
)n
->ino
);
703 struct list_head
*list
= &audit_inode_hash
[h
];
705 if (list_empty(list
))
708 list_for_each_entry_rcu(e
, list
, list
) {
709 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
710 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
)) {
717 return AUDIT_BUILD_CONTEXT
;
720 void audit_set_auditable(struct audit_context
*ctx
)
725 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
729 struct audit_context
*context
= tsk
->audit_context
;
731 if (likely(!context
))
733 context
->return_valid
= return_valid
;
736 * we need to fix up the return code in the audit logs if the actual
737 * return codes are later going to be fixed up by the arch specific
740 * This is actually a test for:
741 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
742 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
744 * but is faster than a bunch of ||
746 if (unlikely(return_code
<= -ERESTARTSYS
) &&
747 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
748 (return_code
!= -ENOIOCTLCMD
))
749 context
->return_code
= -EINTR
;
751 context
->return_code
= return_code
;
753 if (context
->in_syscall
&& !context
->dummy
&& !context
->auditable
) {
754 enum audit_state state
;
756 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
757 if (state
== AUDIT_RECORD_CONTEXT
) {
758 context
->auditable
= 1;
762 state
= audit_filter_inodes(tsk
, context
);
763 if (state
== AUDIT_RECORD_CONTEXT
)
764 context
->auditable
= 1;
770 tsk
->audit_context
= NULL
;
774 static inline void audit_free_names(struct audit_context
*context
)
779 if (context
->auditable
780 ||context
->put_count
+ context
->ino_count
!= context
->name_count
) {
781 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
782 " name_count=%d put_count=%d"
783 " ino_count=%d [NOT freeing]\n",
785 context
->serial
, context
->major
, context
->in_syscall
,
786 context
->name_count
, context
->put_count
,
788 for (i
= 0; i
< context
->name_count
; i
++) {
789 printk(KERN_ERR
"names[%d] = %p = %s\n", i
,
790 context
->names
[i
].name
,
791 context
->names
[i
].name
?: "(null)");
798 context
->put_count
= 0;
799 context
->ino_count
= 0;
802 for (i
= 0; i
< context
->name_count
; i
++) {
803 if (context
->names
[i
].name
&& context
->names
[i
].name_put
)
804 __putname(context
->names
[i
].name
);
806 context
->name_count
= 0;
807 path_put(&context
->pwd
);
808 context
->pwd
.dentry
= NULL
;
809 context
->pwd
.mnt
= NULL
;
812 static inline void audit_free_aux(struct audit_context
*context
)
814 struct audit_aux_data
*aux
;
816 while ((aux
= context
->aux
)) {
817 context
->aux
= aux
->next
;
820 while ((aux
= context
->aux_pids
)) {
821 context
->aux_pids
= aux
->next
;
826 static inline void audit_zero_context(struct audit_context
*context
,
827 enum audit_state state
)
829 memset(context
, 0, sizeof(*context
));
830 context
->state
= state
;
833 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
835 struct audit_context
*context
;
837 if (!(context
= kmalloc(sizeof(*context
), GFP_KERNEL
)))
839 audit_zero_context(context
, state
);
844 * audit_alloc - allocate an audit context block for a task
847 * Filter on the task information and allocate a per-task audit context
848 * if necessary. Doing so turns on system call auditing for the
849 * specified task. This is called from copy_process, so no lock is
852 int audit_alloc(struct task_struct
*tsk
)
854 struct audit_context
*context
;
855 enum audit_state state
;
857 if (likely(!audit_ever_enabled
))
858 return 0; /* Return if not auditing. */
860 state
= audit_filter_task(tsk
);
861 if (likely(state
== AUDIT_DISABLED
))
864 if (!(context
= audit_alloc_context(state
))) {
865 audit_log_lost("out of memory in audit_alloc");
869 tsk
->audit_context
= context
;
870 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
874 static inline void audit_free_context(struct audit_context
*context
)
876 struct audit_context
*previous
;
880 previous
= context
->previous
;
881 if (previous
|| (count
&& count
< 10)) {
883 printk(KERN_ERR
"audit(:%d): major=%d name_count=%d:"
884 " freeing multiple contexts (%d)\n",
885 context
->serial
, context
->major
,
886 context
->name_count
, count
);
888 audit_free_names(context
);
889 unroll_tree_refs(context
, NULL
, 0);
890 free_tree_refs(context
);
891 audit_free_aux(context
);
892 kfree(context
->filterkey
);
897 printk(KERN_ERR
"audit: freed %d contexts\n", count
);
900 void audit_log_task_context(struct audit_buffer
*ab
)
907 security_task_getsecid(current
, &sid
);
911 error
= security_secid_to_secctx(sid
, &ctx
, &len
);
913 if (error
!= -EINVAL
)
918 audit_log_format(ab
, " subj=%s", ctx
);
919 security_release_secctx(ctx
, len
);
923 audit_panic("error in audit_log_task_context");
927 EXPORT_SYMBOL(audit_log_task_context
);
929 static void audit_log_task_info(struct audit_buffer
*ab
, struct task_struct
*tsk
)
931 char name
[sizeof(tsk
->comm
)];
932 struct mm_struct
*mm
= tsk
->mm
;
933 struct vm_area_struct
*vma
;
937 get_task_comm(name
, tsk
);
938 audit_log_format(ab
, " comm=");
939 audit_log_untrustedstring(ab
, name
);
942 down_read(&mm
->mmap_sem
);
945 if ((vma
->vm_flags
& VM_EXECUTABLE
) &&
947 audit_log_d_path(ab
, "exe=",
948 &vma
->vm_file
->f_path
);
953 up_read(&mm
->mmap_sem
);
955 audit_log_task_context(ab
);
958 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
959 uid_t auid
, uid_t uid
, unsigned int sessionid
,
962 struct audit_buffer
*ab
;
967 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
971 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
, auid
,
973 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
974 audit_log_format(ab
, " obj=(none)");
977 audit_log_format(ab
, " obj=%s", ctx
);
978 security_release_secctx(ctx
, len
);
980 audit_log_format(ab
, " ocomm=");
981 audit_log_untrustedstring(ab
, comm
);
988 * to_send and len_sent accounting are very loose estimates. We aren't
989 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
990 * within about 500 bytes (next page boundry)
992 * why snprintf? an int is up to 12 digits long. if we just assumed when
993 * logging that a[%d]= was going to be 16 characters long we would be wasting
994 * space in every audit message. In one 7500 byte message we can log up to
995 * about 1000 min size arguments. That comes down to about 50% waste of space
996 * if we didn't do the snprintf to find out how long arg_num_len was.
998 static int audit_log_single_execve_arg(struct audit_context
*context
,
999 struct audit_buffer
**ab
,
1002 const char __user
*p
,
1005 char arg_num_len_buf
[12];
1006 const char __user
*tmp_p
= p
;
1007 /* how many digits are in arg_num? 3 is the length of a=\n */
1008 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 3;
1009 size_t len
, len_left
, to_send
;
1010 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
1011 unsigned int i
, has_cntl
= 0, too_long
= 0;
1014 /* strnlen_user includes the null we don't want to send */
1015 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1018 * We just created this mm, if we can't find the strings
1019 * we just copied into it something is _very_ wrong. Similar
1020 * for strings that are too long, we should not have created
1023 if (unlikely((len
== -1) || len
> MAX_ARG_STRLEN
- 1)) {
1025 send_sig(SIGKILL
, current
, 0);
1029 /* walk the whole argument looking for non-ascii chars */
1031 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1032 to_send
= MAX_EXECVE_AUDIT_LEN
;
1035 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1037 * There is no reason for this copy to be short. We just
1038 * copied them here, and the mm hasn't been exposed to user-
1043 send_sig(SIGKILL
, current
, 0);
1046 buf
[to_send
] = '\0';
1047 has_cntl
= audit_string_contains_control(buf
, to_send
);
1050 * hex messages get logged as 2 bytes, so we can only
1051 * send half as much in each message
1053 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1056 len_left
-= to_send
;
1058 } while (len_left
> 0);
1062 if (len
> max_execve_audit_len
)
1065 /* rewalk the argument actually logging the message */
1066 for (i
= 0; len_left
> 0; i
++) {
1069 if (len_left
> max_execve_audit_len
)
1070 to_send
= max_execve_audit_len
;
1074 /* do we have space left to send this argument in this ab? */
1075 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1077 room_left
-= (to_send
* 2);
1079 room_left
-= to_send
;
1080 if (room_left
< 0) {
1083 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1089 * first record needs to say how long the original string was
1090 * so we can be sure nothing was lost.
1092 if ((i
== 0) && (too_long
))
1093 audit_log_format(*ab
, "a%d_len=%zu ", arg_num
,
1094 has_cntl
? 2*len
: len
);
1097 * normally arguments are small enough to fit and we already
1098 * filled buf above when we checked for control characters
1099 * so don't bother with another copy_from_user
1101 if (len
>= max_execve_audit_len
)
1102 ret
= copy_from_user(buf
, p
, to_send
);
1107 send_sig(SIGKILL
, current
, 0);
1110 buf
[to_send
] = '\0';
1112 /* actually log it */
1113 audit_log_format(*ab
, "a%d", arg_num
);
1115 audit_log_format(*ab
, "[%d]", i
);
1116 audit_log_format(*ab
, "=");
1118 audit_log_n_hex(*ab
, buf
, to_send
);
1120 audit_log_format(*ab
, "\"%s\"", buf
);
1121 audit_log_format(*ab
, "\n");
1124 len_left
-= to_send
;
1125 *len_sent
+= arg_num_len
;
1127 *len_sent
+= to_send
* 2;
1129 *len_sent
+= to_send
;
1131 /* include the null we didn't log */
1135 static void audit_log_execve_info(struct audit_context
*context
,
1136 struct audit_buffer
**ab
,
1137 struct audit_aux_data_execve
*axi
)
1140 size_t len
, len_sent
= 0;
1141 const char __user
*p
;
1144 if (axi
->mm
!= current
->mm
)
1145 return; /* execve failed, no additional info */
1147 p
= (const char __user
*)axi
->mm
->arg_start
;
1149 audit_log_format(*ab
, "argc=%d ", axi
->argc
);
1152 * we need some kernel buffer to hold the userspace args. Just
1153 * allocate one big one rather than allocating one of the right size
1154 * for every single argument inside audit_log_single_execve_arg()
1155 * should be <8k allocation so should be pretty safe.
1157 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1159 audit_panic("out of memory for argv string\n");
1163 for (i
= 0; i
< axi
->argc
; i
++) {
1164 len
= audit_log_single_execve_arg(context
, ab
, i
,
1173 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1175 int i
, call_panic
= 0;
1176 struct audit_buffer
*ab
;
1177 struct audit_aux_data
*aux
;
1180 /* tsk == current */
1181 context
->pid
= tsk
->pid
;
1183 context
->ppid
= sys_getppid();
1184 context
->uid
= tsk
->uid
;
1185 context
->gid
= tsk
->gid
;
1186 context
->euid
= tsk
->euid
;
1187 context
->suid
= tsk
->suid
;
1188 context
->fsuid
= tsk
->fsuid
;
1189 context
->egid
= tsk
->egid
;
1190 context
->sgid
= tsk
->sgid
;
1191 context
->fsgid
= tsk
->fsgid
;
1192 context
->personality
= tsk
->personality
;
1194 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1196 return; /* audit_panic has been called */
1197 audit_log_format(ab
, "arch=%x syscall=%d",
1198 context
->arch
, context
->major
);
1199 if (context
->personality
!= PER_LINUX
)
1200 audit_log_format(ab
, " per=%lx", context
->personality
);
1201 if (context
->return_valid
)
1202 audit_log_format(ab
, " success=%s exit=%ld",
1203 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1204 context
->return_code
);
1206 mutex_lock(&tty_mutex
);
1207 read_lock(&tasklist_lock
);
1208 if (tsk
->signal
&& tsk
->signal
->tty
&& tsk
->signal
->tty
->name
)
1209 tty
= tsk
->signal
->tty
->name
;
1212 read_unlock(&tasklist_lock
);
1213 audit_log_format(ab
,
1214 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1215 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1216 " euid=%u suid=%u fsuid=%u"
1217 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1222 context
->name_count
,
1228 context
->euid
, context
->suid
, context
->fsuid
,
1229 context
->egid
, context
->sgid
, context
->fsgid
, tty
,
1232 mutex_unlock(&tty_mutex
);
1234 audit_log_task_info(ab
, tsk
);
1235 if (context
->filterkey
) {
1236 audit_log_format(ab
, " key=");
1237 audit_log_untrustedstring(ab
, context
->filterkey
);
1239 audit_log_format(ab
, " key=(null)");
1242 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1244 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1246 continue; /* audit_panic has been called */
1248 switch (aux
->type
) {
1249 case AUDIT_MQ_OPEN
: {
1250 struct audit_aux_data_mq_open
*axi
= (void *)aux
;
1251 audit_log_format(ab
,
1252 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1253 "mq_msgsize=%ld mq_curmsgs=%ld",
1254 axi
->oflag
, axi
->mode
, axi
->attr
.mq_flags
,
1255 axi
->attr
.mq_maxmsg
, axi
->attr
.mq_msgsize
,
1256 axi
->attr
.mq_curmsgs
);
1259 case AUDIT_MQ_SENDRECV
: {
1260 struct audit_aux_data_mq_sendrecv
*axi
= (void *)aux
;
1261 audit_log_format(ab
,
1262 "mqdes=%d msg_len=%zd msg_prio=%u "
1263 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1264 axi
->mqdes
, axi
->msg_len
, axi
->msg_prio
,
1265 axi
->abs_timeout
.tv_sec
, axi
->abs_timeout
.tv_nsec
);
1268 case AUDIT_MQ_NOTIFY
: {
1269 struct audit_aux_data_mq_notify
*axi
= (void *)aux
;
1270 audit_log_format(ab
,
1271 "mqdes=%d sigev_signo=%d",
1273 axi
->notification
.sigev_signo
);
1276 case AUDIT_MQ_GETSETATTR
: {
1277 struct audit_aux_data_mq_getsetattr
*axi
= (void *)aux
;
1278 audit_log_format(ab
,
1279 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1282 axi
->mqstat
.mq_flags
, axi
->mqstat
.mq_maxmsg
,
1283 axi
->mqstat
.mq_msgsize
, axi
->mqstat
.mq_curmsgs
);
1287 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
1288 audit_log_format(ab
,
1289 "ouid=%u ogid=%u mode=%#o",
1290 axi
->uid
, axi
->gid
, axi
->mode
);
1291 if (axi
->osid
!= 0) {
1294 if (security_secid_to_secctx(
1295 axi
->osid
, &ctx
, &len
)) {
1296 audit_log_format(ab
, " osid=%u",
1300 audit_log_format(ab
, " obj=%s", ctx
);
1301 security_release_secctx(ctx
, len
);
1306 case AUDIT_IPC_SET_PERM
: {
1307 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
1308 audit_log_format(ab
,
1309 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1310 axi
->qbytes
, axi
->uid
, axi
->gid
, axi
->mode
);
1313 case AUDIT_EXECVE
: {
1314 struct audit_aux_data_execve
*axi
= (void *)aux
;
1315 audit_log_execve_info(context
, &ab
, axi
);
1318 case AUDIT_SOCKETCALL
: {
1319 struct audit_aux_data_socketcall
*axs
= (void *)aux
;
1320 audit_log_format(ab
, "nargs=%d", axs
->nargs
);
1321 for (i
=0; i
<axs
->nargs
; i
++)
1322 audit_log_format(ab
, " a%d=%lx", i
, axs
->args
[i
]);
1325 case AUDIT_SOCKADDR
: {
1326 struct audit_aux_data_sockaddr
*axs
= (void *)aux
;
1328 audit_log_format(ab
, "saddr=");
1329 audit_log_n_hex(ab
, axs
->a
, axs
->len
);
1332 case AUDIT_FD_PAIR
: {
1333 struct audit_aux_data_fd_pair
*axs
= (void *)aux
;
1334 audit_log_format(ab
, "fd0=%d fd1=%d", axs
->fd
[0], axs
->fd
[1]);
1341 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1342 struct audit_aux_data_pids
*axs
= (void *)aux
;
1344 for (i
= 0; i
< axs
->pid_count
; i
++)
1345 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1346 axs
->target_auid
[i
],
1348 axs
->target_sessionid
[i
],
1350 axs
->target_comm
[i
]))
1354 if (context
->target_pid
&&
1355 audit_log_pid_context(context
, context
->target_pid
,
1356 context
->target_auid
, context
->target_uid
,
1357 context
->target_sessionid
,
1358 context
->target_sid
, context
->target_comm
))
1361 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1362 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1364 audit_log_d_path(ab
, "cwd=", &context
->pwd
);
1368 for (i
= 0; i
< context
->name_count
; i
++) {
1369 struct audit_names
*n
= &context
->names
[i
];
1371 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1373 continue; /* audit_panic has been called */
1375 audit_log_format(ab
, "item=%d", i
);
1378 switch(n
->name_len
) {
1379 case AUDIT_NAME_FULL
:
1380 /* log the full path */
1381 audit_log_format(ab
, " name=");
1382 audit_log_untrustedstring(ab
, n
->name
);
1385 /* name was specified as a relative path and the
1386 * directory component is the cwd */
1387 audit_log_d_path(ab
, " name=", &context
->pwd
);
1390 /* log the name's directory component */
1391 audit_log_format(ab
, " name=");
1392 audit_log_n_untrustedstring(ab
, n
->name
,
1396 audit_log_format(ab
, " name=(null)");
1398 if (n
->ino
!= (unsigned long)-1) {
1399 audit_log_format(ab
, " inode=%lu"
1400 " dev=%02x:%02x mode=%#o"
1401 " ouid=%u ogid=%u rdev=%02x:%02x",
1414 if (security_secid_to_secctx(
1415 n
->osid
, &ctx
, &len
)) {
1416 audit_log_format(ab
, " osid=%u", n
->osid
);
1419 audit_log_format(ab
, " obj=%s", ctx
);
1420 security_release_secctx(ctx
, len
);
1427 /* Send end of event record to help user space know we are finished */
1428 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1432 audit_panic("error converting sid to string");
1436 * audit_free - free a per-task audit context
1437 * @tsk: task whose audit context block to free
1439 * Called from copy_process and do_exit
1441 void audit_free(struct task_struct
*tsk
)
1443 struct audit_context
*context
;
1445 context
= audit_get_context(tsk
, 0, 0);
1446 if (likely(!context
))
1449 /* Check for system calls that do not go through the exit
1450 * function (e.g., exit_group), then free context block.
1451 * We use GFP_ATOMIC here because we might be doing this
1452 * in the context of the idle thread */
1453 /* that can happen only if we are called from do_exit() */
1454 if (context
->in_syscall
&& context
->auditable
)
1455 audit_log_exit(context
, tsk
);
1457 audit_free_context(context
);
1461 * audit_syscall_entry - fill in an audit record at syscall entry
1462 * @tsk: task being audited
1463 * @arch: architecture type
1464 * @major: major syscall type (function)
1465 * @a1: additional syscall register 1
1466 * @a2: additional syscall register 2
1467 * @a3: additional syscall register 3
1468 * @a4: additional syscall register 4
1470 * Fill in audit context at syscall entry. This only happens if the
1471 * audit context was created when the task was created and the state or
1472 * filters demand the audit context be built. If the state from the
1473 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1474 * then the record will be written at syscall exit time (otherwise, it
1475 * will only be written if another part of the kernel requests that it
1478 void audit_syscall_entry(int arch
, int major
,
1479 unsigned long a1
, unsigned long a2
,
1480 unsigned long a3
, unsigned long a4
)
1482 struct task_struct
*tsk
= current
;
1483 struct audit_context
*context
= tsk
->audit_context
;
1484 enum audit_state state
;
1486 if (unlikely(!context
))
1490 * This happens only on certain architectures that make system
1491 * calls in kernel_thread via the entry.S interface, instead of
1492 * with direct calls. (If you are porting to a new
1493 * architecture, hitting this condition can indicate that you
1494 * got the _exit/_leave calls backward in entry.S.)
1498 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1500 * This also happens with vm86 emulation in a non-nested manner
1501 * (entries without exits), so this case must be caught.
1503 if (context
->in_syscall
) {
1504 struct audit_context
*newctx
;
1508 "audit(:%d) pid=%d in syscall=%d;"
1509 " entering syscall=%d\n",
1510 context
->serial
, tsk
->pid
, context
->major
, major
);
1512 newctx
= audit_alloc_context(context
->state
);
1514 newctx
->previous
= context
;
1516 tsk
->audit_context
= newctx
;
1518 /* If we can't alloc a new context, the best we
1519 * can do is to leak memory (any pending putname
1520 * will be lost). The only other alternative is
1521 * to abandon auditing. */
1522 audit_zero_context(context
, context
->state
);
1525 BUG_ON(context
->in_syscall
|| context
->name_count
);
1530 context
->arch
= arch
;
1531 context
->major
= major
;
1532 context
->argv
[0] = a1
;
1533 context
->argv
[1] = a2
;
1534 context
->argv
[2] = a3
;
1535 context
->argv
[3] = a4
;
1537 state
= context
->state
;
1538 context
->dummy
= !audit_n_rules
;
1539 if (!context
->dummy
&& (state
== AUDIT_SETUP_CONTEXT
|| state
== AUDIT_BUILD_CONTEXT
))
1540 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1541 if (likely(state
== AUDIT_DISABLED
))
1544 context
->serial
= 0;
1545 context
->ctime
= CURRENT_TIME
;
1546 context
->in_syscall
= 1;
1547 context
->auditable
= !!(state
== AUDIT_RECORD_CONTEXT
);
1552 * audit_syscall_exit - deallocate audit context after a system call
1553 * @tsk: task being audited
1554 * @valid: success/failure flag
1555 * @return_code: syscall return value
1557 * Tear down after system call. If the audit context has been marked as
1558 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1559 * filtering, or because some other part of the kernel write an audit
1560 * message), then write out the syscall information. In call cases,
1561 * free the names stored from getname().
1563 void audit_syscall_exit(int valid
, long return_code
)
1565 struct task_struct
*tsk
= current
;
1566 struct audit_context
*context
;
1568 context
= audit_get_context(tsk
, valid
, return_code
);
1570 if (likely(!context
))
1573 if (context
->in_syscall
&& context
->auditable
)
1574 audit_log_exit(context
, tsk
);
1576 context
->in_syscall
= 0;
1577 context
->auditable
= 0;
1579 if (context
->previous
) {
1580 struct audit_context
*new_context
= context
->previous
;
1581 context
->previous
= NULL
;
1582 audit_free_context(context
);
1583 tsk
->audit_context
= new_context
;
1585 audit_free_names(context
);
1586 unroll_tree_refs(context
, NULL
, 0);
1587 audit_free_aux(context
);
1588 context
->aux
= NULL
;
1589 context
->aux_pids
= NULL
;
1590 context
->target_pid
= 0;
1591 context
->target_sid
= 0;
1592 kfree(context
->filterkey
);
1593 context
->filterkey
= NULL
;
1594 tsk
->audit_context
= context
;
1598 static inline void handle_one(const struct inode
*inode
)
1600 #ifdef CONFIG_AUDIT_TREE
1601 struct audit_context
*context
;
1602 struct audit_tree_refs
*p
;
1603 struct audit_chunk
*chunk
;
1605 if (likely(list_empty(&inode
->inotify_watches
)))
1607 context
= current
->audit_context
;
1609 count
= context
->tree_count
;
1611 chunk
= audit_tree_lookup(inode
);
1615 if (likely(put_tree_ref(context
, chunk
)))
1617 if (unlikely(!grow_tree_refs(context
))) {
1618 printk(KERN_WARNING
"out of memory, audit has lost a tree reference\n");
1619 audit_set_auditable(context
);
1620 audit_put_chunk(chunk
);
1621 unroll_tree_refs(context
, p
, count
);
1624 put_tree_ref(context
, chunk
);
1628 static void handle_path(const struct dentry
*dentry
)
1630 #ifdef CONFIG_AUDIT_TREE
1631 struct audit_context
*context
;
1632 struct audit_tree_refs
*p
;
1633 const struct dentry
*d
, *parent
;
1634 struct audit_chunk
*drop
;
1638 context
= current
->audit_context
;
1640 count
= context
->tree_count
;
1645 seq
= read_seqbegin(&rename_lock
);
1647 struct inode
*inode
= d
->d_inode
;
1648 if (inode
&& unlikely(!list_empty(&inode
->inotify_watches
))) {
1649 struct audit_chunk
*chunk
;
1650 chunk
= audit_tree_lookup(inode
);
1652 if (unlikely(!put_tree_ref(context
, chunk
))) {
1658 parent
= d
->d_parent
;
1663 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1666 /* just a race with rename */
1667 unroll_tree_refs(context
, p
, count
);
1670 audit_put_chunk(drop
);
1671 if (grow_tree_refs(context
)) {
1672 /* OK, got more space */
1673 unroll_tree_refs(context
, p
, count
);
1678 "out of memory, audit has lost a tree reference\n");
1679 unroll_tree_refs(context
, p
, count
);
1680 audit_set_auditable(context
);
1688 * audit_getname - add a name to the list
1689 * @name: name to add
1691 * Add a name to the list of audit names for this context.
1692 * Called from fs/namei.c:getname().
1694 void __audit_getname(const char *name
)
1696 struct audit_context
*context
= current
->audit_context
;
1698 if (IS_ERR(name
) || !name
)
1701 if (!context
->in_syscall
) {
1702 #if AUDIT_DEBUG == 2
1703 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
1704 __FILE__
, __LINE__
, context
->serial
, name
);
1709 BUG_ON(context
->name_count
>= AUDIT_NAMES
);
1710 context
->names
[context
->name_count
].name
= name
;
1711 context
->names
[context
->name_count
].name_len
= AUDIT_NAME_FULL
;
1712 context
->names
[context
->name_count
].name_put
= 1;
1713 context
->names
[context
->name_count
].ino
= (unsigned long)-1;
1714 context
->names
[context
->name_count
].osid
= 0;
1715 ++context
->name_count
;
1716 if (!context
->pwd
.dentry
) {
1717 read_lock(¤t
->fs
->lock
);
1718 context
->pwd
= current
->fs
->pwd
;
1719 path_get(¤t
->fs
->pwd
);
1720 read_unlock(¤t
->fs
->lock
);
1725 /* audit_putname - intercept a putname request
1726 * @name: name to intercept and delay for putname
1728 * If we have stored the name from getname in the audit context,
1729 * then we delay the putname until syscall exit.
1730 * Called from include/linux/fs.h:putname().
1732 void audit_putname(const char *name
)
1734 struct audit_context
*context
= current
->audit_context
;
1737 if (!context
->in_syscall
) {
1738 #if AUDIT_DEBUG == 2
1739 printk(KERN_ERR
"%s:%d(:%d): __putname(%p)\n",
1740 __FILE__
, __LINE__
, context
->serial
, name
);
1741 if (context
->name_count
) {
1743 for (i
= 0; i
< context
->name_count
; i
++)
1744 printk(KERN_ERR
"name[%d] = %p = %s\n", i
,
1745 context
->names
[i
].name
,
1746 context
->names
[i
].name
?: "(null)");
1753 ++context
->put_count
;
1754 if (context
->put_count
> context
->name_count
) {
1755 printk(KERN_ERR
"%s:%d(:%d): major=%d"
1756 " in_syscall=%d putname(%p) name_count=%d"
1759 context
->serial
, context
->major
,
1760 context
->in_syscall
, name
, context
->name_count
,
1761 context
->put_count
);
1768 static int audit_inc_name_count(struct audit_context
*context
,
1769 const struct inode
*inode
)
1771 if (context
->name_count
>= AUDIT_NAMES
) {
1773 printk(KERN_DEBUG
"name_count maxed, losing inode data: "
1774 "dev=%02x:%02x, inode=%lu\n",
1775 MAJOR(inode
->i_sb
->s_dev
),
1776 MINOR(inode
->i_sb
->s_dev
),
1780 printk(KERN_DEBUG
"name_count maxed, losing inode data\n");
1783 context
->name_count
++;
1785 context
->ino_count
++;
1790 /* Copy inode data into an audit_names. */
1791 static void audit_copy_inode(struct audit_names
*name
, const struct inode
*inode
)
1793 name
->ino
= inode
->i_ino
;
1794 name
->dev
= inode
->i_sb
->s_dev
;
1795 name
->mode
= inode
->i_mode
;
1796 name
->uid
= inode
->i_uid
;
1797 name
->gid
= inode
->i_gid
;
1798 name
->rdev
= inode
->i_rdev
;
1799 security_inode_getsecid(inode
, &name
->osid
);
1803 * audit_inode - store the inode and device from a lookup
1804 * @name: name being audited
1805 * @dentry: dentry being audited
1807 * Called from fs/namei.c:path_lookup().
1809 void __audit_inode(const char *name
, const struct dentry
*dentry
)
1812 struct audit_context
*context
= current
->audit_context
;
1813 const struct inode
*inode
= dentry
->d_inode
;
1815 if (!context
->in_syscall
)
1817 if (context
->name_count
1818 && context
->names
[context
->name_count
-1].name
1819 && context
->names
[context
->name_count
-1].name
== name
)
1820 idx
= context
->name_count
- 1;
1821 else if (context
->name_count
> 1
1822 && context
->names
[context
->name_count
-2].name
1823 && context
->names
[context
->name_count
-2].name
== name
)
1824 idx
= context
->name_count
- 2;
1826 /* FIXME: how much do we care about inodes that have no
1827 * associated name? */
1828 if (audit_inc_name_count(context
, inode
))
1830 idx
= context
->name_count
- 1;
1831 context
->names
[idx
].name
= NULL
;
1833 handle_path(dentry
);
1834 audit_copy_inode(&context
->names
[idx
], inode
);
1838 * audit_inode_child - collect inode info for created/removed objects
1839 * @dname: inode's dentry name
1840 * @dentry: dentry being audited
1841 * @parent: inode of dentry parent
1843 * For syscalls that create or remove filesystem objects, audit_inode
1844 * can only collect information for the filesystem object's parent.
1845 * This call updates the audit context with the child's information.
1846 * Syscalls that create a new filesystem object must be hooked after
1847 * the object is created. Syscalls that remove a filesystem object
1848 * must be hooked prior, in order to capture the target inode during
1849 * unsuccessful attempts.
1851 void __audit_inode_child(const char *dname
, const struct dentry
*dentry
,
1852 const struct inode
*parent
)
1855 struct audit_context
*context
= current
->audit_context
;
1856 const char *found_parent
= NULL
, *found_child
= NULL
;
1857 const struct inode
*inode
= dentry
->d_inode
;
1860 if (!context
->in_syscall
)
1865 /* determine matching parent */
1869 /* parent is more likely, look for it first */
1870 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1871 struct audit_names
*n
= &context
->names
[idx
];
1876 if (n
->ino
== parent
->i_ino
&&
1877 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1878 n
->name_len
= dirlen
; /* update parent data in place */
1879 found_parent
= n
->name
;
1884 /* no matching parent, look for matching child */
1885 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1886 struct audit_names
*n
= &context
->names
[idx
];
1891 /* strcmp() is the more likely scenario */
1892 if (!strcmp(dname
, n
->name
) ||
1893 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1895 audit_copy_inode(n
, inode
);
1897 n
->ino
= (unsigned long)-1;
1898 found_child
= n
->name
;
1904 if (!found_parent
) {
1905 if (audit_inc_name_count(context
, parent
))
1907 idx
= context
->name_count
- 1;
1908 context
->names
[idx
].name
= NULL
;
1909 audit_copy_inode(&context
->names
[idx
], parent
);
1913 if (audit_inc_name_count(context
, inode
))
1915 idx
= context
->name_count
- 1;
1917 /* Re-use the name belonging to the slot for a matching parent
1918 * directory. All names for this context are relinquished in
1919 * audit_free_names() */
1921 context
->names
[idx
].name
= found_parent
;
1922 context
->names
[idx
].name_len
= AUDIT_NAME_FULL
;
1923 /* don't call __putname() */
1924 context
->names
[idx
].name_put
= 0;
1926 context
->names
[idx
].name
= NULL
;
1930 audit_copy_inode(&context
->names
[idx
], inode
);
1932 context
->names
[idx
].ino
= (unsigned long)-1;
1935 EXPORT_SYMBOL_GPL(__audit_inode_child
);
1938 * auditsc_get_stamp - get local copies of audit_context values
1939 * @ctx: audit_context for the task
1940 * @t: timespec to store time recorded in the audit_context
1941 * @serial: serial value that is recorded in the audit_context
1943 * Also sets the context as auditable.
1945 void auditsc_get_stamp(struct audit_context
*ctx
,
1946 struct timespec
*t
, unsigned int *serial
)
1949 ctx
->serial
= audit_serial();
1950 t
->tv_sec
= ctx
->ctime
.tv_sec
;
1951 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
1952 *serial
= ctx
->serial
;
1956 /* global counter which is incremented every time something logs in */
1957 static atomic_t session_id
= ATOMIC_INIT(0);
1960 * audit_set_loginuid - set a task's audit_context loginuid
1961 * @task: task whose audit context is being modified
1962 * @loginuid: loginuid value
1966 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1968 int audit_set_loginuid(struct task_struct
*task
, uid_t loginuid
)
1970 unsigned int sessionid
= atomic_inc_return(&session_id
);
1971 struct audit_context
*context
= task
->audit_context
;
1973 if (context
&& context
->in_syscall
) {
1974 struct audit_buffer
*ab
;
1976 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
1978 audit_log_format(ab
, "login pid=%d uid=%u "
1979 "old auid=%u new auid=%u"
1980 " old ses=%u new ses=%u",
1981 task
->pid
, task
->uid
,
1982 task
->loginuid
, loginuid
,
1983 task
->sessionid
, sessionid
);
1987 task
->sessionid
= sessionid
;
1988 task
->loginuid
= loginuid
;
1993 * __audit_mq_open - record audit data for a POSIX MQ open
1996 * @u_attr: queue attributes
1998 * Returns 0 for success or NULL context or < 0 on error.
2000 int __audit_mq_open(int oflag
, mode_t mode
, struct mq_attr __user
*u_attr
)
2002 struct audit_aux_data_mq_open
*ax
;
2003 struct audit_context
*context
= current
->audit_context
;
2008 if (likely(!context
))
2011 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2015 if (u_attr
!= NULL
) {
2016 if (copy_from_user(&ax
->attr
, u_attr
, sizeof(ax
->attr
))) {
2021 memset(&ax
->attr
, 0, sizeof(ax
->attr
));
2026 ax
->d
.type
= AUDIT_MQ_OPEN
;
2027 ax
->d
.next
= context
->aux
;
2028 context
->aux
= (void *)ax
;
2033 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2034 * @mqdes: MQ descriptor
2035 * @msg_len: Message length
2036 * @msg_prio: Message priority
2037 * @u_abs_timeout: Message timeout in absolute time
2039 * Returns 0 for success or NULL context or < 0 on error.
2041 int __audit_mq_timedsend(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2042 const struct timespec __user
*u_abs_timeout
)
2044 struct audit_aux_data_mq_sendrecv
*ax
;
2045 struct audit_context
*context
= current
->audit_context
;
2050 if (likely(!context
))
2053 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2057 if (u_abs_timeout
!= NULL
) {
2058 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
2063 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
2066 ax
->msg_len
= msg_len
;
2067 ax
->msg_prio
= msg_prio
;
2069 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
2070 ax
->d
.next
= context
->aux
;
2071 context
->aux
= (void *)ax
;
2076 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2077 * @mqdes: MQ descriptor
2078 * @msg_len: Message length
2079 * @u_msg_prio: Message priority
2080 * @u_abs_timeout: Message timeout in absolute time
2082 * Returns 0 for success or NULL context or < 0 on error.
2084 int __audit_mq_timedreceive(mqd_t mqdes
, size_t msg_len
,
2085 unsigned int __user
*u_msg_prio
,
2086 const struct timespec __user
*u_abs_timeout
)
2088 struct audit_aux_data_mq_sendrecv
*ax
;
2089 struct audit_context
*context
= current
->audit_context
;
2094 if (likely(!context
))
2097 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2101 if (u_msg_prio
!= NULL
) {
2102 if (get_user(ax
->msg_prio
, u_msg_prio
)) {
2109 if (u_abs_timeout
!= NULL
) {
2110 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
2115 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
2118 ax
->msg_len
= msg_len
;
2120 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
2121 ax
->d
.next
= context
->aux
;
2122 context
->aux
= (void *)ax
;
2127 * __audit_mq_notify - record audit data for a POSIX MQ notify
2128 * @mqdes: MQ descriptor
2129 * @u_notification: Notification event
2131 * Returns 0 for success or NULL context or < 0 on error.
2134 int __audit_mq_notify(mqd_t mqdes
, const struct sigevent __user
*u_notification
)
2136 struct audit_aux_data_mq_notify
*ax
;
2137 struct audit_context
*context
= current
->audit_context
;
2142 if (likely(!context
))
2145 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2149 if (u_notification
!= NULL
) {
2150 if (copy_from_user(&ax
->notification
, u_notification
, sizeof(ax
->notification
))) {
2155 memset(&ax
->notification
, 0, sizeof(ax
->notification
));
2159 ax
->d
.type
= AUDIT_MQ_NOTIFY
;
2160 ax
->d
.next
= context
->aux
;
2161 context
->aux
= (void *)ax
;
2166 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2167 * @mqdes: MQ descriptor
2170 * Returns 0 for success or NULL context or < 0 on error.
2172 int __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2174 struct audit_aux_data_mq_getsetattr
*ax
;
2175 struct audit_context
*context
= current
->audit_context
;
2180 if (likely(!context
))
2183 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2188 ax
->mqstat
= *mqstat
;
2190 ax
->d
.type
= AUDIT_MQ_GETSETATTR
;
2191 ax
->d
.next
= context
->aux
;
2192 context
->aux
= (void *)ax
;
2197 * audit_ipc_obj - record audit data for ipc object
2198 * @ipcp: ipc permissions
2200 * Returns 0 for success or NULL context or < 0 on error.
2202 int __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2204 struct audit_aux_data_ipcctl
*ax
;
2205 struct audit_context
*context
= current
->audit_context
;
2207 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2211 ax
->uid
= ipcp
->uid
;
2212 ax
->gid
= ipcp
->gid
;
2213 ax
->mode
= ipcp
->mode
;
2214 security_ipc_getsecid(ipcp
, &ax
->osid
);
2215 ax
->d
.type
= AUDIT_IPC
;
2216 ax
->d
.next
= context
->aux
;
2217 context
->aux
= (void *)ax
;
2222 * audit_ipc_set_perm - record audit data for new ipc permissions
2223 * @qbytes: msgq bytes
2224 * @uid: msgq user id
2225 * @gid: msgq group id
2226 * @mode: msgq mode (permissions)
2228 * Returns 0 for success or NULL context or < 0 on error.
2230 int __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, mode_t mode
)
2232 struct audit_aux_data_ipcctl
*ax
;
2233 struct audit_context
*context
= current
->audit_context
;
2235 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2239 ax
->qbytes
= qbytes
;
2244 ax
->d
.type
= AUDIT_IPC_SET_PERM
;
2245 ax
->d
.next
= context
->aux
;
2246 context
->aux
= (void *)ax
;
2250 int audit_bprm(struct linux_binprm
*bprm
)
2252 struct audit_aux_data_execve
*ax
;
2253 struct audit_context
*context
= current
->audit_context
;
2255 if (likely(!audit_enabled
|| !context
|| context
->dummy
))
2258 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2262 ax
->argc
= bprm
->argc
;
2263 ax
->envc
= bprm
->envc
;
2265 ax
->d
.type
= AUDIT_EXECVE
;
2266 ax
->d
.next
= context
->aux
;
2267 context
->aux
= (void *)ax
;
2273 * audit_socketcall - record audit data for sys_socketcall
2274 * @nargs: number of args
2277 * Returns 0 for success or NULL context or < 0 on error.
2279 int audit_socketcall(int nargs
, unsigned long *args
)
2281 struct audit_aux_data_socketcall
*ax
;
2282 struct audit_context
*context
= current
->audit_context
;
2284 if (likely(!context
|| context
->dummy
))
2287 ax
= kmalloc(sizeof(*ax
) + nargs
* sizeof(unsigned long), GFP_KERNEL
);
2292 memcpy(ax
->args
, args
, nargs
* sizeof(unsigned long));
2294 ax
->d
.type
= AUDIT_SOCKETCALL
;
2295 ax
->d
.next
= context
->aux
;
2296 context
->aux
= (void *)ax
;
2301 * __audit_fd_pair - record audit data for pipe and socketpair
2302 * @fd1: the first file descriptor
2303 * @fd2: the second file descriptor
2305 * Returns 0 for success or NULL context or < 0 on error.
2307 int __audit_fd_pair(int fd1
, int fd2
)
2309 struct audit_context
*context
= current
->audit_context
;
2310 struct audit_aux_data_fd_pair
*ax
;
2312 if (likely(!context
)) {
2316 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2324 ax
->d
.type
= AUDIT_FD_PAIR
;
2325 ax
->d
.next
= context
->aux
;
2326 context
->aux
= (void *)ax
;
2331 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2332 * @len: data length in user space
2333 * @a: data address in kernel space
2335 * Returns 0 for success or NULL context or < 0 on error.
2337 int audit_sockaddr(int len
, void *a
)
2339 struct audit_aux_data_sockaddr
*ax
;
2340 struct audit_context
*context
= current
->audit_context
;
2342 if (likely(!context
|| context
->dummy
))
2345 ax
= kmalloc(sizeof(*ax
) + len
, GFP_KERNEL
);
2350 memcpy(ax
->a
, a
, len
);
2352 ax
->d
.type
= AUDIT_SOCKADDR
;
2353 ax
->d
.next
= context
->aux
;
2354 context
->aux
= (void *)ax
;
2358 void __audit_ptrace(struct task_struct
*t
)
2360 struct audit_context
*context
= current
->audit_context
;
2362 context
->target_pid
= t
->pid
;
2363 context
->target_auid
= audit_get_loginuid(t
);
2364 context
->target_uid
= t
->uid
;
2365 context
->target_sessionid
= audit_get_sessionid(t
);
2366 security_task_getsecid(t
, &context
->target_sid
);
2367 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2371 * audit_signal_info - record signal info for shutting down audit subsystem
2372 * @sig: signal value
2373 * @t: task being signaled
2375 * If the audit subsystem is being terminated, record the task (pid)
2376 * and uid that is doing that.
2378 int __audit_signal_info(int sig
, struct task_struct
*t
)
2380 struct audit_aux_data_pids
*axp
;
2381 struct task_struct
*tsk
= current
;
2382 struct audit_context
*ctx
= tsk
->audit_context
;
2384 if (audit_pid
&& t
->tgid
== audit_pid
) {
2385 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2386 audit_sig_pid
= tsk
->pid
;
2387 if (tsk
->loginuid
!= -1)
2388 audit_sig_uid
= tsk
->loginuid
;
2390 audit_sig_uid
= tsk
->uid
;
2391 security_task_getsecid(tsk
, &audit_sig_sid
);
2393 if (!audit_signals
|| audit_dummy_context())
2397 /* optimize the common case by putting first signal recipient directly
2398 * in audit_context */
2399 if (!ctx
->target_pid
) {
2400 ctx
->target_pid
= t
->tgid
;
2401 ctx
->target_auid
= audit_get_loginuid(t
);
2402 ctx
->target_uid
= t
->uid
;
2403 ctx
->target_sessionid
= audit_get_sessionid(t
);
2404 security_task_getsecid(t
, &ctx
->target_sid
);
2405 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2409 axp
= (void *)ctx
->aux_pids
;
2410 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2411 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2415 axp
->d
.type
= AUDIT_OBJ_PID
;
2416 axp
->d
.next
= ctx
->aux_pids
;
2417 ctx
->aux_pids
= (void *)axp
;
2419 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2421 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2422 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2423 axp
->target_uid
[axp
->pid_count
] = t
->uid
;
2424 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2425 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2426 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2433 * audit_core_dumps - record information about processes that end abnormally
2434 * @signr: signal value
2436 * If a process ends with a core dump, something fishy is going on and we
2437 * should record the event for investigation.
2439 void audit_core_dumps(long signr
)
2441 struct audit_buffer
*ab
;
2443 uid_t auid
= audit_get_loginuid(current
);
2444 unsigned int sessionid
= audit_get_sessionid(current
);
2449 if (signr
== SIGQUIT
) /* don't care for those */
2452 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2453 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2454 auid
, current
->uid
, current
->gid
, sessionid
);
2455 security_task_getsecid(current
, &sid
);
2460 if (security_secid_to_secctx(sid
, &ctx
, &len
))
2461 audit_log_format(ab
, " ssid=%u", sid
);
2463 audit_log_format(ab
, " subj=%s", ctx
);
2464 security_release_secctx(ctx
, len
);
2467 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2468 audit_log_untrustedstring(ab
, current
->comm
);
2469 audit_log_format(ab
, " sig=%ld", signr
);