e1000e: test for unusable MSI support
[linux-2.6/mini2440.git] / drivers / net / e1000e / netdev.c
blobd266510c8a94683ae4d21516cf6c18491dc3eb3a
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
48 #include "e1000.h"
50 #define DRV_VERSION "0.3.3.3-k2"
51 char e1000e_driver_name[] = "e1000e";
52 const char e1000e_driver_version[] = DRV_VERSION;
54 static const struct e1000_info *e1000_info_tbl[] = {
55 [board_82571] = &e1000_82571_info,
56 [board_82572] = &e1000_82572_info,
57 [board_82573] = &e1000_82573_info,
58 [board_80003es2lan] = &e1000_es2_info,
59 [board_ich8lan] = &e1000_ich8_info,
60 [board_ich9lan] = &e1000_ich9_info,
63 #ifdef DEBUG
64 /**
65 * e1000_get_hw_dev_name - return device name string
66 * used by hardware layer to print debugging information
67 **/
68 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
70 return hw->adapter->netdev->name;
72 #endif
74 /**
75 * e1000_desc_unused - calculate if we have unused descriptors
76 **/
77 static int e1000_desc_unused(struct e1000_ring *ring)
79 if (ring->next_to_clean > ring->next_to_use)
80 return ring->next_to_clean - ring->next_to_use - 1;
82 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
85 /**
86 * e1000_receive_skb - helper function to handle Rx indications
87 * @adapter: board private structure
88 * @status: descriptor status field as written by hardware
89 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
90 * @skb: pointer to sk_buff to be indicated to stack
91 **/
92 static void e1000_receive_skb(struct e1000_adapter *adapter,
93 struct net_device *netdev,
94 struct sk_buff *skb,
95 u8 status, __le16 vlan)
97 skb->protocol = eth_type_trans(skb, netdev);
99 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
100 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
101 le16_to_cpu(vlan));
102 else
103 netif_receive_skb(skb);
105 netdev->last_rx = jiffies;
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
115 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116 u32 csum, struct sk_buff *skb)
118 u16 status = (u16)status_err;
119 u8 errors = (u8)(status_err >> 24);
120 skb->ip_summed = CHECKSUM_NONE;
122 /* Ignore Checksum bit is set */
123 if (status & E1000_RXD_STAT_IXSM)
124 return;
125 /* TCP/UDP checksum error bit is set */
126 if (errors & E1000_RXD_ERR_TCPE) {
127 /* let the stack verify checksum errors */
128 adapter->hw_csum_err++;
129 return;
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134 return;
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status & E1000_RXD_STAT_TCPCS) {
138 /* TCP checksum is good */
139 skb->ip_summed = CHECKSUM_UNNECESSARY;
140 } else {
142 * IP fragment with UDP payload
143 * Hardware complements the payload checksum, so we undo it
144 * and then put the value in host order for further stack use.
146 __sum16 sum = (__force __sum16)htons(csum);
147 skb->csum = csum_unfold(~sum);
148 skb->ip_summed = CHECKSUM_COMPLETE;
150 adapter->hw_csum_good++;
154 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
155 * @adapter: address of board private structure
157 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
158 int cleaned_count)
160 struct net_device *netdev = adapter->netdev;
161 struct pci_dev *pdev = adapter->pdev;
162 struct e1000_ring *rx_ring = adapter->rx_ring;
163 struct e1000_rx_desc *rx_desc;
164 struct e1000_buffer *buffer_info;
165 struct sk_buff *skb;
166 unsigned int i;
167 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
169 i = rx_ring->next_to_use;
170 buffer_info = &rx_ring->buffer_info[i];
172 while (cleaned_count--) {
173 skb = buffer_info->skb;
174 if (skb) {
175 skb_trim(skb, 0);
176 goto map_skb;
179 skb = netdev_alloc_skb(netdev, bufsz);
180 if (!skb) {
181 /* Better luck next round */
182 adapter->alloc_rx_buff_failed++;
183 break;
187 * Make buffer alignment 2 beyond a 16 byte boundary
188 * this will result in a 16 byte aligned IP header after
189 * the 14 byte MAC header is removed
191 skb_reserve(skb, NET_IP_ALIGN);
193 buffer_info->skb = skb;
194 map_skb:
195 buffer_info->dma = pci_map_single(pdev, skb->data,
196 adapter->rx_buffer_len,
197 PCI_DMA_FROMDEVICE);
198 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
199 dev_err(&pdev->dev, "RX DMA map failed\n");
200 adapter->rx_dma_failed++;
201 break;
204 rx_desc = E1000_RX_DESC(*rx_ring, i);
205 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
207 i++;
208 if (i == rx_ring->count)
209 i = 0;
210 buffer_info = &rx_ring->buffer_info[i];
213 if (rx_ring->next_to_use != i) {
214 rx_ring->next_to_use = i;
215 if (i-- == 0)
216 i = (rx_ring->count - 1);
219 * Force memory writes to complete before letting h/w
220 * know there are new descriptors to fetch. (Only
221 * applicable for weak-ordered memory model archs,
222 * such as IA-64).
224 wmb();
225 writel(i, adapter->hw.hw_addr + rx_ring->tail);
230 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
231 * @adapter: address of board private structure
233 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
234 int cleaned_count)
236 struct net_device *netdev = adapter->netdev;
237 struct pci_dev *pdev = adapter->pdev;
238 union e1000_rx_desc_packet_split *rx_desc;
239 struct e1000_ring *rx_ring = adapter->rx_ring;
240 struct e1000_buffer *buffer_info;
241 struct e1000_ps_page *ps_page;
242 struct sk_buff *skb;
243 unsigned int i, j;
245 i = rx_ring->next_to_use;
246 buffer_info = &rx_ring->buffer_info[i];
248 while (cleaned_count--) {
249 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
251 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
252 ps_page = &buffer_info->ps_pages[j];
253 if (j >= adapter->rx_ps_pages) {
254 /* all unused desc entries get hw null ptr */
255 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
256 continue;
258 if (!ps_page->page) {
259 ps_page->page = alloc_page(GFP_ATOMIC);
260 if (!ps_page->page) {
261 adapter->alloc_rx_buff_failed++;
262 goto no_buffers;
264 ps_page->dma = pci_map_page(pdev,
265 ps_page->page,
266 0, PAGE_SIZE,
267 PCI_DMA_FROMDEVICE);
268 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
269 dev_err(&adapter->pdev->dev,
270 "RX DMA page map failed\n");
271 adapter->rx_dma_failed++;
272 goto no_buffers;
276 * Refresh the desc even if buffer_addrs
277 * didn't change because each write-back
278 * erases this info.
280 rx_desc->read.buffer_addr[j+1] =
281 cpu_to_le64(ps_page->dma);
284 skb = netdev_alloc_skb(netdev,
285 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
287 if (!skb) {
288 adapter->alloc_rx_buff_failed++;
289 break;
293 * Make buffer alignment 2 beyond a 16 byte boundary
294 * this will result in a 16 byte aligned IP header after
295 * the 14 byte MAC header is removed
297 skb_reserve(skb, NET_IP_ALIGN);
299 buffer_info->skb = skb;
300 buffer_info->dma = pci_map_single(pdev, skb->data,
301 adapter->rx_ps_bsize0,
302 PCI_DMA_FROMDEVICE);
303 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
304 dev_err(&pdev->dev, "RX DMA map failed\n");
305 adapter->rx_dma_failed++;
306 /* cleanup skb */
307 dev_kfree_skb_any(skb);
308 buffer_info->skb = NULL;
309 break;
312 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
314 i++;
315 if (i == rx_ring->count)
316 i = 0;
317 buffer_info = &rx_ring->buffer_info[i];
320 no_buffers:
321 if (rx_ring->next_to_use != i) {
322 rx_ring->next_to_use = i;
324 if (!(i--))
325 i = (rx_ring->count - 1);
328 * Force memory writes to complete before letting h/w
329 * know there are new descriptors to fetch. (Only
330 * applicable for weak-ordered memory model archs,
331 * such as IA-64).
333 wmb();
335 * Hardware increments by 16 bytes, but packet split
336 * descriptors are 32 bytes...so we increment tail
337 * twice as much.
339 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
344 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
345 * @adapter: address of board private structure
346 * @rx_ring: pointer to receive ring structure
347 * @cleaned_count: number of buffers to allocate this pass
350 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
351 int cleaned_count)
353 struct net_device *netdev = adapter->netdev;
354 struct pci_dev *pdev = adapter->pdev;
355 struct e1000_rx_desc *rx_desc;
356 struct e1000_ring *rx_ring = adapter->rx_ring;
357 struct e1000_buffer *buffer_info;
358 struct sk_buff *skb;
359 unsigned int i;
360 unsigned int bufsz = 256 -
361 16 /* for skb_reserve */ -
362 NET_IP_ALIGN;
364 i = rx_ring->next_to_use;
365 buffer_info = &rx_ring->buffer_info[i];
367 while (cleaned_count--) {
368 skb = buffer_info->skb;
369 if (skb) {
370 skb_trim(skb, 0);
371 goto check_page;
374 skb = netdev_alloc_skb(netdev, bufsz);
375 if (unlikely(!skb)) {
376 /* Better luck next round */
377 adapter->alloc_rx_buff_failed++;
378 break;
381 /* Make buffer alignment 2 beyond a 16 byte boundary
382 * this will result in a 16 byte aligned IP header after
383 * the 14 byte MAC header is removed
385 skb_reserve(skb, NET_IP_ALIGN);
387 buffer_info->skb = skb;
388 check_page:
389 /* allocate a new page if necessary */
390 if (!buffer_info->page) {
391 buffer_info->page = alloc_page(GFP_ATOMIC);
392 if (unlikely(!buffer_info->page)) {
393 adapter->alloc_rx_buff_failed++;
394 break;
398 if (!buffer_info->dma)
399 buffer_info->dma = pci_map_page(pdev,
400 buffer_info->page, 0,
401 PAGE_SIZE,
402 PCI_DMA_FROMDEVICE);
404 rx_desc = E1000_RX_DESC(*rx_ring, i);
405 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
407 if (unlikely(++i == rx_ring->count))
408 i = 0;
409 buffer_info = &rx_ring->buffer_info[i];
412 if (likely(rx_ring->next_to_use != i)) {
413 rx_ring->next_to_use = i;
414 if (unlikely(i-- == 0))
415 i = (rx_ring->count - 1);
417 /* Force memory writes to complete before letting h/w
418 * know there are new descriptors to fetch. (Only
419 * applicable for weak-ordered memory model archs,
420 * such as IA-64). */
421 wmb();
422 writel(i, adapter->hw.hw_addr + rx_ring->tail);
427 * e1000_clean_rx_irq - Send received data up the network stack; legacy
428 * @adapter: board private structure
430 * the return value indicates whether actual cleaning was done, there
431 * is no guarantee that everything was cleaned
433 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
434 int *work_done, int work_to_do)
436 struct net_device *netdev = adapter->netdev;
437 struct pci_dev *pdev = adapter->pdev;
438 struct e1000_ring *rx_ring = adapter->rx_ring;
439 struct e1000_rx_desc *rx_desc, *next_rxd;
440 struct e1000_buffer *buffer_info, *next_buffer;
441 u32 length;
442 unsigned int i;
443 int cleaned_count = 0;
444 bool cleaned = 0;
445 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
447 i = rx_ring->next_to_clean;
448 rx_desc = E1000_RX_DESC(*rx_ring, i);
449 buffer_info = &rx_ring->buffer_info[i];
451 while (rx_desc->status & E1000_RXD_STAT_DD) {
452 struct sk_buff *skb;
453 u8 status;
455 if (*work_done >= work_to_do)
456 break;
457 (*work_done)++;
459 status = rx_desc->status;
460 skb = buffer_info->skb;
461 buffer_info->skb = NULL;
463 prefetch(skb->data - NET_IP_ALIGN);
465 i++;
466 if (i == rx_ring->count)
467 i = 0;
468 next_rxd = E1000_RX_DESC(*rx_ring, i);
469 prefetch(next_rxd);
471 next_buffer = &rx_ring->buffer_info[i];
473 cleaned = 1;
474 cleaned_count++;
475 pci_unmap_single(pdev,
476 buffer_info->dma,
477 adapter->rx_buffer_len,
478 PCI_DMA_FROMDEVICE);
479 buffer_info->dma = 0;
481 length = le16_to_cpu(rx_desc->length);
483 /* !EOP means multiple descriptors were used to store a single
484 * packet, also make sure the frame isn't just CRC only */
485 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
486 /* All receives must fit into a single buffer */
487 e_dbg("%s: Receive packet consumed multiple buffers\n",
488 netdev->name);
489 /* recycle */
490 buffer_info->skb = skb;
491 goto next_desc;
494 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
495 /* recycle */
496 buffer_info->skb = skb;
497 goto next_desc;
500 total_rx_bytes += length;
501 total_rx_packets++;
504 * code added for copybreak, this should improve
505 * performance for small packets with large amounts
506 * of reassembly being done in the stack
508 if (length < copybreak) {
509 struct sk_buff *new_skb =
510 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
511 if (new_skb) {
512 skb_reserve(new_skb, NET_IP_ALIGN);
513 skb_copy_to_linear_data_offset(new_skb,
514 -NET_IP_ALIGN,
515 (skb->data -
516 NET_IP_ALIGN),
517 (length +
518 NET_IP_ALIGN));
519 /* save the skb in buffer_info as good */
520 buffer_info->skb = skb;
521 skb = new_skb;
523 /* else just continue with the old one */
525 /* end copybreak code */
526 skb_put(skb, length);
528 /* Receive Checksum Offload */
529 e1000_rx_checksum(adapter,
530 (u32)(status) |
531 ((u32)(rx_desc->errors) << 24),
532 le16_to_cpu(rx_desc->csum), skb);
534 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
536 next_desc:
537 rx_desc->status = 0;
539 /* return some buffers to hardware, one at a time is too slow */
540 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
541 adapter->alloc_rx_buf(adapter, cleaned_count);
542 cleaned_count = 0;
545 /* use prefetched values */
546 rx_desc = next_rxd;
547 buffer_info = next_buffer;
549 rx_ring->next_to_clean = i;
551 cleaned_count = e1000_desc_unused(rx_ring);
552 if (cleaned_count)
553 adapter->alloc_rx_buf(adapter, cleaned_count);
555 adapter->total_rx_bytes += total_rx_bytes;
556 adapter->total_rx_packets += total_rx_packets;
557 adapter->net_stats.rx_bytes += total_rx_bytes;
558 adapter->net_stats.rx_packets += total_rx_packets;
559 return cleaned;
562 static void e1000_put_txbuf(struct e1000_adapter *adapter,
563 struct e1000_buffer *buffer_info)
565 if (buffer_info->dma) {
566 pci_unmap_page(adapter->pdev, buffer_info->dma,
567 buffer_info->length, PCI_DMA_TODEVICE);
568 buffer_info->dma = 0;
570 if (buffer_info->skb) {
571 dev_kfree_skb_any(buffer_info->skb);
572 buffer_info->skb = NULL;
576 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
578 struct e1000_ring *tx_ring = adapter->tx_ring;
579 unsigned int i = tx_ring->next_to_clean;
580 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
581 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
583 /* detected Tx unit hang */
584 e_err("Detected Tx Unit Hang:\n"
585 " TDH <%x>\n"
586 " TDT <%x>\n"
587 " next_to_use <%x>\n"
588 " next_to_clean <%x>\n"
589 "buffer_info[next_to_clean]:\n"
590 " time_stamp <%lx>\n"
591 " next_to_watch <%x>\n"
592 " jiffies <%lx>\n"
593 " next_to_watch.status <%x>\n",
594 readl(adapter->hw.hw_addr + tx_ring->head),
595 readl(adapter->hw.hw_addr + tx_ring->tail),
596 tx_ring->next_to_use,
597 tx_ring->next_to_clean,
598 tx_ring->buffer_info[eop].time_stamp,
599 eop,
600 jiffies,
601 eop_desc->upper.fields.status);
605 * e1000_clean_tx_irq - Reclaim resources after transmit completes
606 * @adapter: board private structure
608 * the return value indicates whether actual cleaning was done, there
609 * is no guarantee that everything was cleaned
611 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
613 struct net_device *netdev = adapter->netdev;
614 struct e1000_hw *hw = &adapter->hw;
615 struct e1000_ring *tx_ring = adapter->tx_ring;
616 struct e1000_tx_desc *tx_desc, *eop_desc;
617 struct e1000_buffer *buffer_info;
618 unsigned int i, eop;
619 unsigned int count = 0;
620 bool cleaned = 0;
621 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
623 i = tx_ring->next_to_clean;
624 eop = tx_ring->buffer_info[i].next_to_watch;
625 eop_desc = E1000_TX_DESC(*tx_ring, eop);
627 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
628 for (cleaned = 0; !cleaned; ) {
629 tx_desc = E1000_TX_DESC(*tx_ring, i);
630 buffer_info = &tx_ring->buffer_info[i];
631 cleaned = (i == eop);
633 if (cleaned) {
634 struct sk_buff *skb = buffer_info->skb;
635 unsigned int segs, bytecount;
636 segs = skb_shinfo(skb)->gso_segs ?: 1;
637 /* multiply data chunks by size of headers */
638 bytecount = ((segs - 1) * skb_headlen(skb)) +
639 skb->len;
640 total_tx_packets += segs;
641 total_tx_bytes += bytecount;
644 e1000_put_txbuf(adapter, buffer_info);
645 tx_desc->upper.data = 0;
647 i++;
648 if (i == tx_ring->count)
649 i = 0;
652 eop = tx_ring->buffer_info[i].next_to_watch;
653 eop_desc = E1000_TX_DESC(*tx_ring, eop);
654 #define E1000_TX_WEIGHT 64
655 /* weight of a sort for tx, to avoid endless transmit cleanup */
656 if (count++ == E1000_TX_WEIGHT)
657 break;
660 tx_ring->next_to_clean = i;
662 #define TX_WAKE_THRESHOLD 32
663 if (cleaned && netif_carrier_ok(netdev) &&
664 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
665 /* Make sure that anybody stopping the queue after this
666 * sees the new next_to_clean.
668 smp_mb();
670 if (netif_queue_stopped(netdev) &&
671 !(test_bit(__E1000_DOWN, &adapter->state))) {
672 netif_wake_queue(netdev);
673 ++adapter->restart_queue;
677 if (adapter->detect_tx_hung) {
679 * Detect a transmit hang in hardware, this serializes the
680 * check with the clearing of time_stamp and movement of i
682 adapter->detect_tx_hung = 0;
683 if (tx_ring->buffer_info[eop].dma &&
684 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
685 + (adapter->tx_timeout_factor * HZ))
686 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
687 e1000_print_tx_hang(adapter);
688 netif_stop_queue(netdev);
691 adapter->total_tx_bytes += total_tx_bytes;
692 adapter->total_tx_packets += total_tx_packets;
693 adapter->net_stats.tx_bytes += total_tx_bytes;
694 adapter->net_stats.tx_packets += total_tx_packets;
695 return cleaned;
699 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
700 * @adapter: board private structure
702 * the return value indicates whether actual cleaning was done, there
703 * is no guarantee that everything was cleaned
705 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
706 int *work_done, int work_to_do)
708 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
709 struct net_device *netdev = adapter->netdev;
710 struct pci_dev *pdev = adapter->pdev;
711 struct e1000_ring *rx_ring = adapter->rx_ring;
712 struct e1000_buffer *buffer_info, *next_buffer;
713 struct e1000_ps_page *ps_page;
714 struct sk_buff *skb;
715 unsigned int i, j;
716 u32 length, staterr;
717 int cleaned_count = 0;
718 bool cleaned = 0;
719 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
721 i = rx_ring->next_to_clean;
722 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
723 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
724 buffer_info = &rx_ring->buffer_info[i];
726 while (staterr & E1000_RXD_STAT_DD) {
727 if (*work_done >= work_to_do)
728 break;
729 (*work_done)++;
730 skb = buffer_info->skb;
732 /* in the packet split case this is header only */
733 prefetch(skb->data - NET_IP_ALIGN);
735 i++;
736 if (i == rx_ring->count)
737 i = 0;
738 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
739 prefetch(next_rxd);
741 next_buffer = &rx_ring->buffer_info[i];
743 cleaned = 1;
744 cleaned_count++;
745 pci_unmap_single(pdev, buffer_info->dma,
746 adapter->rx_ps_bsize0,
747 PCI_DMA_FROMDEVICE);
748 buffer_info->dma = 0;
750 if (!(staterr & E1000_RXD_STAT_EOP)) {
751 e_dbg("%s: Packet Split buffers didn't pick up the "
752 "full packet\n", netdev->name);
753 dev_kfree_skb_irq(skb);
754 goto next_desc;
757 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
758 dev_kfree_skb_irq(skb);
759 goto next_desc;
762 length = le16_to_cpu(rx_desc->wb.middle.length0);
764 if (!length) {
765 e_dbg("%s: Last part of the packet spanning multiple "
766 "descriptors\n", netdev->name);
767 dev_kfree_skb_irq(skb);
768 goto next_desc;
771 /* Good Receive */
772 skb_put(skb, length);
776 * this looks ugly, but it seems compiler issues make it
777 * more efficient than reusing j
779 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
782 * page alloc/put takes too long and effects small packet
783 * throughput, so unsplit small packets and save the alloc/put
784 * only valid in softirq (napi) context to call kmap_*
786 if (l1 && (l1 <= copybreak) &&
787 ((length + l1) <= adapter->rx_ps_bsize0)) {
788 u8 *vaddr;
790 ps_page = &buffer_info->ps_pages[0];
793 * there is no documentation about how to call
794 * kmap_atomic, so we can't hold the mapping
795 * very long
797 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
798 PAGE_SIZE, PCI_DMA_FROMDEVICE);
799 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
800 memcpy(skb_tail_pointer(skb), vaddr, l1);
801 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
802 pci_dma_sync_single_for_device(pdev, ps_page->dma,
803 PAGE_SIZE, PCI_DMA_FROMDEVICE);
805 skb_put(skb, l1);
806 goto copydone;
807 } /* if */
810 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
811 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
812 if (!length)
813 break;
815 ps_page = &buffer_info->ps_pages[j];
816 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
817 PCI_DMA_FROMDEVICE);
818 ps_page->dma = 0;
819 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
820 ps_page->page = NULL;
821 skb->len += length;
822 skb->data_len += length;
823 skb->truesize += length;
826 copydone:
827 total_rx_bytes += skb->len;
828 total_rx_packets++;
830 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
831 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
833 if (rx_desc->wb.upper.header_status &
834 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
835 adapter->rx_hdr_split++;
837 e1000_receive_skb(adapter, netdev, skb,
838 staterr, rx_desc->wb.middle.vlan);
840 next_desc:
841 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
842 buffer_info->skb = NULL;
844 /* return some buffers to hardware, one at a time is too slow */
845 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
846 adapter->alloc_rx_buf(adapter, cleaned_count);
847 cleaned_count = 0;
850 /* use prefetched values */
851 rx_desc = next_rxd;
852 buffer_info = next_buffer;
854 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
856 rx_ring->next_to_clean = i;
858 cleaned_count = e1000_desc_unused(rx_ring);
859 if (cleaned_count)
860 adapter->alloc_rx_buf(adapter, cleaned_count);
862 adapter->total_rx_bytes += total_rx_bytes;
863 adapter->total_rx_packets += total_rx_packets;
864 adapter->net_stats.rx_bytes += total_rx_bytes;
865 adapter->net_stats.rx_packets += total_rx_packets;
866 return cleaned;
870 * e1000_consume_page - helper function
872 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
873 u16 length)
875 bi->page = NULL;
876 skb->len += length;
877 skb->data_len += length;
878 skb->truesize += length;
882 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
883 * @adapter: board private structure
885 * the return value indicates whether actual cleaning was done, there
886 * is no guarantee that everything was cleaned
889 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
890 int *work_done, int work_to_do)
892 struct net_device *netdev = adapter->netdev;
893 struct pci_dev *pdev = adapter->pdev;
894 struct e1000_ring *rx_ring = adapter->rx_ring;
895 struct e1000_rx_desc *rx_desc, *next_rxd;
896 struct e1000_buffer *buffer_info, *next_buffer;
897 u32 length;
898 unsigned int i;
899 int cleaned_count = 0;
900 bool cleaned = false;
901 unsigned int total_rx_bytes=0, total_rx_packets=0;
903 i = rx_ring->next_to_clean;
904 rx_desc = E1000_RX_DESC(*rx_ring, i);
905 buffer_info = &rx_ring->buffer_info[i];
907 while (rx_desc->status & E1000_RXD_STAT_DD) {
908 struct sk_buff *skb;
909 u8 status;
911 if (*work_done >= work_to_do)
912 break;
913 (*work_done)++;
915 status = rx_desc->status;
916 skb = buffer_info->skb;
917 buffer_info->skb = NULL;
919 ++i;
920 if (i == rx_ring->count)
921 i = 0;
922 next_rxd = E1000_RX_DESC(*rx_ring, i);
923 prefetch(next_rxd);
925 next_buffer = &rx_ring->buffer_info[i];
927 cleaned = true;
928 cleaned_count++;
929 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
930 PCI_DMA_FROMDEVICE);
931 buffer_info->dma = 0;
933 length = le16_to_cpu(rx_desc->length);
935 /* errors is only valid for DD + EOP descriptors */
936 if (unlikely((status & E1000_RXD_STAT_EOP) &&
937 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
938 /* recycle both page and skb */
939 buffer_info->skb = skb;
940 /* an error means any chain goes out the window
941 * too */
942 if (rx_ring->rx_skb_top)
943 dev_kfree_skb(rx_ring->rx_skb_top);
944 rx_ring->rx_skb_top = NULL;
945 goto next_desc;
948 #define rxtop rx_ring->rx_skb_top
949 if (!(status & E1000_RXD_STAT_EOP)) {
950 /* this descriptor is only the beginning (or middle) */
951 if (!rxtop) {
952 /* this is the beginning of a chain */
953 rxtop = skb;
954 skb_fill_page_desc(rxtop, 0, buffer_info->page,
955 0, length);
956 } else {
957 /* this is the middle of a chain */
958 skb_fill_page_desc(rxtop,
959 skb_shinfo(rxtop)->nr_frags,
960 buffer_info->page, 0, length);
961 /* re-use the skb, only consumed the page */
962 buffer_info->skb = skb;
964 e1000_consume_page(buffer_info, rxtop, length);
965 goto next_desc;
966 } else {
967 if (rxtop) {
968 /* end of the chain */
969 skb_fill_page_desc(rxtop,
970 skb_shinfo(rxtop)->nr_frags,
971 buffer_info->page, 0, length);
972 /* re-use the current skb, we only consumed the
973 * page */
974 buffer_info->skb = skb;
975 skb = rxtop;
976 rxtop = NULL;
977 e1000_consume_page(buffer_info, skb, length);
978 } else {
979 /* no chain, got EOP, this buf is the packet
980 * copybreak to save the put_page/alloc_page */
981 if (length <= copybreak &&
982 skb_tailroom(skb) >= length) {
983 u8 *vaddr;
984 vaddr = kmap_atomic(buffer_info->page,
985 KM_SKB_DATA_SOFTIRQ);
986 memcpy(skb_tail_pointer(skb), vaddr,
987 length);
988 kunmap_atomic(vaddr,
989 KM_SKB_DATA_SOFTIRQ);
990 /* re-use the page, so don't erase
991 * buffer_info->page */
992 skb_put(skb, length);
993 } else {
994 skb_fill_page_desc(skb, 0,
995 buffer_info->page, 0,
996 length);
997 e1000_consume_page(buffer_info, skb,
998 length);
1003 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1004 e1000_rx_checksum(adapter,
1005 (u32)(status) |
1006 ((u32)(rx_desc->errors) << 24),
1007 le16_to_cpu(rx_desc->csum), skb);
1009 /* probably a little skewed due to removing CRC */
1010 total_rx_bytes += skb->len;
1011 total_rx_packets++;
1013 /* eth type trans needs skb->data to point to something */
1014 if (!pskb_may_pull(skb, ETH_HLEN)) {
1015 e_err("pskb_may_pull failed.\n");
1016 dev_kfree_skb(skb);
1017 goto next_desc;
1020 e1000_receive_skb(adapter, netdev, skb, status,
1021 rx_desc->special);
1023 next_desc:
1024 rx_desc->status = 0;
1026 /* return some buffers to hardware, one at a time is too slow */
1027 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1028 adapter->alloc_rx_buf(adapter, cleaned_count);
1029 cleaned_count = 0;
1032 /* use prefetched values */
1033 rx_desc = next_rxd;
1034 buffer_info = next_buffer;
1036 rx_ring->next_to_clean = i;
1038 cleaned_count = e1000_desc_unused(rx_ring);
1039 if (cleaned_count)
1040 adapter->alloc_rx_buf(adapter, cleaned_count);
1042 adapter->total_rx_bytes += total_rx_bytes;
1043 adapter->total_rx_packets += total_rx_packets;
1044 adapter->net_stats.rx_bytes += total_rx_bytes;
1045 adapter->net_stats.rx_packets += total_rx_packets;
1046 return cleaned;
1050 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1051 * @adapter: board private structure
1053 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1055 struct e1000_ring *rx_ring = adapter->rx_ring;
1056 struct e1000_buffer *buffer_info;
1057 struct e1000_ps_page *ps_page;
1058 struct pci_dev *pdev = adapter->pdev;
1059 unsigned int i, j;
1061 /* Free all the Rx ring sk_buffs */
1062 for (i = 0; i < rx_ring->count; i++) {
1063 buffer_info = &rx_ring->buffer_info[i];
1064 if (buffer_info->dma) {
1065 if (adapter->clean_rx == e1000_clean_rx_irq)
1066 pci_unmap_single(pdev, buffer_info->dma,
1067 adapter->rx_buffer_len,
1068 PCI_DMA_FROMDEVICE);
1069 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1070 pci_unmap_page(pdev, buffer_info->dma,
1071 PAGE_SIZE,
1072 PCI_DMA_FROMDEVICE);
1073 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1074 pci_unmap_single(pdev, buffer_info->dma,
1075 adapter->rx_ps_bsize0,
1076 PCI_DMA_FROMDEVICE);
1077 buffer_info->dma = 0;
1080 if (buffer_info->page) {
1081 put_page(buffer_info->page);
1082 buffer_info->page = NULL;
1085 if (buffer_info->skb) {
1086 dev_kfree_skb(buffer_info->skb);
1087 buffer_info->skb = NULL;
1090 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1091 ps_page = &buffer_info->ps_pages[j];
1092 if (!ps_page->page)
1093 break;
1094 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1095 PCI_DMA_FROMDEVICE);
1096 ps_page->dma = 0;
1097 put_page(ps_page->page);
1098 ps_page->page = NULL;
1102 /* there also may be some cached data from a chained receive */
1103 if (rx_ring->rx_skb_top) {
1104 dev_kfree_skb(rx_ring->rx_skb_top);
1105 rx_ring->rx_skb_top = NULL;
1108 /* Zero out the descriptor ring */
1109 memset(rx_ring->desc, 0, rx_ring->size);
1111 rx_ring->next_to_clean = 0;
1112 rx_ring->next_to_use = 0;
1114 writel(0, adapter->hw.hw_addr + rx_ring->head);
1115 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1119 * e1000_intr_msi - Interrupt Handler
1120 * @irq: interrupt number
1121 * @data: pointer to a network interface device structure
1123 static irqreturn_t e1000_intr_msi(int irq, void *data)
1125 struct net_device *netdev = data;
1126 struct e1000_adapter *adapter = netdev_priv(netdev);
1127 struct e1000_hw *hw = &adapter->hw;
1128 u32 icr = er32(ICR);
1131 * read ICR disables interrupts using IAM
1134 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1135 hw->mac.get_link_status = 1;
1137 * ICH8 workaround-- Call gig speed drop workaround on cable
1138 * disconnect (LSC) before accessing any PHY registers
1140 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1141 (!(er32(STATUS) & E1000_STATUS_LU)))
1142 e1000e_gig_downshift_workaround_ich8lan(hw);
1145 * 80003ES2LAN workaround-- For packet buffer work-around on
1146 * link down event; disable receives here in the ISR and reset
1147 * adapter in watchdog
1149 if (netif_carrier_ok(netdev) &&
1150 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1151 /* disable receives */
1152 u32 rctl = er32(RCTL);
1153 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1154 adapter->flags |= FLAG_RX_RESTART_NOW;
1156 /* guard against interrupt when we're going down */
1157 if (!test_bit(__E1000_DOWN, &adapter->state))
1158 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1161 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1162 adapter->total_tx_bytes = 0;
1163 adapter->total_tx_packets = 0;
1164 adapter->total_rx_bytes = 0;
1165 adapter->total_rx_packets = 0;
1166 __netif_rx_schedule(netdev, &adapter->napi);
1169 return IRQ_HANDLED;
1173 * e1000_intr - Interrupt Handler
1174 * @irq: interrupt number
1175 * @data: pointer to a network interface device structure
1177 static irqreturn_t e1000_intr(int irq, void *data)
1179 struct net_device *netdev = data;
1180 struct e1000_adapter *adapter = netdev_priv(netdev);
1181 struct e1000_hw *hw = &adapter->hw;
1183 u32 rctl, icr = er32(ICR);
1184 if (!icr)
1185 return IRQ_NONE; /* Not our interrupt */
1188 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1189 * not set, then the adapter didn't send an interrupt
1191 if (!(icr & E1000_ICR_INT_ASSERTED))
1192 return IRQ_NONE;
1195 * Interrupt Auto-Mask...upon reading ICR,
1196 * interrupts are masked. No need for the
1197 * IMC write
1200 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1201 hw->mac.get_link_status = 1;
1203 * ICH8 workaround-- Call gig speed drop workaround on cable
1204 * disconnect (LSC) before accessing any PHY registers
1206 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1207 (!(er32(STATUS) & E1000_STATUS_LU)))
1208 e1000e_gig_downshift_workaround_ich8lan(hw);
1211 * 80003ES2LAN workaround--
1212 * For packet buffer work-around on link down event;
1213 * disable receives here in the ISR and
1214 * reset adapter in watchdog
1216 if (netif_carrier_ok(netdev) &&
1217 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1218 /* disable receives */
1219 rctl = er32(RCTL);
1220 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1221 adapter->flags |= FLAG_RX_RESTART_NOW;
1223 /* guard against interrupt when we're going down */
1224 if (!test_bit(__E1000_DOWN, &adapter->state))
1225 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1228 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1229 adapter->total_tx_bytes = 0;
1230 adapter->total_tx_packets = 0;
1231 adapter->total_rx_bytes = 0;
1232 adapter->total_rx_packets = 0;
1233 __netif_rx_schedule(netdev, &adapter->napi);
1236 return IRQ_HANDLED;
1240 * e1000_request_irq - initialize interrupts
1242 * Attempts to configure interrupts using the best available
1243 * capabilities of the hardware and kernel.
1245 static int e1000_request_irq(struct e1000_adapter *adapter)
1247 struct net_device *netdev = adapter->netdev;
1248 int irq_flags = IRQF_SHARED;
1249 int err;
1251 if (!(adapter->flags & FLAG_MSI_TEST_FAILED)) {
1252 err = pci_enable_msi(adapter->pdev);
1253 if (!err) {
1254 adapter->flags |= FLAG_MSI_ENABLED;
1255 irq_flags = 0;
1259 err = request_irq(adapter->pdev->irq,
1260 ((adapter->flags & FLAG_MSI_ENABLED) ?
1261 &e1000_intr_msi : &e1000_intr),
1262 irq_flags, netdev->name, netdev);
1263 if (err) {
1264 if (adapter->flags & FLAG_MSI_ENABLED) {
1265 pci_disable_msi(adapter->pdev);
1266 adapter->flags &= ~FLAG_MSI_ENABLED;
1268 e_err("Unable to allocate interrupt, Error: %d\n", err);
1271 return err;
1274 static void e1000_free_irq(struct e1000_adapter *adapter)
1276 struct net_device *netdev = adapter->netdev;
1278 free_irq(adapter->pdev->irq, netdev);
1279 if (adapter->flags & FLAG_MSI_ENABLED) {
1280 pci_disable_msi(adapter->pdev);
1281 adapter->flags &= ~FLAG_MSI_ENABLED;
1286 * e1000_irq_disable - Mask off interrupt generation on the NIC
1288 static void e1000_irq_disable(struct e1000_adapter *adapter)
1290 struct e1000_hw *hw = &adapter->hw;
1292 ew32(IMC, ~0);
1293 e1e_flush();
1294 synchronize_irq(adapter->pdev->irq);
1298 * e1000_irq_enable - Enable default interrupt generation settings
1300 static void e1000_irq_enable(struct e1000_adapter *adapter)
1302 struct e1000_hw *hw = &adapter->hw;
1304 ew32(IMS, IMS_ENABLE_MASK);
1305 e1e_flush();
1309 * e1000_get_hw_control - get control of the h/w from f/w
1310 * @adapter: address of board private structure
1312 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1313 * For ASF and Pass Through versions of f/w this means that
1314 * the driver is loaded. For AMT version (only with 82573)
1315 * of the f/w this means that the network i/f is open.
1317 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1319 struct e1000_hw *hw = &adapter->hw;
1320 u32 ctrl_ext;
1321 u32 swsm;
1323 /* Let firmware know the driver has taken over */
1324 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1325 swsm = er32(SWSM);
1326 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1327 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1328 ctrl_ext = er32(CTRL_EXT);
1329 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1334 * e1000_release_hw_control - release control of the h/w to f/w
1335 * @adapter: address of board private structure
1337 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1338 * For ASF and Pass Through versions of f/w this means that the
1339 * driver is no longer loaded. For AMT version (only with 82573) i
1340 * of the f/w this means that the network i/f is closed.
1343 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1345 struct e1000_hw *hw = &adapter->hw;
1346 u32 ctrl_ext;
1347 u32 swsm;
1349 /* Let firmware taken over control of h/w */
1350 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1351 swsm = er32(SWSM);
1352 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1353 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1354 ctrl_ext = er32(CTRL_EXT);
1355 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1360 * @e1000_alloc_ring - allocate memory for a ring structure
1362 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1363 struct e1000_ring *ring)
1365 struct pci_dev *pdev = adapter->pdev;
1367 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1368 GFP_KERNEL);
1369 if (!ring->desc)
1370 return -ENOMEM;
1372 return 0;
1376 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1377 * @adapter: board private structure
1379 * Return 0 on success, negative on failure
1381 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1383 struct e1000_ring *tx_ring = adapter->tx_ring;
1384 int err = -ENOMEM, size;
1386 size = sizeof(struct e1000_buffer) * tx_ring->count;
1387 tx_ring->buffer_info = vmalloc(size);
1388 if (!tx_ring->buffer_info)
1389 goto err;
1390 memset(tx_ring->buffer_info, 0, size);
1392 /* round up to nearest 4K */
1393 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1394 tx_ring->size = ALIGN(tx_ring->size, 4096);
1396 err = e1000_alloc_ring_dma(adapter, tx_ring);
1397 if (err)
1398 goto err;
1400 tx_ring->next_to_use = 0;
1401 tx_ring->next_to_clean = 0;
1402 spin_lock_init(&adapter->tx_queue_lock);
1404 return 0;
1405 err:
1406 vfree(tx_ring->buffer_info);
1407 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1408 return err;
1412 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1413 * @adapter: board private structure
1415 * Returns 0 on success, negative on failure
1417 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1419 struct e1000_ring *rx_ring = adapter->rx_ring;
1420 struct e1000_buffer *buffer_info;
1421 int i, size, desc_len, err = -ENOMEM;
1423 size = sizeof(struct e1000_buffer) * rx_ring->count;
1424 rx_ring->buffer_info = vmalloc(size);
1425 if (!rx_ring->buffer_info)
1426 goto err;
1427 memset(rx_ring->buffer_info, 0, size);
1429 for (i = 0; i < rx_ring->count; i++) {
1430 buffer_info = &rx_ring->buffer_info[i];
1431 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1432 sizeof(struct e1000_ps_page),
1433 GFP_KERNEL);
1434 if (!buffer_info->ps_pages)
1435 goto err_pages;
1438 desc_len = sizeof(union e1000_rx_desc_packet_split);
1440 /* Round up to nearest 4K */
1441 rx_ring->size = rx_ring->count * desc_len;
1442 rx_ring->size = ALIGN(rx_ring->size, 4096);
1444 err = e1000_alloc_ring_dma(adapter, rx_ring);
1445 if (err)
1446 goto err_pages;
1448 rx_ring->next_to_clean = 0;
1449 rx_ring->next_to_use = 0;
1450 rx_ring->rx_skb_top = NULL;
1452 return 0;
1454 err_pages:
1455 for (i = 0; i < rx_ring->count; i++) {
1456 buffer_info = &rx_ring->buffer_info[i];
1457 kfree(buffer_info->ps_pages);
1459 err:
1460 vfree(rx_ring->buffer_info);
1461 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1462 return err;
1466 * e1000_clean_tx_ring - Free Tx Buffers
1467 * @adapter: board private structure
1469 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1471 struct e1000_ring *tx_ring = adapter->tx_ring;
1472 struct e1000_buffer *buffer_info;
1473 unsigned long size;
1474 unsigned int i;
1476 for (i = 0; i < tx_ring->count; i++) {
1477 buffer_info = &tx_ring->buffer_info[i];
1478 e1000_put_txbuf(adapter, buffer_info);
1481 size = sizeof(struct e1000_buffer) * tx_ring->count;
1482 memset(tx_ring->buffer_info, 0, size);
1484 memset(tx_ring->desc, 0, tx_ring->size);
1486 tx_ring->next_to_use = 0;
1487 tx_ring->next_to_clean = 0;
1489 writel(0, adapter->hw.hw_addr + tx_ring->head);
1490 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1494 * e1000e_free_tx_resources - Free Tx Resources per Queue
1495 * @adapter: board private structure
1497 * Free all transmit software resources
1499 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1501 struct pci_dev *pdev = adapter->pdev;
1502 struct e1000_ring *tx_ring = adapter->tx_ring;
1504 e1000_clean_tx_ring(adapter);
1506 vfree(tx_ring->buffer_info);
1507 tx_ring->buffer_info = NULL;
1509 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1510 tx_ring->dma);
1511 tx_ring->desc = NULL;
1515 * e1000e_free_rx_resources - Free Rx Resources
1516 * @adapter: board private structure
1518 * Free all receive software resources
1521 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1523 struct pci_dev *pdev = adapter->pdev;
1524 struct e1000_ring *rx_ring = adapter->rx_ring;
1525 int i;
1527 e1000_clean_rx_ring(adapter);
1529 for (i = 0; i < rx_ring->count; i++) {
1530 kfree(rx_ring->buffer_info[i].ps_pages);
1533 vfree(rx_ring->buffer_info);
1534 rx_ring->buffer_info = NULL;
1536 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1537 rx_ring->dma);
1538 rx_ring->desc = NULL;
1542 * e1000_update_itr - update the dynamic ITR value based on statistics
1543 * @adapter: pointer to adapter
1544 * @itr_setting: current adapter->itr
1545 * @packets: the number of packets during this measurement interval
1546 * @bytes: the number of bytes during this measurement interval
1548 * Stores a new ITR value based on packets and byte
1549 * counts during the last interrupt. The advantage of per interrupt
1550 * computation is faster updates and more accurate ITR for the current
1551 * traffic pattern. Constants in this function were computed
1552 * based on theoretical maximum wire speed and thresholds were set based
1553 * on testing data as well as attempting to minimize response time
1554 * while increasing bulk throughput.
1555 * this functionality is controlled by the InterruptThrottleRate module
1556 * parameter (see e1000_param.c)
1558 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1559 u16 itr_setting, int packets,
1560 int bytes)
1562 unsigned int retval = itr_setting;
1564 if (packets == 0)
1565 goto update_itr_done;
1567 switch (itr_setting) {
1568 case lowest_latency:
1569 /* handle TSO and jumbo frames */
1570 if (bytes/packets > 8000)
1571 retval = bulk_latency;
1572 else if ((packets < 5) && (bytes > 512)) {
1573 retval = low_latency;
1575 break;
1576 case low_latency: /* 50 usec aka 20000 ints/s */
1577 if (bytes > 10000) {
1578 /* this if handles the TSO accounting */
1579 if (bytes/packets > 8000) {
1580 retval = bulk_latency;
1581 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1582 retval = bulk_latency;
1583 } else if ((packets > 35)) {
1584 retval = lowest_latency;
1586 } else if (bytes/packets > 2000) {
1587 retval = bulk_latency;
1588 } else if (packets <= 2 && bytes < 512) {
1589 retval = lowest_latency;
1591 break;
1592 case bulk_latency: /* 250 usec aka 4000 ints/s */
1593 if (bytes > 25000) {
1594 if (packets > 35) {
1595 retval = low_latency;
1597 } else if (bytes < 6000) {
1598 retval = low_latency;
1600 break;
1603 update_itr_done:
1604 return retval;
1607 static void e1000_set_itr(struct e1000_adapter *adapter)
1609 struct e1000_hw *hw = &adapter->hw;
1610 u16 current_itr;
1611 u32 new_itr = adapter->itr;
1613 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1614 if (adapter->link_speed != SPEED_1000) {
1615 current_itr = 0;
1616 new_itr = 4000;
1617 goto set_itr_now;
1620 adapter->tx_itr = e1000_update_itr(adapter,
1621 adapter->tx_itr,
1622 adapter->total_tx_packets,
1623 adapter->total_tx_bytes);
1624 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1625 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1626 adapter->tx_itr = low_latency;
1628 adapter->rx_itr = e1000_update_itr(adapter,
1629 adapter->rx_itr,
1630 adapter->total_rx_packets,
1631 adapter->total_rx_bytes);
1632 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1633 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1634 adapter->rx_itr = low_latency;
1636 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1638 switch (current_itr) {
1639 /* counts and packets in update_itr are dependent on these numbers */
1640 case lowest_latency:
1641 new_itr = 70000;
1642 break;
1643 case low_latency:
1644 new_itr = 20000; /* aka hwitr = ~200 */
1645 break;
1646 case bulk_latency:
1647 new_itr = 4000;
1648 break;
1649 default:
1650 break;
1653 set_itr_now:
1654 if (new_itr != adapter->itr) {
1656 * this attempts to bias the interrupt rate towards Bulk
1657 * by adding intermediate steps when interrupt rate is
1658 * increasing
1660 new_itr = new_itr > adapter->itr ?
1661 min(adapter->itr + (new_itr >> 2), new_itr) :
1662 new_itr;
1663 adapter->itr = new_itr;
1664 ew32(ITR, 1000000000 / (new_itr * 256));
1669 * e1000_clean - NAPI Rx polling callback
1670 * @napi: struct associated with this polling callback
1671 * @budget: amount of packets driver is allowed to process this poll
1673 static int e1000_clean(struct napi_struct *napi, int budget)
1675 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1676 struct net_device *poll_dev = adapter->netdev;
1677 int tx_cleaned = 0, work_done = 0;
1679 /* Must NOT use netdev_priv macro here. */
1680 adapter = poll_dev->priv;
1683 * e1000_clean is called per-cpu. This lock protects
1684 * tx_ring from being cleaned by multiple cpus
1685 * simultaneously. A failure obtaining the lock means
1686 * tx_ring is currently being cleaned anyway.
1688 if (spin_trylock(&adapter->tx_queue_lock)) {
1689 tx_cleaned = e1000_clean_tx_irq(adapter);
1690 spin_unlock(&adapter->tx_queue_lock);
1693 adapter->clean_rx(adapter, &work_done, budget);
1695 if (tx_cleaned)
1696 work_done = budget;
1698 /* If budget not fully consumed, exit the polling mode */
1699 if (work_done < budget) {
1700 if (adapter->itr_setting & 3)
1701 e1000_set_itr(adapter);
1702 netif_rx_complete(poll_dev, napi);
1703 e1000_irq_enable(adapter);
1706 return work_done;
1709 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1711 struct e1000_adapter *adapter = netdev_priv(netdev);
1712 struct e1000_hw *hw = &adapter->hw;
1713 u32 vfta, index;
1715 /* don't update vlan cookie if already programmed */
1716 if ((adapter->hw.mng_cookie.status &
1717 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1718 (vid == adapter->mng_vlan_id))
1719 return;
1720 /* add VID to filter table */
1721 index = (vid >> 5) & 0x7F;
1722 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1723 vfta |= (1 << (vid & 0x1F));
1724 e1000e_write_vfta(hw, index, vfta);
1727 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1729 struct e1000_adapter *adapter = netdev_priv(netdev);
1730 struct e1000_hw *hw = &adapter->hw;
1731 u32 vfta, index;
1733 if (!test_bit(__E1000_DOWN, &adapter->state))
1734 e1000_irq_disable(adapter);
1735 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1737 if (!test_bit(__E1000_DOWN, &adapter->state))
1738 e1000_irq_enable(adapter);
1740 if ((adapter->hw.mng_cookie.status &
1741 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1742 (vid == adapter->mng_vlan_id)) {
1743 /* release control to f/w */
1744 e1000_release_hw_control(adapter);
1745 return;
1748 /* remove VID from filter table */
1749 index = (vid >> 5) & 0x7F;
1750 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1751 vfta &= ~(1 << (vid & 0x1F));
1752 e1000e_write_vfta(hw, index, vfta);
1755 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1757 struct net_device *netdev = adapter->netdev;
1758 u16 vid = adapter->hw.mng_cookie.vlan_id;
1759 u16 old_vid = adapter->mng_vlan_id;
1761 if (!adapter->vlgrp)
1762 return;
1764 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1765 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1766 if (adapter->hw.mng_cookie.status &
1767 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1768 e1000_vlan_rx_add_vid(netdev, vid);
1769 adapter->mng_vlan_id = vid;
1772 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1773 (vid != old_vid) &&
1774 !vlan_group_get_device(adapter->vlgrp, old_vid))
1775 e1000_vlan_rx_kill_vid(netdev, old_vid);
1776 } else {
1777 adapter->mng_vlan_id = vid;
1782 static void e1000_vlan_rx_register(struct net_device *netdev,
1783 struct vlan_group *grp)
1785 struct e1000_adapter *adapter = netdev_priv(netdev);
1786 struct e1000_hw *hw = &adapter->hw;
1787 u32 ctrl, rctl;
1789 if (!test_bit(__E1000_DOWN, &adapter->state))
1790 e1000_irq_disable(adapter);
1791 adapter->vlgrp = grp;
1793 if (grp) {
1794 /* enable VLAN tag insert/strip */
1795 ctrl = er32(CTRL);
1796 ctrl |= E1000_CTRL_VME;
1797 ew32(CTRL, ctrl);
1799 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1800 /* enable VLAN receive filtering */
1801 rctl = er32(RCTL);
1802 rctl &= ~E1000_RCTL_CFIEN;
1803 ew32(RCTL, rctl);
1804 e1000_update_mng_vlan(adapter);
1806 } else {
1807 /* disable VLAN tag insert/strip */
1808 ctrl = er32(CTRL);
1809 ctrl &= ~E1000_CTRL_VME;
1810 ew32(CTRL, ctrl);
1812 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1813 if (adapter->mng_vlan_id !=
1814 (u16)E1000_MNG_VLAN_NONE) {
1815 e1000_vlan_rx_kill_vid(netdev,
1816 adapter->mng_vlan_id);
1817 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1822 if (!test_bit(__E1000_DOWN, &adapter->state))
1823 e1000_irq_enable(adapter);
1826 static void e1000_restore_vlan(struct e1000_adapter *adapter)
1828 u16 vid;
1830 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1832 if (!adapter->vlgrp)
1833 return;
1835 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1836 if (!vlan_group_get_device(adapter->vlgrp, vid))
1837 continue;
1838 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1842 static void e1000_init_manageability(struct e1000_adapter *adapter)
1844 struct e1000_hw *hw = &adapter->hw;
1845 u32 manc, manc2h;
1847 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1848 return;
1850 manc = er32(MANC);
1853 * enable receiving management packets to the host. this will probably
1854 * generate destination unreachable messages from the host OS, but
1855 * the packets will be handled on SMBUS
1857 manc |= E1000_MANC_EN_MNG2HOST;
1858 manc2h = er32(MANC2H);
1859 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1860 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1861 manc2h |= E1000_MNG2HOST_PORT_623;
1862 manc2h |= E1000_MNG2HOST_PORT_664;
1863 ew32(MANC2H, manc2h);
1864 ew32(MANC, manc);
1868 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1869 * @adapter: board private structure
1871 * Configure the Tx unit of the MAC after a reset.
1873 static void e1000_configure_tx(struct e1000_adapter *adapter)
1875 struct e1000_hw *hw = &adapter->hw;
1876 struct e1000_ring *tx_ring = adapter->tx_ring;
1877 u64 tdba;
1878 u32 tdlen, tctl, tipg, tarc;
1879 u32 ipgr1, ipgr2;
1881 /* Setup the HW Tx Head and Tail descriptor pointers */
1882 tdba = tx_ring->dma;
1883 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1884 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1885 ew32(TDBAH, (tdba >> 32));
1886 ew32(TDLEN, tdlen);
1887 ew32(TDH, 0);
1888 ew32(TDT, 0);
1889 tx_ring->head = E1000_TDH;
1890 tx_ring->tail = E1000_TDT;
1892 /* Set the default values for the Tx Inter Packet Gap timer */
1893 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
1894 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
1895 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
1897 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1898 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
1900 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1901 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1902 ew32(TIPG, tipg);
1904 /* Set the Tx Interrupt Delay register */
1905 ew32(TIDV, adapter->tx_int_delay);
1906 /* Tx irq moderation */
1907 ew32(TADV, adapter->tx_abs_int_delay);
1909 /* Program the Transmit Control Register */
1910 tctl = er32(TCTL);
1911 tctl &= ~E1000_TCTL_CT;
1912 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1913 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1915 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1916 tarc = er32(TARC(0));
1918 * set the speed mode bit, we'll clear it if we're not at
1919 * gigabit link later
1921 #define SPEED_MODE_BIT (1 << 21)
1922 tarc |= SPEED_MODE_BIT;
1923 ew32(TARC(0), tarc);
1926 /* errata: program both queues to unweighted RR */
1927 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1928 tarc = er32(TARC(0));
1929 tarc |= 1;
1930 ew32(TARC(0), tarc);
1931 tarc = er32(TARC(1));
1932 tarc |= 1;
1933 ew32(TARC(1), tarc);
1936 e1000e_config_collision_dist(hw);
1938 /* Setup Transmit Descriptor Settings for eop descriptor */
1939 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1941 /* only set IDE if we are delaying interrupts using the timers */
1942 if (adapter->tx_int_delay)
1943 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1945 /* enable Report Status bit */
1946 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1948 ew32(TCTL, tctl);
1950 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1954 * e1000_setup_rctl - configure the receive control registers
1955 * @adapter: Board private structure
1957 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1958 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1959 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1961 struct e1000_hw *hw = &adapter->hw;
1962 u32 rctl, rfctl;
1963 u32 psrctl = 0;
1964 u32 pages = 0;
1966 /* Program MC offset vector base */
1967 rctl = er32(RCTL);
1968 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1969 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1970 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1971 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1973 /* Do not Store bad packets */
1974 rctl &= ~E1000_RCTL_SBP;
1976 /* Enable Long Packet receive */
1977 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1978 rctl &= ~E1000_RCTL_LPE;
1979 else
1980 rctl |= E1000_RCTL_LPE;
1982 /* Enable hardware CRC frame stripping */
1983 rctl |= E1000_RCTL_SECRC;
1985 /* Setup buffer sizes */
1986 rctl &= ~E1000_RCTL_SZ_4096;
1987 rctl |= E1000_RCTL_BSEX;
1988 switch (adapter->rx_buffer_len) {
1989 case 256:
1990 rctl |= E1000_RCTL_SZ_256;
1991 rctl &= ~E1000_RCTL_BSEX;
1992 break;
1993 case 512:
1994 rctl |= E1000_RCTL_SZ_512;
1995 rctl &= ~E1000_RCTL_BSEX;
1996 break;
1997 case 1024:
1998 rctl |= E1000_RCTL_SZ_1024;
1999 rctl &= ~E1000_RCTL_BSEX;
2000 break;
2001 case 2048:
2002 default:
2003 rctl |= E1000_RCTL_SZ_2048;
2004 rctl &= ~E1000_RCTL_BSEX;
2005 break;
2006 case 4096:
2007 rctl |= E1000_RCTL_SZ_4096;
2008 break;
2009 case 8192:
2010 rctl |= E1000_RCTL_SZ_8192;
2011 break;
2012 case 16384:
2013 rctl |= E1000_RCTL_SZ_16384;
2014 break;
2018 * 82571 and greater support packet-split where the protocol
2019 * header is placed in skb->data and the packet data is
2020 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2021 * In the case of a non-split, skb->data is linearly filled,
2022 * followed by the page buffers. Therefore, skb->data is
2023 * sized to hold the largest protocol header.
2025 * allocations using alloc_page take too long for regular MTU
2026 * so only enable packet split for jumbo frames
2028 * Using pages when the page size is greater than 16k wastes
2029 * a lot of memory, since we allocate 3 pages at all times
2030 * per packet.
2032 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2033 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2034 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2035 adapter->rx_ps_pages = pages;
2036 else
2037 adapter->rx_ps_pages = 0;
2039 if (adapter->rx_ps_pages) {
2040 /* Configure extra packet-split registers */
2041 rfctl = er32(RFCTL);
2042 rfctl |= E1000_RFCTL_EXTEN;
2044 * disable packet split support for IPv6 extension headers,
2045 * because some malformed IPv6 headers can hang the Rx
2047 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2048 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2050 ew32(RFCTL, rfctl);
2052 /* Enable Packet split descriptors */
2053 rctl |= E1000_RCTL_DTYP_PS;
2055 psrctl |= adapter->rx_ps_bsize0 >>
2056 E1000_PSRCTL_BSIZE0_SHIFT;
2058 switch (adapter->rx_ps_pages) {
2059 case 3:
2060 psrctl |= PAGE_SIZE <<
2061 E1000_PSRCTL_BSIZE3_SHIFT;
2062 case 2:
2063 psrctl |= PAGE_SIZE <<
2064 E1000_PSRCTL_BSIZE2_SHIFT;
2065 case 1:
2066 psrctl |= PAGE_SIZE >>
2067 E1000_PSRCTL_BSIZE1_SHIFT;
2068 break;
2071 ew32(PSRCTL, psrctl);
2074 ew32(RCTL, rctl);
2075 /* just started the receive unit, no need to restart */
2076 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2080 * e1000_configure_rx - Configure Receive Unit after Reset
2081 * @adapter: board private structure
2083 * Configure the Rx unit of the MAC after a reset.
2085 static void e1000_configure_rx(struct e1000_adapter *adapter)
2087 struct e1000_hw *hw = &adapter->hw;
2088 struct e1000_ring *rx_ring = adapter->rx_ring;
2089 u64 rdba;
2090 u32 rdlen, rctl, rxcsum, ctrl_ext;
2092 if (adapter->rx_ps_pages) {
2093 /* this is a 32 byte descriptor */
2094 rdlen = rx_ring->count *
2095 sizeof(union e1000_rx_desc_packet_split);
2096 adapter->clean_rx = e1000_clean_rx_irq_ps;
2097 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2098 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2099 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2100 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2101 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2102 } else {
2103 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2104 adapter->clean_rx = e1000_clean_rx_irq;
2105 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2108 /* disable receives while setting up the descriptors */
2109 rctl = er32(RCTL);
2110 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2111 e1e_flush();
2112 msleep(10);
2114 /* set the Receive Delay Timer Register */
2115 ew32(RDTR, adapter->rx_int_delay);
2117 /* irq moderation */
2118 ew32(RADV, adapter->rx_abs_int_delay);
2119 if (adapter->itr_setting != 0)
2120 ew32(ITR, 1000000000 / (adapter->itr * 256));
2122 ctrl_ext = er32(CTRL_EXT);
2123 /* Reset delay timers after every interrupt */
2124 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2125 /* Auto-Mask interrupts upon ICR access */
2126 ctrl_ext |= E1000_CTRL_EXT_IAME;
2127 ew32(IAM, 0xffffffff);
2128 ew32(CTRL_EXT, ctrl_ext);
2129 e1e_flush();
2132 * Setup the HW Rx Head and Tail Descriptor Pointers and
2133 * the Base and Length of the Rx Descriptor Ring
2135 rdba = rx_ring->dma;
2136 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2137 ew32(RDBAH, (rdba >> 32));
2138 ew32(RDLEN, rdlen);
2139 ew32(RDH, 0);
2140 ew32(RDT, 0);
2141 rx_ring->head = E1000_RDH;
2142 rx_ring->tail = E1000_RDT;
2144 /* Enable Receive Checksum Offload for TCP and UDP */
2145 rxcsum = er32(RXCSUM);
2146 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2147 rxcsum |= E1000_RXCSUM_TUOFL;
2150 * IPv4 payload checksum for UDP fragments must be
2151 * used in conjunction with packet-split.
2153 if (adapter->rx_ps_pages)
2154 rxcsum |= E1000_RXCSUM_IPPCSE;
2155 } else {
2156 rxcsum &= ~E1000_RXCSUM_TUOFL;
2157 /* no need to clear IPPCSE as it defaults to 0 */
2159 ew32(RXCSUM, rxcsum);
2162 * Enable early receives on supported devices, only takes effect when
2163 * packet size is equal or larger than the specified value (in 8 byte
2164 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2166 if ((adapter->flags & FLAG_HAS_ERT) &&
2167 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2168 u32 rxdctl = er32(RXDCTL(0));
2169 ew32(RXDCTL(0), rxdctl | 0x3);
2170 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2172 * With jumbo frames and early-receive enabled, excessive
2173 * C4->C2 latencies result in dropped transactions.
2175 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2176 e1000e_driver_name, 55);
2177 } else {
2178 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2179 e1000e_driver_name,
2180 PM_QOS_DEFAULT_VALUE);
2183 /* Enable Receives */
2184 ew32(RCTL, rctl);
2188 * e1000_update_mc_addr_list - Update Multicast addresses
2189 * @hw: pointer to the HW structure
2190 * @mc_addr_list: array of multicast addresses to program
2191 * @mc_addr_count: number of multicast addresses to program
2192 * @rar_used_count: the first RAR register free to program
2193 * @rar_count: total number of supported Receive Address Registers
2195 * Updates the Receive Address Registers and Multicast Table Array.
2196 * The caller must have a packed mc_addr_list of multicast addresses.
2197 * The parameter rar_count will usually be hw->mac.rar_entry_count
2198 * unless there are workarounds that change this. Currently no func pointer
2199 * exists and all implementations are handled in the generic version of this
2200 * function.
2202 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2203 u32 mc_addr_count, u32 rar_used_count,
2204 u32 rar_count)
2206 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2207 rar_used_count, rar_count);
2211 * e1000_set_multi - Multicast and Promiscuous mode set
2212 * @netdev: network interface device structure
2214 * The set_multi entry point is called whenever the multicast address
2215 * list or the network interface flags are updated. This routine is
2216 * responsible for configuring the hardware for proper multicast,
2217 * promiscuous mode, and all-multi behavior.
2219 static void e1000_set_multi(struct net_device *netdev)
2221 struct e1000_adapter *adapter = netdev_priv(netdev);
2222 struct e1000_hw *hw = &adapter->hw;
2223 struct e1000_mac_info *mac = &hw->mac;
2224 struct dev_mc_list *mc_ptr;
2225 u8 *mta_list;
2226 u32 rctl;
2227 int i;
2229 /* Check for Promiscuous and All Multicast modes */
2231 rctl = er32(RCTL);
2233 if (netdev->flags & IFF_PROMISC) {
2234 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2235 rctl &= ~E1000_RCTL_VFE;
2236 } else {
2237 if (netdev->flags & IFF_ALLMULTI) {
2238 rctl |= E1000_RCTL_MPE;
2239 rctl &= ~E1000_RCTL_UPE;
2240 } else {
2241 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2243 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2244 rctl |= E1000_RCTL_VFE;
2247 ew32(RCTL, rctl);
2249 if (netdev->mc_count) {
2250 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2251 if (!mta_list)
2252 return;
2254 /* prepare a packed array of only addresses. */
2255 mc_ptr = netdev->mc_list;
2257 for (i = 0; i < netdev->mc_count; i++) {
2258 if (!mc_ptr)
2259 break;
2260 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2261 ETH_ALEN);
2262 mc_ptr = mc_ptr->next;
2265 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2266 mac->rar_entry_count);
2267 kfree(mta_list);
2268 } else {
2270 * if we're called from probe, we might not have
2271 * anything to do here, so clear out the list
2273 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2278 * e1000_configure - configure the hardware for Rx and Tx
2279 * @adapter: private board structure
2281 static void e1000_configure(struct e1000_adapter *adapter)
2283 e1000_set_multi(adapter->netdev);
2285 e1000_restore_vlan(adapter);
2286 e1000_init_manageability(adapter);
2288 e1000_configure_tx(adapter);
2289 e1000_setup_rctl(adapter);
2290 e1000_configure_rx(adapter);
2291 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2295 * e1000e_power_up_phy - restore link in case the phy was powered down
2296 * @adapter: address of board private structure
2298 * The phy may be powered down to save power and turn off link when the
2299 * driver is unloaded and wake on lan is not enabled (among others)
2300 * *** this routine MUST be followed by a call to e1000e_reset ***
2302 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2304 u16 mii_reg = 0;
2306 /* Just clear the power down bit to wake the phy back up */
2307 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2309 * According to the manual, the phy will retain its
2310 * settings across a power-down/up cycle
2312 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2313 mii_reg &= ~MII_CR_POWER_DOWN;
2314 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2317 adapter->hw.mac.ops.setup_link(&adapter->hw);
2321 * e1000_power_down_phy - Power down the PHY
2323 * Power down the PHY so no link is implied when interface is down
2324 * The PHY cannot be powered down is management or WoL is active
2326 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2328 struct e1000_hw *hw = &adapter->hw;
2329 u16 mii_reg;
2331 /* WoL is enabled */
2332 if (adapter->wol)
2333 return;
2335 /* non-copper PHY? */
2336 if (adapter->hw.phy.media_type != e1000_media_type_copper)
2337 return;
2339 /* reset is blocked because of a SoL/IDER session */
2340 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2341 return;
2343 /* manageability (AMT) is enabled */
2344 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2345 return;
2347 /* power down the PHY */
2348 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2349 mii_reg |= MII_CR_POWER_DOWN;
2350 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2351 mdelay(1);
2355 * e1000e_reset - bring the hardware into a known good state
2357 * This function boots the hardware and enables some settings that
2358 * require a configuration cycle of the hardware - those cannot be
2359 * set/changed during runtime. After reset the device needs to be
2360 * properly configured for Rx, Tx etc.
2362 void e1000e_reset(struct e1000_adapter *adapter)
2364 struct e1000_mac_info *mac = &adapter->hw.mac;
2365 struct e1000_fc_info *fc = &adapter->hw.fc;
2366 struct e1000_hw *hw = &adapter->hw;
2367 u32 tx_space, min_tx_space, min_rx_space;
2368 u32 pba = adapter->pba;
2369 u16 hwm;
2371 /* reset Packet Buffer Allocation to default */
2372 ew32(PBA, pba);
2374 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2376 * To maintain wire speed transmits, the Tx FIFO should be
2377 * large enough to accommodate two full transmit packets,
2378 * rounded up to the next 1KB and expressed in KB. Likewise,
2379 * the Rx FIFO should be large enough to accommodate at least
2380 * one full receive packet and is similarly rounded up and
2381 * expressed in KB.
2383 pba = er32(PBA);
2384 /* upper 16 bits has Tx packet buffer allocation size in KB */
2385 tx_space = pba >> 16;
2386 /* lower 16 bits has Rx packet buffer allocation size in KB */
2387 pba &= 0xffff;
2389 * the Tx fifo also stores 16 bytes of information about the tx
2390 * but don't include ethernet FCS because hardware appends it
2392 min_tx_space = (adapter->max_frame_size +
2393 sizeof(struct e1000_tx_desc) -
2394 ETH_FCS_LEN) * 2;
2395 min_tx_space = ALIGN(min_tx_space, 1024);
2396 min_tx_space >>= 10;
2397 /* software strips receive CRC, so leave room for it */
2398 min_rx_space = adapter->max_frame_size;
2399 min_rx_space = ALIGN(min_rx_space, 1024);
2400 min_rx_space >>= 10;
2403 * If current Tx allocation is less than the min Tx FIFO size,
2404 * and the min Tx FIFO size is less than the current Rx FIFO
2405 * allocation, take space away from current Rx allocation
2407 if ((tx_space < min_tx_space) &&
2408 ((min_tx_space - tx_space) < pba)) {
2409 pba -= min_tx_space - tx_space;
2412 * if short on Rx space, Rx wins and must trump tx
2413 * adjustment or use Early Receive if available
2415 if ((pba < min_rx_space) &&
2416 (!(adapter->flags & FLAG_HAS_ERT)))
2417 /* ERT enabled in e1000_configure_rx */
2418 pba = min_rx_space;
2421 ew32(PBA, pba);
2426 * flow control settings
2428 * The high water mark must be low enough to fit one full frame
2429 * (or the size used for early receive) above it in the Rx FIFO.
2430 * Set it to the lower of:
2431 * - 90% of the Rx FIFO size, and
2432 * - the full Rx FIFO size minus the early receive size (for parts
2433 * with ERT support assuming ERT set to E1000_ERT_2048), or
2434 * - the full Rx FIFO size minus one full frame
2436 if (adapter->flags & FLAG_HAS_ERT)
2437 hwm = min(((pba << 10) * 9 / 10),
2438 ((pba << 10) - (E1000_ERT_2048 << 3)));
2439 else
2440 hwm = min(((pba << 10) * 9 / 10),
2441 ((pba << 10) - adapter->max_frame_size));
2443 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2444 fc->low_water = fc->high_water - 8;
2446 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2447 fc->pause_time = 0xFFFF;
2448 else
2449 fc->pause_time = E1000_FC_PAUSE_TIME;
2450 fc->send_xon = 1;
2451 fc->type = fc->original_type;
2453 /* Allow time for pending master requests to run */
2454 mac->ops.reset_hw(hw);
2457 * For parts with AMT enabled, let the firmware know
2458 * that the network interface is in control
2460 if (adapter->flags & FLAG_HAS_AMT)
2461 e1000_get_hw_control(adapter);
2463 ew32(WUC, 0);
2465 if (mac->ops.init_hw(hw))
2466 e_err("Hardware Error\n");
2468 e1000_update_mng_vlan(adapter);
2470 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2471 ew32(VET, ETH_P_8021Q);
2473 e1000e_reset_adaptive(hw);
2474 e1000_get_phy_info(hw);
2476 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2477 u16 phy_data = 0;
2479 * speed up time to link by disabling smart power down, ignore
2480 * the return value of this function because there is nothing
2481 * different we would do if it failed
2483 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2484 phy_data &= ~IGP02E1000_PM_SPD;
2485 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2489 int e1000e_up(struct e1000_adapter *adapter)
2491 struct e1000_hw *hw = &adapter->hw;
2493 /* hardware has been reset, we need to reload some things */
2494 e1000_configure(adapter);
2496 clear_bit(__E1000_DOWN, &adapter->state);
2498 napi_enable(&adapter->napi);
2499 e1000_irq_enable(adapter);
2501 /* fire a link change interrupt to start the watchdog */
2502 ew32(ICS, E1000_ICS_LSC);
2503 return 0;
2506 void e1000e_down(struct e1000_adapter *adapter)
2508 struct net_device *netdev = adapter->netdev;
2509 struct e1000_hw *hw = &adapter->hw;
2510 u32 tctl, rctl;
2513 * signal that we're down so the interrupt handler does not
2514 * reschedule our watchdog timer
2516 set_bit(__E1000_DOWN, &adapter->state);
2518 /* disable receives in the hardware */
2519 rctl = er32(RCTL);
2520 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2521 /* flush and sleep below */
2523 netif_tx_stop_all_queues(netdev);
2525 /* disable transmits in the hardware */
2526 tctl = er32(TCTL);
2527 tctl &= ~E1000_TCTL_EN;
2528 ew32(TCTL, tctl);
2529 /* flush both disables and wait for them to finish */
2530 e1e_flush();
2531 msleep(10);
2533 napi_disable(&adapter->napi);
2534 e1000_irq_disable(adapter);
2536 del_timer_sync(&adapter->watchdog_timer);
2537 del_timer_sync(&adapter->phy_info_timer);
2539 netdev->tx_queue_len = adapter->tx_queue_len;
2540 netif_carrier_off(netdev);
2541 adapter->link_speed = 0;
2542 adapter->link_duplex = 0;
2544 if (!pci_channel_offline(adapter->pdev))
2545 e1000e_reset(adapter);
2546 e1000_clean_tx_ring(adapter);
2547 e1000_clean_rx_ring(adapter);
2550 * TODO: for power management, we could drop the link and
2551 * pci_disable_device here.
2555 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2557 might_sleep();
2558 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2559 msleep(1);
2560 e1000e_down(adapter);
2561 e1000e_up(adapter);
2562 clear_bit(__E1000_RESETTING, &adapter->state);
2566 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2567 * @adapter: board private structure to initialize
2569 * e1000_sw_init initializes the Adapter private data structure.
2570 * Fields are initialized based on PCI device information and
2571 * OS network device settings (MTU size).
2573 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2575 struct net_device *netdev = adapter->netdev;
2577 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2578 adapter->rx_ps_bsize0 = 128;
2579 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2580 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2582 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2583 if (!adapter->tx_ring)
2584 goto err;
2586 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2587 if (!adapter->rx_ring)
2588 goto err;
2590 spin_lock_init(&adapter->tx_queue_lock);
2592 /* Explicitly disable IRQ since the NIC can be in any state. */
2593 e1000_irq_disable(adapter);
2595 spin_lock_init(&adapter->stats_lock);
2597 set_bit(__E1000_DOWN, &adapter->state);
2598 return 0;
2600 err:
2601 e_err("Unable to allocate memory for queues\n");
2602 kfree(adapter->rx_ring);
2603 kfree(adapter->tx_ring);
2604 return -ENOMEM;
2608 * e1000_intr_msi_test - Interrupt Handler
2609 * @irq: interrupt number
2610 * @data: pointer to a network interface device structure
2612 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2614 struct net_device *netdev = data;
2615 struct e1000_adapter *adapter = netdev_priv(netdev);
2616 struct e1000_hw *hw = &adapter->hw;
2617 u32 icr = er32(ICR);
2619 e_dbg("%s: icr is %08X\n", netdev->name, icr);
2620 if (icr & E1000_ICR_RXSEQ) {
2621 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2622 wmb();
2625 return IRQ_HANDLED;
2629 * e1000_test_msi_interrupt - Returns 0 for successful test
2630 * @adapter: board private struct
2632 * code flow taken from tg3.c
2634 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2636 struct net_device *netdev = adapter->netdev;
2637 struct e1000_hw *hw = &adapter->hw;
2638 int err;
2640 /* poll_enable hasn't been called yet, so don't need disable */
2641 /* clear any pending events */
2642 er32(ICR);
2644 /* free the real vector and request a test handler */
2645 e1000_free_irq(adapter);
2647 /* Assume that the test fails, if it succeeds then the test
2648 * MSI irq handler will unset this flag */
2649 adapter->flags |= FLAG_MSI_TEST_FAILED;
2651 err = pci_enable_msi(adapter->pdev);
2652 if (err)
2653 goto msi_test_failed;
2655 err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
2656 netdev->name, netdev);
2657 if (err) {
2658 pci_disable_msi(adapter->pdev);
2659 goto msi_test_failed;
2662 wmb();
2664 e1000_irq_enable(adapter);
2666 /* fire an unusual interrupt on the test handler */
2667 ew32(ICS, E1000_ICS_RXSEQ);
2668 e1e_flush();
2669 msleep(50);
2671 e1000_irq_disable(adapter);
2673 rmb();
2675 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
2676 err = -EIO;
2677 e_info("MSI interrupt test failed!\n");
2680 free_irq(adapter->pdev->irq, netdev);
2681 pci_disable_msi(adapter->pdev);
2683 if (err == -EIO)
2684 goto msi_test_failed;
2686 /* okay so the test worked, restore settings */
2687 e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
2688 msi_test_failed:
2689 /* restore the original vector, even if it failed */
2690 e1000_request_irq(adapter);
2691 return err;
2695 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
2696 * @adapter: board private struct
2698 * code flow taken from tg3.c, called with e1000 interrupts disabled.
2700 static int e1000_test_msi(struct e1000_adapter *adapter)
2702 int err;
2703 u16 pci_cmd;
2705 if (!(adapter->flags & FLAG_MSI_ENABLED))
2706 return 0;
2708 /* disable SERR in case the MSI write causes a master abort */
2709 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
2710 pci_write_config_word(adapter->pdev, PCI_COMMAND,
2711 pci_cmd & ~PCI_COMMAND_SERR);
2713 err = e1000_test_msi_interrupt(adapter);
2715 /* restore previous setting of command word */
2716 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
2718 /* success ! */
2719 if (!err)
2720 return 0;
2722 /* EIO means MSI test failed */
2723 if (err != -EIO)
2724 return err;
2726 /* back to INTx mode */
2727 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
2729 e1000_free_irq(adapter);
2731 err = e1000_request_irq(adapter);
2733 return err;
2737 * e1000_open - Called when a network interface is made active
2738 * @netdev: network interface device structure
2740 * Returns 0 on success, negative value on failure
2742 * The open entry point is called when a network interface is made
2743 * active by the system (IFF_UP). At this point all resources needed
2744 * for transmit and receive operations are allocated, the interrupt
2745 * handler is registered with the OS, the watchdog timer is started,
2746 * and the stack is notified that the interface is ready.
2748 static int e1000_open(struct net_device *netdev)
2750 struct e1000_adapter *adapter = netdev_priv(netdev);
2751 struct e1000_hw *hw = &adapter->hw;
2752 int err;
2754 /* disallow open during test */
2755 if (test_bit(__E1000_TESTING, &adapter->state))
2756 return -EBUSY;
2758 /* allocate transmit descriptors */
2759 err = e1000e_setup_tx_resources(adapter);
2760 if (err)
2761 goto err_setup_tx;
2763 /* allocate receive descriptors */
2764 err = e1000e_setup_rx_resources(adapter);
2765 if (err)
2766 goto err_setup_rx;
2768 e1000e_power_up_phy(adapter);
2770 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2771 if ((adapter->hw.mng_cookie.status &
2772 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2773 e1000_update_mng_vlan(adapter);
2776 * If AMT is enabled, let the firmware know that the network
2777 * interface is now open
2779 if (adapter->flags & FLAG_HAS_AMT)
2780 e1000_get_hw_control(adapter);
2783 * before we allocate an interrupt, we must be ready to handle it.
2784 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2785 * as soon as we call pci_request_irq, so we have to setup our
2786 * clean_rx handler before we do so.
2788 e1000_configure(adapter);
2790 err = e1000_request_irq(adapter);
2791 if (err)
2792 goto err_req_irq;
2795 * Work around PCIe errata with MSI interrupts causing some chipsets to
2796 * ignore e1000e MSI messages, which means we need to test our MSI
2797 * interrupt now
2800 err = e1000_test_msi(adapter);
2801 if (err) {
2802 e_err("Interrupt allocation failed\n");
2803 goto err_req_irq;
2807 /* From here on the code is the same as e1000e_up() */
2808 clear_bit(__E1000_DOWN, &adapter->state);
2810 napi_enable(&adapter->napi);
2812 e1000_irq_enable(adapter);
2814 netif_tx_start_all_queues(netdev);
2816 /* fire a link status change interrupt to start the watchdog */
2817 ew32(ICS, E1000_ICS_LSC);
2819 return 0;
2821 err_req_irq:
2822 e1000_release_hw_control(adapter);
2823 e1000_power_down_phy(adapter);
2824 e1000e_free_rx_resources(adapter);
2825 err_setup_rx:
2826 e1000e_free_tx_resources(adapter);
2827 err_setup_tx:
2828 e1000e_reset(adapter);
2830 return err;
2834 * e1000_close - Disables a network interface
2835 * @netdev: network interface device structure
2837 * Returns 0, this is not allowed to fail
2839 * The close entry point is called when an interface is de-activated
2840 * by the OS. The hardware is still under the drivers control, but
2841 * needs to be disabled. A global MAC reset is issued to stop the
2842 * hardware, and all transmit and receive resources are freed.
2844 static int e1000_close(struct net_device *netdev)
2846 struct e1000_adapter *adapter = netdev_priv(netdev);
2848 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2849 e1000e_down(adapter);
2850 e1000_power_down_phy(adapter);
2851 e1000_free_irq(adapter);
2853 e1000e_free_tx_resources(adapter);
2854 e1000e_free_rx_resources(adapter);
2857 * kill manageability vlan ID if supported, but not if a vlan with
2858 * the same ID is registered on the host OS (let 8021q kill it)
2860 if ((adapter->hw.mng_cookie.status &
2861 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2862 !(adapter->vlgrp &&
2863 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2864 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2867 * If AMT is enabled, let the firmware know that the network
2868 * interface is now closed
2870 if (adapter->flags & FLAG_HAS_AMT)
2871 e1000_release_hw_control(adapter);
2873 return 0;
2876 * e1000_set_mac - Change the Ethernet Address of the NIC
2877 * @netdev: network interface device structure
2878 * @p: pointer to an address structure
2880 * Returns 0 on success, negative on failure
2882 static int e1000_set_mac(struct net_device *netdev, void *p)
2884 struct e1000_adapter *adapter = netdev_priv(netdev);
2885 struct sockaddr *addr = p;
2887 if (!is_valid_ether_addr(addr->sa_data))
2888 return -EADDRNOTAVAIL;
2890 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2891 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2893 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2895 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2896 /* activate the work around */
2897 e1000e_set_laa_state_82571(&adapter->hw, 1);
2900 * Hold a copy of the LAA in RAR[14] This is done so that
2901 * between the time RAR[0] gets clobbered and the time it
2902 * gets fixed (in e1000_watchdog), the actual LAA is in one
2903 * of the RARs and no incoming packets directed to this port
2904 * are dropped. Eventually the LAA will be in RAR[0] and
2905 * RAR[14]
2907 e1000e_rar_set(&adapter->hw,
2908 adapter->hw.mac.addr,
2909 adapter->hw.mac.rar_entry_count - 1);
2912 return 0;
2916 * Need to wait a few seconds after link up to get diagnostic information from
2917 * the phy
2919 static void e1000_update_phy_info(unsigned long data)
2921 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2922 e1000_get_phy_info(&adapter->hw);
2926 * e1000e_update_stats - Update the board statistics counters
2927 * @adapter: board private structure
2929 void e1000e_update_stats(struct e1000_adapter *adapter)
2931 struct e1000_hw *hw = &adapter->hw;
2932 struct pci_dev *pdev = adapter->pdev;
2933 unsigned long irq_flags;
2934 u16 phy_tmp;
2936 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2939 * Prevent stats update while adapter is being reset, or if the pci
2940 * connection is down.
2942 if (adapter->link_speed == 0)
2943 return;
2944 if (pci_channel_offline(pdev))
2945 return;
2947 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2950 * these counters are modified from e1000_adjust_tbi_stats,
2951 * called from the interrupt context, so they must only
2952 * be written while holding adapter->stats_lock
2955 adapter->stats.crcerrs += er32(CRCERRS);
2956 adapter->stats.gprc += er32(GPRC);
2957 adapter->stats.gorc += er32(GORCL);
2958 er32(GORCH); /* Clear gorc */
2959 adapter->stats.bprc += er32(BPRC);
2960 adapter->stats.mprc += er32(MPRC);
2961 adapter->stats.roc += er32(ROC);
2963 adapter->stats.mpc += er32(MPC);
2964 adapter->stats.scc += er32(SCC);
2965 adapter->stats.ecol += er32(ECOL);
2966 adapter->stats.mcc += er32(MCC);
2967 adapter->stats.latecol += er32(LATECOL);
2968 adapter->stats.dc += er32(DC);
2969 adapter->stats.xonrxc += er32(XONRXC);
2970 adapter->stats.xontxc += er32(XONTXC);
2971 adapter->stats.xoffrxc += er32(XOFFRXC);
2972 adapter->stats.xofftxc += er32(XOFFTXC);
2973 adapter->stats.gptc += er32(GPTC);
2974 adapter->stats.gotc += er32(GOTCL);
2975 er32(GOTCH); /* Clear gotc */
2976 adapter->stats.rnbc += er32(RNBC);
2977 adapter->stats.ruc += er32(RUC);
2979 adapter->stats.mptc += er32(MPTC);
2980 adapter->stats.bptc += er32(BPTC);
2982 /* used for adaptive IFS */
2984 hw->mac.tx_packet_delta = er32(TPT);
2985 adapter->stats.tpt += hw->mac.tx_packet_delta;
2986 hw->mac.collision_delta = er32(COLC);
2987 adapter->stats.colc += hw->mac.collision_delta;
2989 adapter->stats.algnerrc += er32(ALGNERRC);
2990 adapter->stats.rxerrc += er32(RXERRC);
2991 adapter->stats.tncrs += er32(TNCRS);
2992 adapter->stats.cexterr += er32(CEXTERR);
2993 adapter->stats.tsctc += er32(TSCTC);
2994 adapter->stats.tsctfc += er32(TSCTFC);
2996 /* Fill out the OS statistics structure */
2997 adapter->net_stats.multicast = adapter->stats.mprc;
2998 adapter->net_stats.collisions = adapter->stats.colc;
3000 /* Rx Errors */
3003 * RLEC on some newer hardware can be incorrect so build
3004 * our own version based on RUC and ROC
3006 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3007 adapter->stats.crcerrs + adapter->stats.algnerrc +
3008 adapter->stats.ruc + adapter->stats.roc +
3009 adapter->stats.cexterr;
3010 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3011 adapter->stats.roc;
3012 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3013 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3014 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3016 /* Tx Errors */
3017 adapter->net_stats.tx_errors = adapter->stats.ecol +
3018 adapter->stats.latecol;
3019 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3020 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3021 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3023 /* Tx Dropped needs to be maintained elsewhere */
3025 /* Phy Stats */
3026 if (hw->phy.media_type == e1000_media_type_copper) {
3027 if ((adapter->link_speed == SPEED_1000) &&
3028 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
3029 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3030 adapter->phy_stats.idle_errors += phy_tmp;
3034 /* Management Stats */
3035 adapter->stats.mgptc += er32(MGTPTC);
3036 adapter->stats.mgprc += er32(MGTPRC);
3037 adapter->stats.mgpdc += er32(MGTPDC);
3039 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3043 * e1000_phy_read_status - Update the PHY register status snapshot
3044 * @adapter: board private structure
3046 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3048 struct e1000_hw *hw = &adapter->hw;
3049 struct e1000_phy_regs *phy = &adapter->phy_regs;
3050 int ret_val;
3051 unsigned long irq_flags;
3054 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
3056 if ((er32(STATUS) & E1000_STATUS_LU) &&
3057 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3058 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3059 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3060 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3061 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3062 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3063 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3064 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3065 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3066 if (ret_val)
3067 e_warn("Error reading PHY register\n");
3068 } else {
3070 * Do not read PHY registers if link is not up
3071 * Set values to typical power-on defaults
3073 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3074 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3075 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3076 BMSR_ERCAP);
3077 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3078 ADVERTISE_ALL | ADVERTISE_CSMA);
3079 phy->lpa = 0;
3080 phy->expansion = EXPANSION_ENABLENPAGE;
3081 phy->ctrl1000 = ADVERTISE_1000FULL;
3082 phy->stat1000 = 0;
3083 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3086 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3089 static void e1000_print_link_info(struct e1000_adapter *adapter)
3091 struct e1000_hw *hw = &adapter->hw;
3092 u32 ctrl = er32(CTRL);
3094 e_info("Link is Up %d Mbps %s, Flow Control: %s\n",
3095 adapter->link_speed,
3096 (adapter->link_duplex == FULL_DUPLEX) ?
3097 "Full Duplex" : "Half Duplex",
3098 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3099 "RX/TX" :
3100 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3101 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3104 static bool e1000_has_link(struct e1000_adapter *adapter)
3106 struct e1000_hw *hw = &adapter->hw;
3107 bool link_active = 0;
3108 s32 ret_val = 0;
3111 * get_link_status is set on LSC (link status) interrupt or
3112 * Rx sequence error interrupt. get_link_status will stay
3113 * false until the check_for_link establishes link
3114 * for copper adapters ONLY
3116 switch (hw->phy.media_type) {
3117 case e1000_media_type_copper:
3118 if (hw->mac.get_link_status) {
3119 ret_val = hw->mac.ops.check_for_link(hw);
3120 link_active = !hw->mac.get_link_status;
3121 } else {
3122 link_active = 1;
3124 break;
3125 case e1000_media_type_fiber:
3126 ret_val = hw->mac.ops.check_for_link(hw);
3127 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3128 break;
3129 case e1000_media_type_internal_serdes:
3130 ret_val = hw->mac.ops.check_for_link(hw);
3131 link_active = adapter->hw.mac.serdes_has_link;
3132 break;
3133 default:
3134 case e1000_media_type_unknown:
3135 break;
3138 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3139 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3140 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3141 e_info("Gigabit has been disabled, downgrading speed\n");
3144 return link_active;
3147 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3149 /* make sure the receive unit is started */
3150 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3151 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3152 struct e1000_hw *hw = &adapter->hw;
3153 u32 rctl = er32(RCTL);
3154 ew32(RCTL, rctl | E1000_RCTL_EN);
3155 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3160 * e1000_watchdog - Timer Call-back
3161 * @data: pointer to adapter cast into an unsigned long
3163 static void e1000_watchdog(unsigned long data)
3165 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3167 /* Do the rest outside of interrupt context */
3168 schedule_work(&adapter->watchdog_task);
3170 /* TODO: make this use queue_delayed_work() */
3173 static void e1000_watchdog_task(struct work_struct *work)
3175 struct e1000_adapter *adapter = container_of(work,
3176 struct e1000_adapter, watchdog_task);
3177 struct net_device *netdev = adapter->netdev;
3178 struct e1000_mac_info *mac = &adapter->hw.mac;
3179 struct e1000_ring *tx_ring = adapter->tx_ring;
3180 struct e1000_hw *hw = &adapter->hw;
3181 u32 link, tctl;
3182 int tx_pending = 0;
3184 link = e1000_has_link(adapter);
3185 if ((netif_carrier_ok(netdev)) && link) {
3186 e1000e_enable_receives(adapter);
3187 goto link_up;
3190 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3191 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3192 e1000_update_mng_vlan(adapter);
3194 if (link) {
3195 if (!netif_carrier_ok(netdev)) {
3196 bool txb2b = 1;
3197 /* update snapshot of PHY registers on LSC */
3198 e1000_phy_read_status(adapter);
3199 mac->ops.get_link_up_info(&adapter->hw,
3200 &adapter->link_speed,
3201 &adapter->link_duplex);
3202 e1000_print_link_info(adapter);
3204 * tweak tx_queue_len according to speed/duplex
3205 * and adjust the timeout factor
3207 netdev->tx_queue_len = adapter->tx_queue_len;
3208 adapter->tx_timeout_factor = 1;
3209 switch (adapter->link_speed) {
3210 case SPEED_10:
3211 txb2b = 0;
3212 netdev->tx_queue_len = 10;
3213 adapter->tx_timeout_factor = 16;
3214 break;
3215 case SPEED_100:
3216 txb2b = 0;
3217 netdev->tx_queue_len = 100;
3218 /* maybe add some timeout factor ? */
3219 break;
3223 * workaround: re-program speed mode bit after
3224 * link-up event
3226 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3227 !txb2b) {
3228 u32 tarc0;
3229 tarc0 = er32(TARC(0));
3230 tarc0 &= ~SPEED_MODE_BIT;
3231 ew32(TARC(0), tarc0);
3235 * disable TSO for pcie and 10/100 speeds, to avoid
3236 * some hardware issues
3238 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3239 switch (adapter->link_speed) {
3240 case SPEED_10:
3241 case SPEED_100:
3242 e_info("10/100 speed: disabling TSO\n");
3243 netdev->features &= ~NETIF_F_TSO;
3244 netdev->features &= ~NETIF_F_TSO6;
3245 break;
3246 case SPEED_1000:
3247 netdev->features |= NETIF_F_TSO;
3248 netdev->features |= NETIF_F_TSO6;
3249 break;
3250 default:
3251 /* oops */
3252 break;
3257 * enable transmits in the hardware, need to do this
3258 * after setting TARC(0)
3260 tctl = er32(TCTL);
3261 tctl |= E1000_TCTL_EN;
3262 ew32(TCTL, tctl);
3264 netif_carrier_on(netdev);
3265 netif_tx_wake_all_queues(netdev);
3267 if (!test_bit(__E1000_DOWN, &adapter->state))
3268 mod_timer(&adapter->phy_info_timer,
3269 round_jiffies(jiffies + 2 * HZ));
3271 } else {
3272 if (netif_carrier_ok(netdev)) {
3273 adapter->link_speed = 0;
3274 adapter->link_duplex = 0;
3275 e_info("Link is Down\n");
3276 netif_carrier_off(netdev);
3277 netif_tx_stop_all_queues(netdev);
3278 if (!test_bit(__E1000_DOWN, &adapter->state))
3279 mod_timer(&adapter->phy_info_timer,
3280 round_jiffies(jiffies + 2 * HZ));
3282 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3283 schedule_work(&adapter->reset_task);
3287 link_up:
3288 e1000e_update_stats(adapter);
3290 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3291 adapter->tpt_old = adapter->stats.tpt;
3292 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3293 adapter->colc_old = adapter->stats.colc;
3295 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3296 adapter->gorc_old = adapter->stats.gorc;
3297 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3298 adapter->gotc_old = adapter->stats.gotc;
3300 e1000e_update_adaptive(&adapter->hw);
3302 if (!netif_carrier_ok(netdev)) {
3303 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3304 tx_ring->count);
3305 if (tx_pending) {
3307 * We've lost link, so the controller stops DMA,
3308 * but we've got queued Tx work that's never going
3309 * to get done, so reset controller to flush Tx.
3310 * (Do the reset outside of interrupt context).
3312 adapter->tx_timeout_count++;
3313 schedule_work(&adapter->reset_task);
3317 /* Cause software interrupt to ensure Rx ring is cleaned */
3318 ew32(ICS, E1000_ICS_RXDMT0);
3320 /* Force detection of hung controller every watchdog period */
3321 adapter->detect_tx_hung = 1;
3324 * With 82571 controllers, LAA may be overwritten due to controller
3325 * reset from the other port. Set the appropriate LAA in RAR[0]
3327 if (e1000e_get_laa_state_82571(hw))
3328 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3330 /* Reset the timer */
3331 if (!test_bit(__E1000_DOWN, &adapter->state))
3332 mod_timer(&adapter->watchdog_timer,
3333 round_jiffies(jiffies + 2 * HZ));
3336 #define E1000_TX_FLAGS_CSUM 0x00000001
3337 #define E1000_TX_FLAGS_VLAN 0x00000002
3338 #define E1000_TX_FLAGS_TSO 0x00000004
3339 #define E1000_TX_FLAGS_IPV4 0x00000008
3340 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3341 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3343 static int e1000_tso(struct e1000_adapter *adapter,
3344 struct sk_buff *skb)
3346 struct e1000_ring *tx_ring = adapter->tx_ring;
3347 struct e1000_context_desc *context_desc;
3348 struct e1000_buffer *buffer_info;
3349 unsigned int i;
3350 u32 cmd_length = 0;
3351 u16 ipcse = 0, tucse, mss;
3352 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3353 int err;
3355 if (skb_is_gso(skb)) {
3356 if (skb_header_cloned(skb)) {
3357 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3358 if (err)
3359 return err;
3362 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3363 mss = skb_shinfo(skb)->gso_size;
3364 if (skb->protocol == htons(ETH_P_IP)) {
3365 struct iphdr *iph = ip_hdr(skb);
3366 iph->tot_len = 0;
3367 iph->check = 0;
3368 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3369 iph->daddr, 0,
3370 IPPROTO_TCP,
3372 cmd_length = E1000_TXD_CMD_IP;
3373 ipcse = skb_transport_offset(skb) - 1;
3374 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3375 ipv6_hdr(skb)->payload_len = 0;
3376 tcp_hdr(skb)->check =
3377 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3378 &ipv6_hdr(skb)->daddr,
3379 0, IPPROTO_TCP, 0);
3380 ipcse = 0;
3382 ipcss = skb_network_offset(skb);
3383 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3384 tucss = skb_transport_offset(skb);
3385 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3386 tucse = 0;
3388 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3389 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3391 i = tx_ring->next_to_use;
3392 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3393 buffer_info = &tx_ring->buffer_info[i];
3395 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3396 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3397 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3398 context_desc->upper_setup.tcp_fields.tucss = tucss;
3399 context_desc->upper_setup.tcp_fields.tucso = tucso;
3400 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3401 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3402 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3403 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3405 buffer_info->time_stamp = jiffies;
3406 buffer_info->next_to_watch = i;
3408 i++;
3409 if (i == tx_ring->count)
3410 i = 0;
3411 tx_ring->next_to_use = i;
3413 return 1;
3416 return 0;
3419 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3421 struct e1000_ring *tx_ring = adapter->tx_ring;
3422 struct e1000_context_desc *context_desc;
3423 struct e1000_buffer *buffer_info;
3424 unsigned int i;
3425 u8 css;
3427 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3428 css = skb_transport_offset(skb);
3430 i = tx_ring->next_to_use;
3431 buffer_info = &tx_ring->buffer_info[i];
3432 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3434 context_desc->lower_setup.ip_config = 0;
3435 context_desc->upper_setup.tcp_fields.tucss = css;
3436 context_desc->upper_setup.tcp_fields.tucso =
3437 css + skb->csum_offset;
3438 context_desc->upper_setup.tcp_fields.tucse = 0;
3439 context_desc->tcp_seg_setup.data = 0;
3440 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
3442 buffer_info->time_stamp = jiffies;
3443 buffer_info->next_to_watch = i;
3445 i++;
3446 if (i == tx_ring->count)
3447 i = 0;
3448 tx_ring->next_to_use = i;
3450 return 1;
3453 return 0;
3456 #define E1000_MAX_PER_TXD 8192
3457 #define E1000_MAX_TXD_PWR 12
3459 static int e1000_tx_map(struct e1000_adapter *adapter,
3460 struct sk_buff *skb, unsigned int first,
3461 unsigned int max_per_txd, unsigned int nr_frags,
3462 unsigned int mss)
3464 struct e1000_ring *tx_ring = adapter->tx_ring;
3465 struct e1000_buffer *buffer_info;
3466 unsigned int len = skb->len - skb->data_len;
3467 unsigned int offset = 0, size, count = 0, i;
3468 unsigned int f;
3470 i = tx_ring->next_to_use;
3472 while (len) {
3473 buffer_info = &tx_ring->buffer_info[i];
3474 size = min(len, max_per_txd);
3476 /* Workaround for premature desc write-backs
3477 * in TSO mode. Append 4-byte sentinel desc */
3478 if (mss && !nr_frags && size == len && size > 8)
3479 size -= 4;
3481 buffer_info->length = size;
3482 /* set time_stamp *before* dma to help avoid a possible race */
3483 buffer_info->time_stamp = jiffies;
3484 buffer_info->dma =
3485 pci_map_single(adapter->pdev,
3486 skb->data + offset,
3487 size,
3488 PCI_DMA_TODEVICE);
3489 if (pci_dma_mapping_error(adapter->pdev, buffer_info->dma)) {
3490 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3491 adapter->tx_dma_failed++;
3492 return -1;
3494 buffer_info->next_to_watch = i;
3496 len -= size;
3497 offset += size;
3498 count++;
3499 i++;
3500 if (i == tx_ring->count)
3501 i = 0;
3504 for (f = 0; f < nr_frags; f++) {
3505 struct skb_frag_struct *frag;
3507 frag = &skb_shinfo(skb)->frags[f];
3508 len = frag->size;
3509 offset = frag->page_offset;
3511 while (len) {
3512 buffer_info = &tx_ring->buffer_info[i];
3513 size = min(len, max_per_txd);
3514 /* Workaround for premature desc write-backs
3515 * in TSO mode. Append 4-byte sentinel desc */
3516 if (mss && f == (nr_frags-1) && size == len && size > 8)
3517 size -= 4;
3519 buffer_info->length = size;
3520 buffer_info->time_stamp = jiffies;
3521 buffer_info->dma =
3522 pci_map_page(adapter->pdev,
3523 frag->page,
3524 offset,
3525 size,
3526 PCI_DMA_TODEVICE);
3527 if (pci_dma_mapping_error(adapter->pdev,
3528 buffer_info->dma)) {
3529 dev_err(&adapter->pdev->dev,
3530 "TX DMA page map failed\n");
3531 adapter->tx_dma_failed++;
3532 return -1;
3535 buffer_info->next_to_watch = i;
3537 len -= size;
3538 offset += size;
3539 count++;
3541 i++;
3542 if (i == tx_ring->count)
3543 i = 0;
3547 if (i == 0)
3548 i = tx_ring->count - 1;
3549 else
3550 i--;
3552 tx_ring->buffer_info[i].skb = skb;
3553 tx_ring->buffer_info[first].next_to_watch = i;
3555 return count;
3558 static void e1000_tx_queue(struct e1000_adapter *adapter,
3559 int tx_flags, int count)
3561 struct e1000_ring *tx_ring = adapter->tx_ring;
3562 struct e1000_tx_desc *tx_desc = NULL;
3563 struct e1000_buffer *buffer_info;
3564 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3565 unsigned int i;
3567 if (tx_flags & E1000_TX_FLAGS_TSO) {
3568 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3569 E1000_TXD_CMD_TSE;
3570 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3572 if (tx_flags & E1000_TX_FLAGS_IPV4)
3573 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3576 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3577 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3578 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3581 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3582 txd_lower |= E1000_TXD_CMD_VLE;
3583 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3586 i = tx_ring->next_to_use;
3588 while (count--) {
3589 buffer_info = &tx_ring->buffer_info[i];
3590 tx_desc = E1000_TX_DESC(*tx_ring, i);
3591 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3592 tx_desc->lower.data =
3593 cpu_to_le32(txd_lower | buffer_info->length);
3594 tx_desc->upper.data = cpu_to_le32(txd_upper);
3596 i++;
3597 if (i == tx_ring->count)
3598 i = 0;
3601 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3604 * Force memory writes to complete before letting h/w
3605 * know there are new descriptors to fetch. (Only
3606 * applicable for weak-ordered memory model archs,
3607 * such as IA-64).
3609 wmb();
3611 tx_ring->next_to_use = i;
3612 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3614 * we need this if more than one processor can write to our tail
3615 * at a time, it synchronizes IO on IA64/Altix systems
3617 mmiowb();
3620 #define MINIMUM_DHCP_PACKET_SIZE 282
3621 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3622 struct sk_buff *skb)
3624 struct e1000_hw *hw = &adapter->hw;
3625 u16 length, offset;
3627 if (vlan_tx_tag_present(skb)) {
3628 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3629 && (adapter->hw.mng_cookie.status &
3630 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3631 return 0;
3634 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3635 return 0;
3637 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3638 return 0;
3641 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3642 struct udphdr *udp;
3644 if (ip->protocol != IPPROTO_UDP)
3645 return 0;
3647 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3648 if (ntohs(udp->dest) != 67)
3649 return 0;
3651 offset = (u8 *)udp + 8 - skb->data;
3652 length = skb->len - offset;
3653 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3656 return 0;
3659 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3661 struct e1000_adapter *adapter = netdev_priv(netdev);
3663 netif_stop_queue(netdev);
3665 * Herbert's original patch had:
3666 * smp_mb__after_netif_stop_queue();
3667 * but since that doesn't exist yet, just open code it.
3669 smp_mb();
3672 * We need to check again in a case another CPU has just
3673 * made room available.
3675 if (e1000_desc_unused(adapter->tx_ring) < size)
3676 return -EBUSY;
3678 /* A reprieve! */
3679 netif_start_queue(netdev);
3680 ++adapter->restart_queue;
3681 return 0;
3684 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3686 struct e1000_adapter *adapter = netdev_priv(netdev);
3688 if (e1000_desc_unused(adapter->tx_ring) >= size)
3689 return 0;
3690 return __e1000_maybe_stop_tx(netdev, size);
3693 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3694 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3696 struct e1000_adapter *adapter = netdev_priv(netdev);
3697 struct e1000_ring *tx_ring = adapter->tx_ring;
3698 unsigned int first;
3699 unsigned int max_per_txd = E1000_MAX_PER_TXD;
3700 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3701 unsigned int tx_flags = 0;
3702 unsigned int len = skb->len - skb->data_len;
3703 unsigned long irq_flags;
3704 unsigned int nr_frags;
3705 unsigned int mss;
3706 int count = 0;
3707 int tso;
3708 unsigned int f;
3710 if (test_bit(__E1000_DOWN, &adapter->state)) {
3711 dev_kfree_skb_any(skb);
3712 return NETDEV_TX_OK;
3715 if (skb->len <= 0) {
3716 dev_kfree_skb_any(skb);
3717 return NETDEV_TX_OK;
3720 mss = skb_shinfo(skb)->gso_size;
3722 * The controller does a simple calculation to
3723 * make sure there is enough room in the FIFO before
3724 * initiating the DMA for each buffer. The calc is:
3725 * 4 = ceil(buffer len/mss). To make sure we don't
3726 * overrun the FIFO, adjust the max buffer len if mss
3727 * drops.
3729 if (mss) {
3730 u8 hdr_len;
3731 max_per_txd = min(mss << 2, max_per_txd);
3732 max_txd_pwr = fls(max_per_txd) - 1;
3735 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
3736 * points to just header, pull a few bytes of payload from
3737 * frags into skb->data
3739 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3741 * we do this workaround for ES2LAN, but it is un-necessary,
3742 * avoiding it could save a lot of cycles
3744 if (skb->data_len && (hdr_len == len)) {
3745 unsigned int pull_size;
3747 pull_size = min((unsigned int)4, skb->data_len);
3748 if (!__pskb_pull_tail(skb, pull_size)) {
3749 e_err("__pskb_pull_tail failed.\n");
3750 dev_kfree_skb_any(skb);
3751 return NETDEV_TX_OK;
3753 len = skb->len - skb->data_len;
3757 /* reserve a descriptor for the offload context */
3758 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3759 count++;
3760 count++;
3762 count += TXD_USE_COUNT(len, max_txd_pwr);
3764 nr_frags = skb_shinfo(skb)->nr_frags;
3765 for (f = 0; f < nr_frags; f++)
3766 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3767 max_txd_pwr);
3769 if (adapter->hw.mac.tx_pkt_filtering)
3770 e1000_transfer_dhcp_info(adapter, skb);
3772 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3773 /* Collision - tell upper layer to requeue */
3774 return NETDEV_TX_LOCKED;
3777 * need: count + 2 desc gap to keep tail from touching
3778 * head, otherwise try next time
3780 if (e1000_maybe_stop_tx(netdev, count + 2)) {
3781 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3782 return NETDEV_TX_BUSY;
3785 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3786 tx_flags |= E1000_TX_FLAGS_VLAN;
3787 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3790 first = tx_ring->next_to_use;
3792 tso = e1000_tso(adapter, skb);
3793 if (tso < 0) {
3794 dev_kfree_skb_any(skb);
3795 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3796 return NETDEV_TX_OK;
3799 if (tso)
3800 tx_flags |= E1000_TX_FLAGS_TSO;
3801 else if (e1000_tx_csum(adapter, skb))
3802 tx_flags |= E1000_TX_FLAGS_CSUM;
3805 * Old method was to assume IPv4 packet by default if TSO was enabled.
3806 * 82571 hardware supports TSO capabilities for IPv6 as well...
3807 * no longer assume, we must.
3809 if (skb->protocol == htons(ETH_P_IP))
3810 tx_flags |= E1000_TX_FLAGS_IPV4;
3812 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3813 if (count < 0) {
3814 /* handle pci_map_single() error in e1000_tx_map */
3815 dev_kfree_skb_any(skb);
3816 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3817 return NETDEV_TX_OK;
3820 e1000_tx_queue(adapter, tx_flags, count);
3822 netdev->trans_start = jiffies;
3824 /* Make sure there is space in the ring for the next send. */
3825 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3827 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3828 return NETDEV_TX_OK;
3832 * e1000_tx_timeout - Respond to a Tx Hang
3833 * @netdev: network interface device structure
3835 static void e1000_tx_timeout(struct net_device *netdev)
3837 struct e1000_adapter *adapter = netdev_priv(netdev);
3839 /* Do the reset outside of interrupt context */
3840 adapter->tx_timeout_count++;
3841 schedule_work(&adapter->reset_task);
3844 static void e1000_reset_task(struct work_struct *work)
3846 struct e1000_adapter *adapter;
3847 adapter = container_of(work, struct e1000_adapter, reset_task);
3849 e1000e_reinit_locked(adapter);
3853 * e1000_get_stats - Get System Network Statistics
3854 * @netdev: network interface device structure
3856 * Returns the address of the device statistics structure.
3857 * The statistics are actually updated from the timer callback.
3859 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3861 struct e1000_adapter *adapter = netdev_priv(netdev);
3863 /* only return the current stats */
3864 return &adapter->net_stats;
3868 * e1000_change_mtu - Change the Maximum Transfer Unit
3869 * @netdev: network interface device structure
3870 * @new_mtu: new value for maximum frame size
3872 * Returns 0 on success, negative on failure
3874 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3876 struct e1000_adapter *adapter = netdev_priv(netdev);
3877 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3879 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
3880 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3881 e_err("Invalid MTU setting\n");
3882 return -EINVAL;
3885 /* Jumbo frame size limits */
3886 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3887 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3888 e_err("Jumbo Frames not supported.\n");
3889 return -EINVAL;
3891 if (adapter->hw.phy.type == e1000_phy_ife) {
3892 e_err("Jumbo Frames not supported.\n");
3893 return -EINVAL;
3897 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3898 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3899 e_err("MTU > 9216 not supported.\n");
3900 return -EINVAL;
3903 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3904 msleep(1);
3905 /* e1000e_down has a dependency on max_frame_size */
3906 adapter->max_frame_size = max_frame;
3907 if (netif_running(netdev))
3908 e1000e_down(adapter);
3911 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3912 * means we reserve 2 more, this pushes us to allocate from the next
3913 * larger slab size.
3914 * i.e. RXBUFFER_2048 --> size-4096 slab
3915 * However with the new *_jumbo_rx* routines, jumbo receives will use
3916 * fragmented skbs
3919 if (max_frame <= 256)
3920 adapter->rx_buffer_len = 256;
3921 else if (max_frame <= 512)
3922 adapter->rx_buffer_len = 512;
3923 else if (max_frame <= 1024)
3924 adapter->rx_buffer_len = 1024;
3925 else if (max_frame <= 2048)
3926 adapter->rx_buffer_len = 2048;
3927 else
3928 adapter->rx_buffer_len = 4096;
3930 /* adjust allocation if LPE protects us, and we aren't using SBP */
3931 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3932 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3933 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3934 + ETH_FCS_LEN;
3936 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
3937 netdev->mtu = new_mtu;
3939 if (netif_running(netdev))
3940 e1000e_up(adapter);
3941 else
3942 e1000e_reset(adapter);
3944 clear_bit(__E1000_RESETTING, &adapter->state);
3946 return 0;
3949 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3950 int cmd)
3952 struct e1000_adapter *adapter = netdev_priv(netdev);
3953 struct mii_ioctl_data *data = if_mii(ifr);
3955 if (adapter->hw.phy.media_type != e1000_media_type_copper)
3956 return -EOPNOTSUPP;
3958 switch (cmd) {
3959 case SIOCGMIIPHY:
3960 data->phy_id = adapter->hw.phy.addr;
3961 break;
3962 case SIOCGMIIREG:
3963 if (!capable(CAP_NET_ADMIN))
3964 return -EPERM;
3965 switch (data->reg_num & 0x1F) {
3966 case MII_BMCR:
3967 data->val_out = adapter->phy_regs.bmcr;
3968 break;
3969 case MII_BMSR:
3970 data->val_out = adapter->phy_regs.bmsr;
3971 break;
3972 case MII_PHYSID1:
3973 data->val_out = (adapter->hw.phy.id >> 16);
3974 break;
3975 case MII_PHYSID2:
3976 data->val_out = (adapter->hw.phy.id & 0xFFFF);
3977 break;
3978 case MII_ADVERTISE:
3979 data->val_out = adapter->phy_regs.advertise;
3980 break;
3981 case MII_LPA:
3982 data->val_out = adapter->phy_regs.lpa;
3983 break;
3984 case MII_EXPANSION:
3985 data->val_out = adapter->phy_regs.expansion;
3986 break;
3987 case MII_CTRL1000:
3988 data->val_out = adapter->phy_regs.ctrl1000;
3989 break;
3990 case MII_STAT1000:
3991 data->val_out = adapter->phy_regs.stat1000;
3992 break;
3993 case MII_ESTATUS:
3994 data->val_out = adapter->phy_regs.estatus;
3995 break;
3996 default:
3997 return -EIO;
3999 break;
4000 case SIOCSMIIREG:
4001 default:
4002 return -EOPNOTSUPP;
4004 return 0;
4007 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4009 switch (cmd) {
4010 case SIOCGMIIPHY:
4011 case SIOCGMIIREG:
4012 case SIOCSMIIREG:
4013 return e1000_mii_ioctl(netdev, ifr, cmd);
4014 default:
4015 return -EOPNOTSUPP;
4019 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4021 struct net_device *netdev = pci_get_drvdata(pdev);
4022 struct e1000_adapter *adapter = netdev_priv(netdev);
4023 struct e1000_hw *hw = &adapter->hw;
4024 u32 ctrl, ctrl_ext, rctl, status;
4025 u32 wufc = adapter->wol;
4026 int retval = 0;
4028 netif_device_detach(netdev);
4030 if (netif_running(netdev)) {
4031 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4032 e1000e_down(adapter);
4033 e1000_free_irq(adapter);
4036 retval = pci_save_state(pdev);
4037 if (retval)
4038 return retval;
4040 status = er32(STATUS);
4041 if (status & E1000_STATUS_LU)
4042 wufc &= ~E1000_WUFC_LNKC;
4044 if (wufc) {
4045 e1000_setup_rctl(adapter);
4046 e1000_set_multi(netdev);
4048 /* turn on all-multi mode if wake on multicast is enabled */
4049 if (wufc & E1000_WUFC_MC) {
4050 rctl = er32(RCTL);
4051 rctl |= E1000_RCTL_MPE;
4052 ew32(RCTL, rctl);
4055 ctrl = er32(CTRL);
4056 /* advertise wake from D3Cold */
4057 #define E1000_CTRL_ADVD3WUC 0x00100000
4058 /* phy power management enable */
4059 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4060 ctrl |= E1000_CTRL_ADVD3WUC |
4061 E1000_CTRL_EN_PHY_PWR_MGMT;
4062 ew32(CTRL, ctrl);
4064 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4065 adapter->hw.phy.media_type ==
4066 e1000_media_type_internal_serdes) {
4067 /* keep the laser running in D3 */
4068 ctrl_ext = er32(CTRL_EXT);
4069 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4070 ew32(CTRL_EXT, ctrl_ext);
4073 if (adapter->flags & FLAG_IS_ICH)
4074 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4076 /* Allow time for pending master requests to run */
4077 e1000e_disable_pcie_master(&adapter->hw);
4079 ew32(WUC, E1000_WUC_PME_EN);
4080 ew32(WUFC, wufc);
4081 pci_enable_wake(pdev, PCI_D3hot, 1);
4082 pci_enable_wake(pdev, PCI_D3cold, 1);
4083 } else {
4084 ew32(WUC, 0);
4085 ew32(WUFC, 0);
4086 pci_enable_wake(pdev, PCI_D3hot, 0);
4087 pci_enable_wake(pdev, PCI_D3cold, 0);
4090 /* make sure adapter isn't asleep if manageability is enabled */
4091 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
4092 pci_enable_wake(pdev, PCI_D3hot, 1);
4093 pci_enable_wake(pdev, PCI_D3cold, 1);
4096 if (adapter->hw.phy.type == e1000_phy_igp_3)
4097 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4100 * Release control of h/w to f/w. If f/w is AMT enabled, this
4101 * would have already happened in close and is redundant.
4103 e1000_release_hw_control(adapter);
4105 pci_disable_device(pdev);
4107 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4109 return 0;
4112 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4114 int pos;
4115 u16 val;
4118 * 82573 workaround - disable L1 ASPM on mobile chipsets
4120 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4121 * resulting in lost data or garbage information on the pci-e link
4122 * level. This could result in (false) bad EEPROM checksum errors,
4123 * long ping times (up to 2s) or even a system freeze/hang.
4125 * Unfortunately this feature saves about 1W power consumption when
4126 * active.
4128 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
4129 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4130 if (val & 0x2) {
4131 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4132 val &= ~0x2;
4133 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4137 #ifdef CONFIG_PM
4138 static int e1000_resume(struct pci_dev *pdev)
4140 struct net_device *netdev = pci_get_drvdata(pdev);
4141 struct e1000_adapter *adapter = netdev_priv(netdev);
4142 struct e1000_hw *hw = &adapter->hw;
4143 u32 err;
4145 pci_set_power_state(pdev, PCI_D0);
4146 pci_restore_state(pdev);
4147 e1000e_disable_l1aspm(pdev);
4149 err = pci_enable_device_mem(pdev);
4150 if (err) {
4151 dev_err(&pdev->dev,
4152 "Cannot enable PCI device from suspend\n");
4153 return err;
4156 pci_set_master(pdev);
4158 pci_enable_wake(pdev, PCI_D3hot, 0);
4159 pci_enable_wake(pdev, PCI_D3cold, 0);
4161 if (netif_running(netdev)) {
4162 err = e1000_request_irq(adapter);
4163 if (err)
4164 return err;
4167 e1000e_power_up_phy(adapter);
4168 e1000e_reset(adapter);
4169 ew32(WUS, ~0);
4171 e1000_init_manageability(adapter);
4173 if (netif_running(netdev))
4174 e1000e_up(adapter);
4176 netif_device_attach(netdev);
4179 * If the controller has AMT, do not set DRV_LOAD until the interface
4180 * is up. For all other cases, let the f/w know that the h/w is now
4181 * under the control of the driver.
4183 if (!(adapter->flags & FLAG_HAS_AMT))
4184 e1000_get_hw_control(adapter);
4186 return 0;
4188 #endif
4190 static void e1000_shutdown(struct pci_dev *pdev)
4192 e1000_suspend(pdev, PMSG_SUSPEND);
4195 #ifdef CONFIG_NET_POLL_CONTROLLER
4197 * Polling 'interrupt' - used by things like netconsole to send skbs
4198 * without having to re-enable interrupts. It's not called while
4199 * the interrupt routine is executing.
4201 static void e1000_netpoll(struct net_device *netdev)
4203 struct e1000_adapter *adapter = netdev_priv(netdev);
4205 disable_irq(adapter->pdev->irq);
4206 e1000_intr(adapter->pdev->irq, netdev);
4208 enable_irq(adapter->pdev->irq);
4210 #endif
4213 * e1000_io_error_detected - called when PCI error is detected
4214 * @pdev: Pointer to PCI device
4215 * @state: The current pci connection state
4217 * This function is called after a PCI bus error affecting
4218 * this device has been detected.
4220 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4221 pci_channel_state_t state)
4223 struct net_device *netdev = pci_get_drvdata(pdev);
4224 struct e1000_adapter *adapter = netdev_priv(netdev);
4226 netif_device_detach(netdev);
4228 if (netif_running(netdev))
4229 e1000e_down(adapter);
4230 pci_disable_device(pdev);
4232 /* Request a slot slot reset. */
4233 return PCI_ERS_RESULT_NEED_RESET;
4237 * e1000_io_slot_reset - called after the pci bus has been reset.
4238 * @pdev: Pointer to PCI device
4240 * Restart the card from scratch, as if from a cold-boot. Implementation
4241 * resembles the first-half of the e1000_resume routine.
4243 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4245 struct net_device *netdev = pci_get_drvdata(pdev);
4246 struct e1000_adapter *adapter = netdev_priv(netdev);
4247 struct e1000_hw *hw = &adapter->hw;
4248 int err;
4250 e1000e_disable_l1aspm(pdev);
4251 err = pci_enable_device_mem(pdev);
4252 if (err) {
4253 dev_err(&pdev->dev,
4254 "Cannot re-enable PCI device after reset.\n");
4255 return PCI_ERS_RESULT_DISCONNECT;
4257 pci_set_master(pdev);
4258 pci_restore_state(pdev);
4260 pci_enable_wake(pdev, PCI_D3hot, 0);
4261 pci_enable_wake(pdev, PCI_D3cold, 0);
4263 e1000e_reset(adapter);
4264 ew32(WUS, ~0);
4266 return PCI_ERS_RESULT_RECOVERED;
4270 * e1000_io_resume - called when traffic can start flowing again.
4271 * @pdev: Pointer to PCI device
4273 * This callback is called when the error recovery driver tells us that
4274 * its OK to resume normal operation. Implementation resembles the
4275 * second-half of the e1000_resume routine.
4277 static void e1000_io_resume(struct pci_dev *pdev)
4279 struct net_device *netdev = pci_get_drvdata(pdev);
4280 struct e1000_adapter *adapter = netdev_priv(netdev);
4282 e1000_init_manageability(adapter);
4284 if (netif_running(netdev)) {
4285 if (e1000e_up(adapter)) {
4286 dev_err(&pdev->dev,
4287 "can't bring device back up after reset\n");
4288 return;
4292 netif_device_attach(netdev);
4295 * If the controller has AMT, do not set DRV_LOAD until the interface
4296 * is up. For all other cases, let the f/w know that the h/w is now
4297 * under the control of the driver.
4299 if (!(adapter->flags & FLAG_HAS_AMT))
4300 e1000_get_hw_control(adapter);
4304 static void e1000_print_device_info(struct e1000_adapter *adapter)
4306 struct e1000_hw *hw = &adapter->hw;
4307 struct net_device *netdev = adapter->netdev;
4308 u32 pba_num;
4310 /* print bus type/speed/width info */
4311 e_info("(PCI Express:2.5GB/s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
4312 /* bus width */
4313 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4314 "Width x1"),
4315 /* MAC address */
4316 netdev->dev_addr[0], netdev->dev_addr[1],
4317 netdev->dev_addr[2], netdev->dev_addr[3],
4318 netdev->dev_addr[4], netdev->dev_addr[5]);
4319 e_info("Intel(R) PRO/%s Network Connection\n",
4320 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4321 e1000e_read_pba_num(hw, &pba_num);
4322 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4323 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4326 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4328 struct e1000_hw *hw = &adapter->hw;
4329 int ret_val;
4330 u16 buf = 0;
4332 if (hw->mac.type != e1000_82573)
4333 return;
4335 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4336 if (!(le16_to_cpu(buf) & (1 << 0))) {
4337 /* Deep Smart Power Down (DSPD) */
4338 e_warn("Warning: detected DSPD enabled in EEPROM\n");
4341 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4342 if (le16_to_cpu(buf) & (3 << 2)) {
4343 /* ASPM enable */
4344 e_warn("Warning: detected ASPM enabled in EEPROM\n");
4349 * e1000_probe - Device Initialization Routine
4350 * @pdev: PCI device information struct
4351 * @ent: entry in e1000_pci_tbl
4353 * Returns 0 on success, negative on failure
4355 * e1000_probe initializes an adapter identified by a pci_dev structure.
4356 * The OS initialization, configuring of the adapter private structure,
4357 * and a hardware reset occur.
4359 static int __devinit e1000_probe(struct pci_dev *pdev,
4360 const struct pci_device_id *ent)
4362 struct net_device *netdev;
4363 struct e1000_adapter *adapter;
4364 struct e1000_hw *hw;
4365 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4366 resource_size_t mmio_start, mmio_len;
4367 resource_size_t flash_start, flash_len;
4369 static int cards_found;
4370 int i, err, pci_using_dac;
4371 u16 eeprom_data = 0;
4372 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4374 e1000e_disable_l1aspm(pdev);
4376 err = pci_enable_device_mem(pdev);
4377 if (err)
4378 return err;
4380 pci_using_dac = 0;
4381 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4382 if (!err) {
4383 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4384 if (!err)
4385 pci_using_dac = 1;
4386 } else {
4387 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4388 if (err) {
4389 err = pci_set_consistent_dma_mask(pdev,
4390 DMA_32BIT_MASK);
4391 if (err) {
4392 dev_err(&pdev->dev, "No usable DMA "
4393 "configuration, aborting\n");
4394 goto err_dma;
4399 err = pci_request_selected_regions(pdev,
4400 pci_select_bars(pdev, IORESOURCE_MEM),
4401 e1000e_driver_name);
4402 if (err)
4403 goto err_pci_reg;
4405 pci_set_master(pdev);
4406 pci_save_state(pdev);
4408 err = -ENOMEM;
4409 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4410 if (!netdev)
4411 goto err_alloc_etherdev;
4413 SET_NETDEV_DEV(netdev, &pdev->dev);
4415 pci_set_drvdata(pdev, netdev);
4416 adapter = netdev_priv(netdev);
4417 hw = &adapter->hw;
4418 adapter->netdev = netdev;
4419 adapter->pdev = pdev;
4420 adapter->ei = ei;
4421 adapter->pba = ei->pba;
4422 adapter->flags = ei->flags;
4423 adapter->hw.adapter = adapter;
4424 adapter->hw.mac.type = ei->mac;
4425 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4427 mmio_start = pci_resource_start(pdev, 0);
4428 mmio_len = pci_resource_len(pdev, 0);
4430 err = -EIO;
4431 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4432 if (!adapter->hw.hw_addr)
4433 goto err_ioremap;
4435 if ((adapter->flags & FLAG_HAS_FLASH) &&
4436 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4437 flash_start = pci_resource_start(pdev, 1);
4438 flash_len = pci_resource_len(pdev, 1);
4439 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4440 if (!adapter->hw.flash_address)
4441 goto err_flashmap;
4444 /* construct the net_device struct */
4445 netdev->open = &e1000_open;
4446 netdev->stop = &e1000_close;
4447 netdev->hard_start_xmit = &e1000_xmit_frame;
4448 netdev->get_stats = &e1000_get_stats;
4449 netdev->set_multicast_list = &e1000_set_multi;
4450 netdev->set_mac_address = &e1000_set_mac;
4451 netdev->change_mtu = &e1000_change_mtu;
4452 netdev->do_ioctl = &e1000_ioctl;
4453 e1000e_set_ethtool_ops(netdev);
4454 netdev->tx_timeout = &e1000_tx_timeout;
4455 netdev->watchdog_timeo = 5 * HZ;
4456 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4457 netdev->vlan_rx_register = e1000_vlan_rx_register;
4458 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
4459 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
4460 #ifdef CONFIG_NET_POLL_CONTROLLER
4461 netdev->poll_controller = e1000_netpoll;
4462 #endif
4463 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4465 netdev->mem_start = mmio_start;
4466 netdev->mem_end = mmio_start + mmio_len;
4468 adapter->bd_number = cards_found++;
4470 /* setup adapter struct */
4471 err = e1000_sw_init(adapter);
4472 if (err)
4473 goto err_sw_init;
4475 err = -EIO;
4477 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4478 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4479 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4481 err = ei->get_variants(adapter);
4482 if (err)
4483 goto err_hw_init;
4485 hw->mac.ops.get_bus_info(&adapter->hw);
4487 adapter->hw.phy.autoneg_wait_to_complete = 0;
4489 /* Copper options */
4490 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
4491 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4492 adapter->hw.phy.disable_polarity_correction = 0;
4493 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4496 if (e1000_check_reset_block(&adapter->hw))
4497 e_info("PHY reset is blocked due to SOL/IDER session.\n");
4499 netdev->features = NETIF_F_SG |
4500 NETIF_F_HW_CSUM |
4501 NETIF_F_HW_VLAN_TX |
4502 NETIF_F_HW_VLAN_RX;
4504 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4505 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4507 netdev->features |= NETIF_F_TSO;
4508 netdev->features |= NETIF_F_TSO6;
4510 netdev->vlan_features |= NETIF_F_TSO;
4511 netdev->vlan_features |= NETIF_F_TSO6;
4512 netdev->vlan_features |= NETIF_F_HW_CSUM;
4513 netdev->vlan_features |= NETIF_F_SG;
4515 if (pci_using_dac)
4516 netdev->features |= NETIF_F_HIGHDMA;
4519 * We should not be using LLTX anymore, but we are still Tx faster with
4520 * it.
4522 netdev->features |= NETIF_F_LLTX;
4524 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4525 adapter->flags |= FLAG_MNG_PT_ENABLED;
4528 * before reading the NVM, reset the controller to
4529 * put the device in a known good starting state
4531 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4534 * systems with ASPM and others may see the checksum fail on the first
4535 * attempt. Let's give it a few tries
4537 for (i = 0;; i++) {
4538 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4539 break;
4540 if (i == 2) {
4541 e_err("The NVM Checksum Is Not Valid\n");
4542 err = -EIO;
4543 goto err_eeprom;
4547 e1000_eeprom_checks(adapter);
4549 /* copy the MAC address out of the NVM */
4550 if (e1000e_read_mac_addr(&adapter->hw))
4551 e_err("NVM Read Error while reading MAC address\n");
4553 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4554 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4556 if (!is_valid_ether_addr(netdev->perm_addr)) {
4557 e_err("Invalid MAC Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
4558 netdev->perm_addr[0], netdev->perm_addr[1],
4559 netdev->perm_addr[2], netdev->perm_addr[3],
4560 netdev->perm_addr[4], netdev->perm_addr[5]);
4561 err = -EIO;
4562 goto err_eeprom;
4565 init_timer(&adapter->watchdog_timer);
4566 adapter->watchdog_timer.function = &e1000_watchdog;
4567 adapter->watchdog_timer.data = (unsigned long) adapter;
4569 init_timer(&adapter->phy_info_timer);
4570 adapter->phy_info_timer.function = &e1000_update_phy_info;
4571 adapter->phy_info_timer.data = (unsigned long) adapter;
4573 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4574 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4576 e1000e_check_options(adapter);
4578 /* Initialize link parameters. User can change them with ethtool */
4579 adapter->hw.mac.autoneg = 1;
4580 adapter->fc_autoneg = 1;
4581 adapter->hw.fc.original_type = e1000_fc_default;
4582 adapter->hw.fc.type = e1000_fc_default;
4583 adapter->hw.phy.autoneg_advertised = 0x2f;
4585 /* ring size defaults */
4586 adapter->rx_ring->count = 256;
4587 adapter->tx_ring->count = 256;
4590 * Initial Wake on LAN setting - If APM wake is enabled in
4591 * the EEPROM, enable the ACPI Magic Packet filter
4593 if (adapter->flags & FLAG_APME_IN_WUC) {
4594 /* APME bit in EEPROM is mapped to WUC.APME */
4595 eeprom_data = er32(WUC);
4596 eeprom_apme_mask = E1000_WUC_APME;
4597 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4598 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4599 (adapter->hw.bus.func == 1))
4600 e1000_read_nvm(&adapter->hw,
4601 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4602 else
4603 e1000_read_nvm(&adapter->hw,
4604 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4607 /* fetch WoL from EEPROM */
4608 if (eeprom_data & eeprom_apme_mask)
4609 adapter->eeprom_wol |= E1000_WUFC_MAG;
4612 * now that we have the eeprom settings, apply the special cases
4613 * where the eeprom may be wrong or the board simply won't support
4614 * wake on lan on a particular port
4616 if (!(adapter->flags & FLAG_HAS_WOL))
4617 adapter->eeprom_wol = 0;
4619 /* initialize the wol settings based on the eeprom settings */
4620 adapter->wol = adapter->eeprom_wol;
4622 /* reset the hardware with the new settings */
4623 e1000e_reset(adapter);
4626 * If the controller has AMT, do not set DRV_LOAD until the interface
4627 * is up. For all other cases, let the f/w know that the h/w is now
4628 * under the control of the driver.
4630 if (!(adapter->flags & FLAG_HAS_AMT))
4631 e1000_get_hw_control(adapter);
4633 /* tell the stack to leave us alone until e1000_open() is called */
4634 netif_carrier_off(netdev);
4635 netif_tx_stop_all_queues(netdev);
4637 strcpy(netdev->name, "eth%d");
4638 err = register_netdev(netdev);
4639 if (err)
4640 goto err_register;
4642 e1000_print_device_info(adapter);
4644 return 0;
4646 err_register:
4647 if (!(adapter->flags & FLAG_HAS_AMT))
4648 e1000_release_hw_control(adapter);
4649 err_eeprom:
4650 if (!e1000_check_reset_block(&adapter->hw))
4651 e1000_phy_hw_reset(&adapter->hw);
4652 err_hw_init:
4654 kfree(adapter->tx_ring);
4655 kfree(adapter->rx_ring);
4656 err_sw_init:
4657 if (adapter->hw.flash_address)
4658 iounmap(adapter->hw.flash_address);
4659 err_flashmap:
4660 iounmap(adapter->hw.hw_addr);
4661 err_ioremap:
4662 free_netdev(netdev);
4663 err_alloc_etherdev:
4664 pci_release_selected_regions(pdev,
4665 pci_select_bars(pdev, IORESOURCE_MEM));
4666 err_pci_reg:
4667 err_dma:
4668 pci_disable_device(pdev);
4669 return err;
4673 * e1000_remove - Device Removal Routine
4674 * @pdev: PCI device information struct
4676 * e1000_remove is called by the PCI subsystem to alert the driver
4677 * that it should release a PCI device. The could be caused by a
4678 * Hot-Plug event, or because the driver is going to be removed from
4679 * memory.
4681 static void __devexit e1000_remove(struct pci_dev *pdev)
4683 struct net_device *netdev = pci_get_drvdata(pdev);
4684 struct e1000_adapter *adapter = netdev_priv(netdev);
4687 * flush_scheduled work may reschedule our watchdog task, so
4688 * explicitly disable watchdog tasks from being rescheduled
4690 set_bit(__E1000_DOWN, &adapter->state);
4691 del_timer_sync(&adapter->watchdog_timer);
4692 del_timer_sync(&adapter->phy_info_timer);
4694 flush_scheduled_work();
4697 * Release control of h/w to f/w. If f/w is AMT enabled, this
4698 * would have already happened in close and is redundant.
4700 e1000_release_hw_control(adapter);
4702 unregister_netdev(netdev);
4704 if (!e1000_check_reset_block(&adapter->hw))
4705 e1000_phy_hw_reset(&adapter->hw);
4707 kfree(adapter->tx_ring);
4708 kfree(adapter->rx_ring);
4710 iounmap(adapter->hw.hw_addr);
4711 if (adapter->hw.flash_address)
4712 iounmap(adapter->hw.flash_address);
4713 pci_release_selected_regions(pdev,
4714 pci_select_bars(pdev, IORESOURCE_MEM));
4716 free_netdev(netdev);
4718 pci_disable_device(pdev);
4721 /* PCI Error Recovery (ERS) */
4722 static struct pci_error_handlers e1000_err_handler = {
4723 .error_detected = e1000_io_error_detected,
4724 .slot_reset = e1000_io_slot_reset,
4725 .resume = e1000_io_resume,
4728 static struct pci_device_id e1000_pci_tbl[] = {
4729 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4730 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4731 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4732 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4733 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4734 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4735 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
4736 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
4737 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
4739 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4740 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4741 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4742 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4744 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4745 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4746 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4748 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4749 board_80003es2lan },
4750 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4751 board_80003es2lan },
4752 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4753 board_80003es2lan },
4754 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4755 board_80003es2lan },
4757 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4758 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4759 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4760 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4761 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4762 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4763 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4765 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4766 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4767 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4768 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4769 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4770 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
4771 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
4772 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
4774 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
4775 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
4776 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
4778 { } /* terminate list */
4780 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4782 /* PCI Device API Driver */
4783 static struct pci_driver e1000_driver = {
4784 .name = e1000e_driver_name,
4785 .id_table = e1000_pci_tbl,
4786 .probe = e1000_probe,
4787 .remove = __devexit_p(e1000_remove),
4788 #ifdef CONFIG_PM
4789 /* Power Management Hooks */
4790 .suspend = e1000_suspend,
4791 .resume = e1000_resume,
4792 #endif
4793 .shutdown = e1000_shutdown,
4794 .err_handler = &e1000_err_handler
4798 * e1000_init_module - Driver Registration Routine
4800 * e1000_init_module is the first routine called when the driver is
4801 * loaded. All it does is register with the PCI subsystem.
4803 static int __init e1000_init_module(void)
4805 int ret;
4806 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4807 e1000e_driver_name, e1000e_driver_version);
4808 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
4809 e1000e_driver_name);
4810 ret = pci_register_driver(&e1000_driver);
4811 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
4812 PM_QOS_DEFAULT_VALUE);
4814 return ret;
4816 module_init(e1000_init_module);
4819 * e1000_exit_module - Driver Exit Cleanup Routine
4821 * e1000_exit_module is called just before the driver is removed
4822 * from memory.
4824 static void __exit e1000_exit_module(void)
4826 pci_unregister_driver(&e1000_driver);
4827 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
4829 module_exit(e1000_exit_module);
4832 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4833 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4834 MODULE_LICENSE("GPL");
4835 MODULE_VERSION(DRV_VERSION);
4837 /* e1000_main.c */