3C509: rx_bytes should not be increased when alloc_skb failed
[linux-2.6/mini2440.git] / drivers / net / s2io.c
bloba20693e09ae8cbfe8108d16c792e9640ed282eae
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <net/tcp.h>
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
81 #include <asm/io.h>
82 #include <asm/div64.h>
83 #include <asm/irq.h>
85 /* local include */
86 #include "s2io.h"
87 #include "s2io-regs.h"
89 #define DRV_VERSION "2.0.26.24"
91 /* S2io Driver name & version. */
92 static char s2io_driver_name[] = "Neterion";
93 static char s2io_driver_version[] = DRV_VERSION;
95 static int rxd_size[2] = {32,48};
96 static int rxd_count[2] = {127,85};
98 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
100 int ret;
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
105 return ret;
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
121 static inline int is_s2io_card_up(const struct s2io_nic * sp)
123 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
135 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
136 {"tmac_frms"},
137 {"tmac_data_octets"},
138 {"tmac_drop_frms"},
139 {"tmac_mcst_frms"},
140 {"tmac_bcst_frms"},
141 {"tmac_pause_ctrl_frms"},
142 {"tmac_ttl_octets"},
143 {"tmac_ucst_frms"},
144 {"tmac_nucst_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
148 {"tmac_vld_ip"},
149 {"tmac_drop_ip"},
150 {"tmac_icmp"},
151 {"tmac_rst_tcp"},
152 {"tmac_tcp"},
153 {"tmac_udp"},
154 {"rmac_vld_frms"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
157 {"rmac_drop_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
162 {"rmac_long_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
165 {"rmac_ttl_octets"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
171 {"rmac_ttl_frms"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
174 {"rmac_frag_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
182 {"rmac_ip"},
183 {"rmac_ip_octets"},
184 {"rmac_hdr_err_ip"},
185 {"rmac_drop_ip"},
186 {"rmac_icmp"},
187 {"rmac_tcp"},
188 {"rmac_udp"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
191 {"rmac_frms_q0"},
192 {"rmac_frms_q1"},
193 {"rmac_frms_q2"},
194 {"rmac_frms_q3"},
195 {"rmac_frms_q4"},
196 {"rmac_frms_q5"},
197 {"rmac_frms_q6"},
198 {"rmac_frms_q7"},
199 {"rmac_full_q0"},
200 {"rmac_full_q1"},
201 {"rmac_full_q2"},
202 {"rmac_full_q3"},
203 {"rmac_full_q4"},
204 {"rmac_full_q5"},
205 {"rmac_full_q6"},
206 {"rmac_full_q7"},
207 {"rmac_pause_cnt"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
211 {"rmac_err_tcp"},
212 {"rd_req_cnt"},
213 {"new_rd_req_cnt"},
214 {"new_rd_req_rtry_cnt"},
215 {"rd_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
217 {"wr_req_cnt"},
218 {"new_wr_req_cnt"},
219 {"new_wr_req_rtry_cnt"},
220 {"wr_rtry_cnt"},
221 {"wr_disc_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
223 {"txp_wr_cnt"},
224 {"txd_rd_cnt"},
225 {"txd_wr_cnt"},
226 {"rxd_rd_cnt"},
227 {"rxd_wr_cnt"},
228 {"txf_rd_cnt"},
229 {"rxf_wr_cnt"}
232 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
240 {"rmac_vlan_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
243 {"rmac_pf_discard"},
244 {"rmac_da_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
248 {"link_fault_cnt"}
251 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
255 {"parity_err_cnt"},
256 {"serious_err_cnt"},
257 {"soft_reset_cnt"},
258 {"fifo_full_cnt"},
259 {"ring_0_full_cnt"},
260 {"ring_1_full_cnt"},
261 {"ring_2_full_cnt"},
262 {"ring_3_full_cnt"},
263 {"ring_4_full_cnt"},
264 {"ring_5_full_cnt"},
265 {"ring_6_full_cnt"},
266 {"ring_7_full_cnt"},
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
287 {"mem_allocated"},
288 {"mem_freed"},
289 {"link_up_cnt"},
290 {"link_down_cnt"},
291 {"link_up_time"},
292 {"link_down_time"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
307 {"tda_err_cnt"},
308 {"pfc_err_cnt"},
309 {"pcc_err_cnt"},
310 {"tti_err_cnt"},
311 {"tpa_err_cnt"},
312 {"sm_err_cnt"},
313 {"lso_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
318 {"rc_err_cnt"},
319 {"prc_pcix_err_cnt"},
320 {"rpa_err_cnt"},
321 {"rda_err_cnt"},
322 {"rti_err_cnt"},
323 {"mc_err_cnt"}
326 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
330 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
333 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
336 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
337 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
339 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
345 /* copy mac addr to def_mac_addr array */
346 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
348 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
349 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
350 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
351 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
352 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
353 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
355 /* Add the vlan */
356 static void s2io_vlan_rx_register(struct net_device *dev,
357 struct vlan_group *grp)
359 int i;
360 struct s2io_nic *nic = dev->priv;
361 unsigned long flags[MAX_TX_FIFOS];
362 struct mac_info *mac_control = &nic->mac_control;
363 struct config_param *config = &nic->config;
365 for (i = 0; i < config->tx_fifo_num; i++)
366 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
368 nic->vlgrp = grp;
369 for (i = config->tx_fifo_num - 1; i >= 0; i--)
370 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
371 flags[i]);
374 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
375 static int vlan_strip_flag;
377 /* Unregister the vlan */
378 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
380 int i;
381 struct s2io_nic *nic = dev->priv;
382 unsigned long flags[MAX_TX_FIFOS];
383 struct mac_info *mac_control = &nic->mac_control;
384 struct config_param *config = &nic->config;
386 for (i = 0; i < config->tx_fifo_num; i++)
387 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
389 if (nic->vlgrp)
390 vlan_group_set_device(nic->vlgrp, vid, NULL);
392 for (i = config->tx_fifo_num - 1; i >= 0; i--)
393 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
394 flags[i]);
398 * Constants to be programmed into the Xena's registers, to configure
399 * the XAUI.
402 #define END_SIGN 0x0
403 static const u64 herc_act_dtx_cfg[] = {
404 /* Set address */
405 0x8000051536750000ULL, 0x80000515367500E0ULL,
406 /* Write data */
407 0x8000051536750004ULL, 0x80000515367500E4ULL,
408 /* Set address */
409 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
410 /* Write data */
411 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
412 /* Set address */
413 0x801205150D440000ULL, 0x801205150D4400E0ULL,
414 /* Write data */
415 0x801205150D440004ULL, 0x801205150D4400E4ULL,
416 /* Set address */
417 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
418 /* Write data */
419 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
420 /* Done */
421 END_SIGN
424 static const u64 xena_dtx_cfg[] = {
425 /* Set address */
426 0x8000051500000000ULL, 0x80000515000000E0ULL,
427 /* Write data */
428 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
429 /* Set address */
430 0x8001051500000000ULL, 0x80010515000000E0ULL,
431 /* Write data */
432 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
433 /* Set address */
434 0x8002051500000000ULL, 0x80020515000000E0ULL,
435 /* Write data */
436 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
437 END_SIGN
441 * Constants for Fixing the MacAddress problem seen mostly on
442 * Alpha machines.
444 static const u64 fix_mac[] = {
445 0x0060000000000000ULL, 0x0060600000000000ULL,
446 0x0040600000000000ULL, 0x0000600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0060600000000000ULL,
450 0x0020600000000000ULL, 0x0060600000000000ULL,
451 0x0020600000000000ULL, 0x0060600000000000ULL,
452 0x0020600000000000ULL, 0x0060600000000000ULL,
453 0x0020600000000000ULL, 0x0060600000000000ULL,
454 0x0020600000000000ULL, 0x0060600000000000ULL,
455 0x0020600000000000ULL, 0x0060600000000000ULL,
456 0x0020600000000000ULL, 0x0060600000000000ULL,
457 0x0020600000000000ULL, 0x0000600000000000ULL,
458 0x0040600000000000ULL, 0x0060600000000000ULL,
459 END_SIGN
462 MODULE_LICENSE("GPL");
463 MODULE_VERSION(DRV_VERSION);
466 /* Module Loadable parameters. */
467 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
468 S2IO_PARM_INT(rx_ring_num, 1);
469 S2IO_PARM_INT(multiq, 0);
470 S2IO_PARM_INT(rx_ring_mode, 1);
471 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
472 S2IO_PARM_INT(rmac_pause_time, 0x100);
473 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
474 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
475 S2IO_PARM_INT(shared_splits, 0);
476 S2IO_PARM_INT(tmac_util_period, 5);
477 S2IO_PARM_INT(rmac_util_period, 5);
478 S2IO_PARM_INT(l3l4hdr_size, 128);
479 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
480 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
481 /* Frequency of Rx desc syncs expressed as power of 2 */
482 S2IO_PARM_INT(rxsync_frequency, 3);
483 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
484 S2IO_PARM_INT(intr_type, 2);
485 /* Large receive offload feature */
486 static unsigned int lro_enable;
487 module_param_named(lro, lro_enable, uint, 0);
489 /* Max pkts to be aggregated by LRO at one time. If not specified,
490 * aggregation happens until we hit max IP pkt size(64K)
492 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
493 S2IO_PARM_INT(indicate_max_pkts, 0);
495 S2IO_PARM_INT(napi, 1);
496 S2IO_PARM_INT(ufo, 0);
497 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
499 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
500 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
501 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
502 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
503 static unsigned int rts_frm_len[MAX_RX_RINGS] =
504 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
506 module_param_array(tx_fifo_len, uint, NULL, 0);
507 module_param_array(rx_ring_sz, uint, NULL, 0);
508 module_param_array(rts_frm_len, uint, NULL, 0);
511 * S2IO device table.
512 * This table lists all the devices that this driver supports.
514 static struct pci_device_id s2io_tbl[] __devinitdata = {
515 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
516 PCI_ANY_ID, PCI_ANY_ID},
517 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
518 PCI_ANY_ID, PCI_ANY_ID},
519 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
520 PCI_ANY_ID, PCI_ANY_ID},
521 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
522 PCI_ANY_ID, PCI_ANY_ID},
523 {0,}
526 MODULE_DEVICE_TABLE(pci, s2io_tbl);
528 static struct pci_error_handlers s2io_err_handler = {
529 .error_detected = s2io_io_error_detected,
530 .slot_reset = s2io_io_slot_reset,
531 .resume = s2io_io_resume,
534 static struct pci_driver s2io_driver = {
535 .name = "S2IO",
536 .id_table = s2io_tbl,
537 .probe = s2io_init_nic,
538 .remove = __devexit_p(s2io_rem_nic),
539 .err_handler = &s2io_err_handler,
542 /* A simplifier macro used both by init and free shared_mem Fns(). */
543 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
545 /* netqueue manipulation helper functions */
546 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
548 int i;
549 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
550 if (sp->config.multiq) {
551 for (i = 0; i < sp->config.tx_fifo_num; i++)
552 netif_stop_subqueue(sp->dev, i);
553 } else
554 #endif
556 for (i = 0; i < sp->config.tx_fifo_num; i++)
557 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
558 netif_stop_queue(sp->dev);
562 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
564 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
565 if (sp->config.multiq)
566 netif_stop_subqueue(sp->dev, fifo_no);
567 else
568 #endif
570 sp->mac_control.fifos[fifo_no].queue_state =
571 FIFO_QUEUE_STOP;
572 netif_stop_queue(sp->dev);
576 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
578 int i;
579 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
580 if (sp->config.multiq) {
581 for (i = 0; i < sp->config.tx_fifo_num; i++)
582 netif_start_subqueue(sp->dev, i);
583 } else
584 #endif
586 for (i = 0; i < sp->config.tx_fifo_num; i++)
587 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
588 netif_start_queue(sp->dev);
592 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
594 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
595 if (sp->config.multiq)
596 netif_start_subqueue(sp->dev, fifo_no);
597 else
598 #endif
600 sp->mac_control.fifos[fifo_no].queue_state =
601 FIFO_QUEUE_START;
602 netif_start_queue(sp->dev);
606 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
608 int i;
609 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
610 if (sp->config.multiq) {
611 for (i = 0; i < sp->config.tx_fifo_num; i++)
612 netif_wake_subqueue(sp->dev, i);
613 } else
614 #endif
616 for (i = 0; i < sp->config.tx_fifo_num; i++)
617 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
618 netif_wake_queue(sp->dev);
622 static inline void s2io_wake_tx_queue(
623 struct fifo_info *fifo, int cnt, u8 multiq)
626 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
627 if (multiq) {
628 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
629 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
630 } else
631 #endif
632 if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
633 if (netif_queue_stopped(fifo->dev)) {
634 fifo->queue_state = FIFO_QUEUE_START;
635 netif_wake_queue(fifo->dev);
641 * init_shared_mem - Allocation and Initialization of Memory
642 * @nic: Device private variable.
643 * Description: The function allocates all the memory areas shared
644 * between the NIC and the driver. This includes Tx descriptors,
645 * Rx descriptors and the statistics block.
648 static int init_shared_mem(struct s2io_nic *nic)
650 u32 size;
651 void *tmp_v_addr, *tmp_v_addr_next;
652 dma_addr_t tmp_p_addr, tmp_p_addr_next;
653 struct RxD_block *pre_rxd_blk = NULL;
654 int i, j, blk_cnt;
655 int lst_size, lst_per_page;
656 struct net_device *dev = nic->dev;
657 unsigned long tmp;
658 struct buffAdd *ba;
660 struct mac_info *mac_control;
661 struct config_param *config;
662 unsigned long long mem_allocated = 0;
664 mac_control = &nic->mac_control;
665 config = &nic->config;
668 /* Allocation and initialization of TXDLs in FIOFs */
669 size = 0;
670 for (i = 0; i < config->tx_fifo_num; i++) {
671 size += config->tx_cfg[i].fifo_len;
673 if (size > MAX_AVAILABLE_TXDS) {
674 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
675 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
676 return -EINVAL;
679 size = 0;
680 for (i = 0; i < config->tx_fifo_num; i++) {
681 size = config->tx_cfg[i].fifo_len;
683 * Legal values are from 2 to 8192
685 if (size < 2) {
686 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
687 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
688 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
689 "are 2 to 8192\n");
690 return -EINVAL;
694 lst_size = (sizeof(struct TxD) * config->max_txds);
695 lst_per_page = PAGE_SIZE / lst_size;
697 for (i = 0; i < config->tx_fifo_num; i++) {
698 int fifo_len = config->tx_cfg[i].fifo_len;
699 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
700 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
701 GFP_KERNEL);
702 if (!mac_control->fifos[i].list_info) {
703 DBG_PRINT(INFO_DBG,
704 "Malloc failed for list_info\n");
705 return -ENOMEM;
707 mem_allocated += list_holder_size;
709 for (i = 0; i < config->tx_fifo_num; i++) {
710 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
711 lst_per_page);
712 mac_control->fifos[i].tx_curr_put_info.offset = 0;
713 mac_control->fifos[i].tx_curr_put_info.fifo_len =
714 config->tx_cfg[i].fifo_len - 1;
715 mac_control->fifos[i].tx_curr_get_info.offset = 0;
716 mac_control->fifos[i].tx_curr_get_info.fifo_len =
717 config->tx_cfg[i].fifo_len - 1;
718 mac_control->fifos[i].fifo_no = i;
719 mac_control->fifos[i].nic = nic;
720 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
721 mac_control->fifos[i].dev = dev;
723 for (j = 0; j < page_num; j++) {
724 int k = 0;
725 dma_addr_t tmp_p;
726 void *tmp_v;
727 tmp_v = pci_alloc_consistent(nic->pdev,
728 PAGE_SIZE, &tmp_p);
729 if (!tmp_v) {
730 DBG_PRINT(INFO_DBG,
731 "pci_alloc_consistent ");
732 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
733 return -ENOMEM;
735 /* If we got a zero DMA address(can happen on
736 * certain platforms like PPC), reallocate.
737 * Store virtual address of page we don't want,
738 * to be freed later.
740 if (!tmp_p) {
741 mac_control->zerodma_virt_addr = tmp_v;
742 DBG_PRINT(INIT_DBG,
743 "%s: Zero DMA address for TxDL. ", dev->name);
744 DBG_PRINT(INIT_DBG,
745 "Virtual address %p\n", tmp_v);
746 tmp_v = pci_alloc_consistent(nic->pdev,
747 PAGE_SIZE, &tmp_p);
748 if (!tmp_v) {
749 DBG_PRINT(INFO_DBG,
750 "pci_alloc_consistent ");
751 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
752 return -ENOMEM;
754 mem_allocated += PAGE_SIZE;
756 while (k < lst_per_page) {
757 int l = (j * lst_per_page) + k;
758 if (l == config->tx_cfg[i].fifo_len)
759 break;
760 mac_control->fifos[i].list_info[l].list_virt_addr =
761 tmp_v + (k * lst_size);
762 mac_control->fifos[i].list_info[l].list_phy_addr =
763 tmp_p + (k * lst_size);
764 k++;
769 for (i = 0; i < config->tx_fifo_num; i++) {
770 size = config->tx_cfg[i].fifo_len;
771 mac_control->fifos[i].ufo_in_band_v
772 = kcalloc(size, sizeof(u64), GFP_KERNEL);
773 if (!mac_control->fifos[i].ufo_in_band_v)
774 return -ENOMEM;
775 mem_allocated += (size * sizeof(u64));
778 /* Allocation and initialization of RXDs in Rings */
779 size = 0;
780 for (i = 0; i < config->rx_ring_num; i++) {
781 if (config->rx_cfg[i].num_rxd %
782 (rxd_count[nic->rxd_mode] + 1)) {
783 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
784 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
786 DBG_PRINT(ERR_DBG, "RxDs per Block");
787 return FAILURE;
789 size += config->rx_cfg[i].num_rxd;
790 mac_control->rings[i].block_count =
791 config->rx_cfg[i].num_rxd /
792 (rxd_count[nic->rxd_mode] + 1 );
793 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
794 mac_control->rings[i].block_count;
796 if (nic->rxd_mode == RXD_MODE_1)
797 size = (size * (sizeof(struct RxD1)));
798 else
799 size = (size * (sizeof(struct RxD3)));
801 for (i = 0; i < config->rx_ring_num; i++) {
802 mac_control->rings[i].rx_curr_get_info.block_index = 0;
803 mac_control->rings[i].rx_curr_get_info.offset = 0;
804 mac_control->rings[i].rx_curr_get_info.ring_len =
805 config->rx_cfg[i].num_rxd - 1;
806 mac_control->rings[i].rx_curr_put_info.block_index = 0;
807 mac_control->rings[i].rx_curr_put_info.offset = 0;
808 mac_control->rings[i].rx_curr_put_info.ring_len =
809 config->rx_cfg[i].num_rxd - 1;
810 mac_control->rings[i].nic = nic;
811 mac_control->rings[i].ring_no = i;
812 mac_control->rings[i].lro = lro_enable;
814 blk_cnt = config->rx_cfg[i].num_rxd /
815 (rxd_count[nic->rxd_mode] + 1);
816 /* Allocating all the Rx blocks */
817 for (j = 0; j < blk_cnt; j++) {
818 struct rx_block_info *rx_blocks;
819 int l;
821 rx_blocks = &mac_control->rings[i].rx_blocks[j];
822 size = SIZE_OF_BLOCK; //size is always page size
823 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
824 &tmp_p_addr);
825 if (tmp_v_addr == NULL) {
827 * In case of failure, free_shared_mem()
828 * is called, which should free any
829 * memory that was alloced till the
830 * failure happened.
832 rx_blocks->block_virt_addr = tmp_v_addr;
833 return -ENOMEM;
835 mem_allocated += size;
836 memset(tmp_v_addr, 0, size);
837 rx_blocks->block_virt_addr = tmp_v_addr;
838 rx_blocks->block_dma_addr = tmp_p_addr;
839 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
840 rxd_count[nic->rxd_mode],
841 GFP_KERNEL);
842 if (!rx_blocks->rxds)
843 return -ENOMEM;
844 mem_allocated +=
845 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
846 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
847 rx_blocks->rxds[l].virt_addr =
848 rx_blocks->block_virt_addr +
849 (rxd_size[nic->rxd_mode] * l);
850 rx_blocks->rxds[l].dma_addr =
851 rx_blocks->block_dma_addr +
852 (rxd_size[nic->rxd_mode] * l);
855 /* Interlinking all Rx Blocks */
856 for (j = 0; j < blk_cnt; j++) {
857 tmp_v_addr =
858 mac_control->rings[i].rx_blocks[j].block_virt_addr;
859 tmp_v_addr_next =
860 mac_control->rings[i].rx_blocks[(j + 1) %
861 blk_cnt].block_virt_addr;
862 tmp_p_addr =
863 mac_control->rings[i].rx_blocks[j].block_dma_addr;
864 tmp_p_addr_next =
865 mac_control->rings[i].rx_blocks[(j + 1) %
866 blk_cnt].block_dma_addr;
868 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
869 pre_rxd_blk->reserved_2_pNext_RxD_block =
870 (unsigned long) tmp_v_addr_next;
871 pre_rxd_blk->pNext_RxD_Blk_physical =
872 (u64) tmp_p_addr_next;
875 if (nic->rxd_mode == RXD_MODE_3B) {
877 * Allocation of Storages for buffer addresses in 2BUFF mode
878 * and the buffers as well.
880 for (i = 0; i < config->rx_ring_num; i++) {
881 blk_cnt = config->rx_cfg[i].num_rxd /
882 (rxd_count[nic->rxd_mode]+ 1);
883 mac_control->rings[i].ba =
884 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
885 GFP_KERNEL);
886 if (!mac_control->rings[i].ba)
887 return -ENOMEM;
888 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
889 for (j = 0; j < blk_cnt; j++) {
890 int k = 0;
891 mac_control->rings[i].ba[j] =
892 kmalloc((sizeof(struct buffAdd) *
893 (rxd_count[nic->rxd_mode] + 1)),
894 GFP_KERNEL);
895 if (!mac_control->rings[i].ba[j])
896 return -ENOMEM;
897 mem_allocated += (sizeof(struct buffAdd) * \
898 (rxd_count[nic->rxd_mode] + 1));
899 while (k != rxd_count[nic->rxd_mode]) {
900 ba = &mac_control->rings[i].ba[j][k];
902 ba->ba_0_org = (void *) kmalloc
903 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
904 if (!ba->ba_0_org)
905 return -ENOMEM;
906 mem_allocated +=
907 (BUF0_LEN + ALIGN_SIZE);
908 tmp = (unsigned long)ba->ba_0_org;
909 tmp += ALIGN_SIZE;
910 tmp &= ~((unsigned long) ALIGN_SIZE);
911 ba->ba_0 = (void *) tmp;
913 ba->ba_1_org = (void *) kmalloc
914 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
915 if (!ba->ba_1_org)
916 return -ENOMEM;
917 mem_allocated
918 += (BUF1_LEN + ALIGN_SIZE);
919 tmp = (unsigned long) ba->ba_1_org;
920 tmp += ALIGN_SIZE;
921 tmp &= ~((unsigned long) ALIGN_SIZE);
922 ba->ba_1 = (void *) tmp;
923 k++;
929 /* Allocation and initialization of Statistics block */
930 size = sizeof(struct stat_block);
931 mac_control->stats_mem = pci_alloc_consistent
932 (nic->pdev, size, &mac_control->stats_mem_phy);
934 if (!mac_control->stats_mem) {
936 * In case of failure, free_shared_mem() is called, which
937 * should free any memory that was alloced till the
938 * failure happened.
940 return -ENOMEM;
942 mem_allocated += size;
943 mac_control->stats_mem_sz = size;
945 tmp_v_addr = mac_control->stats_mem;
946 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
947 memset(tmp_v_addr, 0, size);
948 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
949 (unsigned long long) tmp_p_addr);
950 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
951 return SUCCESS;
955 * free_shared_mem - Free the allocated Memory
956 * @nic: Device private variable.
957 * Description: This function is to free all memory locations allocated by
958 * the init_shared_mem() function and return it to the kernel.
961 static void free_shared_mem(struct s2io_nic *nic)
963 int i, j, blk_cnt, size;
964 void *tmp_v_addr;
965 dma_addr_t tmp_p_addr;
966 struct mac_info *mac_control;
967 struct config_param *config;
968 int lst_size, lst_per_page;
969 struct net_device *dev;
970 int page_num = 0;
972 if (!nic)
973 return;
975 dev = nic->dev;
977 mac_control = &nic->mac_control;
978 config = &nic->config;
980 lst_size = (sizeof(struct TxD) * config->max_txds);
981 lst_per_page = PAGE_SIZE / lst_size;
983 for (i = 0; i < config->tx_fifo_num; i++) {
984 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
985 lst_per_page);
986 for (j = 0; j < page_num; j++) {
987 int mem_blks = (j * lst_per_page);
988 if (!mac_control->fifos[i].list_info)
989 return;
990 if (!mac_control->fifos[i].list_info[mem_blks].
991 list_virt_addr)
992 break;
993 pci_free_consistent(nic->pdev, PAGE_SIZE,
994 mac_control->fifos[i].
995 list_info[mem_blks].
996 list_virt_addr,
997 mac_control->fifos[i].
998 list_info[mem_blks].
999 list_phy_addr);
1000 nic->mac_control.stats_info->sw_stat.mem_freed
1001 += PAGE_SIZE;
1003 /* If we got a zero DMA address during allocation,
1004 * free the page now
1006 if (mac_control->zerodma_virt_addr) {
1007 pci_free_consistent(nic->pdev, PAGE_SIZE,
1008 mac_control->zerodma_virt_addr,
1009 (dma_addr_t)0);
1010 DBG_PRINT(INIT_DBG,
1011 "%s: Freeing TxDL with zero DMA addr. ",
1012 dev->name);
1013 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
1014 mac_control->zerodma_virt_addr);
1015 nic->mac_control.stats_info->sw_stat.mem_freed
1016 += PAGE_SIZE;
1018 kfree(mac_control->fifos[i].list_info);
1019 nic->mac_control.stats_info->sw_stat.mem_freed +=
1020 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
1023 size = SIZE_OF_BLOCK;
1024 for (i = 0; i < config->rx_ring_num; i++) {
1025 blk_cnt = mac_control->rings[i].block_count;
1026 for (j = 0; j < blk_cnt; j++) {
1027 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
1028 block_virt_addr;
1029 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1030 block_dma_addr;
1031 if (tmp_v_addr == NULL)
1032 break;
1033 pci_free_consistent(nic->pdev, size,
1034 tmp_v_addr, tmp_p_addr);
1035 nic->mac_control.stats_info->sw_stat.mem_freed += size;
1036 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1037 nic->mac_control.stats_info->sw_stat.mem_freed +=
1038 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1042 if (nic->rxd_mode == RXD_MODE_3B) {
1043 /* Freeing buffer storage addresses in 2BUFF mode. */
1044 for (i = 0; i < config->rx_ring_num; i++) {
1045 blk_cnt = config->rx_cfg[i].num_rxd /
1046 (rxd_count[nic->rxd_mode] + 1);
1047 for (j = 0; j < blk_cnt; j++) {
1048 int k = 0;
1049 if (!mac_control->rings[i].ba[j])
1050 continue;
1051 while (k != rxd_count[nic->rxd_mode]) {
1052 struct buffAdd *ba =
1053 &mac_control->rings[i].ba[j][k];
1054 kfree(ba->ba_0_org);
1055 nic->mac_control.stats_info->sw_stat.\
1056 mem_freed += (BUF0_LEN + ALIGN_SIZE);
1057 kfree(ba->ba_1_org);
1058 nic->mac_control.stats_info->sw_stat.\
1059 mem_freed += (BUF1_LEN + ALIGN_SIZE);
1060 k++;
1062 kfree(mac_control->rings[i].ba[j]);
1063 nic->mac_control.stats_info->sw_stat.mem_freed +=
1064 (sizeof(struct buffAdd) *
1065 (rxd_count[nic->rxd_mode] + 1));
1067 kfree(mac_control->rings[i].ba);
1068 nic->mac_control.stats_info->sw_stat.mem_freed +=
1069 (sizeof(struct buffAdd *) * blk_cnt);
1073 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1074 if (mac_control->fifos[i].ufo_in_band_v) {
1075 nic->mac_control.stats_info->sw_stat.mem_freed
1076 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1077 kfree(mac_control->fifos[i].ufo_in_band_v);
1081 if (mac_control->stats_mem) {
1082 nic->mac_control.stats_info->sw_stat.mem_freed +=
1083 mac_control->stats_mem_sz;
1084 pci_free_consistent(nic->pdev,
1085 mac_control->stats_mem_sz,
1086 mac_control->stats_mem,
1087 mac_control->stats_mem_phy);
1092 * s2io_verify_pci_mode -
1095 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1097 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1098 register u64 val64 = 0;
1099 int mode;
1101 val64 = readq(&bar0->pci_mode);
1102 mode = (u8)GET_PCI_MODE(val64);
1104 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1105 return -1; /* Unknown PCI mode */
1106 return mode;
1109 #define NEC_VENID 0x1033
1110 #define NEC_DEVID 0x0125
1111 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1113 struct pci_dev *tdev = NULL;
1114 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1115 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1116 if (tdev->bus == s2io_pdev->bus->parent) {
1117 pci_dev_put(tdev);
1118 return 1;
1122 return 0;
1125 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1127 * s2io_print_pci_mode -
1129 static int s2io_print_pci_mode(struct s2io_nic *nic)
1131 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1132 register u64 val64 = 0;
1133 int mode;
1134 struct config_param *config = &nic->config;
1136 val64 = readq(&bar0->pci_mode);
1137 mode = (u8)GET_PCI_MODE(val64);
1139 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1140 return -1; /* Unknown PCI mode */
1142 config->bus_speed = bus_speed[mode];
1144 if (s2io_on_nec_bridge(nic->pdev)) {
1145 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1146 nic->dev->name);
1147 return mode;
1150 if (val64 & PCI_MODE_32_BITS) {
1151 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1152 } else {
1153 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1156 switch(mode) {
1157 case PCI_MODE_PCI_33:
1158 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1159 break;
1160 case PCI_MODE_PCI_66:
1161 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1162 break;
1163 case PCI_MODE_PCIX_M1_66:
1164 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1165 break;
1166 case PCI_MODE_PCIX_M1_100:
1167 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1168 break;
1169 case PCI_MODE_PCIX_M1_133:
1170 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1171 break;
1172 case PCI_MODE_PCIX_M2_66:
1173 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1174 break;
1175 case PCI_MODE_PCIX_M2_100:
1176 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1177 break;
1178 case PCI_MODE_PCIX_M2_133:
1179 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1180 break;
1181 default:
1182 return -1; /* Unsupported bus speed */
1185 return mode;
1189 * init_tti - Initialization transmit traffic interrupt scheme
1190 * @nic: device private variable
1191 * @link: link status (UP/DOWN) used to enable/disable continuous
1192 * transmit interrupts
1193 * Description: The function configures transmit traffic interrupts
1194 * Return Value: SUCCESS on success and
1195 * '-1' on failure
1198 static int init_tti(struct s2io_nic *nic, int link)
1200 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1201 register u64 val64 = 0;
1202 int i;
1203 struct config_param *config;
1205 config = &nic->config;
1207 for (i = 0; i < config->tx_fifo_num; i++) {
1209 * TTI Initialization. Default Tx timer gets us about
1210 * 250 interrupts per sec. Continuous interrupts are enabled
1211 * by default.
1213 if (nic->device_type == XFRAME_II_DEVICE) {
1214 int count = (nic->config.bus_speed * 125)/2;
1215 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1216 } else
1217 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1219 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1220 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1221 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1222 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1223 if (i == 0)
1224 if (use_continuous_tx_intrs && (link == LINK_UP))
1225 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1226 writeq(val64, &bar0->tti_data1_mem);
1228 if (nic->config.intr_type == MSI_X) {
1229 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1230 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1231 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1232 TTI_DATA2_MEM_TX_UFC_D(0x300);
1233 } else {
1234 if ((nic->config.tx_steering_type ==
1235 TX_DEFAULT_STEERING) &&
1236 (config->tx_fifo_num > 1) &&
1237 (i >= nic->udp_fifo_idx) &&
1238 (i < (nic->udp_fifo_idx +
1239 nic->total_udp_fifos)))
1240 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1241 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1242 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1243 TTI_DATA2_MEM_TX_UFC_D(0x120);
1244 else
1245 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1246 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1247 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1248 TTI_DATA2_MEM_TX_UFC_D(0x80);
1251 writeq(val64, &bar0->tti_data2_mem);
1253 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1254 TTI_CMD_MEM_OFFSET(i);
1255 writeq(val64, &bar0->tti_command_mem);
1257 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1258 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1259 return FAILURE;
1262 return SUCCESS;
1266 * init_nic - Initialization of hardware
1267 * @nic: device private variable
1268 * Description: The function sequentially configures every block
1269 * of the H/W from their reset values.
1270 * Return Value: SUCCESS on success and
1271 * '-1' on failure (endian settings incorrect).
1274 static int init_nic(struct s2io_nic *nic)
1276 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1277 struct net_device *dev = nic->dev;
1278 register u64 val64 = 0;
1279 void __iomem *add;
1280 u32 time;
1281 int i, j;
1282 struct mac_info *mac_control;
1283 struct config_param *config;
1284 int dtx_cnt = 0;
1285 unsigned long long mem_share;
1286 int mem_size;
1288 mac_control = &nic->mac_control;
1289 config = &nic->config;
1291 /* to set the swapper controle on the card */
1292 if(s2io_set_swapper(nic)) {
1293 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1294 return -EIO;
1298 * Herc requires EOI to be removed from reset before XGXS, so..
1300 if (nic->device_type & XFRAME_II_DEVICE) {
1301 val64 = 0xA500000000ULL;
1302 writeq(val64, &bar0->sw_reset);
1303 msleep(500);
1304 val64 = readq(&bar0->sw_reset);
1307 /* Remove XGXS from reset state */
1308 val64 = 0;
1309 writeq(val64, &bar0->sw_reset);
1310 msleep(500);
1311 val64 = readq(&bar0->sw_reset);
1313 /* Ensure that it's safe to access registers by checking
1314 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1316 if (nic->device_type == XFRAME_II_DEVICE) {
1317 for (i = 0; i < 50; i++) {
1318 val64 = readq(&bar0->adapter_status);
1319 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1320 break;
1321 msleep(10);
1323 if (i == 50)
1324 return -ENODEV;
1327 /* Enable Receiving broadcasts */
1328 add = &bar0->mac_cfg;
1329 val64 = readq(&bar0->mac_cfg);
1330 val64 |= MAC_RMAC_BCAST_ENABLE;
1331 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1332 writel((u32) val64, add);
1333 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1334 writel((u32) (val64 >> 32), (add + 4));
1336 /* Read registers in all blocks */
1337 val64 = readq(&bar0->mac_int_mask);
1338 val64 = readq(&bar0->mc_int_mask);
1339 val64 = readq(&bar0->xgxs_int_mask);
1341 /* Set MTU */
1342 val64 = dev->mtu;
1343 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1345 if (nic->device_type & XFRAME_II_DEVICE) {
1346 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1347 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1348 &bar0->dtx_control, UF);
1349 if (dtx_cnt & 0x1)
1350 msleep(1); /* Necessary!! */
1351 dtx_cnt++;
1353 } else {
1354 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1355 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1356 &bar0->dtx_control, UF);
1357 val64 = readq(&bar0->dtx_control);
1358 dtx_cnt++;
1362 /* Tx DMA Initialization */
1363 val64 = 0;
1364 writeq(val64, &bar0->tx_fifo_partition_0);
1365 writeq(val64, &bar0->tx_fifo_partition_1);
1366 writeq(val64, &bar0->tx_fifo_partition_2);
1367 writeq(val64, &bar0->tx_fifo_partition_3);
1370 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1371 val64 |=
1372 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1373 13) | vBIT(config->tx_cfg[i].fifo_priority,
1374 ((j * 32) + 5), 3);
1376 if (i == (config->tx_fifo_num - 1)) {
1377 if (i % 2 == 0)
1378 i++;
1381 switch (i) {
1382 case 1:
1383 writeq(val64, &bar0->tx_fifo_partition_0);
1384 val64 = 0;
1385 j = 0;
1386 break;
1387 case 3:
1388 writeq(val64, &bar0->tx_fifo_partition_1);
1389 val64 = 0;
1390 j = 0;
1391 break;
1392 case 5:
1393 writeq(val64, &bar0->tx_fifo_partition_2);
1394 val64 = 0;
1395 j = 0;
1396 break;
1397 case 7:
1398 writeq(val64, &bar0->tx_fifo_partition_3);
1399 val64 = 0;
1400 j = 0;
1401 break;
1402 default:
1403 j++;
1404 break;
1409 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1410 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1412 if ((nic->device_type == XFRAME_I_DEVICE) &&
1413 (nic->pdev->revision < 4))
1414 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1416 val64 = readq(&bar0->tx_fifo_partition_0);
1417 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1418 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1421 * Initialization of Tx_PA_CONFIG register to ignore packet
1422 * integrity checking.
1424 val64 = readq(&bar0->tx_pa_cfg);
1425 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1426 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1427 writeq(val64, &bar0->tx_pa_cfg);
1429 /* Rx DMA intialization. */
1430 val64 = 0;
1431 for (i = 0; i < config->rx_ring_num; i++) {
1432 val64 |=
1433 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1436 writeq(val64, &bar0->rx_queue_priority);
1439 * Allocating equal share of memory to all the
1440 * configured Rings.
1442 val64 = 0;
1443 if (nic->device_type & XFRAME_II_DEVICE)
1444 mem_size = 32;
1445 else
1446 mem_size = 64;
1448 for (i = 0; i < config->rx_ring_num; i++) {
1449 switch (i) {
1450 case 0:
1451 mem_share = (mem_size / config->rx_ring_num +
1452 mem_size % config->rx_ring_num);
1453 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1454 continue;
1455 case 1:
1456 mem_share = (mem_size / config->rx_ring_num);
1457 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1458 continue;
1459 case 2:
1460 mem_share = (mem_size / config->rx_ring_num);
1461 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1462 continue;
1463 case 3:
1464 mem_share = (mem_size / config->rx_ring_num);
1465 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1466 continue;
1467 case 4:
1468 mem_share = (mem_size / config->rx_ring_num);
1469 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1470 continue;
1471 case 5:
1472 mem_share = (mem_size / config->rx_ring_num);
1473 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1474 continue;
1475 case 6:
1476 mem_share = (mem_size / config->rx_ring_num);
1477 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1478 continue;
1479 case 7:
1480 mem_share = (mem_size / config->rx_ring_num);
1481 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1482 continue;
1485 writeq(val64, &bar0->rx_queue_cfg);
1488 * Filling Tx round robin registers
1489 * as per the number of FIFOs for equal scheduling priority
1491 switch (config->tx_fifo_num) {
1492 case 1:
1493 val64 = 0x0;
1494 writeq(val64, &bar0->tx_w_round_robin_0);
1495 writeq(val64, &bar0->tx_w_round_robin_1);
1496 writeq(val64, &bar0->tx_w_round_robin_2);
1497 writeq(val64, &bar0->tx_w_round_robin_3);
1498 writeq(val64, &bar0->tx_w_round_robin_4);
1499 break;
1500 case 2:
1501 val64 = 0x0001000100010001ULL;
1502 writeq(val64, &bar0->tx_w_round_robin_0);
1503 writeq(val64, &bar0->tx_w_round_robin_1);
1504 writeq(val64, &bar0->tx_w_round_robin_2);
1505 writeq(val64, &bar0->tx_w_round_robin_3);
1506 val64 = 0x0001000100000000ULL;
1507 writeq(val64, &bar0->tx_w_round_robin_4);
1508 break;
1509 case 3:
1510 val64 = 0x0001020001020001ULL;
1511 writeq(val64, &bar0->tx_w_round_robin_0);
1512 val64 = 0x0200010200010200ULL;
1513 writeq(val64, &bar0->tx_w_round_robin_1);
1514 val64 = 0x0102000102000102ULL;
1515 writeq(val64, &bar0->tx_w_round_robin_2);
1516 val64 = 0x0001020001020001ULL;
1517 writeq(val64, &bar0->tx_w_round_robin_3);
1518 val64 = 0x0200010200000000ULL;
1519 writeq(val64, &bar0->tx_w_round_robin_4);
1520 break;
1521 case 4:
1522 val64 = 0x0001020300010203ULL;
1523 writeq(val64, &bar0->tx_w_round_robin_0);
1524 writeq(val64, &bar0->tx_w_round_robin_1);
1525 writeq(val64, &bar0->tx_w_round_robin_2);
1526 writeq(val64, &bar0->tx_w_round_robin_3);
1527 val64 = 0x0001020300000000ULL;
1528 writeq(val64, &bar0->tx_w_round_robin_4);
1529 break;
1530 case 5:
1531 val64 = 0x0001020304000102ULL;
1532 writeq(val64, &bar0->tx_w_round_robin_0);
1533 val64 = 0x0304000102030400ULL;
1534 writeq(val64, &bar0->tx_w_round_robin_1);
1535 val64 = 0x0102030400010203ULL;
1536 writeq(val64, &bar0->tx_w_round_robin_2);
1537 val64 = 0x0400010203040001ULL;
1538 writeq(val64, &bar0->tx_w_round_robin_3);
1539 val64 = 0x0203040000000000ULL;
1540 writeq(val64, &bar0->tx_w_round_robin_4);
1541 break;
1542 case 6:
1543 val64 = 0x0001020304050001ULL;
1544 writeq(val64, &bar0->tx_w_round_robin_0);
1545 val64 = 0x0203040500010203ULL;
1546 writeq(val64, &bar0->tx_w_round_robin_1);
1547 val64 = 0x0405000102030405ULL;
1548 writeq(val64, &bar0->tx_w_round_robin_2);
1549 val64 = 0x0001020304050001ULL;
1550 writeq(val64, &bar0->tx_w_round_robin_3);
1551 val64 = 0x0203040500000000ULL;
1552 writeq(val64, &bar0->tx_w_round_robin_4);
1553 break;
1554 case 7:
1555 val64 = 0x0001020304050600ULL;
1556 writeq(val64, &bar0->tx_w_round_robin_0);
1557 val64 = 0x0102030405060001ULL;
1558 writeq(val64, &bar0->tx_w_round_robin_1);
1559 val64 = 0x0203040506000102ULL;
1560 writeq(val64, &bar0->tx_w_round_robin_2);
1561 val64 = 0x0304050600010203ULL;
1562 writeq(val64, &bar0->tx_w_round_robin_3);
1563 val64 = 0x0405060000000000ULL;
1564 writeq(val64, &bar0->tx_w_round_robin_4);
1565 break;
1566 case 8:
1567 val64 = 0x0001020304050607ULL;
1568 writeq(val64, &bar0->tx_w_round_robin_0);
1569 writeq(val64, &bar0->tx_w_round_robin_1);
1570 writeq(val64, &bar0->tx_w_round_robin_2);
1571 writeq(val64, &bar0->tx_w_round_robin_3);
1572 val64 = 0x0001020300000000ULL;
1573 writeq(val64, &bar0->tx_w_round_robin_4);
1574 break;
1577 /* Enable all configured Tx FIFO partitions */
1578 val64 = readq(&bar0->tx_fifo_partition_0);
1579 val64 |= (TX_FIFO_PARTITION_EN);
1580 writeq(val64, &bar0->tx_fifo_partition_0);
1582 /* Filling the Rx round robin registers as per the
1583 * number of Rings and steering based on QoS with
1584 * equal priority.
1586 switch (config->rx_ring_num) {
1587 case 1:
1588 val64 = 0x0;
1589 writeq(val64, &bar0->rx_w_round_robin_0);
1590 writeq(val64, &bar0->rx_w_round_robin_1);
1591 writeq(val64, &bar0->rx_w_round_robin_2);
1592 writeq(val64, &bar0->rx_w_round_robin_3);
1593 writeq(val64, &bar0->rx_w_round_robin_4);
1595 val64 = 0x8080808080808080ULL;
1596 writeq(val64, &bar0->rts_qos_steering);
1597 break;
1598 case 2:
1599 val64 = 0x0001000100010001ULL;
1600 writeq(val64, &bar0->rx_w_round_robin_0);
1601 writeq(val64, &bar0->rx_w_round_robin_1);
1602 writeq(val64, &bar0->rx_w_round_robin_2);
1603 writeq(val64, &bar0->rx_w_round_robin_3);
1604 val64 = 0x0001000100000000ULL;
1605 writeq(val64, &bar0->rx_w_round_robin_4);
1607 val64 = 0x8080808040404040ULL;
1608 writeq(val64, &bar0->rts_qos_steering);
1609 break;
1610 case 3:
1611 val64 = 0x0001020001020001ULL;
1612 writeq(val64, &bar0->rx_w_round_robin_0);
1613 val64 = 0x0200010200010200ULL;
1614 writeq(val64, &bar0->rx_w_round_robin_1);
1615 val64 = 0x0102000102000102ULL;
1616 writeq(val64, &bar0->rx_w_round_robin_2);
1617 val64 = 0x0001020001020001ULL;
1618 writeq(val64, &bar0->rx_w_round_robin_3);
1619 val64 = 0x0200010200000000ULL;
1620 writeq(val64, &bar0->rx_w_round_robin_4);
1622 val64 = 0x8080804040402020ULL;
1623 writeq(val64, &bar0->rts_qos_steering);
1624 break;
1625 case 4:
1626 val64 = 0x0001020300010203ULL;
1627 writeq(val64, &bar0->rx_w_round_robin_0);
1628 writeq(val64, &bar0->rx_w_round_robin_1);
1629 writeq(val64, &bar0->rx_w_round_robin_2);
1630 writeq(val64, &bar0->rx_w_round_robin_3);
1631 val64 = 0x0001020300000000ULL;
1632 writeq(val64, &bar0->rx_w_round_robin_4);
1634 val64 = 0x8080404020201010ULL;
1635 writeq(val64, &bar0->rts_qos_steering);
1636 break;
1637 case 5:
1638 val64 = 0x0001020304000102ULL;
1639 writeq(val64, &bar0->rx_w_round_robin_0);
1640 val64 = 0x0304000102030400ULL;
1641 writeq(val64, &bar0->rx_w_round_robin_1);
1642 val64 = 0x0102030400010203ULL;
1643 writeq(val64, &bar0->rx_w_round_robin_2);
1644 val64 = 0x0400010203040001ULL;
1645 writeq(val64, &bar0->rx_w_round_robin_3);
1646 val64 = 0x0203040000000000ULL;
1647 writeq(val64, &bar0->rx_w_round_robin_4);
1649 val64 = 0x8080404020201008ULL;
1650 writeq(val64, &bar0->rts_qos_steering);
1651 break;
1652 case 6:
1653 val64 = 0x0001020304050001ULL;
1654 writeq(val64, &bar0->rx_w_round_robin_0);
1655 val64 = 0x0203040500010203ULL;
1656 writeq(val64, &bar0->rx_w_round_robin_1);
1657 val64 = 0x0405000102030405ULL;
1658 writeq(val64, &bar0->rx_w_round_robin_2);
1659 val64 = 0x0001020304050001ULL;
1660 writeq(val64, &bar0->rx_w_round_robin_3);
1661 val64 = 0x0203040500000000ULL;
1662 writeq(val64, &bar0->rx_w_round_robin_4);
1664 val64 = 0x8080404020100804ULL;
1665 writeq(val64, &bar0->rts_qos_steering);
1666 break;
1667 case 7:
1668 val64 = 0x0001020304050600ULL;
1669 writeq(val64, &bar0->rx_w_round_robin_0);
1670 val64 = 0x0102030405060001ULL;
1671 writeq(val64, &bar0->rx_w_round_robin_1);
1672 val64 = 0x0203040506000102ULL;
1673 writeq(val64, &bar0->rx_w_round_robin_2);
1674 val64 = 0x0304050600010203ULL;
1675 writeq(val64, &bar0->rx_w_round_robin_3);
1676 val64 = 0x0405060000000000ULL;
1677 writeq(val64, &bar0->rx_w_round_robin_4);
1679 val64 = 0x8080402010080402ULL;
1680 writeq(val64, &bar0->rts_qos_steering);
1681 break;
1682 case 8:
1683 val64 = 0x0001020304050607ULL;
1684 writeq(val64, &bar0->rx_w_round_robin_0);
1685 writeq(val64, &bar0->rx_w_round_robin_1);
1686 writeq(val64, &bar0->rx_w_round_robin_2);
1687 writeq(val64, &bar0->rx_w_round_robin_3);
1688 val64 = 0x0001020300000000ULL;
1689 writeq(val64, &bar0->rx_w_round_robin_4);
1691 val64 = 0x8040201008040201ULL;
1692 writeq(val64, &bar0->rts_qos_steering);
1693 break;
1696 /* UDP Fix */
1697 val64 = 0;
1698 for (i = 0; i < 8; i++)
1699 writeq(val64, &bar0->rts_frm_len_n[i]);
1701 /* Set the default rts frame length for the rings configured */
1702 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1703 for (i = 0 ; i < config->rx_ring_num ; i++)
1704 writeq(val64, &bar0->rts_frm_len_n[i]);
1706 /* Set the frame length for the configured rings
1707 * desired by the user
1709 for (i = 0; i < config->rx_ring_num; i++) {
1710 /* If rts_frm_len[i] == 0 then it is assumed that user not
1711 * specified frame length steering.
1712 * If the user provides the frame length then program
1713 * the rts_frm_len register for those values or else
1714 * leave it as it is.
1716 if (rts_frm_len[i] != 0) {
1717 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1718 &bar0->rts_frm_len_n[i]);
1722 /* Disable differentiated services steering logic */
1723 for (i = 0; i < 64; i++) {
1724 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1725 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1726 dev->name);
1727 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1728 return -ENODEV;
1732 /* Program statistics memory */
1733 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1735 if (nic->device_type == XFRAME_II_DEVICE) {
1736 val64 = STAT_BC(0x320);
1737 writeq(val64, &bar0->stat_byte_cnt);
1741 * Initializing the sampling rate for the device to calculate the
1742 * bandwidth utilization.
1744 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1745 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1746 writeq(val64, &bar0->mac_link_util);
1749 * Initializing the Transmit and Receive Traffic Interrupt
1750 * Scheme.
1753 /* Initialize TTI */
1754 if (SUCCESS != init_tti(nic, nic->last_link_state))
1755 return -ENODEV;
1757 /* RTI Initialization */
1758 if (nic->device_type == XFRAME_II_DEVICE) {
1760 * Programmed to generate Apprx 500 Intrs per
1761 * second
1763 int count = (nic->config.bus_speed * 125)/4;
1764 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1765 } else
1766 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1767 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1768 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1769 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1771 writeq(val64, &bar0->rti_data1_mem);
1773 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1774 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1775 if (nic->config.intr_type == MSI_X)
1776 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1777 RTI_DATA2_MEM_RX_UFC_D(0x40));
1778 else
1779 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1780 RTI_DATA2_MEM_RX_UFC_D(0x80));
1781 writeq(val64, &bar0->rti_data2_mem);
1783 for (i = 0; i < config->rx_ring_num; i++) {
1784 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1785 | RTI_CMD_MEM_OFFSET(i);
1786 writeq(val64, &bar0->rti_command_mem);
1789 * Once the operation completes, the Strobe bit of the
1790 * command register will be reset. We poll for this
1791 * particular condition. We wait for a maximum of 500ms
1792 * for the operation to complete, if it's not complete
1793 * by then we return error.
1795 time = 0;
1796 while (TRUE) {
1797 val64 = readq(&bar0->rti_command_mem);
1798 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1799 break;
1801 if (time > 10) {
1802 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1803 dev->name);
1804 return -ENODEV;
1806 time++;
1807 msleep(50);
1812 * Initializing proper values as Pause threshold into all
1813 * the 8 Queues on Rx side.
1815 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1816 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1818 /* Disable RMAC PAD STRIPPING */
1819 add = &bar0->mac_cfg;
1820 val64 = readq(&bar0->mac_cfg);
1821 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1822 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1823 writel((u32) (val64), add);
1824 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1825 writel((u32) (val64 >> 32), (add + 4));
1826 val64 = readq(&bar0->mac_cfg);
1828 /* Enable FCS stripping by adapter */
1829 add = &bar0->mac_cfg;
1830 val64 = readq(&bar0->mac_cfg);
1831 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1832 if (nic->device_type == XFRAME_II_DEVICE)
1833 writeq(val64, &bar0->mac_cfg);
1834 else {
1835 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1836 writel((u32) (val64), add);
1837 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1838 writel((u32) (val64 >> 32), (add + 4));
1842 * Set the time value to be inserted in the pause frame
1843 * generated by xena.
1845 val64 = readq(&bar0->rmac_pause_cfg);
1846 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1847 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1848 writeq(val64, &bar0->rmac_pause_cfg);
1851 * Set the Threshold Limit for Generating the pause frame
1852 * If the amount of data in any Queue exceeds ratio of
1853 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1854 * pause frame is generated
1856 val64 = 0;
1857 for (i = 0; i < 4; i++) {
1858 val64 |=
1859 (((u64) 0xFF00 | nic->mac_control.
1860 mc_pause_threshold_q0q3)
1861 << (i * 2 * 8));
1863 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1865 val64 = 0;
1866 for (i = 0; i < 4; i++) {
1867 val64 |=
1868 (((u64) 0xFF00 | nic->mac_control.
1869 mc_pause_threshold_q4q7)
1870 << (i * 2 * 8));
1872 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1875 * TxDMA will stop Read request if the number of read split has
1876 * exceeded the limit pointed by shared_splits
1878 val64 = readq(&bar0->pic_control);
1879 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1880 writeq(val64, &bar0->pic_control);
1882 if (nic->config.bus_speed == 266) {
1883 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1884 writeq(0x0, &bar0->read_retry_delay);
1885 writeq(0x0, &bar0->write_retry_delay);
1889 * Programming the Herc to split every write transaction
1890 * that does not start on an ADB to reduce disconnects.
1892 if (nic->device_type == XFRAME_II_DEVICE) {
1893 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1894 MISC_LINK_STABILITY_PRD(3);
1895 writeq(val64, &bar0->misc_control);
1896 val64 = readq(&bar0->pic_control2);
1897 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1898 writeq(val64, &bar0->pic_control2);
1900 if (strstr(nic->product_name, "CX4")) {
1901 val64 = TMAC_AVG_IPG(0x17);
1902 writeq(val64, &bar0->tmac_avg_ipg);
1905 return SUCCESS;
1907 #define LINK_UP_DOWN_INTERRUPT 1
1908 #define MAC_RMAC_ERR_TIMER 2
1910 static int s2io_link_fault_indication(struct s2io_nic *nic)
1912 if (nic->config.intr_type != INTA)
1913 return MAC_RMAC_ERR_TIMER;
1914 if (nic->device_type == XFRAME_II_DEVICE)
1915 return LINK_UP_DOWN_INTERRUPT;
1916 else
1917 return MAC_RMAC_ERR_TIMER;
1921 * do_s2io_write_bits - update alarm bits in alarm register
1922 * @value: alarm bits
1923 * @flag: interrupt status
1924 * @addr: address value
1925 * Description: update alarm bits in alarm register
1926 * Return Value:
1927 * NONE.
1929 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1931 u64 temp64;
1933 temp64 = readq(addr);
1935 if(flag == ENABLE_INTRS)
1936 temp64 &= ~((u64) value);
1937 else
1938 temp64 |= ((u64) value);
1939 writeq(temp64, addr);
1942 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1944 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1945 register u64 gen_int_mask = 0;
1947 if (mask & TX_DMA_INTR) {
1949 gen_int_mask |= TXDMA_INT_M;
1951 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1952 TXDMA_PCC_INT | TXDMA_TTI_INT |
1953 TXDMA_LSO_INT | TXDMA_TPA_INT |
1954 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1956 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1957 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1958 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1959 &bar0->pfc_err_mask);
1961 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1962 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1963 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1965 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1966 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1967 PCC_N_SERR | PCC_6_COF_OV_ERR |
1968 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1969 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1970 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1972 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1973 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1975 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1976 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1977 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1978 flag, &bar0->lso_err_mask);
1980 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1981 flag, &bar0->tpa_err_mask);
1983 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1987 if (mask & TX_MAC_INTR) {
1988 gen_int_mask |= TXMAC_INT_M;
1989 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1990 &bar0->mac_int_mask);
1991 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1992 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1993 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1994 flag, &bar0->mac_tmac_err_mask);
1997 if (mask & TX_XGXS_INTR) {
1998 gen_int_mask |= TXXGXS_INT_M;
1999 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
2000 &bar0->xgxs_int_mask);
2001 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
2002 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
2003 flag, &bar0->xgxs_txgxs_err_mask);
2006 if (mask & RX_DMA_INTR) {
2007 gen_int_mask |= RXDMA_INT_M;
2008 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
2009 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
2010 flag, &bar0->rxdma_int_mask);
2011 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
2012 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
2013 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
2014 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
2015 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
2016 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
2017 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
2018 &bar0->prc_pcix_err_mask);
2019 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
2020 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2021 &bar0->rpa_err_mask);
2022 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2023 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2024 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2025 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
2026 flag, &bar0->rda_err_mask);
2027 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2028 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2029 flag, &bar0->rti_err_mask);
2032 if (mask & RX_MAC_INTR) {
2033 gen_int_mask |= RXMAC_INT_M;
2034 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2035 &bar0->mac_int_mask);
2036 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2037 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2038 RMAC_DOUBLE_ECC_ERR |
2039 RMAC_LINK_STATE_CHANGE_INT,
2040 flag, &bar0->mac_rmac_err_mask);
2043 if (mask & RX_XGXS_INTR)
2045 gen_int_mask |= RXXGXS_INT_M;
2046 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2047 &bar0->xgxs_int_mask);
2048 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2049 &bar0->xgxs_rxgxs_err_mask);
2052 if (mask & MC_INTR) {
2053 gen_int_mask |= MC_INT_M;
2054 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2055 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2056 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2057 &bar0->mc_err_mask);
2059 nic->general_int_mask = gen_int_mask;
2061 /* Remove this line when alarm interrupts are enabled */
2062 nic->general_int_mask = 0;
2065 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2066 * @nic: device private variable,
2067 * @mask: A mask indicating which Intr block must be modified and,
2068 * @flag: A flag indicating whether to enable or disable the Intrs.
2069 * Description: This function will either disable or enable the interrupts
2070 * depending on the flag argument. The mask argument can be used to
2071 * enable/disable any Intr block.
2072 * Return Value: NONE.
2075 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2077 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2078 register u64 temp64 = 0, intr_mask = 0;
2080 intr_mask = nic->general_int_mask;
2082 /* Top level interrupt classification */
2083 /* PIC Interrupts */
2084 if (mask & TX_PIC_INTR) {
2085 /* Enable PIC Intrs in the general intr mask register */
2086 intr_mask |= TXPIC_INT_M;
2087 if (flag == ENABLE_INTRS) {
2089 * If Hercules adapter enable GPIO otherwise
2090 * disable all PCIX, Flash, MDIO, IIC and GPIO
2091 * interrupts for now.
2092 * TODO
2094 if (s2io_link_fault_indication(nic) ==
2095 LINK_UP_DOWN_INTERRUPT ) {
2096 do_s2io_write_bits(PIC_INT_GPIO, flag,
2097 &bar0->pic_int_mask);
2098 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2099 &bar0->gpio_int_mask);
2100 } else
2101 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2102 } else if (flag == DISABLE_INTRS) {
2104 * Disable PIC Intrs in the general
2105 * intr mask register
2107 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2111 /* Tx traffic interrupts */
2112 if (mask & TX_TRAFFIC_INTR) {
2113 intr_mask |= TXTRAFFIC_INT_M;
2114 if (flag == ENABLE_INTRS) {
2116 * Enable all the Tx side interrupts
2117 * writing 0 Enables all 64 TX interrupt levels
2119 writeq(0x0, &bar0->tx_traffic_mask);
2120 } else if (flag == DISABLE_INTRS) {
2122 * Disable Tx Traffic Intrs in the general intr mask
2123 * register.
2125 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2129 /* Rx traffic interrupts */
2130 if (mask & RX_TRAFFIC_INTR) {
2131 intr_mask |= RXTRAFFIC_INT_M;
2132 if (flag == ENABLE_INTRS) {
2133 /* writing 0 Enables all 8 RX interrupt levels */
2134 writeq(0x0, &bar0->rx_traffic_mask);
2135 } else if (flag == DISABLE_INTRS) {
2137 * Disable Rx Traffic Intrs in the general intr mask
2138 * register.
2140 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2144 temp64 = readq(&bar0->general_int_mask);
2145 if (flag == ENABLE_INTRS)
2146 temp64 &= ~((u64) intr_mask);
2147 else
2148 temp64 = DISABLE_ALL_INTRS;
2149 writeq(temp64, &bar0->general_int_mask);
2151 nic->general_int_mask = readq(&bar0->general_int_mask);
2155 * verify_pcc_quiescent- Checks for PCC quiescent state
2156 * Return: 1 If PCC is quiescence
2157 * 0 If PCC is not quiescence
2159 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2161 int ret = 0, herc;
2162 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2163 u64 val64 = readq(&bar0->adapter_status);
2165 herc = (sp->device_type == XFRAME_II_DEVICE);
2167 if (flag == FALSE) {
2168 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2169 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2170 ret = 1;
2171 } else {
2172 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2173 ret = 1;
2175 } else {
2176 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2177 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2178 ADAPTER_STATUS_RMAC_PCC_IDLE))
2179 ret = 1;
2180 } else {
2181 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2182 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2183 ret = 1;
2187 return ret;
2190 * verify_xena_quiescence - Checks whether the H/W is ready
2191 * Description: Returns whether the H/W is ready to go or not. Depending
2192 * on whether adapter enable bit was written or not the comparison
2193 * differs and the calling function passes the input argument flag to
2194 * indicate this.
2195 * Return: 1 If xena is quiescence
2196 * 0 If Xena is not quiescence
2199 static int verify_xena_quiescence(struct s2io_nic *sp)
2201 int mode;
2202 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2203 u64 val64 = readq(&bar0->adapter_status);
2204 mode = s2io_verify_pci_mode(sp);
2206 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2207 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2208 return 0;
2210 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2211 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2212 return 0;
2214 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2215 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2216 return 0;
2218 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2219 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2220 return 0;
2222 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2223 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2224 return 0;
2226 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2227 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2228 return 0;
2230 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2231 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2232 return 0;
2234 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2235 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2236 return 0;
2240 * In PCI 33 mode, the P_PLL is not used, and therefore,
2241 * the the P_PLL_LOCK bit in the adapter_status register will
2242 * not be asserted.
2244 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2245 sp->device_type == XFRAME_II_DEVICE && mode !=
2246 PCI_MODE_PCI_33) {
2247 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2248 return 0;
2250 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2251 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2252 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2253 return 0;
2255 return 1;
2259 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2260 * @sp: Pointer to device specifc structure
2261 * Description :
2262 * New procedure to clear mac address reading problems on Alpha platforms
2266 static void fix_mac_address(struct s2io_nic * sp)
2268 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2269 u64 val64;
2270 int i = 0;
2272 while (fix_mac[i] != END_SIGN) {
2273 writeq(fix_mac[i++], &bar0->gpio_control);
2274 udelay(10);
2275 val64 = readq(&bar0->gpio_control);
2280 * start_nic - Turns the device on
2281 * @nic : device private variable.
2282 * Description:
2283 * This function actually turns the device on. Before this function is
2284 * called,all Registers are configured from their reset states
2285 * and shared memory is allocated but the NIC is still quiescent. On
2286 * calling this function, the device interrupts are cleared and the NIC is
2287 * literally switched on by writing into the adapter control register.
2288 * Return Value:
2289 * SUCCESS on success and -1 on failure.
2292 static int start_nic(struct s2io_nic *nic)
2294 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2295 struct net_device *dev = nic->dev;
2296 register u64 val64 = 0;
2297 u16 subid, i;
2298 struct mac_info *mac_control;
2299 struct config_param *config;
2301 mac_control = &nic->mac_control;
2302 config = &nic->config;
2304 /* PRC Initialization and configuration */
2305 for (i = 0; i < config->rx_ring_num; i++) {
2306 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2307 &bar0->prc_rxd0_n[i]);
2309 val64 = readq(&bar0->prc_ctrl_n[i]);
2310 if (nic->rxd_mode == RXD_MODE_1)
2311 val64 |= PRC_CTRL_RC_ENABLED;
2312 else
2313 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2314 if (nic->device_type == XFRAME_II_DEVICE)
2315 val64 |= PRC_CTRL_GROUP_READS;
2316 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2317 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2318 writeq(val64, &bar0->prc_ctrl_n[i]);
2321 if (nic->rxd_mode == RXD_MODE_3B) {
2322 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2323 val64 = readq(&bar0->rx_pa_cfg);
2324 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2325 writeq(val64, &bar0->rx_pa_cfg);
2328 if (vlan_tag_strip == 0) {
2329 val64 = readq(&bar0->rx_pa_cfg);
2330 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2331 writeq(val64, &bar0->rx_pa_cfg);
2332 vlan_strip_flag = 0;
2336 * Enabling MC-RLDRAM. After enabling the device, we timeout
2337 * for around 100ms, which is approximately the time required
2338 * for the device to be ready for operation.
2340 val64 = readq(&bar0->mc_rldram_mrs);
2341 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2342 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2343 val64 = readq(&bar0->mc_rldram_mrs);
2345 msleep(100); /* Delay by around 100 ms. */
2347 /* Enabling ECC Protection. */
2348 val64 = readq(&bar0->adapter_control);
2349 val64 &= ~ADAPTER_ECC_EN;
2350 writeq(val64, &bar0->adapter_control);
2353 * Verify if the device is ready to be enabled, if so enable
2354 * it.
2356 val64 = readq(&bar0->adapter_status);
2357 if (!verify_xena_quiescence(nic)) {
2358 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2359 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2360 (unsigned long long) val64);
2361 return FAILURE;
2365 * With some switches, link might be already up at this point.
2366 * Because of this weird behavior, when we enable laser,
2367 * we may not get link. We need to handle this. We cannot
2368 * figure out which switch is misbehaving. So we are forced to
2369 * make a global change.
2372 /* Enabling Laser. */
2373 val64 = readq(&bar0->adapter_control);
2374 val64 |= ADAPTER_EOI_TX_ON;
2375 writeq(val64, &bar0->adapter_control);
2377 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2379 * Dont see link state interrupts initally on some switches,
2380 * so directly scheduling the link state task here.
2382 schedule_work(&nic->set_link_task);
2384 /* SXE-002: Initialize link and activity LED */
2385 subid = nic->pdev->subsystem_device;
2386 if (((subid & 0xFF) >= 0x07) &&
2387 (nic->device_type == XFRAME_I_DEVICE)) {
2388 val64 = readq(&bar0->gpio_control);
2389 val64 |= 0x0000800000000000ULL;
2390 writeq(val64, &bar0->gpio_control);
2391 val64 = 0x0411040400000000ULL;
2392 writeq(val64, (void __iomem *)bar0 + 0x2700);
2395 return SUCCESS;
2398 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2400 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2401 TxD *txdlp, int get_off)
2403 struct s2io_nic *nic = fifo_data->nic;
2404 struct sk_buff *skb;
2405 struct TxD *txds;
2406 u16 j, frg_cnt;
2408 txds = txdlp;
2409 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2410 pci_unmap_single(nic->pdev, (dma_addr_t)
2411 txds->Buffer_Pointer, sizeof(u64),
2412 PCI_DMA_TODEVICE);
2413 txds++;
2416 skb = (struct sk_buff *) ((unsigned long)
2417 txds->Host_Control);
2418 if (!skb) {
2419 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2420 return NULL;
2422 pci_unmap_single(nic->pdev, (dma_addr_t)
2423 txds->Buffer_Pointer,
2424 skb->len - skb->data_len,
2425 PCI_DMA_TODEVICE);
2426 frg_cnt = skb_shinfo(skb)->nr_frags;
2427 if (frg_cnt) {
2428 txds++;
2429 for (j = 0; j < frg_cnt; j++, txds++) {
2430 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2431 if (!txds->Buffer_Pointer)
2432 break;
2433 pci_unmap_page(nic->pdev, (dma_addr_t)
2434 txds->Buffer_Pointer,
2435 frag->size, PCI_DMA_TODEVICE);
2438 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2439 return(skb);
2443 * free_tx_buffers - Free all queued Tx buffers
2444 * @nic : device private variable.
2445 * Description:
2446 * Free all queued Tx buffers.
2447 * Return Value: void
2450 static void free_tx_buffers(struct s2io_nic *nic)
2452 struct net_device *dev = nic->dev;
2453 struct sk_buff *skb;
2454 struct TxD *txdp;
2455 int i, j;
2456 struct mac_info *mac_control;
2457 struct config_param *config;
2458 int cnt = 0;
2460 mac_control = &nic->mac_control;
2461 config = &nic->config;
2463 for (i = 0; i < config->tx_fifo_num; i++) {
2464 unsigned long flags;
2465 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2466 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
2467 txdp = (struct TxD *) \
2468 mac_control->fifos[i].list_info[j].list_virt_addr;
2469 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2470 if (skb) {
2471 nic->mac_control.stats_info->sw_stat.mem_freed
2472 += skb->truesize;
2473 dev_kfree_skb(skb);
2474 cnt++;
2477 DBG_PRINT(INTR_DBG,
2478 "%s:forcibly freeing %d skbs on FIFO%d\n",
2479 dev->name, cnt, i);
2480 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2481 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2482 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2487 * stop_nic - To stop the nic
2488 * @nic ; device private variable.
2489 * Description:
2490 * This function does exactly the opposite of what the start_nic()
2491 * function does. This function is called to stop the device.
2492 * Return Value:
2493 * void.
2496 static void stop_nic(struct s2io_nic *nic)
2498 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2499 register u64 val64 = 0;
2500 u16 interruptible;
2501 struct mac_info *mac_control;
2502 struct config_param *config;
2504 mac_control = &nic->mac_control;
2505 config = &nic->config;
2507 /* Disable all interrupts */
2508 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2509 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2510 interruptible |= TX_PIC_INTR;
2511 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2513 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2514 val64 = readq(&bar0->adapter_control);
2515 val64 &= ~(ADAPTER_CNTL_EN);
2516 writeq(val64, &bar0->adapter_control);
2520 * fill_rx_buffers - Allocates the Rx side skbs
2521 * @ring_info: per ring structure
2522 * Description:
2523 * The function allocates Rx side skbs and puts the physical
2524 * address of these buffers into the RxD buffer pointers, so that the NIC
2525 * can DMA the received frame into these locations.
2526 * The NIC supports 3 receive modes, viz
2527 * 1. single buffer,
2528 * 2. three buffer and
2529 * 3. Five buffer modes.
2530 * Each mode defines how many fragments the received frame will be split
2531 * up into by the NIC. The frame is split into L3 header, L4 Header,
2532 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2533 * is split into 3 fragments. As of now only single buffer mode is
2534 * supported.
2535 * Return Value:
2536 * SUCCESS on success or an appropriate -ve value on failure.
2539 static int fill_rx_buffers(struct ring_info *ring)
2541 struct sk_buff *skb;
2542 struct RxD_t *rxdp;
2543 int off, size, block_no, block_no1;
2544 u32 alloc_tab = 0;
2545 u32 alloc_cnt;
2546 u64 tmp;
2547 struct buffAdd *ba;
2548 struct RxD_t *first_rxdp = NULL;
2549 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2550 int rxd_index = 0;
2551 struct RxD1 *rxdp1;
2552 struct RxD3 *rxdp3;
2553 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
2555 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2557 block_no1 = ring->rx_curr_get_info.block_index;
2558 while (alloc_tab < alloc_cnt) {
2559 block_no = ring->rx_curr_put_info.block_index;
2561 off = ring->rx_curr_put_info.offset;
2563 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2565 rxd_index = off + 1;
2566 if (block_no)
2567 rxd_index += (block_no * ring->rxd_count);
2569 if ((block_no == block_no1) &&
2570 (off == ring->rx_curr_get_info.offset) &&
2571 (rxdp->Host_Control)) {
2572 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2573 ring->dev->name);
2574 DBG_PRINT(INTR_DBG, " info equated\n");
2575 goto end;
2577 if (off && (off == ring->rxd_count)) {
2578 ring->rx_curr_put_info.block_index++;
2579 if (ring->rx_curr_put_info.block_index ==
2580 ring->block_count)
2581 ring->rx_curr_put_info.block_index = 0;
2582 block_no = ring->rx_curr_put_info.block_index;
2583 off = 0;
2584 ring->rx_curr_put_info.offset = off;
2585 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2586 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2587 ring->dev->name, rxdp);
2591 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2592 ((ring->rxd_mode == RXD_MODE_3B) &&
2593 (rxdp->Control_2 & s2BIT(0)))) {
2594 ring->rx_curr_put_info.offset = off;
2595 goto end;
2597 /* calculate size of skb based on ring mode */
2598 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2599 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2600 if (ring->rxd_mode == RXD_MODE_1)
2601 size += NET_IP_ALIGN;
2602 else
2603 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2605 /* allocate skb */
2606 skb = dev_alloc_skb(size);
2607 if(!skb) {
2608 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
2609 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2610 if (first_rxdp) {
2611 wmb();
2612 first_rxdp->Control_1 |= RXD_OWN_XENA;
2614 stats->mem_alloc_fail_cnt++;
2616 return -ENOMEM ;
2618 stats->mem_allocated += skb->truesize;
2620 if (ring->rxd_mode == RXD_MODE_1) {
2621 /* 1 buffer mode - normal operation mode */
2622 rxdp1 = (struct RxD1*)rxdp;
2623 memset(rxdp, 0, sizeof(struct RxD1));
2624 skb_reserve(skb, NET_IP_ALIGN);
2625 rxdp1->Buffer0_ptr = pci_map_single
2626 (ring->pdev, skb->data, size - NET_IP_ALIGN,
2627 PCI_DMA_FROMDEVICE);
2628 if( (rxdp1->Buffer0_ptr == 0) ||
2629 (rxdp1->Buffer0_ptr ==
2630 DMA_ERROR_CODE))
2631 goto pci_map_failed;
2633 rxdp->Control_2 =
2634 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2635 rxdp->Host_Control = (unsigned long) (skb);
2636 } else if (ring->rxd_mode == RXD_MODE_3B) {
2638 * 2 buffer mode -
2639 * 2 buffer mode provides 128
2640 * byte aligned receive buffers.
2643 rxdp3 = (struct RxD3*)rxdp;
2644 /* save buffer pointers to avoid frequent dma mapping */
2645 Buffer0_ptr = rxdp3->Buffer0_ptr;
2646 Buffer1_ptr = rxdp3->Buffer1_ptr;
2647 memset(rxdp, 0, sizeof(struct RxD3));
2648 /* restore the buffer pointers for dma sync*/
2649 rxdp3->Buffer0_ptr = Buffer0_ptr;
2650 rxdp3->Buffer1_ptr = Buffer1_ptr;
2652 ba = &ring->ba[block_no][off];
2653 skb_reserve(skb, BUF0_LEN);
2654 tmp = (u64)(unsigned long) skb->data;
2655 tmp += ALIGN_SIZE;
2656 tmp &= ~ALIGN_SIZE;
2657 skb->data = (void *) (unsigned long)tmp;
2658 skb_reset_tail_pointer(skb);
2660 if (!(rxdp3->Buffer0_ptr))
2661 rxdp3->Buffer0_ptr =
2662 pci_map_single(ring->pdev, ba->ba_0,
2663 BUF0_LEN, PCI_DMA_FROMDEVICE);
2664 else
2665 pci_dma_sync_single_for_device(ring->pdev,
2666 (dma_addr_t) rxdp3->Buffer0_ptr,
2667 BUF0_LEN, PCI_DMA_FROMDEVICE);
2668 if( (rxdp3->Buffer0_ptr == 0) ||
2669 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2670 goto pci_map_failed;
2672 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2673 if (ring->rxd_mode == RXD_MODE_3B) {
2674 /* Two buffer mode */
2677 * Buffer2 will have L3/L4 header plus
2678 * L4 payload
2680 rxdp3->Buffer2_ptr = pci_map_single
2681 (ring->pdev, skb->data, ring->mtu + 4,
2682 PCI_DMA_FROMDEVICE);
2684 if( (rxdp3->Buffer2_ptr == 0) ||
2685 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2686 goto pci_map_failed;
2688 if (!rxdp3->Buffer1_ptr)
2689 rxdp3->Buffer1_ptr =
2690 pci_map_single(ring->pdev,
2691 ba->ba_1, BUF1_LEN,
2692 PCI_DMA_FROMDEVICE);
2694 if( (rxdp3->Buffer1_ptr == 0) ||
2695 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2696 pci_unmap_single
2697 (ring->pdev,
2698 (dma_addr_t)(unsigned long)
2699 skb->data,
2700 ring->mtu + 4,
2701 PCI_DMA_FROMDEVICE);
2702 goto pci_map_failed;
2704 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2705 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2706 (ring->mtu + 4);
2708 rxdp->Control_2 |= s2BIT(0);
2709 rxdp->Host_Control = (unsigned long) (skb);
2711 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2712 rxdp->Control_1 |= RXD_OWN_XENA;
2713 off++;
2714 if (off == (ring->rxd_count + 1))
2715 off = 0;
2716 ring->rx_curr_put_info.offset = off;
2718 rxdp->Control_2 |= SET_RXD_MARKER;
2719 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2720 if (first_rxdp) {
2721 wmb();
2722 first_rxdp->Control_1 |= RXD_OWN_XENA;
2724 first_rxdp = rxdp;
2726 ring->rx_bufs_left += 1;
2727 alloc_tab++;
2730 end:
2731 /* Transfer ownership of first descriptor to adapter just before
2732 * exiting. Before that, use memory barrier so that ownership
2733 * and other fields are seen by adapter correctly.
2735 if (first_rxdp) {
2736 wmb();
2737 first_rxdp->Control_1 |= RXD_OWN_XENA;
2740 return SUCCESS;
2741 pci_map_failed:
2742 stats->pci_map_fail_cnt++;
2743 stats->mem_freed += skb->truesize;
2744 dev_kfree_skb_irq(skb);
2745 return -ENOMEM;
2748 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2750 struct net_device *dev = sp->dev;
2751 int j;
2752 struct sk_buff *skb;
2753 struct RxD_t *rxdp;
2754 struct mac_info *mac_control;
2755 struct buffAdd *ba;
2756 struct RxD1 *rxdp1;
2757 struct RxD3 *rxdp3;
2759 mac_control = &sp->mac_control;
2760 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2761 rxdp = mac_control->rings[ring_no].
2762 rx_blocks[blk].rxds[j].virt_addr;
2763 skb = (struct sk_buff *)
2764 ((unsigned long) rxdp->Host_Control);
2765 if (!skb) {
2766 continue;
2768 if (sp->rxd_mode == RXD_MODE_1) {
2769 rxdp1 = (struct RxD1*)rxdp;
2770 pci_unmap_single(sp->pdev, (dma_addr_t)
2771 rxdp1->Buffer0_ptr,
2772 dev->mtu +
2773 HEADER_ETHERNET_II_802_3_SIZE
2774 + HEADER_802_2_SIZE +
2775 HEADER_SNAP_SIZE,
2776 PCI_DMA_FROMDEVICE);
2777 memset(rxdp, 0, sizeof(struct RxD1));
2778 } else if(sp->rxd_mode == RXD_MODE_3B) {
2779 rxdp3 = (struct RxD3*)rxdp;
2780 ba = &mac_control->rings[ring_no].
2781 ba[blk][j];
2782 pci_unmap_single(sp->pdev, (dma_addr_t)
2783 rxdp3->Buffer0_ptr,
2784 BUF0_LEN,
2785 PCI_DMA_FROMDEVICE);
2786 pci_unmap_single(sp->pdev, (dma_addr_t)
2787 rxdp3->Buffer1_ptr,
2788 BUF1_LEN,
2789 PCI_DMA_FROMDEVICE);
2790 pci_unmap_single(sp->pdev, (dma_addr_t)
2791 rxdp3->Buffer2_ptr,
2792 dev->mtu + 4,
2793 PCI_DMA_FROMDEVICE);
2794 memset(rxdp, 0, sizeof(struct RxD3));
2796 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2797 dev_kfree_skb(skb);
2798 mac_control->rings[ring_no].rx_bufs_left -= 1;
2803 * free_rx_buffers - Frees all Rx buffers
2804 * @sp: device private variable.
2805 * Description:
2806 * This function will free all Rx buffers allocated by host.
2807 * Return Value:
2808 * NONE.
2811 static void free_rx_buffers(struct s2io_nic *sp)
2813 struct net_device *dev = sp->dev;
2814 int i, blk = 0, buf_cnt = 0;
2815 struct mac_info *mac_control;
2816 struct config_param *config;
2818 mac_control = &sp->mac_control;
2819 config = &sp->config;
2821 for (i = 0; i < config->rx_ring_num; i++) {
2822 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2823 free_rxd_blk(sp,i,blk);
2825 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2826 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2827 mac_control->rings[i].rx_curr_put_info.offset = 0;
2828 mac_control->rings[i].rx_curr_get_info.offset = 0;
2829 mac_control->rings[i].rx_bufs_left = 0;
2830 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2831 dev->name, buf_cnt, i);
2835 static int s2io_chk_rx_buffers(struct ring_info *ring)
2837 if (fill_rx_buffers(ring) == -ENOMEM) {
2838 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2839 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2841 return 0;
2845 * s2io_poll - Rx interrupt handler for NAPI support
2846 * @napi : pointer to the napi structure.
2847 * @budget : The number of packets that were budgeted to be processed
2848 * during one pass through the 'Poll" function.
2849 * Description:
2850 * Comes into picture only if NAPI support has been incorporated. It does
2851 * the same thing that rx_intr_handler does, but not in a interrupt context
2852 * also It will process only a given number of packets.
2853 * Return value:
2854 * 0 on success and 1 if there are No Rx packets to be processed.
2857 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2859 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2860 struct net_device *dev = ring->dev;
2861 struct config_param *config;
2862 struct mac_info *mac_control;
2863 int pkts_processed = 0;
2864 u8 *addr = NULL, val8 = 0;
2865 struct s2io_nic *nic = dev->priv;
2866 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2867 int budget_org = budget;
2869 config = &nic->config;
2870 mac_control = &nic->mac_control;
2872 if (unlikely(!is_s2io_card_up(nic)))
2873 return 0;
2875 pkts_processed = rx_intr_handler(ring, budget);
2876 s2io_chk_rx_buffers(ring);
2878 if (pkts_processed < budget_org) {
2879 netif_rx_complete(dev, napi);
2880 /*Re Enable MSI-Rx Vector*/
2881 addr = (u8 *)&bar0->xmsi_mask_reg;
2882 addr += 7 - ring->ring_no;
2883 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2884 writeb(val8, addr);
2885 val8 = readb(addr);
2887 return pkts_processed;
2889 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2891 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2892 struct ring_info *ring;
2893 struct net_device *dev = nic->dev;
2894 struct config_param *config;
2895 struct mac_info *mac_control;
2896 int pkts_processed = 0;
2897 int ring_pkts_processed, i;
2898 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2899 int budget_org = budget;
2901 config = &nic->config;
2902 mac_control = &nic->mac_control;
2904 if (unlikely(!is_s2io_card_up(nic)))
2905 return 0;
2907 for (i = 0; i < config->rx_ring_num; i++) {
2908 ring = &mac_control->rings[i];
2909 ring_pkts_processed = rx_intr_handler(ring, budget);
2910 s2io_chk_rx_buffers(ring);
2911 pkts_processed += ring_pkts_processed;
2912 budget -= ring_pkts_processed;
2913 if (budget <= 0)
2914 break;
2916 if (pkts_processed < budget_org) {
2917 netif_rx_complete(dev, napi);
2918 /* Re enable the Rx interrupts for the ring */
2919 writeq(0, &bar0->rx_traffic_mask);
2920 readl(&bar0->rx_traffic_mask);
2922 return pkts_processed;
2925 #ifdef CONFIG_NET_POLL_CONTROLLER
2927 * s2io_netpoll - netpoll event handler entry point
2928 * @dev : pointer to the device structure.
2929 * Description:
2930 * This function will be called by upper layer to check for events on the
2931 * interface in situations where interrupts are disabled. It is used for
2932 * specific in-kernel networking tasks, such as remote consoles and kernel
2933 * debugging over the network (example netdump in RedHat).
2935 static void s2io_netpoll(struct net_device *dev)
2937 struct s2io_nic *nic = dev->priv;
2938 struct mac_info *mac_control;
2939 struct config_param *config;
2940 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2941 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2942 int i;
2944 if (pci_channel_offline(nic->pdev))
2945 return;
2947 disable_irq(dev->irq);
2949 mac_control = &nic->mac_control;
2950 config = &nic->config;
2952 writeq(val64, &bar0->rx_traffic_int);
2953 writeq(val64, &bar0->tx_traffic_int);
2955 /* we need to free up the transmitted skbufs or else netpoll will
2956 * run out of skbs and will fail and eventually netpoll application such
2957 * as netdump will fail.
2959 for (i = 0; i < config->tx_fifo_num; i++)
2960 tx_intr_handler(&mac_control->fifos[i]);
2962 /* check for received packet and indicate up to network */
2963 for (i = 0; i < config->rx_ring_num; i++)
2964 rx_intr_handler(&mac_control->rings[i], 0);
2966 for (i = 0; i < config->rx_ring_num; i++) {
2967 if (fill_rx_buffers(&mac_control->rings[i]) == -ENOMEM) {
2968 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2969 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2970 break;
2973 enable_irq(dev->irq);
2974 return;
2976 #endif
2979 * rx_intr_handler - Rx interrupt handler
2980 * @ring_info: per ring structure.
2981 * @budget: budget for napi processing.
2982 * Description:
2983 * If the interrupt is because of a received frame or if the
2984 * receive ring contains fresh as yet un-processed frames,this function is
2985 * called. It picks out the RxD at which place the last Rx processing had
2986 * stopped and sends the skb to the OSM's Rx handler and then increments
2987 * the offset.
2988 * Return Value:
2989 * No. of napi packets processed.
2991 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2993 int get_block, put_block;
2994 struct rx_curr_get_info get_info, put_info;
2995 struct RxD_t *rxdp;
2996 struct sk_buff *skb;
2997 int pkt_cnt = 0, napi_pkts = 0;
2998 int i;
2999 struct RxD1* rxdp1;
3000 struct RxD3* rxdp3;
3002 get_info = ring_data->rx_curr_get_info;
3003 get_block = get_info.block_index;
3004 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
3005 put_block = put_info.block_index;
3006 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
3008 while (RXD_IS_UP2DT(rxdp)) {
3010 * If your are next to put index then it's
3011 * FIFO full condition
3013 if ((get_block == put_block) &&
3014 (get_info.offset + 1) == put_info.offset) {
3015 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
3016 ring_data->dev->name);
3017 break;
3019 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
3020 if (skb == NULL) {
3021 DBG_PRINT(ERR_DBG, "%s: The skb is ",
3022 ring_data->dev->name);
3023 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
3024 return 0;
3026 if (ring_data->rxd_mode == RXD_MODE_1) {
3027 rxdp1 = (struct RxD1*)rxdp;
3028 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3029 rxdp1->Buffer0_ptr,
3030 ring_data->mtu +
3031 HEADER_ETHERNET_II_802_3_SIZE +
3032 HEADER_802_2_SIZE +
3033 HEADER_SNAP_SIZE,
3034 PCI_DMA_FROMDEVICE);
3035 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3036 rxdp3 = (struct RxD3*)rxdp;
3037 pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
3038 rxdp3->Buffer0_ptr,
3039 BUF0_LEN, PCI_DMA_FROMDEVICE);
3040 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3041 rxdp3->Buffer2_ptr,
3042 ring_data->mtu + 4,
3043 PCI_DMA_FROMDEVICE);
3045 prefetch(skb->data);
3046 rx_osm_handler(ring_data, rxdp);
3047 get_info.offset++;
3048 ring_data->rx_curr_get_info.offset = get_info.offset;
3049 rxdp = ring_data->rx_blocks[get_block].
3050 rxds[get_info.offset].virt_addr;
3051 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3052 get_info.offset = 0;
3053 ring_data->rx_curr_get_info.offset = get_info.offset;
3054 get_block++;
3055 if (get_block == ring_data->block_count)
3056 get_block = 0;
3057 ring_data->rx_curr_get_info.block_index = get_block;
3058 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3061 if (ring_data->nic->config.napi) {
3062 budget--;
3063 napi_pkts++;
3064 if (!budget)
3065 break;
3067 pkt_cnt++;
3068 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3069 break;
3071 if (ring_data->lro) {
3072 /* Clear all LRO sessions before exiting */
3073 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3074 struct lro *lro = &ring_data->lro0_n[i];
3075 if (lro->in_use) {
3076 update_L3L4_header(ring_data->nic, lro);
3077 queue_rx_frame(lro->parent, lro->vlan_tag);
3078 clear_lro_session(lro);
3082 return(napi_pkts);
3086 * tx_intr_handler - Transmit interrupt handler
3087 * @nic : device private variable
3088 * Description:
3089 * If an interrupt was raised to indicate DMA complete of the
3090 * Tx packet, this function is called. It identifies the last TxD
3091 * whose buffer was freed and frees all skbs whose data have already
3092 * DMA'ed into the NICs internal memory.
3093 * Return Value:
3094 * NONE
3097 static void tx_intr_handler(struct fifo_info *fifo_data)
3099 struct s2io_nic *nic = fifo_data->nic;
3100 struct tx_curr_get_info get_info, put_info;
3101 struct sk_buff *skb = NULL;
3102 struct TxD *txdlp;
3103 int pkt_cnt = 0;
3104 unsigned long flags = 0;
3105 u8 err_mask;
3107 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3108 return;
3110 get_info = fifo_data->tx_curr_get_info;
3111 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3112 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3113 list_virt_addr;
3114 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3115 (get_info.offset != put_info.offset) &&
3116 (txdlp->Host_Control)) {
3117 /* Check for TxD errors */
3118 if (txdlp->Control_1 & TXD_T_CODE) {
3119 unsigned long long err;
3120 err = txdlp->Control_1 & TXD_T_CODE;
3121 if (err & 0x1) {
3122 nic->mac_control.stats_info->sw_stat.
3123 parity_err_cnt++;
3126 /* update t_code statistics */
3127 err_mask = err >> 48;
3128 switch(err_mask) {
3129 case 2:
3130 nic->mac_control.stats_info->sw_stat.
3131 tx_buf_abort_cnt++;
3132 break;
3134 case 3:
3135 nic->mac_control.stats_info->sw_stat.
3136 tx_desc_abort_cnt++;
3137 break;
3139 case 7:
3140 nic->mac_control.stats_info->sw_stat.
3141 tx_parity_err_cnt++;
3142 break;
3144 case 10:
3145 nic->mac_control.stats_info->sw_stat.
3146 tx_link_loss_cnt++;
3147 break;
3149 case 15:
3150 nic->mac_control.stats_info->sw_stat.
3151 tx_list_proc_err_cnt++;
3152 break;
3156 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3157 if (skb == NULL) {
3158 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3159 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3160 __FUNCTION__);
3161 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3162 return;
3164 pkt_cnt++;
3166 /* Updating the statistics block */
3167 nic->stats.tx_bytes += skb->len;
3168 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3169 dev_kfree_skb_irq(skb);
3171 get_info.offset++;
3172 if (get_info.offset == get_info.fifo_len + 1)
3173 get_info.offset = 0;
3174 txdlp = (struct TxD *) fifo_data->list_info
3175 [get_info.offset].list_virt_addr;
3176 fifo_data->tx_curr_get_info.offset =
3177 get_info.offset;
3180 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3182 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3186 * s2io_mdio_write - Function to write in to MDIO registers
3187 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3188 * @addr : address value
3189 * @value : data value
3190 * @dev : pointer to net_device structure
3191 * Description:
3192 * This function is used to write values to the MDIO registers
3193 * NONE
3195 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3197 u64 val64 = 0x0;
3198 struct s2io_nic *sp = dev->priv;
3199 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3201 //address transaction
3202 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3203 | MDIO_MMD_DEV_ADDR(mmd_type)
3204 | MDIO_MMS_PRT_ADDR(0x0);
3205 writeq(val64, &bar0->mdio_control);
3206 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3207 writeq(val64, &bar0->mdio_control);
3208 udelay(100);
3210 //Data transaction
3211 val64 = 0x0;
3212 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3213 | MDIO_MMD_DEV_ADDR(mmd_type)
3214 | MDIO_MMS_PRT_ADDR(0x0)
3215 | MDIO_MDIO_DATA(value)
3216 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3217 writeq(val64, &bar0->mdio_control);
3218 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3219 writeq(val64, &bar0->mdio_control);
3220 udelay(100);
3222 val64 = 0x0;
3223 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3224 | MDIO_MMD_DEV_ADDR(mmd_type)
3225 | MDIO_MMS_PRT_ADDR(0x0)
3226 | MDIO_OP(MDIO_OP_READ_TRANS);
3227 writeq(val64, &bar0->mdio_control);
3228 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3229 writeq(val64, &bar0->mdio_control);
3230 udelay(100);
3235 * s2io_mdio_read - Function to write in to MDIO registers
3236 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3237 * @addr : address value
3238 * @dev : pointer to net_device structure
3239 * Description:
3240 * This function is used to read values to the MDIO registers
3241 * NONE
3243 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3245 u64 val64 = 0x0;
3246 u64 rval64 = 0x0;
3247 struct s2io_nic *sp = dev->priv;
3248 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3250 /* address transaction */
3251 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3252 | MDIO_MMD_DEV_ADDR(mmd_type)
3253 | MDIO_MMS_PRT_ADDR(0x0);
3254 writeq(val64, &bar0->mdio_control);
3255 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3256 writeq(val64, &bar0->mdio_control);
3257 udelay(100);
3259 /* Data transaction */
3260 val64 = 0x0;
3261 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3262 | MDIO_MMD_DEV_ADDR(mmd_type)
3263 | MDIO_MMS_PRT_ADDR(0x0)
3264 | MDIO_OP(MDIO_OP_READ_TRANS);
3265 writeq(val64, &bar0->mdio_control);
3266 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3267 writeq(val64, &bar0->mdio_control);
3268 udelay(100);
3270 /* Read the value from regs */
3271 rval64 = readq(&bar0->mdio_control);
3272 rval64 = rval64 & 0xFFFF0000;
3273 rval64 = rval64 >> 16;
3274 return rval64;
3277 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3278 * @counter : couter value to be updated
3279 * @flag : flag to indicate the status
3280 * @type : counter type
3281 * Description:
3282 * This function is to check the status of the xpak counters value
3283 * NONE
3286 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3288 u64 mask = 0x3;
3289 u64 val64;
3290 int i;
3291 for(i = 0; i <index; i++)
3292 mask = mask << 0x2;
3294 if(flag > 0)
3296 *counter = *counter + 1;
3297 val64 = *regs_stat & mask;
3298 val64 = val64 >> (index * 0x2);
3299 val64 = val64 + 1;
3300 if(val64 == 3)
3302 switch(type)
3304 case 1:
3305 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3306 "service. Excessive temperatures may "
3307 "result in premature transceiver "
3308 "failure \n");
3309 break;
3310 case 2:
3311 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3312 "service Excessive bias currents may "
3313 "indicate imminent laser diode "
3314 "failure \n");
3315 break;
3316 case 3:
3317 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3318 "service Excessive laser output "
3319 "power may saturate far-end "
3320 "receiver\n");
3321 break;
3322 default:
3323 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3324 "type \n");
3326 val64 = 0x0;
3328 val64 = val64 << (index * 0x2);
3329 *regs_stat = (*regs_stat & (~mask)) | (val64);
3331 } else {
3332 *regs_stat = *regs_stat & (~mask);
3337 * s2io_updt_xpak_counter - Function to update the xpak counters
3338 * @dev : pointer to net_device struct
3339 * Description:
3340 * This function is to upate the status of the xpak counters value
3341 * NONE
3343 static void s2io_updt_xpak_counter(struct net_device *dev)
3345 u16 flag = 0x0;
3346 u16 type = 0x0;
3347 u16 val16 = 0x0;
3348 u64 val64 = 0x0;
3349 u64 addr = 0x0;
3351 struct s2io_nic *sp = dev->priv;
3352 struct stat_block *stat_info = sp->mac_control.stats_info;
3354 /* Check the communication with the MDIO slave */
3355 addr = 0x0000;
3356 val64 = 0x0;
3357 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3358 if((val64 == 0xFFFF) || (val64 == 0x0000))
3360 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3361 "Returned %llx\n", (unsigned long long)val64);
3362 return;
3365 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3366 if(val64 != 0x2040)
3368 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3369 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3370 (unsigned long long)val64);
3371 return;
3374 /* Loading the DOM register to MDIO register */
3375 addr = 0xA100;
3376 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3377 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3379 /* Reading the Alarm flags */
3380 addr = 0xA070;
3381 val64 = 0x0;
3382 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3384 flag = CHECKBIT(val64, 0x7);
3385 type = 1;
3386 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3387 &stat_info->xpak_stat.xpak_regs_stat,
3388 0x0, flag, type);
3390 if(CHECKBIT(val64, 0x6))
3391 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3393 flag = CHECKBIT(val64, 0x3);
3394 type = 2;
3395 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3396 &stat_info->xpak_stat.xpak_regs_stat,
3397 0x2, flag, type);
3399 if(CHECKBIT(val64, 0x2))
3400 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3402 flag = CHECKBIT(val64, 0x1);
3403 type = 3;
3404 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3405 &stat_info->xpak_stat.xpak_regs_stat,
3406 0x4, flag, type);
3408 if(CHECKBIT(val64, 0x0))
3409 stat_info->xpak_stat.alarm_laser_output_power_low++;
3411 /* Reading the Warning flags */
3412 addr = 0xA074;
3413 val64 = 0x0;
3414 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3416 if(CHECKBIT(val64, 0x7))
3417 stat_info->xpak_stat.warn_transceiver_temp_high++;
3419 if(CHECKBIT(val64, 0x6))
3420 stat_info->xpak_stat.warn_transceiver_temp_low++;
3422 if(CHECKBIT(val64, 0x3))
3423 stat_info->xpak_stat.warn_laser_bias_current_high++;
3425 if(CHECKBIT(val64, 0x2))
3426 stat_info->xpak_stat.warn_laser_bias_current_low++;
3428 if(CHECKBIT(val64, 0x1))
3429 stat_info->xpak_stat.warn_laser_output_power_high++;
3431 if(CHECKBIT(val64, 0x0))
3432 stat_info->xpak_stat.warn_laser_output_power_low++;
3436 * wait_for_cmd_complete - waits for a command to complete.
3437 * @sp : private member of the device structure, which is a pointer to the
3438 * s2io_nic structure.
3439 * Description: Function that waits for a command to Write into RMAC
3440 * ADDR DATA registers to be completed and returns either success or
3441 * error depending on whether the command was complete or not.
3442 * Return value:
3443 * SUCCESS on success and FAILURE on failure.
3446 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3447 int bit_state)
3449 int ret = FAILURE, cnt = 0, delay = 1;
3450 u64 val64;
3452 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3453 return FAILURE;
3455 do {
3456 val64 = readq(addr);
3457 if (bit_state == S2IO_BIT_RESET) {
3458 if (!(val64 & busy_bit)) {
3459 ret = SUCCESS;
3460 break;
3462 } else {
3463 if (!(val64 & busy_bit)) {
3464 ret = SUCCESS;
3465 break;
3469 if(in_interrupt())
3470 mdelay(delay);
3471 else
3472 msleep(delay);
3474 if (++cnt >= 10)
3475 delay = 50;
3476 } while (cnt < 20);
3477 return ret;
3480 * check_pci_device_id - Checks if the device id is supported
3481 * @id : device id
3482 * Description: Function to check if the pci device id is supported by driver.
3483 * Return value: Actual device id if supported else PCI_ANY_ID
3485 static u16 check_pci_device_id(u16 id)
3487 switch (id) {
3488 case PCI_DEVICE_ID_HERC_WIN:
3489 case PCI_DEVICE_ID_HERC_UNI:
3490 return XFRAME_II_DEVICE;
3491 case PCI_DEVICE_ID_S2IO_UNI:
3492 case PCI_DEVICE_ID_S2IO_WIN:
3493 return XFRAME_I_DEVICE;
3494 default:
3495 return PCI_ANY_ID;
3500 * s2io_reset - Resets the card.
3501 * @sp : private member of the device structure.
3502 * Description: Function to Reset the card. This function then also
3503 * restores the previously saved PCI configuration space registers as
3504 * the card reset also resets the configuration space.
3505 * Return value:
3506 * void.
3509 static void s2io_reset(struct s2io_nic * sp)
3511 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3512 u64 val64;
3513 u16 subid, pci_cmd;
3514 int i;
3515 u16 val16;
3516 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3517 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3519 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3520 __FUNCTION__, sp->dev->name);
3522 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3523 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3525 val64 = SW_RESET_ALL;
3526 writeq(val64, &bar0->sw_reset);
3527 if (strstr(sp->product_name, "CX4")) {
3528 msleep(750);
3530 msleep(250);
3531 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3533 /* Restore the PCI state saved during initialization. */
3534 pci_restore_state(sp->pdev);
3535 pci_read_config_word(sp->pdev, 0x2, &val16);
3536 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3537 break;
3538 msleep(200);
3541 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3542 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3545 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3547 s2io_init_pci(sp);
3549 /* Set swapper to enable I/O register access */
3550 s2io_set_swapper(sp);
3552 /* restore mac_addr entries */
3553 do_s2io_restore_unicast_mc(sp);
3555 /* Restore the MSIX table entries from local variables */
3556 restore_xmsi_data(sp);
3558 /* Clear certain PCI/PCI-X fields after reset */
3559 if (sp->device_type == XFRAME_II_DEVICE) {
3560 /* Clear "detected parity error" bit */
3561 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3563 /* Clearing PCIX Ecc status register */
3564 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3566 /* Clearing PCI_STATUS error reflected here */
3567 writeq(s2BIT(62), &bar0->txpic_int_reg);
3570 /* Reset device statistics maintained by OS */
3571 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3573 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3574 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3575 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3576 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3577 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3578 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3579 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3580 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3581 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3582 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3583 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3584 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3585 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3586 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3587 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3588 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3589 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3590 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3591 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3593 /* SXE-002: Configure link and activity LED to turn it off */
3594 subid = sp->pdev->subsystem_device;
3595 if (((subid & 0xFF) >= 0x07) &&
3596 (sp->device_type == XFRAME_I_DEVICE)) {
3597 val64 = readq(&bar0->gpio_control);
3598 val64 |= 0x0000800000000000ULL;
3599 writeq(val64, &bar0->gpio_control);
3600 val64 = 0x0411040400000000ULL;
3601 writeq(val64, (void __iomem *)bar0 + 0x2700);
3605 * Clear spurious ECC interrupts that would have occured on
3606 * XFRAME II cards after reset.
3608 if (sp->device_type == XFRAME_II_DEVICE) {
3609 val64 = readq(&bar0->pcc_err_reg);
3610 writeq(val64, &bar0->pcc_err_reg);
3613 sp->device_enabled_once = FALSE;
3617 * s2io_set_swapper - to set the swapper controle on the card
3618 * @sp : private member of the device structure,
3619 * pointer to the s2io_nic structure.
3620 * Description: Function to set the swapper control on the card
3621 * correctly depending on the 'endianness' of the system.
3622 * Return value:
3623 * SUCCESS on success and FAILURE on failure.
3626 static int s2io_set_swapper(struct s2io_nic * sp)
3628 struct net_device *dev = sp->dev;
3629 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3630 u64 val64, valt, valr;
3633 * Set proper endian settings and verify the same by reading
3634 * the PIF Feed-back register.
3637 val64 = readq(&bar0->pif_rd_swapper_fb);
3638 if (val64 != 0x0123456789ABCDEFULL) {
3639 int i = 0;
3640 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3641 0x8100008181000081ULL, /* FE=1, SE=0 */
3642 0x4200004242000042ULL, /* FE=0, SE=1 */
3643 0}; /* FE=0, SE=0 */
3645 while(i<4) {
3646 writeq(value[i], &bar0->swapper_ctrl);
3647 val64 = readq(&bar0->pif_rd_swapper_fb);
3648 if (val64 == 0x0123456789ABCDEFULL)
3649 break;
3650 i++;
3652 if (i == 4) {
3653 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3654 dev->name);
3655 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3656 (unsigned long long) val64);
3657 return FAILURE;
3659 valr = value[i];
3660 } else {
3661 valr = readq(&bar0->swapper_ctrl);
3664 valt = 0x0123456789ABCDEFULL;
3665 writeq(valt, &bar0->xmsi_address);
3666 val64 = readq(&bar0->xmsi_address);
3668 if(val64 != valt) {
3669 int i = 0;
3670 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3671 0x0081810000818100ULL, /* FE=1, SE=0 */
3672 0x0042420000424200ULL, /* FE=0, SE=1 */
3673 0}; /* FE=0, SE=0 */
3675 while(i<4) {
3676 writeq((value[i] | valr), &bar0->swapper_ctrl);
3677 writeq(valt, &bar0->xmsi_address);
3678 val64 = readq(&bar0->xmsi_address);
3679 if(val64 == valt)
3680 break;
3681 i++;
3683 if(i == 4) {
3684 unsigned long long x = val64;
3685 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3686 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3687 return FAILURE;
3690 val64 = readq(&bar0->swapper_ctrl);
3691 val64 &= 0xFFFF000000000000ULL;
3693 #ifdef __BIG_ENDIAN
3695 * The device by default set to a big endian format, so a
3696 * big endian driver need not set anything.
3698 val64 |= (SWAPPER_CTRL_TXP_FE |
3699 SWAPPER_CTRL_TXP_SE |
3700 SWAPPER_CTRL_TXD_R_FE |
3701 SWAPPER_CTRL_TXD_W_FE |
3702 SWAPPER_CTRL_TXF_R_FE |
3703 SWAPPER_CTRL_RXD_R_FE |
3704 SWAPPER_CTRL_RXD_W_FE |
3705 SWAPPER_CTRL_RXF_W_FE |
3706 SWAPPER_CTRL_XMSI_FE |
3707 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3708 if (sp->config.intr_type == INTA)
3709 val64 |= SWAPPER_CTRL_XMSI_SE;
3710 writeq(val64, &bar0->swapper_ctrl);
3711 #else
3713 * Initially we enable all bits to make it accessible by the
3714 * driver, then we selectively enable only those bits that
3715 * we want to set.
3717 val64 |= (SWAPPER_CTRL_TXP_FE |
3718 SWAPPER_CTRL_TXP_SE |
3719 SWAPPER_CTRL_TXD_R_FE |
3720 SWAPPER_CTRL_TXD_R_SE |
3721 SWAPPER_CTRL_TXD_W_FE |
3722 SWAPPER_CTRL_TXD_W_SE |
3723 SWAPPER_CTRL_TXF_R_FE |
3724 SWAPPER_CTRL_RXD_R_FE |
3725 SWAPPER_CTRL_RXD_R_SE |
3726 SWAPPER_CTRL_RXD_W_FE |
3727 SWAPPER_CTRL_RXD_W_SE |
3728 SWAPPER_CTRL_RXF_W_FE |
3729 SWAPPER_CTRL_XMSI_FE |
3730 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3731 if (sp->config.intr_type == INTA)
3732 val64 |= SWAPPER_CTRL_XMSI_SE;
3733 writeq(val64, &bar0->swapper_ctrl);
3734 #endif
3735 val64 = readq(&bar0->swapper_ctrl);
3738 * Verifying if endian settings are accurate by reading a
3739 * feedback register.
3741 val64 = readq(&bar0->pif_rd_swapper_fb);
3742 if (val64 != 0x0123456789ABCDEFULL) {
3743 /* Endian settings are incorrect, calls for another dekko. */
3744 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3745 dev->name);
3746 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3747 (unsigned long long) val64);
3748 return FAILURE;
3751 return SUCCESS;
3754 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3756 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3757 u64 val64;
3758 int ret = 0, cnt = 0;
3760 do {
3761 val64 = readq(&bar0->xmsi_access);
3762 if (!(val64 & s2BIT(15)))
3763 break;
3764 mdelay(1);
3765 cnt++;
3766 } while(cnt < 5);
3767 if (cnt == 5) {
3768 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3769 ret = 1;
3772 return ret;
3775 static void restore_xmsi_data(struct s2io_nic *nic)
3777 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3778 u64 val64;
3779 int i, msix_index;
3782 if (nic->device_type == XFRAME_I_DEVICE)
3783 return;
3785 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3786 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3787 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3788 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3789 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3790 writeq(val64, &bar0->xmsi_access);
3791 if (wait_for_msix_trans(nic, msix_index)) {
3792 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3793 continue;
3798 static void store_xmsi_data(struct s2io_nic *nic)
3800 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3801 u64 val64, addr, data;
3802 int i, msix_index;
3804 if (nic->device_type == XFRAME_I_DEVICE)
3805 return;
3807 /* Store and display */
3808 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3809 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3810 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3811 writeq(val64, &bar0->xmsi_access);
3812 if (wait_for_msix_trans(nic, msix_index)) {
3813 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3814 continue;
3816 addr = readq(&bar0->xmsi_address);
3817 data = readq(&bar0->xmsi_data);
3818 if (addr && data) {
3819 nic->msix_info[i].addr = addr;
3820 nic->msix_info[i].data = data;
3825 static int s2io_enable_msi_x(struct s2io_nic *nic)
3827 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3828 u64 rx_mat;
3829 u16 msi_control; /* Temp variable */
3830 int ret, i, j, msix_indx = 1;
3832 nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
3833 GFP_KERNEL);
3834 if (!nic->entries) {
3835 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3836 __FUNCTION__);
3837 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3838 return -ENOMEM;
3840 nic->mac_control.stats_info->sw_stat.mem_allocated
3841 += (nic->num_entries * sizeof(struct msix_entry));
3843 memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));
3845 nic->s2io_entries =
3846 kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
3847 GFP_KERNEL);
3848 if (!nic->s2io_entries) {
3849 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3850 __FUNCTION__);
3851 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3852 kfree(nic->entries);
3853 nic->mac_control.stats_info->sw_stat.mem_freed
3854 += (nic->num_entries * sizeof(struct msix_entry));
3855 return -ENOMEM;
3857 nic->mac_control.stats_info->sw_stat.mem_allocated
3858 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3859 memset(nic->s2io_entries, 0,
3860 nic->num_entries * sizeof(struct s2io_msix_entry));
3862 nic->entries[0].entry = 0;
3863 nic->s2io_entries[0].entry = 0;
3864 nic->s2io_entries[0].in_use = MSIX_FLG;
3865 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3866 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3868 for (i = 1; i < nic->num_entries; i++) {
3869 nic->entries[i].entry = ((i - 1) * 8) + 1;
3870 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3871 nic->s2io_entries[i].arg = NULL;
3872 nic->s2io_entries[i].in_use = 0;
3875 rx_mat = readq(&bar0->rx_mat);
3876 for (j = 0; j < nic->config.rx_ring_num; j++) {
3877 rx_mat |= RX_MAT_SET(j, msix_indx);
3878 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3879 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3880 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3881 msix_indx += 8;
3883 writeq(rx_mat, &bar0->rx_mat);
3884 readq(&bar0->rx_mat);
3886 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3887 /* We fail init if error or we get less vectors than min required */
3888 if (ret) {
3889 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3890 kfree(nic->entries);
3891 nic->mac_control.stats_info->sw_stat.mem_freed
3892 += (nic->num_entries * sizeof(struct msix_entry));
3893 kfree(nic->s2io_entries);
3894 nic->mac_control.stats_info->sw_stat.mem_freed
3895 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3896 nic->entries = NULL;
3897 nic->s2io_entries = NULL;
3898 return -ENOMEM;
3902 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3903 * in the herc NIC. (Temp change, needs to be removed later)
3905 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3906 msi_control |= 0x1; /* Enable MSI */
3907 pci_write_config_word(nic->pdev, 0x42, msi_control);
3909 return 0;
3912 /* Handle software interrupt used during MSI(X) test */
3913 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3915 struct s2io_nic *sp = dev_id;
3917 sp->msi_detected = 1;
3918 wake_up(&sp->msi_wait);
3920 return IRQ_HANDLED;
3923 /* Test interrupt path by forcing a a software IRQ */
3924 static int s2io_test_msi(struct s2io_nic *sp)
3926 struct pci_dev *pdev = sp->pdev;
3927 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3928 int err;
3929 u64 val64, saved64;
3931 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3932 sp->name, sp);
3933 if (err) {
3934 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3935 sp->dev->name, pci_name(pdev), pdev->irq);
3936 return err;
3939 init_waitqueue_head (&sp->msi_wait);
3940 sp->msi_detected = 0;
3942 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3943 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3944 val64 |= SCHED_INT_CTRL_TIMER_EN;
3945 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3946 writeq(val64, &bar0->scheduled_int_ctrl);
3948 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3950 if (!sp->msi_detected) {
3951 /* MSI(X) test failed, go back to INTx mode */
3952 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3953 "using MSI(X) during test\n", sp->dev->name,
3954 pci_name(pdev));
3956 err = -EOPNOTSUPP;
3959 free_irq(sp->entries[1].vector, sp);
3961 writeq(saved64, &bar0->scheduled_int_ctrl);
3963 return err;
3966 static void remove_msix_isr(struct s2io_nic *sp)
3968 int i;
3969 u16 msi_control;
3971 for (i = 0; i < sp->num_entries; i++) {
3972 if (sp->s2io_entries[i].in_use ==
3973 MSIX_REGISTERED_SUCCESS) {
3974 int vector = sp->entries[i].vector;
3975 void *arg = sp->s2io_entries[i].arg;
3976 free_irq(vector, arg);
3980 kfree(sp->entries);
3981 kfree(sp->s2io_entries);
3982 sp->entries = NULL;
3983 sp->s2io_entries = NULL;
3985 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3986 msi_control &= 0xFFFE; /* Disable MSI */
3987 pci_write_config_word(sp->pdev, 0x42, msi_control);
3989 pci_disable_msix(sp->pdev);
3992 static void remove_inta_isr(struct s2io_nic *sp)
3994 struct net_device *dev = sp->dev;
3996 free_irq(sp->pdev->irq, dev);
3999 /* ********************************************************* *
4000 * Functions defined below concern the OS part of the driver *
4001 * ********************************************************* */
4004 * s2io_open - open entry point of the driver
4005 * @dev : pointer to the device structure.
4006 * Description:
4007 * This function is the open entry point of the driver. It mainly calls a
4008 * function to allocate Rx buffers and inserts them into the buffer
4009 * descriptors and then enables the Rx part of the NIC.
4010 * Return value:
4011 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4012 * file on failure.
4015 static int s2io_open(struct net_device *dev)
4017 struct s2io_nic *sp = dev->priv;
4018 int err = 0;
4021 * Make sure you have link off by default every time
4022 * Nic is initialized
4024 netif_carrier_off(dev);
4025 sp->last_link_state = 0;
4027 /* Initialize H/W and enable interrupts */
4028 err = s2io_card_up(sp);
4029 if (err) {
4030 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4031 dev->name);
4032 goto hw_init_failed;
4035 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4036 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4037 s2io_card_down(sp);
4038 err = -ENODEV;
4039 goto hw_init_failed;
4041 s2io_start_all_tx_queue(sp);
4042 return 0;
4044 hw_init_failed:
4045 if (sp->config.intr_type == MSI_X) {
4046 if (sp->entries) {
4047 kfree(sp->entries);
4048 sp->mac_control.stats_info->sw_stat.mem_freed
4049 += (sp->num_entries * sizeof(struct msix_entry));
4051 if (sp->s2io_entries) {
4052 kfree(sp->s2io_entries);
4053 sp->mac_control.stats_info->sw_stat.mem_freed
4054 += (sp->num_entries * sizeof(struct s2io_msix_entry));
4057 return err;
4061 * s2io_close -close entry point of the driver
4062 * @dev : device pointer.
4063 * Description:
4064 * This is the stop entry point of the driver. It needs to undo exactly
4065 * whatever was done by the open entry point,thus it's usually referred to
4066 * as the close function.Among other things this function mainly stops the
4067 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4068 * Return value:
4069 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4070 * file on failure.
4073 static int s2io_close(struct net_device *dev)
4075 struct s2io_nic *sp = dev->priv;
4076 struct config_param *config = &sp->config;
4077 u64 tmp64;
4078 int offset;
4080 /* Return if the device is already closed *
4081 * Can happen when s2io_card_up failed in change_mtu *
4083 if (!is_s2io_card_up(sp))
4084 return 0;
4086 s2io_stop_all_tx_queue(sp);
4087 /* delete all populated mac entries */
4088 for (offset = 1; offset < config->max_mc_addr; offset++) {
4089 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4090 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4091 do_s2io_delete_unicast_mc(sp, tmp64);
4094 s2io_card_down(sp);
4096 return 0;
4100 * s2io_xmit - Tx entry point of te driver
4101 * @skb : the socket buffer containing the Tx data.
4102 * @dev : device pointer.
4103 * Description :
4104 * This function is the Tx entry point of the driver. S2IO NIC supports
4105 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4106 * NOTE: when device cant queue the pkt,just the trans_start variable will
4107 * not be upadted.
4108 * Return value:
4109 * 0 on success & 1 on failure.
4112 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4114 struct s2io_nic *sp = dev->priv;
4115 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4116 register u64 val64;
4117 struct TxD *txdp;
4118 struct TxFIFO_element __iomem *tx_fifo;
4119 unsigned long flags = 0;
4120 u16 vlan_tag = 0;
4121 struct fifo_info *fifo = NULL;
4122 struct mac_info *mac_control;
4123 struct config_param *config;
4124 int do_spin_lock = 1;
4125 int offload_type;
4126 int enable_per_list_interrupt = 0;
4127 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4129 mac_control = &sp->mac_control;
4130 config = &sp->config;
4132 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4134 if (unlikely(skb->len <= 0)) {
4135 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4136 dev_kfree_skb_any(skb);
4137 return 0;
4140 if (!is_s2io_card_up(sp)) {
4141 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4142 dev->name);
4143 dev_kfree_skb(skb);
4144 return 0;
4147 queue = 0;
4148 if (sp->vlgrp && vlan_tx_tag_present(skb))
4149 vlan_tag = vlan_tx_tag_get(skb);
4150 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4151 if (skb->protocol == htons(ETH_P_IP)) {
4152 struct iphdr *ip;
4153 struct tcphdr *th;
4154 ip = ip_hdr(skb);
4156 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4157 th = (struct tcphdr *)(((unsigned char *)ip) +
4158 ip->ihl*4);
4160 if (ip->protocol == IPPROTO_TCP) {
4161 queue_len = sp->total_tcp_fifos;
4162 queue = (ntohs(th->source) +
4163 ntohs(th->dest)) &
4164 sp->fifo_selector[queue_len - 1];
4165 if (queue >= queue_len)
4166 queue = queue_len - 1;
4167 } else if (ip->protocol == IPPROTO_UDP) {
4168 queue_len = sp->total_udp_fifos;
4169 queue = (ntohs(th->source) +
4170 ntohs(th->dest)) &
4171 sp->fifo_selector[queue_len - 1];
4172 if (queue >= queue_len)
4173 queue = queue_len - 1;
4174 queue += sp->udp_fifo_idx;
4175 if (skb->len > 1024)
4176 enable_per_list_interrupt = 1;
4177 do_spin_lock = 0;
4181 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4182 /* get fifo number based on skb->priority value */
4183 queue = config->fifo_mapping
4184 [skb->priority & (MAX_TX_FIFOS - 1)];
4185 fifo = &mac_control->fifos[queue];
4187 if (do_spin_lock)
4188 spin_lock_irqsave(&fifo->tx_lock, flags);
4189 else {
4190 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4191 return NETDEV_TX_LOCKED;
4194 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
4195 if (sp->config.multiq) {
4196 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4197 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4198 return NETDEV_TX_BUSY;
4200 } else
4201 #endif
4202 if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4203 if (netif_queue_stopped(dev)) {
4204 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4205 return NETDEV_TX_BUSY;
4209 put_off = (u16) fifo->tx_curr_put_info.offset;
4210 get_off = (u16) fifo->tx_curr_get_info.offset;
4211 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4213 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4214 /* Avoid "put" pointer going beyond "get" pointer */
4215 if (txdp->Host_Control ||
4216 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4217 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4218 s2io_stop_tx_queue(sp, fifo->fifo_no);
4219 dev_kfree_skb(skb);
4220 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4221 return 0;
4224 offload_type = s2io_offload_type(skb);
4225 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4226 txdp->Control_1 |= TXD_TCP_LSO_EN;
4227 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4229 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4230 txdp->Control_2 |=
4231 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4232 TXD_TX_CKO_UDP_EN);
4234 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4235 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4236 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4237 if (enable_per_list_interrupt)
4238 if (put_off & (queue_len >> 5))
4239 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4240 if (vlan_tag) {
4241 txdp->Control_2 |= TXD_VLAN_ENABLE;
4242 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4245 frg_len = skb->len - skb->data_len;
4246 if (offload_type == SKB_GSO_UDP) {
4247 int ufo_size;
4249 ufo_size = s2io_udp_mss(skb);
4250 ufo_size &= ~7;
4251 txdp->Control_1 |= TXD_UFO_EN;
4252 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4253 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4254 #ifdef __BIG_ENDIAN
4255 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4256 fifo->ufo_in_band_v[put_off] =
4257 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4258 #else
4259 fifo->ufo_in_band_v[put_off] =
4260 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4261 #endif
4262 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4263 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4264 fifo->ufo_in_band_v,
4265 sizeof(u64), PCI_DMA_TODEVICE);
4266 if((txdp->Buffer_Pointer == 0) ||
4267 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4268 goto pci_map_failed;
4269 txdp++;
4272 txdp->Buffer_Pointer = pci_map_single
4273 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4274 if((txdp->Buffer_Pointer == 0) ||
4275 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4276 goto pci_map_failed;
4278 txdp->Host_Control = (unsigned long) skb;
4279 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4280 if (offload_type == SKB_GSO_UDP)
4281 txdp->Control_1 |= TXD_UFO_EN;
4283 frg_cnt = skb_shinfo(skb)->nr_frags;
4284 /* For fragmented SKB. */
4285 for (i = 0; i < frg_cnt; i++) {
4286 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4287 /* A '0' length fragment will be ignored */
4288 if (!frag->size)
4289 continue;
4290 txdp++;
4291 txdp->Buffer_Pointer = (u64) pci_map_page
4292 (sp->pdev, frag->page, frag->page_offset,
4293 frag->size, PCI_DMA_TODEVICE);
4294 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4295 if (offload_type == SKB_GSO_UDP)
4296 txdp->Control_1 |= TXD_UFO_EN;
4298 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4300 if (offload_type == SKB_GSO_UDP)
4301 frg_cnt++; /* as Txd0 was used for inband header */
4303 tx_fifo = mac_control->tx_FIFO_start[queue];
4304 val64 = fifo->list_info[put_off].list_phy_addr;
4305 writeq(val64, &tx_fifo->TxDL_Pointer);
4307 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4308 TX_FIFO_LAST_LIST);
4309 if (offload_type)
4310 val64 |= TX_FIFO_SPECIAL_FUNC;
4312 writeq(val64, &tx_fifo->List_Control);
4314 mmiowb();
4316 put_off++;
4317 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4318 put_off = 0;
4319 fifo->tx_curr_put_info.offset = put_off;
4321 /* Avoid "put" pointer going beyond "get" pointer */
4322 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4323 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4324 DBG_PRINT(TX_DBG,
4325 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4326 put_off, get_off);
4327 s2io_stop_tx_queue(sp, fifo->fifo_no);
4329 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4330 dev->trans_start = jiffies;
4331 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4333 if (sp->config.intr_type == MSI_X)
4334 tx_intr_handler(fifo);
4336 return 0;
4337 pci_map_failed:
4338 stats->pci_map_fail_cnt++;
4339 s2io_stop_tx_queue(sp, fifo->fifo_no);
4340 stats->mem_freed += skb->truesize;
4341 dev_kfree_skb(skb);
4342 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4343 return 0;
4346 static void
4347 s2io_alarm_handle(unsigned long data)
4349 struct s2io_nic *sp = (struct s2io_nic *)data;
4350 struct net_device *dev = sp->dev;
4352 s2io_handle_errors(dev);
4353 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4356 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4358 struct ring_info *ring = (struct ring_info *)dev_id;
4359 struct s2io_nic *sp = ring->nic;
4360 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4361 struct net_device *dev = sp->dev;
4363 if (unlikely(!is_s2io_card_up(sp)))
4364 return IRQ_HANDLED;
4366 if (sp->config.napi) {
4367 u8 *addr = NULL, val8 = 0;
4369 addr = (u8 *)&bar0->xmsi_mask_reg;
4370 addr += (7 - ring->ring_no);
4371 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4372 writeb(val8, addr);
4373 val8 = readb(addr);
4374 netif_rx_schedule(dev, &ring->napi);
4375 } else {
4376 rx_intr_handler(ring, 0);
4377 s2io_chk_rx_buffers(ring);
4380 return IRQ_HANDLED;
4383 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4385 int i;
4386 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4387 struct s2io_nic *sp = fifos->nic;
4388 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4389 struct config_param *config = &sp->config;
4390 u64 reason;
4392 if (unlikely(!is_s2io_card_up(sp)))
4393 return IRQ_NONE;
4395 reason = readq(&bar0->general_int_status);
4396 if (unlikely(reason == S2IO_MINUS_ONE))
4397 /* Nothing much can be done. Get out */
4398 return IRQ_HANDLED;
4400 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4402 if (reason & GEN_INTR_TXTRAFFIC)
4403 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4405 for (i = 0; i < config->tx_fifo_num; i++)
4406 tx_intr_handler(&fifos[i]);
4408 writeq(sp->general_int_mask, &bar0->general_int_mask);
4409 readl(&bar0->general_int_status);
4411 return IRQ_HANDLED;
4414 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4416 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4417 u64 val64;
4419 val64 = readq(&bar0->pic_int_status);
4420 if (val64 & PIC_INT_GPIO) {
4421 val64 = readq(&bar0->gpio_int_reg);
4422 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4423 (val64 & GPIO_INT_REG_LINK_UP)) {
4425 * This is unstable state so clear both up/down
4426 * interrupt and adapter to re-evaluate the link state.
4428 val64 |= GPIO_INT_REG_LINK_DOWN;
4429 val64 |= GPIO_INT_REG_LINK_UP;
4430 writeq(val64, &bar0->gpio_int_reg);
4431 val64 = readq(&bar0->gpio_int_mask);
4432 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4433 GPIO_INT_MASK_LINK_DOWN);
4434 writeq(val64, &bar0->gpio_int_mask);
4436 else if (val64 & GPIO_INT_REG_LINK_UP) {
4437 val64 = readq(&bar0->adapter_status);
4438 /* Enable Adapter */
4439 val64 = readq(&bar0->adapter_control);
4440 val64 |= ADAPTER_CNTL_EN;
4441 writeq(val64, &bar0->adapter_control);
4442 val64 |= ADAPTER_LED_ON;
4443 writeq(val64, &bar0->adapter_control);
4444 if (!sp->device_enabled_once)
4445 sp->device_enabled_once = 1;
4447 s2io_link(sp, LINK_UP);
4449 * unmask link down interrupt and mask link-up
4450 * intr
4452 val64 = readq(&bar0->gpio_int_mask);
4453 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4454 val64 |= GPIO_INT_MASK_LINK_UP;
4455 writeq(val64, &bar0->gpio_int_mask);
4457 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4458 val64 = readq(&bar0->adapter_status);
4459 s2io_link(sp, LINK_DOWN);
4460 /* Link is down so unmaks link up interrupt */
4461 val64 = readq(&bar0->gpio_int_mask);
4462 val64 &= ~GPIO_INT_MASK_LINK_UP;
4463 val64 |= GPIO_INT_MASK_LINK_DOWN;
4464 writeq(val64, &bar0->gpio_int_mask);
4466 /* turn off LED */
4467 val64 = readq(&bar0->adapter_control);
4468 val64 = val64 &(~ADAPTER_LED_ON);
4469 writeq(val64, &bar0->adapter_control);
4472 val64 = readq(&bar0->gpio_int_mask);
4476 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4477 * @value: alarm bits
4478 * @addr: address value
4479 * @cnt: counter variable
4480 * Description: Check for alarm and increment the counter
4481 * Return Value:
4482 * 1 - if alarm bit set
4483 * 0 - if alarm bit is not set
4485 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4486 unsigned long long *cnt)
4488 u64 val64;
4489 val64 = readq(addr);
4490 if ( val64 & value ) {
4491 writeq(val64, addr);
4492 (*cnt)++;
4493 return 1;
4495 return 0;
4500 * s2io_handle_errors - Xframe error indication handler
4501 * @nic: device private variable
4502 * Description: Handle alarms such as loss of link, single or
4503 * double ECC errors, critical and serious errors.
4504 * Return Value:
4505 * NONE
4507 static void s2io_handle_errors(void * dev_id)
4509 struct net_device *dev = (struct net_device *) dev_id;
4510 struct s2io_nic *sp = dev->priv;
4511 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4512 u64 temp64 = 0,val64=0;
4513 int i = 0;
4515 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4516 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4518 if (!is_s2io_card_up(sp))
4519 return;
4521 if (pci_channel_offline(sp->pdev))
4522 return;
4524 memset(&sw_stat->ring_full_cnt, 0,
4525 sizeof(sw_stat->ring_full_cnt));
4527 /* Handling the XPAK counters update */
4528 if(stats->xpak_timer_count < 72000) {
4529 /* waiting for an hour */
4530 stats->xpak_timer_count++;
4531 } else {
4532 s2io_updt_xpak_counter(dev);
4533 /* reset the count to zero */
4534 stats->xpak_timer_count = 0;
4537 /* Handling link status change error Intr */
4538 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4539 val64 = readq(&bar0->mac_rmac_err_reg);
4540 writeq(val64, &bar0->mac_rmac_err_reg);
4541 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4542 schedule_work(&sp->set_link_task);
4545 /* In case of a serious error, the device will be Reset. */
4546 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4547 &sw_stat->serious_err_cnt))
4548 goto reset;
4550 /* Check for data parity error */
4551 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4552 &sw_stat->parity_err_cnt))
4553 goto reset;
4555 /* Check for ring full counter */
4556 if (sp->device_type == XFRAME_II_DEVICE) {
4557 val64 = readq(&bar0->ring_bump_counter1);
4558 for (i=0; i<4; i++) {
4559 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4560 temp64 >>= 64 - ((i+1)*16);
4561 sw_stat->ring_full_cnt[i] += temp64;
4564 val64 = readq(&bar0->ring_bump_counter2);
4565 for (i=0; i<4; i++) {
4566 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4567 temp64 >>= 64 - ((i+1)*16);
4568 sw_stat->ring_full_cnt[i+4] += temp64;
4572 val64 = readq(&bar0->txdma_int_status);
4573 /*check for pfc_err*/
4574 if (val64 & TXDMA_PFC_INT) {
4575 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4576 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4577 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4578 &sw_stat->pfc_err_cnt))
4579 goto reset;
4580 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4581 &sw_stat->pfc_err_cnt);
4584 /*check for tda_err*/
4585 if (val64 & TXDMA_TDA_INT) {
4586 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4587 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4588 &sw_stat->tda_err_cnt))
4589 goto reset;
4590 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4591 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4593 /*check for pcc_err*/
4594 if (val64 & TXDMA_PCC_INT) {
4595 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4596 | PCC_N_SERR | PCC_6_COF_OV_ERR
4597 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4598 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4599 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4600 &sw_stat->pcc_err_cnt))
4601 goto reset;
4602 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4603 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4606 /*check for tti_err*/
4607 if (val64 & TXDMA_TTI_INT) {
4608 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4609 &sw_stat->tti_err_cnt))
4610 goto reset;
4611 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4612 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4615 /*check for lso_err*/
4616 if (val64 & TXDMA_LSO_INT) {
4617 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4618 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4619 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4620 goto reset;
4621 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4622 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4625 /*check for tpa_err*/
4626 if (val64 & TXDMA_TPA_INT) {
4627 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4628 &sw_stat->tpa_err_cnt))
4629 goto reset;
4630 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4631 &sw_stat->tpa_err_cnt);
4634 /*check for sm_err*/
4635 if (val64 & TXDMA_SM_INT) {
4636 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4637 &sw_stat->sm_err_cnt))
4638 goto reset;
4641 val64 = readq(&bar0->mac_int_status);
4642 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4643 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4644 &bar0->mac_tmac_err_reg,
4645 &sw_stat->mac_tmac_err_cnt))
4646 goto reset;
4647 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4648 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4649 &bar0->mac_tmac_err_reg,
4650 &sw_stat->mac_tmac_err_cnt);
4653 val64 = readq(&bar0->xgxs_int_status);
4654 if (val64 & XGXS_INT_STATUS_TXGXS) {
4655 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4656 &bar0->xgxs_txgxs_err_reg,
4657 &sw_stat->xgxs_txgxs_err_cnt))
4658 goto reset;
4659 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4660 &bar0->xgxs_txgxs_err_reg,
4661 &sw_stat->xgxs_txgxs_err_cnt);
4664 val64 = readq(&bar0->rxdma_int_status);
4665 if (val64 & RXDMA_INT_RC_INT_M) {
4666 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4667 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4668 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4669 goto reset;
4670 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4671 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4672 &sw_stat->rc_err_cnt);
4673 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4674 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4675 &sw_stat->prc_pcix_err_cnt))
4676 goto reset;
4677 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4678 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4679 &sw_stat->prc_pcix_err_cnt);
4682 if (val64 & RXDMA_INT_RPA_INT_M) {
4683 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4684 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4685 goto reset;
4686 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4687 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4690 if (val64 & RXDMA_INT_RDA_INT_M) {
4691 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4692 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4693 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4694 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4695 goto reset;
4696 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4697 | RDA_MISC_ERR | RDA_PCIX_ERR,
4698 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4701 if (val64 & RXDMA_INT_RTI_INT_M) {
4702 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4703 &sw_stat->rti_err_cnt))
4704 goto reset;
4705 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4706 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4709 val64 = readq(&bar0->mac_int_status);
4710 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4711 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4712 &bar0->mac_rmac_err_reg,
4713 &sw_stat->mac_rmac_err_cnt))
4714 goto reset;
4715 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4716 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4717 &sw_stat->mac_rmac_err_cnt);
4720 val64 = readq(&bar0->xgxs_int_status);
4721 if (val64 & XGXS_INT_STATUS_RXGXS) {
4722 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4723 &bar0->xgxs_rxgxs_err_reg,
4724 &sw_stat->xgxs_rxgxs_err_cnt))
4725 goto reset;
4728 val64 = readq(&bar0->mc_int_status);
4729 if(val64 & MC_INT_STATUS_MC_INT) {
4730 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4731 &sw_stat->mc_err_cnt))
4732 goto reset;
4734 /* Handling Ecc errors */
4735 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4736 writeq(val64, &bar0->mc_err_reg);
4737 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4738 sw_stat->double_ecc_errs++;
4739 if (sp->device_type != XFRAME_II_DEVICE) {
4741 * Reset XframeI only if critical error
4743 if (val64 &
4744 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4745 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4746 goto reset;
4748 } else
4749 sw_stat->single_ecc_errs++;
4752 return;
4754 reset:
4755 s2io_stop_all_tx_queue(sp);
4756 schedule_work(&sp->rst_timer_task);
4757 sw_stat->soft_reset_cnt++;
4758 return;
4762 * s2io_isr - ISR handler of the device .
4763 * @irq: the irq of the device.
4764 * @dev_id: a void pointer to the dev structure of the NIC.
4765 * Description: This function is the ISR handler of the device. It
4766 * identifies the reason for the interrupt and calls the relevant
4767 * service routines. As a contongency measure, this ISR allocates the
4768 * recv buffers, if their numbers are below the panic value which is
4769 * presently set to 25% of the original number of rcv buffers allocated.
4770 * Return value:
4771 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4772 * IRQ_NONE: will be returned if interrupt is not from our device
4774 static irqreturn_t s2io_isr(int irq, void *dev_id)
4776 struct net_device *dev = (struct net_device *) dev_id;
4777 struct s2io_nic *sp = dev->priv;
4778 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4779 int i;
4780 u64 reason = 0;
4781 struct mac_info *mac_control;
4782 struct config_param *config;
4784 /* Pretend we handled any irq's from a disconnected card */
4785 if (pci_channel_offline(sp->pdev))
4786 return IRQ_NONE;
4788 if (!is_s2io_card_up(sp))
4789 return IRQ_NONE;
4791 mac_control = &sp->mac_control;
4792 config = &sp->config;
4795 * Identify the cause for interrupt and call the appropriate
4796 * interrupt handler. Causes for the interrupt could be;
4797 * 1. Rx of packet.
4798 * 2. Tx complete.
4799 * 3. Link down.
4801 reason = readq(&bar0->general_int_status);
4803 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4804 /* Nothing much can be done. Get out */
4805 return IRQ_HANDLED;
4808 if (reason & (GEN_INTR_RXTRAFFIC |
4809 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4811 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4813 if (config->napi) {
4814 if (reason & GEN_INTR_RXTRAFFIC) {
4815 netif_rx_schedule(dev, &sp->napi);
4816 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4817 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4818 readl(&bar0->rx_traffic_int);
4820 } else {
4822 * rx_traffic_int reg is an R1 register, writing all 1's
4823 * will ensure that the actual interrupt causing bit
4824 * get's cleared and hence a read can be avoided.
4826 if (reason & GEN_INTR_RXTRAFFIC)
4827 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4829 for (i = 0; i < config->rx_ring_num; i++)
4830 rx_intr_handler(&mac_control->rings[i], 0);
4834 * tx_traffic_int reg is an R1 register, writing all 1's
4835 * will ensure that the actual interrupt causing bit get's
4836 * cleared and hence a read can be avoided.
4838 if (reason & GEN_INTR_TXTRAFFIC)
4839 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4841 for (i = 0; i < config->tx_fifo_num; i++)
4842 tx_intr_handler(&mac_control->fifos[i]);
4844 if (reason & GEN_INTR_TXPIC)
4845 s2io_txpic_intr_handle(sp);
4848 * Reallocate the buffers from the interrupt handler itself.
4850 if (!config->napi) {
4851 for (i = 0; i < config->rx_ring_num; i++)
4852 s2io_chk_rx_buffers(&mac_control->rings[i]);
4854 writeq(sp->general_int_mask, &bar0->general_int_mask);
4855 readl(&bar0->general_int_status);
4857 return IRQ_HANDLED;
4860 else if (!reason) {
4861 /* The interrupt was not raised by us */
4862 return IRQ_NONE;
4865 return IRQ_HANDLED;
4869 * s2io_updt_stats -
4871 static void s2io_updt_stats(struct s2io_nic *sp)
4873 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4874 u64 val64;
4875 int cnt = 0;
4877 if (is_s2io_card_up(sp)) {
4878 /* Apprx 30us on a 133 MHz bus */
4879 val64 = SET_UPDT_CLICKS(10) |
4880 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4881 writeq(val64, &bar0->stat_cfg);
4882 do {
4883 udelay(100);
4884 val64 = readq(&bar0->stat_cfg);
4885 if (!(val64 & s2BIT(0)))
4886 break;
4887 cnt++;
4888 if (cnt == 5)
4889 break; /* Updt failed */
4890 } while(1);
4895 * s2io_get_stats - Updates the device statistics structure.
4896 * @dev : pointer to the device structure.
4897 * Description:
4898 * This function updates the device statistics structure in the s2io_nic
4899 * structure and returns a pointer to the same.
4900 * Return value:
4901 * pointer to the updated net_device_stats structure.
4904 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4906 struct s2io_nic *sp = dev->priv;
4907 struct mac_info *mac_control;
4908 struct config_param *config;
4909 int i;
4912 mac_control = &sp->mac_control;
4913 config = &sp->config;
4915 /* Configure Stats for immediate updt */
4916 s2io_updt_stats(sp);
4918 sp->stats.tx_packets =
4919 le32_to_cpu(mac_control->stats_info->tmac_frms);
4920 sp->stats.tx_errors =
4921 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4922 sp->stats.rx_errors =
4923 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4924 sp->stats.multicast =
4925 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4926 sp->stats.rx_length_errors =
4927 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4929 /* collect per-ring rx_packets and rx_bytes */
4930 sp->stats.rx_packets = sp->stats.rx_bytes = 0;
4931 for (i = 0; i < config->rx_ring_num; i++) {
4932 sp->stats.rx_packets += mac_control->rings[i].rx_packets;
4933 sp->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4936 return (&sp->stats);
4940 * s2io_set_multicast - entry point for multicast address enable/disable.
4941 * @dev : pointer to the device structure
4942 * Description:
4943 * This function is a driver entry point which gets called by the kernel
4944 * whenever multicast addresses must be enabled/disabled. This also gets
4945 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4946 * determine, if multicast address must be enabled or if promiscuous mode
4947 * is to be disabled etc.
4948 * Return value:
4949 * void.
4952 static void s2io_set_multicast(struct net_device *dev)
4954 int i, j, prev_cnt;
4955 struct dev_mc_list *mclist;
4956 struct s2io_nic *sp = dev->priv;
4957 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4958 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4959 0xfeffffffffffULL;
4960 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4961 void __iomem *add;
4962 struct config_param *config = &sp->config;
4964 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4965 /* Enable all Multicast addresses */
4966 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4967 &bar0->rmac_addr_data0_mem);
4968 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4969 &bar0->rmac_addr_data1_mem);
4970 val64 = RMAC_ADDR_CMD_MEM_WE |
4971 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4972 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4973 writeq(val64, &bar0->rmac_addr_cmd_mem);
4974 /* Wait till command completes */
4975 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4976 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4977 S2IO_BIT_RESET);
4979 sp->m_cast_flg = 1;
4980 sp->all_multi_pos = config->max_mc_addr - 1;
4981 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4982 /* Disable all Multicast addresses */
4983 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4984 &bar0->rmac_addr_data0_mem);
4985 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4986 &bar0->rmac_addr_data1_mem);
4987 val64 = RMAC_ADDR_CMD_MEM_WE |
4988 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4989 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4990 writeq(val64, &bar0->rmac_addr_cmd_mem);
4991 /* Wait till command completes */
4992 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4993 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4994 S2IO_BIT_RESET);
4996 sp->m_cast_flg = 0;
4997 sp->all_multi_pos = 0;
5000 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5001 /* Put the NIC into promiscuous mode */
5002 add = &bar0->mac_cfg;
5003 val64 = readq(&bar0->mac_cfg);
5004 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5006 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5007 writel((u32) val64, add);
5008 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5009 writel((u32) (val64 >> 32), (add + 4));
5011 if (vlan_tag_strip != 1) {
5012 val64 = readq(&bar0->rx_pa_cfg);
5013 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5014 writeq(val64, &bar0->rx_pa_cfg);
5015 vlan_strip_flag = 0;
5018 val64 = readq(&bar0->mac_cfg);
5019 sp->promisc_flg = 1;
5020 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5021 dev->name);
5022 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5023 /* Remove the NIC from promiscuous mode */
5024 add = &bar0->mac_cfg;
5025 val64 = readq(&bar0->mac_cfg);
5026 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5028 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5029 writel((u32) val64, add);
5030 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5031 writel((u32) (val64 >> 32), (add + 4));
5033 if (vlan_tag_strip != 0) {
5034 val64 = readq(&bar0->rx_pa_cfg);
5035 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5036 writeq(val64, &bar0->rx_pa_cfg);
5037 vlan_strip_flag = 1;
5040 val64 = readq(&bar0->mac_cfg);
5041 sp->promisc_flg = 0;
5042 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5043 dev->name);
5046 /* Update individual M_CAST address list */
5047 if ((!sp->m_cast_flg) && dev->mc_count) {
5048 if (dev->mc_count >
5049 (config->max_mc_addr - config->max_mac_addr)) {
5050 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5051 dev->name);
5052 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5053 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5054 return;
5057 prev_cnt = sp->mc_addr_count;
5058 sp->mc_addr_count = dev->mc_count;
5060 /* Clear out the previous list of Mc in the H/W. */
5061 for (i = 0; i < prev_cnt; i++) {
5062 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5063 &bar0->rmac_addr_data0_mem);
5064 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5065 &bar0->rmac_addr_data1_mem);
5066 val64 = RMAC_ADDR_CMD_MEM_WE |
5067 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5068 RMAC_ADDR_CMD_MEM_OFFSET
5069 (config->mc_start_offset + i);
5070 writeq(val64, &bar0->rmac_addr_cmd_mem);
5072 /* Wait for command completes */
5073 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5074 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5075 S2IO_BIT_RESET)) {
5076 DBG_PRINT(ERR_DBG, "%s: Adding ",
5077 dev->name);
5078 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5079 return;
5083 /* Create the new Rx filter list and update the same in H/W. */
5084 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5085 i++, mclist = mclist->next) {
5086 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5087 ETH_ALEN);
5088 mac_addr = 0;
5089 for (j = 0; j < ETH_ALEN; j++) {
5090 mac_addr |= mclist->dmi_addr[j];
5091 mac_addr <<= 8;
5093 mac_addr >>= 8;
5094 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5095 &bar0->rmac_addr_data0_mem);
5096 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5097 &bar0->rmac_addr_data1_mem);
5098 val64 = RMAC_ADDR_CMD_MEM_WE |
5099 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5100 RMAC_ADDR_CMD_MEM_OFFSET
5101 (i + config->mc_start_offset);
5102 writeq(val64, &bar0->rmac_addr_cmd_mem);
5104 /* Wait for command completes */
5105 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5106 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5107 S2IO_BIT_RESET)) {
5108 DBG_PRINT(ERR_DBG, "%s: Adding ",
5109 dev->name);
5110 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5111 return;
5117 /* read from CAM unicast & multicast addresses and store it in
5118 * def_mac_addr structure
5120 void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5122 int offset;
5123 u64 mac_addr = 0x0;
5124 struct config_param *config = &sp->config;
5126 /* store unicast & multicast mac addresses */
5127 for (offset = 0; offset < config->max_mc_addr; offset++) {
5128 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5129 /* if read fails disable the entry */
5130 if (mac_addr == FAILURE)
5131 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5132 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5136 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5137 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5139 int offset;
5140 struct config_param *config = &sp->config;
5141 /* restore unicast mac address */
5142 for (offset = 0; offset < config->max_mac_addr; offset++)
5143 do_s2io_prog_unicast(sp->dev,
5144 sp->def_mac_addr[offset].mac_addr);
5146 /* restore multicast mac address */
5147 for (offset = config->mc_start_offset;
5148 offset < config->max_mc_addr; offset++)
5149 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5152 /* add a multicast MAC address to CAM */
5153 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5155 int i;
5156 u64 mac_addr = 0;
5157 struct config_param *config = &sp->config;
5159 for (i = 0; i < ETH_ALEN; i++) {
5160 mac_addr <<= 8;
5161 mac_addr |= addr[i];
5163 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5164 return SUCCESS;
5166 /* check if the multicast mac already preset in CAM */
5167 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5168 u64 tmp64;
5169 tmp64 = do_s2io_read_unicast_mc(sp, i);
5170 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5171 break;
5173 if (tmp64 == mac_addr)
5174 return SUCCESS;
5176 if (i == config->max_mc_addr) {
5177 DBG_PRINT(ERR_DBG,
5178 "CAM full no space left for multicast MAC\n");
5179 return FAILURE;
5181 /* Update the internal structure with this new mac address */
5182 do_s2io_copy_mac_addr(sp, i, mac_addr);
5184 return (do_s2io_add_mac(sp, mac_addr, i));
5187 /* add MAC address to CAM */
5188 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5190 u64 val64;
5191 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5193 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5194 &bar0->rmac_addr_data0_mem);
5196 val64 =
5197 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5198 RMAC_ADDR_CMD_MEM_OFFSET(off);
5199 writeq(val64, &bar0->rmac_addr_cmd_mem);
5201 /* Wait till command completes */
5202 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5203 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5204 S2IO_BIT_RESET)) {
5205 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5206 return FAILURE;
5208 return SUCCESS;
5210 /* deletes a specified unicast/multicast mac entry from CAM */
5211 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5213 int offset;
5214 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5215 struct config_param *config = &sp->config;
5217 for (offset = 1;
5218 offset < config->max_mc_addr; offset++) {
5219 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5220 if (tmp64 == addr) {
5221 /* disable the entry by writing 0xffffffffffffULL */
5222 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5223 return FAILURE;
5224 /* store the new mac list from CAM */
5225 do_s2io_store_unicast_mc(sp);
5226 return SUCCESS;
5229 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5230 (unsigned long long)addr);
5231 return FAILURE;
5234 /* read mac entries from CAM */
5235 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5237 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5238 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5240 /* read mac addr */
5241 val64 =
5242 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5243 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5244 writeq(val64, &bar0->rmac_addr_cmd_mem);
5246 /* Wait till command completes */
5247 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5248 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5249 S2IO_BIT_RESET)) {
5250 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5251 return FAILURE;
5253 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5254 return (tmp64 >> 16);
5258 * s2io_set_mac_addr driver entry point
5261 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5263 struct sockaddr *addr = p;
5265 if (!is_valid_ether_addr(addr->sa_data))
5266 return -EINVAL;
5268 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5270 /* store the MAC address in CAM */
5271 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5274 * do_s2io_prog_unicast - Programs the Xframe mac address
5275 * @dev : pointer to the device structure.
5276 * @addr: a uchar pointer to the new mac address which is to be set.
5277 * Description : This procedure will program the Xframe to receive
5278 * frames with new Mac Address
5279 * Return value: SUCCESS on success and an appropriate (-)ve integer
5280 * as defined in errno.h file on failure.
5283 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5285 struct s2io_nic *sp = dev->priv;
5286 register u64 mac_addr = 0, perm_addr = 0;
5287 int i;
5288 u64 tmp64;
5289 struct config_param *config = &sp->config;
5292 * Set the new MAC address as the new unicast filter and reflect this
5293 * change on the device address registered with the OS. It will be
5294 * at offset 0.
5296 for (i = 0; i < ETH_ALEN; i++) {
5297 mac_addr <<= 8;
5298 mac_addr |= addr[i];
5299 perm_addr <<= 8;
5300 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5303 /* check if the dev_addr is different than perm_addr */
5304 if (mac_addr == perm_addr)
5305 return SUCCESS;
5307 /* check if the mac already preset in CAM */
5308 for (i = 1; i < config->max_mac_addr; i++) {
5309 tmp64 = do_s2io_read_unicast_mc(sp, i);
5310 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5311 break;
5313 if (tmp64 == mac_addr) {
5314 DBG_PRINT(INFO_DBG,
5315 "MAC addr:0x%llx already present in CAM\n",
5316 (unsigned long long)mac_addr);
5317 return SUCCESS;
5320 if (i == config->max_mac_addr) {
5321 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5322 return FAILURE;
5324 /* Update the internal structure with this new mac address */
5325 do_s2io_copy_mac_addr(sp, i, mac_addr);
5326 return (do_s2io_add_mac(sp, mac_addr, i));
5330 * s2io_ethtool_sset - Sets different link parameters.
5331 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5332 * @info: pointer to the structure with parameters given by ethtool to set
5333 * link information.
5334 * Description:
5335 * The function sets different link parameters provided by the user onto
5336 * the NIC.
5337 * Return value:
5338 * 0 on success.
5341 static int s2io_ethtool_sset(struct net_device *dev,
5342 struct ethtool_cmd *info)
5344 struct s2io_nic *sp = dev->priv;
5345 if ((info->autoneg == AUTONEG_ENABLE) ||
5346 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5347 return -EINVAL;
5348 else {
5349 s2io_close(sp->dev);
5350 s2io_open(sp->dev);
5353 return 0;
5357 * s2io_ethtol_gset - Return link specific information.
5358 * @sp : private member of the device structure, pointer to the
5359 * s2io_nic structure.
5360 * @info : pointer to the structure with parameters given by ethtool
5361 * to return link information.
5362 * Description:
5363 * Returns link specific information like speed, duplex etc.. to ethtool.
5364 * Return value :
5365 * return 0 on success.
5368 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5370 struct s2io_nic *sp = dev->priv;
5371 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5372 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5373 info->port = PORT_FIBRE;
5375 /* info->transceiver */
5376 info->transceiver = XCVR_EXTERNAL;
5378 if (netif_carrier_ok(sp->dev)) {
5379 info->speed = 10000;
5380 info->duplex = DUPLEX_FULL;
5381 } else {
5382 info->speed = -1;
5383 info->duplex = -1;
5386 info->autoneg = AUTONEG_DISABLE;
5387 return 0;
5391 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5392 * @sp : private member of the device structure, which is a pointer to the
5393 * s2io_nic structure.
5394 * @info : pointer to the structure with parameters given by ethtool to
5395 * return driver information.
5396 * Description:
5397 * Returns driver specefic information like name, version etc.. to ethtool.
5398 * Return value:
5399 * void
5402 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5403 struct ethtool_drvinfo *info)
5405 struct s2io_nic *sp = dev->priv;
5407 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5408 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5409 strncpy(info->fw_version, "", sizeof(info->fw_version));
5410 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5411 info->regdump_len = XENA_REG_SPACE;
5412 info->eedump_len = XENA_EEPROM_SPACE;
5416 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5417 * @sp: private member of the device structure, which is a pointer to the
5418 * s2io_nic structure.
5419 * @regs : pointer to the structure with parameters given by ethtool for
5420 * dumping the registers.
5421 * @reg_space: The input argumnet into which all the registers are dumped.
5422 * Description:
5423 * Dumps the entire register space of xFrame NIC into the user given
5424 * buffer area.
5425 * Return value :
5426 * void .
5429 static void s2io_ethtool_gregs(struct net_device *dev,
5430 struct ethtool_regs *regs, void *space)
5432 int i;
5433 u64 reg;
5434 u8 *reg_space = (u8 *) space;
5435 struct s2io_nic *sp = dev->priv;
5437 regs->len = XENA_REG_SPACE;
5438 regs->version = sp->pdev->subsystem_device;
5440 for (i = 0; i < regs->len; i += 8) {
5441 reg = readq(sp->bar0 + i);
5442 memcpy((reg_space + i), &reg, 8);
5447 * s2io_phy_id - timer function that alternates adapter LED.
5448 * @data : address of the private member of the device structure, which
5449 * is a pointer to the s2io_nic structure, provided as an u32.
5450 * Description: This is actually the timer function that alternates the
5451 * adapter LED bit of the adapter control bit to set/reset every time on
5452 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5453 * once every second.
5455 static void s2io_phy_id(unsigned long data)
5457 struct s2io_nic *sp = (struct s2io_nic *) data;
5458 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5459 u64 val64 = 0;
5460 u16 subid;
5462 subid = sp->pdev->subsystem_device;
5463 if ((sp->device_type == XFRAME_II_DEVICE) ||
5464 ((subid & 0xFF) >= 0x07)) {
5465 val64 = readq(&bar0->gpio_control);
5466 val64 ^= GPIO_CTRL_GPIO_0;
5467 writeq(val64, &bar0->gpio_control);
5468 } else {
5469 val64 = readq(&bar0->adapter_control);
5470 val64 ^= ADAPTER_LED_ON;
5471 writeq(val64, &bar0->adapter_control);
5474 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5478 * s2io_ethtool_idnic - To physically identify the nic on the system.
5479 * @sp : private member of the device structure, which is a pointer to the
5480 * s2io_nic structure.
5481 * @id : pointer to the structure with identification parameters given by
5482 * ethtool.
5483 * Description: Used to physically identify the NIC on the system.
5484 * The Link LED will blink for a time specified by the user for
5485 * identification.
5486 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5487 * identification is possible only if it's link is up.
5488 * Return value:
5489 * int , returns 0 on success
5492 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5494 u64 val64 = 0, last_gpio_ctrl_val;
5495 struct s2io_nic *sp = dev->priv;
5496 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5497 u16 subid;
5499 subid = sp->pdev->subsystem_device;
5500 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5501 if ((sp->device_type == XFRAME_I_DEVICE) &&
5502 ((subid & 0xFF) < 0x07)) {
5503 val64 = readq(&bar0->adapter_control);
5504 if (!(val64 & ADAPTER_CNTL_EN)) {
5505 printk(KERN_ERR
5506 "Adapter Link down, cannot blink LED\n");
5507 return -EFAULT;
5510 if (sp->id_timer.function == NULL) {
5511 init_timer(&sp->id_timer);
5512 sp->id_timer.function = s2io_phy_id;
5513 sp->id_timer.data = (unsigned long) sp;
5515 mod_timer(&sp->id_timer, jiffies);
5516 if (data)
5517 msleep_interruptible(data * HZ);
5518 else
5519 msleep_interruptible(MAX_FLICKER_TIME);
5520 del_timer_sync(&sp->id_timer);
5522 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5523 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5524 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5527 return 0;
5530 static void s2io_ethtool_gringparam(struct net_device *dev,
5531 struct ethtool_ringparam *ering)
5533 struct s2io_nic *sp = dev->priv;
5534 int i,tx_desc_count=0,rx_desc_count=0;
5536 if (sp->rxd_mode == RXD_MODE_1)
5537 ering->rx_max_pending = MAX_RX_DESC_1;
5538 else if (sp->rxd_mode == RXD_MODE_3B)
5539 ering->rx_max_pending = MAX_RX_DESC_2;
5541 ering->tx_max_pending = MAX_TX_DESC;
5542 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5543 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5545 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5546 ering->tx_pending = tx_desc_count;
5547 rx_desc_count = 0;
5548 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5549 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5551 ering->rx_pending = rx_desc_count;
5553 ering->rx_mini_max_pending = 0;
5554 ering->rx_mini_pending = 0;
5555 if(sp->rxd_mode == RXD_MODE_1)
5556 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5557 else if (sp->rxd_mode == RXD_MODE_3B)
5558 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5559 ering->rx_jumbo_pending = rx_desc_count;
5563 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5564 * @sp : private member of the device structure, which is a pointer to the
5565 * s2io_nic structure.
5566 * @ep : pointer to the structure with pause parameters given by ethtool.
5567 * Description:
5568 * Returns the Pause frame generation and reception capability of the NIC.
5569 * Return value:
5570 * void
5572 static void s2io_ethtool_getpause_data(struct net_device *dev,
5573 struct ethtool_pauseparam *ep)
5575 u64 val64;
5576 struct s2io_nic *sp = dev->priv;
5577 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5579 val64 = readq(&bar0->rmac_pause_cfg);
5580 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5581 ep->tx_pause = TRUE;
5582 if (val64 & RMAC_PAUSE_RX_ENABLE)
5583 ep->rx_pause = TRUE;
5584 ep->autoneg = FALSE;
5588 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5589 * @sp : private member of the device structure, which is a pointer to the
5590 * s2io_nic structure.
5591 * @ep : pointer to the structure with pause parameters given by ethtool.
5592 * Description:
5593 * It can be used to set or reset Pause frame generation or reception
5594 * support of the NIC.
5595 * Return value:
5596 * int, returns 0 on Success
5599 static int s2io_ethtool_setpause_data(struct net_device *dev,
5600 struct ethtool_pauseparam *ep)
5602 u64 val64;
5603 struct s2io_nic *sp = dev->priv;
5604 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5606 val64 = readq(&bar0->rmac_pause_cfg);
5607 if (ep->tx_pause)
5608 val64 |= RMAC_PAUSE_GEN_ENABLE;
5609 else
5610 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5611 if (ep->rx_pause)
5612 val64 |= RMAC_PAUSE_RX_ENABLE;
5613 else
5614 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5615 writeq(val64, &bar0->rmac_pause_cfg);
5616 return 0;
5620 * read_eeprom - reads 4 bytes of data from user given offset.
5621 * @sp : private member of the device structure, which is a pointer to the
5622 * s2io_nic structure.
5623 * @off : offset at which the data must be written
5624 * @data : Its an output parameter where the data read at the given
5625 * offset is stored.
5626 * Description:
5627 * Will read 4 bytes of data from the user given offset and return the
5628 * read data.
5629 * NOTE: Will allow to read only part of the EEPROM visible through the
5630 * I2C bus.
5631 * Return value:
5632 * -1 on failure and 0 on success.
5635 #define S2IO_DEV_ID 5
5636 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5638 int ret = -1;
5639 u32 exit_cnt = 0;
5640 u64 val64;
5641 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5643 if (sp->device_type == XFRAME_I_DEVICE) {
5644 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5645 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5646 I2C_CONTROL_CNTL_START;
5647 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5649 while (exit_cnt < 5) {
5650 val64 = readq(&bar0->i2c_control);
5651 if (I2C_CONTROL_CNTL_END(val64)) {
5652 *data = I2C_CONTROL_GET_DATA(val64);
5653 ret = 0;
5654 break;
5656 msleep(50);
5657 exit_cnt++;
5661 if (sp->device_type == XFRAME_II_DEVICE) {
5662 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5663 SPI_CONTROL_BYTECNT(0x3) |
5664 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5665 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5666 val64 |= SPI_CONTROL_REQ;
5667 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5668 while (exit_cnt < 5) {
5669 val64 = readq(&bar0->spi_control);
5670 if (val64 & SPI_CONTROL_NACK) {
5671 ret = 1;
5672 break;
5673 } else if (val64 & SPI_CONTROL_DONE) {
5674 *data = readq(&bar0->spi_data);
5675 *data &= 0xffffff;
5676 ret = 0;
5677 break;
5679 msleep(50);
5680 exit_cnt++;
5683 return ret;
5687 * write_eeprom - actually writes the relevant part of the data value.
5688 * @sp : private member of the device structure, which is a pointer to the
5689 * s2io_nic structure.
5690 * @off : offset at which the data must be written
5691 * @data : The data that is to be written
5692 * @cnt : Number of bytes of the data that are actually to be written into
5693 * the Eeprom. (max of 3)
5694 * Description:
5695 * Actually writes the relevant part of the data value into the Eeprom
5696 * through the I2C bus.
5697 * Return value:
5698 * 0 on success, -1 on failure.
5701 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5703 int exit_cnt = 0, ret = -1;
5704 u64 val64;
5705 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5707 if (sp->device_type == XFRAME_I_DEVICE) {
5708 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5709 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5710 I2C_CONTROL_CNTL_START;
5711 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5713 while (exit_cnt < 5) {
5714 val64 = readq(&bar0->i2c_control);
5715 if (I2C_CONTROL_CNTL_END(val64)) {
5716 if (!(val64 & I2C_CONTROL_NACK))
5717 ret = 0;
5718 break;
5720 msleep(50);
5721 exit_cnt++;
5725 if (sp->device_type == XFRAME_II_DEVICE) {
5726 int write_cnt = (cnt == 8) ? 0 : cnt;
5727 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5729 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5730 SPI_CONTROL_BYTECNT(write_cnt) |
5731 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5732 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5733 val64 |= SPI_CONTROL_REQ;
5734 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5735 while (exit_cnt < 5) {
5736 val64 = readq(&bar0->spi_control);
5737 if (val64 & SPI_CONTROL_NACK) {
5738 ret = 1;
5739 break;
5740 } else if (val64 & SPI_CONTROL_DONE) {
5741 ret = 0;
5742 break;
5744 msleep(50);
5745 exit_cnt++;
5748 return ret;
5750 static void s2io_vpd_read(struct s2io_nic *nic)
5752 u8 *vpd_data;
5753 u8 data;
5754 int i=0, cnt, fail = 0;
5755 int vpd_addr = 0x80;
5757 if (nic->device_type == XFRAME_II_DEVICE) {
5758 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5759 vpd_addr = 0x80;
5761 else {
5762 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5763 vpd_addr = 0x50;
5765 strcpy(nic->serial_num, "NOT AVAILABLE");
5767 vpd_data = kmalloc(256, GFP_KERNEL);
5768 if (!vpd_data) {
5769 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5770 return;
5772 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5774 for (i = 0; i < 256; i +=4 ) {
5775 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5776 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5777 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5778 for (cnt = 0; cnt <5; cnt++) {
5779 msleep(2);
5780 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5781 if (data == 0x80)
5782 break;
5784 if (cnt >= 5) {
5785 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5786 fail = 1;
5787 break;
5789 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5790 (u32 *)&vpd_data[i]);
5793 if(!fail) {
5794 /* read serial number of adapter */
5795 for (cnt = 0; cnt < 256; cnt++) {
5796 if ((vpd_data[cnt] == 'S') &&
5797 (vpd_data[cnt+1] == 'N') &&
5798 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5799 memset(nic->serial_num, 0, VPD_STRING_LEN);
5800 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5801 vpd_data[cnt+2]);
5802 break;
5807 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5808 memset(nic->product_name, 0, vpd_data[1]);
5809 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5811 kfree(vpd_data);
5812 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5816 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5817 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5818 * @eeprom : pointer to the user level structure provided by ethtool,
5819 * containing all relevant information.
5820 * @data_buf : user defined value to be written into Eeprom.
5821 * Description: Reads the values stored in the Eeprom at given offset
5822 * for a given length. Stores these values int the input argument data
5823 * buffer 'data_buf' and returns these to the caller (ethtool.)
5824 * Return value:
5825 * int 0 on success
5828 static int s2io_ethtool_geeprom(struct net_device *dev,
5829 struct ethtool_eeprom *eeprom, u8 * data_buf)
5831 u32 i, valid;
5832 u64 data;
5833 struct s2io_nic *sp = dev->priv;
5835 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5837 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5838 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5840 for (i = 0; i < eeprom->len; i += 4) {
5841 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5842 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5843 return -EFAULT;
5845 valid = INV(data);
5846 memcpy((data_buf + i), &valid, 4);
5848 return 0;
5852 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5853 * @sp : private member of the device structure, which is a pointer to the
5854 * s2io_nic structure.
5855 * @eeprom : pointer to the user level structure provided by ethtool,
5856 * containing all relevant information.
5857 * @data_buf ; user defined value to be written into Eeprom.
5858 * Description:
5859 * Tries to write the user provided value in the Eeprom, at the offset
5860 * given by the user.
5861 * Return value:
5862 * 0 on success, -EFAULT on failure.
5865 static int s2io_ethtool_seeprom(struct net_device *dev,
5866 struct ethtool_eeprom *eeprom,
5867 u8 * data_buf)
5869 int len = eeprom->len, cnt = 0;
5870 u64 valid = 0, data;
5871 struct s2io_nic *sp = dev->priv;
5873 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5874 DBG_PRINT(ERR_DBG,
5875 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5876 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5877 eeprom->magic);
5878 return -EFAULT;
5881 while (len) {
5882 data = (u32) data_buf[cnt] & 0x000000FF;
5883 if (data) {
5884 valid = (u32) (data << 24);
5885 } else
5886 valid = data;
5888 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5889 DBG_PRINT(ERR_DBG,
5890 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5891 DBG_PRINT(ERR_DBG,
5892 "write into the specified offset\n");
5893 return -EFAULT;
5895 cnt++;
5896 len--;
5899 return 0;
5903 * s2io_register_test - reads and writes into all clock domains.
5904 * @sp : private member of the device structure, which is a pointer to the
5905 * s2io_nic structure.
5906 * @data : variable that returns the result of each of the test conducted b
5907 * by the driver.
5908 * Description:
5909 * Read and write into all clock domains. The NIC has 3 clock domains,
5910 * see that registers in all the three regions are accessible.
5911 * Return value:
5912 * 0 on success.
5915 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5917 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5918 u64 val64 = 0, exp_val;
5919 int fail = 0;
5921 val64 = readq(&bar0->pif_rd_swapper_fb);
5922 if (val64 != 0x123456789abcdefULL) {
5923 fail = 1;
5924 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5927 val64 = readq(&bar0->rmac_pause_cfg);
5928 if (val64 != 0xc000ffff00000000ULL) {
5929 fail = 1;
5930 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5933 val64 = readq(&bar0->rx_queue_cfg);
5934 if (sp->device_type == XFRAME_II_DEVICE)
5935 exp_val = 0x0404040404040404ULL;
5936 else
5937 exp_val = 0x0808080808080808ULL;
5938 if (val64 != exp_val) {
5939 fail = 1;
5940 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5943 val64 = readq(&bar0->xgxs_efifo_cfg);
5944 if (val64 != 0x000000001923141EULL) {
5945 fail = 1;
5946 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5949 val64 = 0x5A5A5A5A5A5A5A5AULL;
5950 writeq(val64, &bar0->xmsi_data);
5951 val64 = readq(&bar0->xmsi_data);
5952 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5953 fail = 1;
5954 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5957 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5958 writeq(val64, &bar0->xmsi_data);
5959 val64 = readq(&bar0->xmsi_data);
5960 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5961 fail = 1;
5962 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5965 *data = fail;
5966 return fail;
5970 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5971 * @sp : private member of the device structure, which is a pointer to the
5972 * s2io_nic structure.
5973 * @data:variable that returns the result of each of the test conducted by
5974 * the driver.
5975 * Description:
5976 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5977 * register.
5978 * Return value:
5979 * 0 on success.
5982 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5984 int fail = 0;
5985 u64 ret_data, org_4F0, org_7F0;
5986 u8 saved_4F0 = 0, saved_7F0 = 0;
5987 struct net_device *dev = sp->dev;
5989 /* Test Write Error at offset 0 */
5990 /* Note that SPI interface allows write access to all areas
5991 * of EEPROM. Hence doing all negative testing only for Xframe I.
5993 if (sp->device_type == XFRAME_I_DEVICE)
5994 if (!write_eeprom(sp, 0, 0, 3))
5995 fail = 1;
5997 /* Save current values at offsets 0x4F0 and 0x7F0 */
5998 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5999 saved_4F0 = 1;
6000 if (!read_eeprom(sp, 0x7F0, &org_7F0))
6001 saved_7F0 = 1;
6003 /* Test Write at offset 4f0 */
6004 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6005 fail = 1;
6006 if (read_eeprom(sp, 0x4F0, &ret_data))
6007 fail = 1;
6009 if (ret_data != 0x012345) {
6010 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6011 "Data written %llx Data read %llx\n",
6012 dev->name, (unsigned long long)0x12345,
6013 (unsigned long long)ret_data);
6014 fail = 1;
6017 /* Reset the EEPROM data go FFFF */
6018 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6020 /* Test Write Request Error at offset 0x7c */
6021 if (sp->device_type == XFRAME_I_DEVICE)
6022 if (!write_eeprom(sp, 0x07C, 0, 3))
6023 fail = 1;
6025 /* Test Write Request at offset 0x7f0 */
6026 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6027 fail = 1;
6028 if (read_eeprom(sp, 0x7F0, &ret_data))
6029 fail = 1;
6031 if (ret_data != 0x012345) {
6032 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6033 "Data written %llx Data read %llx\n",
6034 dev->name, (unsigned long long)0x12345,
6035 (unsigned long long)ret_data);
6036 fail = 1;
6039 /* Reset the EEPROM data go FFFF */
6040 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6042 if (sp->device_type == XFRAME_I_DEVICE) {
6043 /* Test Write Error at offset 0x80 */
6044 if (!write_eeprom(sp, 0x080, 0, 3))
6045 fail = 1;
6047 /* Test Write Error at offset 0xfc */
6048 if (!write_eeprom(sp, 0x0FC, 0, 3))
6049 fail = 1;
6051 /* Test Write Error at offset 0x100 */
6052 if (!write_eeprom(sp, 0x100, 0, 3))
6053 fail = 1;
6055 /* Test Write Error at offset 4ec */
6056 if (!write_eeprom(sp, 0x4EC, 0, 3))
6057 fail = 1;
6060 /* Restore values at offsets 0x4F0 and 0x7F0 */
6061 if (saved_4F0)
6062 write_eeprom(sp, 0x4F0, org_4F0, 3);
6063 if (saved_7F0)
6064 write_eeprom(sp, 0x7F0, org_7F0, 3);
6066 *data = fail;
6067 return fail;
6071 * s2io_bist_test - invokes the MemBist test of the card .
6072 * @sp : private member of the device structure, which is a pointer to the
6073 * s2io_nic structure.
6074 * @data:variable that returns the result of each of the test conducted by
6075 * the driver.
6076 * Description:
6077 * This invokes the MemBist test of the card. We give around
6078 * 2 secs time for the Test to complete. If it's still not complete
6079 * within this peiod, we consider that the test failed.
6080 * Return value:
6081 * 0 on success and -1 on failure.
6084 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6086 u8 bist = 0;
6087 int cnt = 0, ret = -1;
6089 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6090 bist |= PCI_BIST_START;
6091 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6093 while (cnt < 20) {
6094 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6095 if (!(bist & PCI_BIST_START)) {
6096 *data = (bist & PCI_BIST_CODE_MASK);
6097 ret = 0;
6098 break;
6100 msleep(100);
6101 cnt++;
6104 return ret;
6108 * s2io-link_test - verifies the link state of the nic
6109 * @sp ; private member of the device structure, which is a pointer to the
6110 * s2io_nic structure.
6111 * @data: variable that returns the result of each of the test conducted by
6112 * the driver.
6113 * Description:
6114 * The function verifies the link state of the NIC and updates the input
6115 * argument 'data' appropriately.
6116 * Return value:
6117 * 0 on success.
6120 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6122 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6123 u64 val64;
6125 val64 = readq(&bar0->adapter_status);
6126 if(!(LINK_IS_UP(val64)))
6127 *data = 1;
6128 else
6129 *data = 0;
6131 return *data;
6135 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6136 * @sp - private member of the device structure, which is a pointer to the
6137 * s2io_nic structure.
6138 * @data - variable that returns the result of each of the test
6139 * conducted by the driver.
6140 * Description:
6141 * This is one of the offline test that tests the read and write
6142 * access to the RldRam chip on the NIC.
6143 * Return value:
6144 * 0 on success.
6147 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6149 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6150 u64 val64;
6151 int cnt, iteration = 0, test_fail = 0;
6153 val64 = readq(&bar0->adapter_control);
6154 val64 &= ~ADAPTER_ECC_EN;
6155 writeq(val64, &bar0->adapter_control);
6157 val64 = readq(&bar0->mc_rldram_test_ctrl);
6158 val64 |= MC_RLDRAM_TEST_MODE;
6159 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6161 val64 = readq(&bar0->mc_rldram_mrs);
6162 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6163 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6165 val64 |= MC_RLDRAM_MRS_ENABLE;
6166 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6168 while (iteration < 2) {
6169 val64 = 0x55555555aaaa0000ULL;
6170 if (iteration == 1) {
6171 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6173 writeq(val64, &bar0->mc_rldram_test_d0);
6175 val64 = 0xaaaa5a5555550000ULL;
6176 if (iteration == 1) {
6177 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6179 writeq(val64, &bar0->mc_rldram_test_d1);
6181 val64 = 0x55aaaaaaaa5a0000ULL;
6182 if (iteration == 1) {
6183 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6185 writeq(val64, &bar0->mc_rldram_test_d2);
6187 val64 = (u64) (0x0000003ffffe0100ULL);
6188 writeq(val64, &bar0->mc_rldram_test_add);
6190 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6191 MC_RLDRAM_TEST_GO;
6192 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6194 for (cnt = 0; cnt < 5; cnt++) {
6195 val64 = readq(&bar0->mc_rldram_test_ctrl);
6196 if (val64 & MC_RLDRAM_TEST_DONE)
6197 break;
6198 msleep(200);
6201 if (cnt == 5)
6202 break;
6204 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6205 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6207 for (cnt = 0; cnt < 5; cnt++) {
6208 val64 = readq(&bar0->mc_rldram_test_ctrl);
6209 if (val64 & MC_RLDRAM_TEST_DONE)
6210 break;
6211 msleep(500);
6214 if (cnt == 5)
6215 break;
6217 val64 = readq(&bar0->mc_rldram_test_ctrl);
6218 if (!(val64 & MC_RLDRAM_TEST_PASS))
6219 test_fail = 1;
6221 iteration++;
6224 *data = test_fail;
6226 /* Bring the adapter out of test mode */
6227 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6229 return test_fail;
6233 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6234 * @sp : private member of the device structure, which is a pointer to the
6235 * s2io_nic structure.
6236 * @ethtest : pointer to a ethtool command specific structure that will be
6237 * returned to the user.
6238 * @data : variable that returns the result of each of the test
6239 * conducted by the driver.
6240 * Description:
6241 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6242 * the health of the card.
6243 * Return value:
6244 * void
6247 static void s2io_ethtool_test(struct net_device *dev,
6248 struct ethtool_test *ethtest,
6249 uint64_t * data)
6251 struct s2io_nic *sp = dev->priv;
6252 int orig_state = netif_running(sp->dev);
6254 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6255 /* Offline Tests. */
6256 if (orig_state)
6257 s2io_close(sp->dev);
6259 if (s2io_register_test(sp, &data[0]))
6260 ethtest->flags |= ETH_TEST_FL_FAILED;
6262 s2io_reset(sp);
6264 if (s2io_rldram_test(sp, &data[3]))
6265 ethtest->flags |= ETH_TEST_FL_FAILED;
6267 s2io_reset(sp);
6269 if (s2io_eeprom_test(sp, &data[1]))
6270 ethtest->flags |= ETH_TEST_FL_FAILED;
6272 if (s2io_bist_test(sp, &data[4]))
6273 ethtest->flags |= ETH_TEST_FL_FAILED;
6275 if (orig_state)
6276 s2io_open(sp->dev);
6278 data[2] = 0;
6279 } else {
6280 /* Online Tests. */
6281 if (!orig_state) {
6282 DBG_PRINT(ERR_DBG,
6283 "%s: is not up, cannot run test\n",
6284 dev->name);
6285 data[0] = -1;
6286 data[1] = -1;
6287 data[2] = -1;
6288 data[3] = -1;
6289 data[4] = -1;
6292 if (s2io_link_test(sp, &data[2]))
6293 ethtest->flags |= ETH_TEST_FL_FAILED;
6295 data[0] = 0;
6296 data[1] = 0;
6297 data[3] = 0;
6298 data[4] = 0;
6302 static void s2io_get_ethtool_stats(struct net_device *dev,
6303 struct ethtool_stats *estats,
6304 u64 * tmp_stats)
6306 int i = 0, k;
6307 struct s2io_nic *sp = dev->priv;
6308 struct stat_block *stat_info = sp->mac_control.stats_info;
6310 s2io_updt_stats(sp);
6311 tmp_stats[i++] =
6312 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6313 le32_to_cpu(stat_info->tmac_frms);
6314 tmp_stats[i++] =
6315 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6316 le32_to_cpu(stat_info->tmac_data_octets);
6317 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6318 tmp_stats[i++] =
6319 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6320 le32_to_cpu(stat_info->tmac_mcst_frms);
6321 tmp_stats[i++] =
6322 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6323 le32_to_cpu(stat_info->tmac_bcst_frms);
6324 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6325 tmp_stats[i++] =
6326 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6327 le32_to_cpu(stat_info->tmac_ttl_octets);
6328 tmp_stats[i++] =
6329 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6330 le32_to_cpu(stat_info->tmac_ucst_frms);
6331 tmp_stats[i++] =
6332 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6333 le32_to_cpu(stat_info->tmac_nucst_frms);
6334 tmp_stats[i++] =
6335 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6336 le32_to_cpu(stat_info->tmac_any_err_frms);
6337 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6338 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6339 tmp_stats[i++] =
6340 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6341 le32_to_cpu(stat_info->tmac_vld_ip);
6342 tmp_stats[i++] =
6343 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6344 le32_to_cpu(stat_info->tmac_drop_ip);
6345 tmp_stats[i++] =
6346 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6347 le32_to_cpu(stat_info->tmac_icmp);
6348 tmp_stats[i++] =
6349 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6350 le32_to_cpu(stat_info->tmac_rst_tcp);
6351 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6352 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6353 le32_to_cpu(stat_info->tmac_udp);
6354 tmp_stats[i++] =
6355 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6356 le32_to_cpu(stat_info->rmac_vld_frms);
6357 tmp_stats[i++] =
6358 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6359 le32_to_cpu(stat_info->rmac_data_octets);
6360 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6361 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6362 tmp_stats[i++] =
6363 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6364 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6365 tmp_stats[i++] =
6366 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6367 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6368 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6369 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6370 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6371 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6372 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6373 tmp_stats[i++] =
6374 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6375 le32_to_cpu(stat_info->rmac_ttl_octets);
6376 tmp_stats[i++] =
6377 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6378 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6379 tmp_stats[i++] =
6380 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6381 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6382 tmp_stats[i++] =
6383 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6384 le32_to_cpu(stat_info->rmac_discarded_frms);
6385 tmp_stats[i++] =
6386 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6387 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6388 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6389 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6390 tmp_stats[i++] =
6391 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6392 le32_to_cpu(stat_info->rmac_usized_frms);
6393 tmp_stats[i++] =
6394 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6395 le32_to_cpu(stat_info->rmac_osized_frms);
6396 tmp_stats[i++] =
6397 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6398 le32_to_cpu(stat_info->rmac_frag_frms);
6399 tmp_stats[i++] =
6400 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6401 le32_to_cpu(stat_info->rmac_jabber_frms);
6402 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6403 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6404 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6405 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6406 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6407 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6408 tmp_stats[i++] =
6409 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6410 le32_to_cpu(stat_info->rmac_ip);
6411 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6412 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6413 tmp_stats[i++] =
6414 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6415 le32_to_cpu(stat_info->rmac_drop_ip);
6416 tmp_stats[i++] =
6417 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6418 le32_to_cpu(stat_info->rmac_icmp);
6419 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6420 tmp_stats[i++] =
6421 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6422 le32_to_cpu(stat_info->rmac_udp);
6423 tmp_stats[i++] =
6424 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6425 le32_to_cpu(stat_info->rmac_err_drp_udp);
6426 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6427 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6428 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6429 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6430 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6431 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6432 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6433 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6434 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6435 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6436 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6437 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6438 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6439 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6440 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6441 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6442 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6443 tmp_stats[i++] =
6444 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6445 le32_to_cpu(stat_info->rmac_pause_cnt);
6446 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6447 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6448 tmp_stats[i++] =
6449 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6450 le32_to_cpu(stat_info->rmac_accepted_ip);
6451 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6452 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6453 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6454 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6455 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6456 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6457 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6458 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6459 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6460 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6461 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6462 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6463 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6464 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6465 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6466 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6467 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6468 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6469 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6471 /* Enhanced statistics exist only for Hercules */
6472 if(sp->device_type == XFRAME_II_DEVICE) {
6473 tmp_stats[i++] =
6474 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6475 tmp_stats[i++] =
6476 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6477 tmp_stats[i++] =
6478 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6479 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6480 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6481 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6482 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6483 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6484 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6485 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6486 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6487 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6488 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6489 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6490 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6491 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6494 tmp_stats[i++] = 0;
6495 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6496 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6497 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6498 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6499 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6500 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6501 for (k = 0; k < MAX_RX_RINGS; k++)
6502 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6503 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6504 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6505 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6506 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6507 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6508 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6509 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6510 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6511 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6512 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6513 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6514 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6515 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6516 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6517 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6518 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6519 if (stat_info->sw_stat.num_aggregations) {
6520 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6521 int count = 0;
6523 * Since 64-bit divide does not work on all platforms,
6524 * do repeated subtraction.
6526 while (tmp >= stat_info->sw_stat.num_aggregations) {
6527 tmp -= stat_info->sw_stat.num_aggregations;
6528 count++;
6530 tmp_stats[i++] = count;
6532 else
6533 tmp_stats[i++] = 0;
6534 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6535 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6536 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6537 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6538 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6539 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6540 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6541 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6542 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6544 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6545 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6546 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6547 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6548 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6550 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6551 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6552 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6553 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6554 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6555 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6556 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6557 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6558 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6559 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6560 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6561 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6562 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6563 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6564 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6565 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6566 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6567 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6568 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6569 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6570 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6571 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6572 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6573 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6574 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6575 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6578 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6580 return (XENA_REG_SPACE);
6584 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6586 struct s2io_nic *sp = dev->priv;
6588 return (sp->rx_csum);
6591 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6593 struct s2io_nic *sp = dev->priv;
6595 if (data)
6596 sp->rx_csum = 1;
6597 else
6598 sp->rx_csum = 0;
6600 return 0;
6603 static int s2io_get_eeprom_len(struct net_device *dev)
6605 return (XENA_EEPROM_SPACE);
6608 static int s2io_get_sset_count(struct net_device *dev, int sset)
6610 struct s2io_nic *sp = dev->priv;
6612 switch (sset) {
6613 case ETH_SS_TEST:
6614 return S2IO_TEST_LEN;
6615 case ETH_SS_STATS:
6616 switch(sp->device_type) {
6617 case XFRAME_I_DEVICE:
6618 return XFRAME_I_STAT_LEN;
6619 case XFRAME_II_DEVICE:
6620 return XFRAME_II_STAT_LEN;
6621 default:
6622 return 0;
6624 default:
6625 return -EOPNOTSUPP;
6629 static void s2io_ethtool_get_strings(struct net_device *dev,
6630 u32 stringset, u8 * data)
6632 int stat_size = 0;
6633 struct s2io_nic *sp = dev->priv;
6635 switch (stringset) {
6636 case ETH_SS_TEST:
6637 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6638 break;
6639 case ETH_SS_STATS:
6640 stat_size = sizeof(ethtool_xena_stats_keys);
6641 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6642 if(sp->device_type == XFRAME_II_DEVICE) {
6643 memcpy(data + stat_size,
6644 &ethtool_enhanced_stats_keys,
6645 sizeof(ethtool_enhanced_stats_keys));
6646 stat_size += sizeof(ethtool_enhanced_stats_keys);
6649 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6650 sizeof(ethtool_driver_stats_keys));
6654 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6656 if (data)
6657 dev->features |= NETIF_F_IP_CSUM;
6658 else
6659 dev->features &= ~NETIF_F_IP_CSUM;
6661 return 0;
6664 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6666 return (dev->features & NETIF_F_TSO) != 0;
6668 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6670 if (data)
6671 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6672 else
6673 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6675 return 0;
6678 static const struct ethtool_ops netdev_ethtool_ops = {
6679 .get_settings = s2io_ethtool_gset,
6680 .set_settings = s2io_ethtool_sset,
6681 .get_drvinfo = s2io_ethtool_gdrvinfo,
6682 .get_regs_len = s2io_ethtool_get_regs_len,
6683 .get_regs = s2io_ethtool_gregs,
6684 .get_link = ethtool_op_get_link,
6685 .get_eeprom_len = s2io_get_eeprom_len,
6686 .get_eeprom = s2io_ethtool_geeprom,
6687 .set_eeprom = s2io_ethtool_seeprom,
6688 .get_ringparam = s2io_ethtool_gringparam,
6689 .get_pauseparam = s2io_ethtool_getpause_data,
6690 .set_pauseparam = s2io_ethtool_setpause_data,
6691 .get_rx_csum = s2io_ethtool_get_rx_csum,
6692 .set_rx_csum = s2io_ethtool_set_rx_csum,
6693 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6694 .set_sg = ethtool_op_set_sg,
6695 .get_tso = s2io_ethtool_op_get_tso,
6696 .set_tso = s2io_ethtool_op_set_tso,
6697 .set_ufo = ethtool_op_set_ufo,
6698 .self_test = s2io_ethtool_test,
6699 .get_strings = s2io_ethtool_get_strings,
6700 .phys_id = s2io_ethtool_idnic,
6701 .get_ethtool_stats = s2io_get_ethtool_stats,
6702 .get_sset_count = s2io_get_sset_count,
6706 * s2io_ioctl - Entry point for the Ioctl
6707 * @dev : Device pointer.
6708 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6709 * a proprietary structure used to pass information to the driver.
6710 * @cmd : This is used to distinguish between the different commands that
6711 * can be passed to the IOCTL functions.
6712 * Description:
6713 * Currently there are no special functionality supported in IOCTL, hence
6714 * function always return EOPNOTSUPPORTED
6717 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6719 return -EOPNOTSUPP;
6723 * s2io_change_mtu - entry point to change MTU size for the device.
6724 * @dev : device pointer.
6725 * @new_mtu : the new MTU size for the device.
6726 * Description: A driver entry point to change MTU size for the device.
6727 * Before changing the MTU the device must be stopped.
6728 * Return value:
6729 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6730 * file on failure.
6733 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6735 struct s2io_nic *sp = dev->priv;
6736 int ret = 0;
6738 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6739 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6740 dev->name);
6741 return -EPERM;
6744 dev->mtu = new_mtu;
6745 if (netif_running(dev)) {
6746 s2io_stop_all_tx_queue(sp);
6747 s2io_card_down(sp);
6748 ret = s2io_card_up(sp);
6749 if (ret) {
6750 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6751 __FUNCTION__);
6752 return ret;
6754 s2io_wake_all_tx_queue(sp);
6755 } else { /* Device is down */
6756 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6757 u64 val64 = new_mtu;
6759 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6762 return ret;
6766 * s2io_set_link - Set the LInk status
6767 * @data: long pointer to device private structue
6768 * Description: Sets the link status for the adapter
6771 static void s2io_set_link(struct work_struct *work)
6773 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6774 struct net_device *dev = nic->dev;
6775 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6776 register u64 val64;
6777 u16 subid;
6779 rtnl_lock();
6781 if (!netif_running(dev))
6782 goto out_unlock;
6784 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6785 /* The card is being reset, no point doing anything */
6786 goto out_unlock;
6789 subid = nic->pdev->subsystem_device;
6790 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6792 * Allow a small delay for the NICs self initiated
6793 * cleanup to complete.
6795 msleep(100);
6798 val64 = readq(&bar0->adapter_status);
6799 if (LINK_IS_UP(val64)) {
6800 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6801 if (verify_xena_quiescence(nic)) {
6802 val64 = readq(&bar0->adapter_control);
6803 val64 |= ADAPTER_CNTL_EN;
6804 writeq(val64, &bar0->adapter_control);
6805 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6806 nic->device_type, subid)) {
6807 val64 = readq(&bar0->gpio_control);
6808 val64 |= GPIO_CTRL_GPIO_0;
6809 writeq(val64, &bar0->gpio_control);
6810 val64 = readq(&bar0->gpio_control);
6811 } else {
6812 val64 |= ADAPTER_LED_ON;
6813 writeq(val64, &bar0->adapter_control);
6815 nic->device_enabled_once = TRUE;
6816 } else {
6817 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6818 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6819 s2io_stop_all_tx_queue(nic);
6822 val64 = readq(&bar0->adapter_control);
6823 val64 |= ADAPTER_LED_ON;
6824 writeq(val64, &bar0->adapter_control);
6825 s2io_link(nic, LINK_UP);
6826 } else {
6827 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6828 subid)) {
6829 val64 = readq(&bar0->gpio_control);
6830 val64 &= ~GPIO_CTRL_GPIO_0;
6831 writeq(val64, &bar0->gpio_control);
6832 val64 = readq(&bar0->gpio_control);
6834 /* turn off LED */
6835 val64 = readq(&bar0->adapter_control);
6836 val64 = val64 &(~ADAPTER_LED_ON);
6837 writeq(val64, &bar0->adapter_control);
6838 s2io_link(nic, LINK_DOWN);
6840 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6842 out_unlock:
6843 rtnl_unlock();
6846 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6847 struct buffAdd *ba,
6848 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6849 u64 *temp2, int size)
6851 struct net_device *dev = sp->dev;
6852 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6854 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6855 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6856 /* allocate skb */
6857 if (*skb) {
6858 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6860 * As Rx frame are not going to be processed,
6861 * using same mapped address for the Rxd
6862 * buffer pointer
6864 rxdp1->Buffer0_ptr = *temp0;
6865 } else {
6866 *skb = dev_alloc_skb(size);
6867 if (!(*skb)) {
6868 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6869 DBG_PRINT(INFO_DBG, "memory to allocate ");
6870 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6871 sp->mac_control.stats_info->sw_stat. \
6872 mem_alloc_fail_cnt++;
6873 return -ENOMEM ;
6875 sp->mac_control.stats_info->sw_stat.mem_allocated
6876 += (*skb)->truesize;
6877 /* storing the mapped addr in a temp variable
6878 * such it will be used for next rxd whose
6879 * Host Control is NULL
6881 rxdp1->Buffer0_ptr = *temp0 =
6882 pci_map_single( sp->pdev, (*skb)->data,
6883 size - NET_IP_ALIGN,
6884 PCI_DMA_FROMDEVICE);
6885 if( (rxdp1->Buffer0_ptr == 0) ||
6886 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6887 goto memalloc_failed;
6889 rxdp->Host_Control = (unsigned long) (*skb);
6891 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6892 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6893 /* Two buffer Mode */
6894 if (*skb) {
6895 rxdp3->Buffer2_ptr = *temp2;
6896 rxdp3->Buffer0_ptr = *temp0;
6897 rxdp3->Buffer1_ptr = *temp1;
6898 } else {
6899 *skb = dev_alloc_skb(size);
6900 if (!(*skb)) {
6901 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6902 DBG_PRINT(INFO_DBG, "memory to allocate ");
6903 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6904 sp->mac_control.stats_info->sw_stat. \
6905 mem_alloc_fail_cnt++;
6906 return -ENOMEM;
6908 sp->mac_control.stats_info->sw_stat.mem_allocated
6909 += (*skb)->truesize;
6910 rxdp3->Buffer2_ptr = *temp2 =
6911 pci_map_single(sp->pdev, (*skb)->data,
6912 dev->mtu + 4,
6913 PCI_DMA_FROMDEVICE);
6914 if( (rxdp3->Buffer2_ptr == 0) ||
6915 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6916 goto memalloc_failed;
6918 rxdp3->Buffer0_ptr = *temp0 =
6919 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6920 PCI_DMA_FROMDEVICE);
6921 if( (rxdp3->Buffer0_ptr == 0) ||
6922 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6923 pci_unmap_single (sp->pdev,
6924 (dma_addr_t)rxdp3->Buffer2_ptr,
6925 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6926 goto memalloc_failed;
6928 rxdp->Host_Control = (unsigned long) (*skb);
6930 /* Buffer-1 will be dummy buffer not used */
6931 rxdp3->Buffer1_ptr = *temp1 =
6932 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6933 PCI_DMA_FROMDEVICE);
6934 if( (rxdp3->Buffer1_ptr == 0) ||
6935 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6936 pci_unmap_single (sp->pdev,
6937 (dma_addr_t)rxdp3->Buffer0_ptr,
6938 BUF0_LEN, PCI_DMA_FROMDEVICE);
6939 pci_unmap_single (sp->pdev,
6940 (dma_addr_t)rxdp3->Buffer2_ptr,
6941 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6942 goto memalloc_failed;
6946 return 0;
6947 memalloc_failed:
6948 stats->pci_map_fail_cnt++;
6949 stats->mem_freed += (*skb)->truesize;
6950 dev_kfree_skb(*skb);
6951 return -ENOMEM;
6954 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6955 int size)
6957 struct net_device *dev = sp->dev;
6958 if (sp->rxd_mode == RXD_MODE_1) {
6959 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6960 } else if (sp->rxd_mode == RXD_MODE_3B) {
6961 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6962 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6963 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6967 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6969 int i, j, k, blk_cnt = 0, size;
6970 struct mac_info * mac_control = &sp->mac_control;
6971 struct config_param *config = &sp->config;
6972 struct net_device *dev = sp->dev;
6973 struct RxD_t *rxdp = NULL;
6974 struct sk_buff *skb = NULL;
6975 struct buffAdd *ba = NULL;
6976 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6978 /* Calculate the size based on ring mode */
6979 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6980 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6981 if (sp->rxd_mode == RXD_MODE_1)
6982 size += NET_IP_ALIGN;
6983 else if (sp->rxd_mode == RXD_MODE_3B)
6984 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6986 for (i = 0; i < config->rx_ring_num; i++) {
6987 blk_cnt = config->rx_cfg[i].num_rxd /
6988 (rxd_count[sp->rxd_mode] +1);
6990 for (j = 0; j < blk_cnt; j++) {
6991 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6992 rxdp = mac_control->rings[i].
6993 rx_blocks[j].rxds[k].virt_addr;
6994 if(sp->rxd_mode == RXD_MODE_3B)
6995 ba = &mac_control->rings[i].ba[j][k];
6996 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6997 &skb,(u64 *)&temp0_64,
6998 (u64 *)&temp1_64,
6999 (u64 *)&temp2_64,
7000 size) == ENOMEM) {
7001 return 0;
7004 set_rxd_buffer_size(sp, rxdp, size);
7005 wmb();
7006 /* flip the Ownership bit to Hardware */
7007 rxdp->Control_1 |= RXD_OWN_XENA;
7011 return 0;
7015 static int s2io_add_isr(struct s2io_nic * sp)
7017 int ret = 0;
7018 struct net_device *dev = sp->dev;
7019 int err = 0;
7021 if (sp->config.intr_type == MSI_X)
7022 ret = s2io_enable_msi_x(sp);
7023 if (ret) {
7024 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7025 sp->config.intr_type = INTA;
7028 /* Store the values of the MSIX table in the struct s2io_nic structure */
7029 store_xmsi_data(sp);
7031 /* After proper initialization of H/W, register ISR */
7032 if (sp->config.intr_type == MSI_X) {
7033 int i, msix_rx_cnt = 0;
7035 for (i = 0; i < sp->num_entries; i++) {
7036 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7037 if (sp->s2io_entries[i].type ==
7038 MSIX_RING_TYPE) {
7039 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7040 dev->name, i);
7041 err = request_irq(sp->entries[i].vector,
7042 s2io_msix_ring_handle, 0,
7043 sp->desc[i],
7044 sp->s2io_entries[i].arg);
7045 } else if (sp->s2io_entries[i].type ==
7046 MSIX_ALARM_TYPE) {
7047 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7048 dev->name, i);
7049 err = request_irq(sp->entries[i].vector,
7050 s2io_msix_fifo_handle, 0,
7051 sp->desc[i],
7052 sp->s2io_entries[i].arg);
7055 /* if either data or addr is zero print it. */
7056 if (!(sp->msix_info[i].addr &&
7057 sp->msix_info[i].data)) {
7058 DBG_PRINT(ERR_DBG,
7059 "%s @Addr:0x%llx Data:0x%llx\n",
7060 sp->desc[i],
7061 (unsigned long long)
7062 sp->msix_info[i].addr,
7063 (unsigned long long)
7064 ntohl(sp->msix_info[i].data));
7065 } else
7066 msix_rx_cnt++;
7067 if (err) {
7068 remove_msix_isr(sp);
7070 DBG_PRINT(ERR_DBG,
7071 "%s:MSI-X-%d registration "
7072 "failed\n", dev->name, i);
7074 DBG_PRINT(ERR_DBG,
7075 "%s: Defaulting to INTA\n",
7076 dev->name);
7077 sp->config.intr_type = INTA;
7078 break;
7080 sp->s2io_entries[i].in_use =
7081 MSIX_REGISTERED_SUCCESS;
7084 if (!err) {
7085 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7086 --msix_rx_cnt);
7087 DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7088 " through alarm vector\n");
7091 if (sp->config.intr_type == INTA) {
7092 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7093 sp->name, dev);
7094 if (err) {
7095 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7096 dev->name);
7097 return -1;
7100 return 0;
7102 static void s2io_rem_isr(struct s2io_nic * sp)
7104 if (sp->config.intr_type == MSI_X)
7105 remove_msix_isr(sp);
7106 else
7107 remove_inta_isr(sp);
7110 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7112 int cnt = 0;
7113 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7114 register u64 val64 = 0;
7115 struct config_param *config;
7116 config = &sp->config;
7118 if (!is_s2io_card_up(sp))
7119 return;
7121 del_timer_sync(&sp->alarm_timer);
7122 /* If s2io_set_link task is executing, wait till it completes. */
7123 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7124 msleep(50);
7126 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7128 /* Disable napi */
7129 if (sp->config.napi) {
7130 int off = 0;
7131 if (config->intr_type == MSI_X) {
7132 for (; off < sp->config.rx_ring_num; off++)
7133 napi_disable(&sp->mac_control.rings[off].napi);
7135 else
7136 napi_disable(&sp->napi);
7139 /* disable Tx and Rx traffic on the NIC */
7140 if (do_io)
7141 stop_nic(sp);
7143 s2io_rem_isr(sp);
7145 /* Check if the device is Quiescent and then Reset the NIC */
7146 while(do_io) {
7147 /* As per the HW requirement we need to replenish the
7148 * receive buffer to avoid the ring bump. Since there is
7149 * no intention of processing the Rx frame at this pointwe are
7150 * just settting the ownership bit of rxd in Each Rx
7151 * ring to HW and set the appropriate buffer size
7152 * based on the ring mode
7154 rxd_owner_bit_reset(sp);
7156 val64 = readq(&bar0->adapter_status);
7157 if (verify_xena_quiescence(sp)) {
7158 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7159 break;
7162 msleep(50);
7163 cnt++;
7164 if (cnt == 10) {
7165 DBG_PRINT(ERR_DBG,
7166 "s2io_close:Device not Quiescent ");
7167 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7168 (unsigned long long) val64);
7169 break;
7172 if (do_io)
7173 s2io_reset(sp);
7175 /* Free all Tx buffers */
7176 free_tx_buffers(sp);
7178 /* Free all Rx buffers */
7179 free_rx_buffers(sp);
7181 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7184 static void s2io_card_down(struct s2io_nic * sp)
7186 do_s2io_card_down(sp, 1);
7189 static int s2io_card_up(struct s2io_nic * sp)
7191 int i, ret = 0;
7192 struct mac_info *mac_control;
7193 struct config_param *config;
7194 struct net_device *dev = (struct net_device *) sp->dev;
7195 u16 interruptible;
7197 /* Initialize the H/W I/O registers */
7198 ret = init_nic(sp);
7199 if (ret != 0) {
7200 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7201 dev->name);
7202 if (ret != -EIO)
7203 s2io_reset(sp);
7204 return ret;
7208 * Initializing the Rx buffers. For now we are considering only 1
7209 * Rx ring and initializing buffers into 30 Rx blocks
7211 mac_control = &sp->mac_control;
7212 config = &sp->config;
7214 for (i = 0; i < config->rx_ring_num; i++) {
7215 mac_control->rings[i].mtu = dev->mtu;
7216 ret = fill_rx_buffers(&mac_control->rings[i]);
7217 if (ret) {
7218 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7219 dev->name);
7220 s2io_reset(sp);
7221 free_rx_buffers(sp);
7222 return -ENOMEM;
7224 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7225 mac_control->rings[i].rx_bufs_left);
7228 /* Initialise napi */
7229 if (config->napi) {
7230 int i;
7231 if (config->intr_type == MSI_X) {
7232 for (i = 0; i < sp->config.rx_ring_num; i++)
7233 napi_enable(&sp->mac_control.rings[i].napi);
7234 } else {
7235 napi_enable(&sp->napi);
7239 /* Maintain the state prior to the open */
7240 if (sp->promisc_flg)
7241 sp->promisc_flg = 0;
7242 if (sp->m_cast_flg) {
7243 sp->m_cast_flg = 0;
7244 sp->all_multi_pos= 0;
7247 /* Setting its receive mode */
7248 s2io_set_multicast(dev);
7250 if (sp->lro) {
7251 /* Initialize max aggregatable pkts per session based on MTU */
7252 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7253 /* Check if we can use(if specified) user provided value */
7254 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7255 sp->lro_max_aggr_per_sess = lro_max_pkts;
7258 /* Enable Rx Traffic and interrupts on the NIC */
7259 if (start_nic(sp)) {
7260 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7261 s2io_reset(sp);
7262 free_rx_buffers(sp);
7263 return -ENODEV;
7266 /* Add interrupt service routine */
7267 if (s2io_add_isr(sp) != 0) {
7268 if (sp->config.intr_type == MSI_X)
7269 s2io_rem_isr(sp);
7270 s2io_reset(sp);
7271 free_rx_buffers(sp);
7272 return -ENODEV;
7275 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7277 /* Enable select interrupts */
7278 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7279 if (sp->config.intr_type != INTA)
7280 en_dis_able_nic_intrs(sp, TX_TRAFFIC_INTR, ENABLE_INTRS);
7281 else {
7282 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7283 interruptible |= TX_PIC_INTR;
7284 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7287 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7288 return 0;
7292 * s2io_restart_nic - Resets the NIC.
7293 * @data : long pointer to the device private structure
7294 * Description:
7295 * This function is scheduled to be run by the s2io_tx_watchdog
7296 * function after 0.5 secs to reset the NIC. The idea is to reduce
7297 * the run time of the watch dog routine which is run holding a
7298 * spin lock.
7301 static void s2io_restart_nic(struct work_struct *work)
7303 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7304 struct net_device *dev = sp->dev;
7306 rtnl_lock();
7308 if (!netif_running(dev))
7309 goto out_unlock;
7311 s2io_card_down(sp);
7312 if (s2io_card_up(sp)) {
7313 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7314 dev->name);
7316 s2io_wake_all_tx_queue(sp);
7317 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7318 dev->name);
7319 out_unlock:
7320 rtnl_unlock();
7324 * s2io_tx_watchdog - Watchdog for transmit side.
7325 * @dev : Pointer to net device structure
7326 * Description:
7327 * This function is triggered if the Tx Queue is stopped
7328 * for a pre-defined amount of time when the Interface is still up.
7329 * If the Interface is jammed in such a situation, the hardware is
7330 * reset (by s2io_close) and restarted again (by s2io_open) to
7331 * overcome any problem that might have been caused in the hardware.
7332 * Return value:
7333 * void
7336 static void s2io_tx_watchdog(struct net_device *dev)
7338 struct s2io_nic *sp = dev->priv;
7340 if (netif_carrier_ok(dev)) {
7341 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7342 schedule_work(&sp->rst_timer_task);
7343 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7348 * rx_osm_handler - To perform some OS related operations on SKB.
7349 * @sp: private member of the device structure,pointer to s2io_nic structure.
7350 * @skb : the socket buffer pointer.
7351 * @len : length of the packet
7352 * @cksum : FCS checksum of the frame.
7353 * @ring_no : the ring from which this RxD was extracted.
7354 * Description:
7355 * This function is called by the Rx interrupt serivce routine to perform
7356 * some OS related operations on the SKB before passing it to the upper
7357 * layers. It mainly checks if the checksum is OK, if so adds it to the
7358 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7359 * to the upper layer. If the checksum is wrong, it increments the Rx
7360 * packet error count, frees the SKB and returns error.
7361 * Return value:
7362 * SUCCESS on success and -1 on failure.
7364 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7366 struct s2io_nic *sp = ring_data->nic;
7367 struct net_device *dev = (struct net_device *) ring_data->dev;
7368 struct sk_buff *skb = (struct sk_buff *)
7369 ((unsigned long) rxdp->Host_Control);
7370 int ring_no = ring_data->ring_no;
7371 u16 l3_csum, l4_csum;
7372 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7373 struct lro *lro;
7374 u8 err_mask;
7376 skb->dev = dev;
7378 if (err) {
7379 /* Check for parity error */
7380 if (err & 0x1) {
7381 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7383 err_mask = err >> 48;
7384 switch(err_mask) {
7385 case 1:
7386 sp->mac_control.stats_info->sw_stat.
7387 rx_parity_err_cnt++;
7388 break;
7390 case 2:
7391 sp->mac_control.stats_info->sw_stat.
7392 rx_abort_cnt++;
7393 break;
7395 case 3:
7396 sp->mac_control.stats_info->sw_stat.
7397 rx_parity_abort_cnt++;
7398 break;
7400 case 4:
7401 sp->mac_control.stats_info->sw_stat.
7402 rx_rda_fail_cnt++;
7403 break;
7405 case 5:
7406 sp->mac_control.stats_info->sw_stat.
7407 rx_unkn_prot_cnt++;
7408 break;
7410 case 6:
7411 sp->mac_control.stats_info->sw_stat.
7412 rx_fcs_err_cnt++;
7413 break;
7415 case 7:
7416 sp->mac_control.stats_info->sw_stat.
7417 rx_buf_size_err_cnt++;
7418 break;
7420 case 8:
7421 sp->mac_control.stats_info->sw_stat.
7422 rx_rxd_corrupt_cnt++;
7423 break;
7425 case 15:
7426 sp->mac_control.stats_info->sw_stat.
7427 rx_unkn_err_cnt++;
7428 break;
7431 * Drop the packet if bad transfer code. Exception being
7432 * 0x5, which could be due to unsupported IPv6 extension header.
7433 * In this case, we let stack handle the packet.
7434 * Note that in this case, since checksum will be incorrect,
7435 * stack will validate the same.
7437 if (err_mask != 0x5) {
7438 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7439 dev->name, err_mask);
7440 sp->stats.rx_crc_errors++;
7441 sp->mac_control.stats_info->sw_stat.mem_freed
7442 += skb->truesize;
7443 dev_kfree_skb(skb);
7444 ring_data->rx_bufs_left -= 1;
7445 rxdp->Host_Control = 0;
7446 return 0;
7450 /* Updating statistics */
7451 ring_data->rx_packets++;
7452 rxdp->Host_Control = 0;
7453 if (sp->rxd_mode == RXD_MODE_1) {
7454 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7456 ring_data->rx_bytes += len;
7457 skb_put(skb, len);
7459 } else if (sp->rxd_mode == RXD_MODE_3B) {
7460 int get_block = ring_data->rx_curr_get_info.block_index;
7461 int get_off = ring_data->rx_curr_get_info.offset;
7462 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7463 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7464 unsigned char *buff = skb_push(skb, buf0_len);
7466 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7467 ring_data->rx_bytes += buf0_len + buf2_len;
7468 memcpy(buff, ba->ba_0, buf0_len);
7469 skb_put(skb, buf2_len);
7472 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7473 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7474 (sp->rx_csum)) {
7475 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7476 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7477 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7479 * NIC verifies if the Checksum of the received
7480 * frame is Ok or not and accordingly returns
7481 * a flag in the RxD.
7483 skb->ip_summed = CHECKSUM_UNNECESSARY;
7484 if (ring_data->lro) {
7485 u32 tcp_len;
7486 u8 *tcp;
7487 int ret = 0;
7489 ret = s2io_club_tcp_session(ring_data,
7490 skb->data, &tcp, &tcp_len, &lro,
7491 rxdp, sp);
7492 switch (ret) {
7493 case 3: /* Begin anew */
7494 lro->parent = skb;
7495 goto aggregate;
7496 case 1: /* Aggregate */
7498 lro_append_pkt(sp, lro,
7499 skb, tcp_len);
7500 goto aggregate;
7502 case 4: /* Flush session */
7504 lro_append_pkt(sp, lro,
7505 skb, tcp_len);
7506 queue_rx_frame(lro->parent,
7507 lro->vlan_tag);
7508 clear_lro_session(lro);
7509 sp->mac_control.stats_info->
7510 sw_stat.flush_max_pkts++;
7511 goto aggregate;
7513 case 2: /* Flush both */
7514 lro->parent->data_len =
7515 lro->frags_len;
7516 sp->mac_control.stats_info->
7517 sw_stat.sending_both++;
7518 queue_rx_frame(lro->parent,
7519 lro->vlan_tag);
7520 clear_lro_session(lro);
7521 goto send_up;
7522 case 0: /* sessions exceeded */
7523 case -1: /* non-TCP or not
7524 * L2 aggregatable
7526 case 5: /*
7527 * First pkt in session not
7528 * L3/L4 aggregatable
7530 break;
7531 default:
7532 DBG_PRINT(ERR_DBG,
7533 "%s: Samadhana!!\n",
7534 __FUNCTION__);
7535 BUG();
7538 } else {
7540 * Packet with erroneous checksum, let the
7541 * upper layers deal with it.
7543 skb->ip_summed = CHECKSUM_NONE;
7545 } else
7546 skb->ip_summed = CHECKSUM_NONE;
7548 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7549 send_up:
7550 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7551 dev->last_rx = jiffies;
7552 aggregate:
7553 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7554 return SUCCESS;
7558 * s2io_link - stops/starts the Tx queue.
7559 * @sp : private member of the device structure, which is a pointer to the
7560 * s2io_nic structure.
7561 * @link : inidicates whether link is UP/DOWN.
7562 * Description:
7563 * This function stops/starts the Tx queue depending on whether the link
7564 * status of the NIC is is down or up. This is called by the Alarm
7565 * interrupt handler whenever a link change interrupt comes up.
7566 * Return value:
7567 * void.
7570 static void s2io_link(struct s2io_nic * sp, int link)
7572 struct net_device *dev = (struct net_device *) sp->dev;
7574 if (link != sp->last_link_state) {
7575 init_tti(sp, link);
7576 if (link == LINK_DOWN) {
7577 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7578 s2io_stop_all_tx_queue(sp);
7579 netif_carrier_off(dev);
7580 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7581 sp->mac_control.stats_info->sw_stat.link_up_time =
7582 jiffies - sp->start_time;
7583 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7584 } else {
7585 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7586 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7587 sp->mac_control.stats_info->sw_stat.link_down_time =
7588 jiffies - sp->start_time;
7589 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7590 netif_carrier_on(dev);
7591 s2io_wake_all_tx_queue(sp);
7594 sp->last_link_state = link;
7595 sp->start_time = jiffies;
7599 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7600 * @sp : private member of the device structure, which is a pointer to the
7601 * s2io_nic structure.
7602 * Description:
7603 * This function initializes a few of the PCI and PCI-X configuration registers
7604 * with recommended values.
7605 * Return value:
7606 * void
7609 static void s2io_init_pci(struct s2io_nic * sp)
7611 u16 pci_cmd = 0, pcix_cmd = 0;
7613 /* Enable Data Parity Error Recovery in PCI-X command register. */
7614 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7615 &(pcix_cmd));
7616 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7617 (pcix_cmd | 1));
7618 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7619 &(pcix_cmd));
7621 /* Set the PErr Response bit in PCI command register. */
7622 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7623 pci_write_config_word(sp->pdev, PCI_COMMAND,
7624 (pci_cmd | PCI_COMMAND_PARITY));
7625 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7628 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7629 u8 *dev_multiq)
7631 if ((tx_fifo_num > MAX_TX_FIFOS) ||
7632 (tx_fifo_num < 1)) {
7633 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7634 "(%d) not supported\n", tx_fifo_num);
7636 if (tx_fifo_num < 1)
7637 tx_fifo_num = 1;
7638 else
7639 tx_fifo_num = MAX_TX_FIFOS;
7641 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7642 DBG_PRINT(ERR_DBG, "tx fifos\n");
7645 #ifndef CONFIG_NETDEVICES_MULTIQUEUE
7646 if (multiq) {
7647 DBG_PRINT(ERR_DBG, "s2io: Multiqueue support not enabled\n");
7648 multiq = 0;
7650 #endif
7651 if (multiq)
7652 *dev_multiq = multiq;
7654 if (tx_steering_type && (1 == tx_fifo_num)) {
7655 if (tx_steering_type != TX_DEFAULT_STEERING)
7656 DBG_PRINT(ERR_DBG,
7657 "s2io: Tx steering is not supported with "
7658 "one fifo. Disabling Tx steering.\n");
7659 tx_steering_type = NO_STEERING;
7662 if ((tx_steering_type < NO_STEERING) ||
7663 (tx_steering_type > TX_DEFAULT_STEERING)) {
7664 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7665 "supported\n");
7666 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7667 tx_steering_type = NO_STEERING;
7670 if (rx_ring_num > MAX_RX_RINGS) {
7671 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
7672 "supported\n");
7673 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7674 MAX_RX_RINGS);
7675 rx_ring_num = MAX_RX_RINGS;
7678 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7679 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7680 "Defaulting to INTA\n");
7681 *dev_intr_type = INTA;
7684 if ((*dev_intr_type == MSI_X) &&
7685 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7686 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7687 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7688 "Defaulting to INTA\n");
7689 *dev_intr_type = INTA;
7692 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7693 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7694 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7695 rx_ring_mode = 1;
7697 return SUCCESS;
7701 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7702 * or Traffic class respectively.
7703 * @nic: device private variable
7704 * Description: The function configures the receive steering to
7705 * desired receive ring.
7706 * Return Value: SUCCESS on success and
7707 * '-1' on failure (endian settings incorrect).
7709 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7711 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7712 register u64 val64 = 0;
7714 if (ds_codepoint > 63)
7715 return FAILURE;
7717 val64 = RTS_DS_MEM_DATA(ring);
7718 writeq(val64, &bar0->rts_ds_mem_data);
7720 val64 = RTS_DS_MEM_CTRL_WE |
7721 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7722 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7724 writeq(val64, &bar0->rts_ds_mem_ctrl);
7726 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7727 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7728 S2IO_BIT_RESET);
7732 * s2io_init_nic - Initialization of the adapter .
7733 * @pdev : structure containing the PCI related information of the device.
7734 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7735 * Description:
7736 * The function initializes an adapter identified by the pci_dec structure.
7737 * All OS related initialization including memory and device structure and
7738 * initlaization of the device private variable is done. Also the swapper
7739 * control register is initialized to enable read and write into the I/O
7740 * registers of the device.
7741 * Return value:
7742 * returns 0 on success and negative on failure.
7745 static int __devinit
7746 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7748 struct s2io_nic *sp;
7749 struct net_device *dev;
7750 int i, j, ret;
7751 int dma_flag = FALSE;
7752 u32 mac_up, mac_down;
7753 u64 val64 = 0, tmp64 = 0;
7754 struct XENA_dev_config __iomem *bar0 = NULL;
7755 u16 subid;
7756 struct mac_info *mac_control;
7757 struct config_param *config;
7758 int mode;
7759 u8 dev_intr_type = intr_type;
7760 u8 dev_multiq = 0;
7761 DECLARE_MAC_BUF(mac);
7763 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7764 if (ret)
7765 return ret;
7767 if ((ret = pci_enable_device(pdev))) {
7768 DBG_PRINT(ERR_DBG,
7769 "s2io_init_nic: pci_enable_device failed\n");
7770 return ret;
7773 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7774 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7775 dma_flag = TRUE;
7776 if (pci_set_consistent_dma_mask
7777 (pdev, DMA_64BIT_MASK)) {
7778 DBG_PRINT(ERR_DBG,
7779 "Unable to obtain 64bit DMA for \
7780 consistent allocations\n");
7781 pci_disable_device(pdev);
7782 return -ENOMEM;
7784 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7785 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7786 } else {
7787 pci_disable_device(pdev);
7788 return -ENOMEM;
7790 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7791 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7792 pci_disable_device(pdev);
7793 return -ENODEV;
7795 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7796 if (dev_multiq)
7797 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7798 else
7799 #endif
7800 dev = alloc_etherdev(sizeof(struct s2io_nic));
7801 if (dev == NULL) {
7802 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7803 pci_disable_device(pdev);
7804 pci_release_regions(pdev);
7805 return -ENODEV;
7808 pci_set_master(pdev);
7809 pci_set_drvdata(pdev, dev);
7810 SET_NETDEV_DEV(dev, &pdev->dev);
7812 /* Private member variable initialized to s2io NIC structure */
7813 sp = dev->priv;
7814 memset(sp, 0, sizeof(struct s2io_nic));
7815 sp->dev = dev;
7816 sp->pdev = pdev;
7817 sp->high_dma_flag = dma_flag;
7818 sp->device_enabled_once = FALSE;
7819 if (rx_ring_mode == 1)
7820 sp->rxd_mode = RXD_MODE_1;
7821 if (rx_ring_mode == 2)
7822 sp->rxd_mode = RXD_MODE_3B;
7824 sp->config.intr_type = dev_intr_type;
7826 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7827 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7828 sp->device_type = XFRAME_II_DEVICE;
7829 else
7830 sp->device_type = XFRAME_I_DEVICE;
7832 sp->lro = lro_enable;
7834 /* Initialize some PCI/PCI-X fields of the NIC. */
7835 s2io_init_pci(sp);
7838 * Setting the device configuration parameters.
7839 * Most of these parameters can be specified by the user during
7840 * module insertion as they are module loadable parameters. If
7841 * these parameters are not not specified during load time, they
7842 * are initialized with default values.
7844 mac_control = &sp->mac_control;
7845 config = &sp->config;
7847 config->napi = napi;
7848 config->tx_steering_type = tx_steering_type;
7850 /* Tx side parameters. */
7851 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7852 config->tx_fifo_num = MAX_TX_FIFOS;
7853 else
7854 config->tx_fifo_num = tx_fifo_num;
7856 /* Initialize the fifos used for tx steering */
7857 if (config->tx_fifo_num < 5) {
7858 if (config->tx_fifo_num == 1)
7859 sp->total_tcp_fifos = 1;
7860 else
7861 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7862 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7863 sp->total_udp_fifos = 1;
7864 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7865 } else {
7866 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7867 FIFO_OTHER_MAX_NUM);
7868 sp->udp_fifo_idx = sp->total_tcp_fifos;
7869 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7870 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7873 config->multiq = dev_multiq;
7874 for (i = 0; i < config->tx_fifo_num; i++) {
7875 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7876 config->tx_cfg[i].fifo_priority = i;
7879 /* mapping the QoS priority to the configured fifos */
7880 for (i = 0; i < MAX_TX_FIFOS; i++)
7881 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7883 /* map the hashing selector table to the configured fifos */
7884 for (i = 0; i < config->tx_fifo_num; i++)
7885 sp->fifo_selector[i] = fifo_selector[i];
7888 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7889 for (i = 0; i < config->tx_fifo_num; i++) {
7890 config->tx_cfg[i].f_no_snoop =
7891 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7892 if (config->tx_cfg[i].fifo_len < 65) {
7893 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7894 break;
7897 /* + 2 because one Txd for skb->data and one Txd for UFO */
7898 config->max_txds = MAX_SKB_FRAGS + 2;
7900 /* Rx side parameters. */
7901 config->rx_ring_num = rx_ring_num;
7902 for (i = 0; i < config->rx_ring_num; i++) {
7903 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7904 (rxd_count[sp->rxd_mode] + 1);
7905 config->rx_cfg[i].ring_priority = i;
7906 mac_control->rings[i].rx_bufs_left = 0;
7907 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7908 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7909 mac_control->rings[i].pdev = sp->pdev;
7910 mac_control->rings[i].dev = sp->dev;
7913 for (i = 0; i < rx_ring_num; i++) {
7914 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7915 config->rx_cfg[i].f_no_snoop =
7916 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7919 /* Setting Mac Control parameters */
7920 mac_control->rmac_pause_time = rmac_pause_time;
7921 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7922 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7925 /* initialize the shared memory used by the NIC and the host */
7926 if (init_shared_mem(sp)) {
7927 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7928 dev->name);
7929 ret = -ENOMEM;
7930 goto mem_alloc_failed;
7933 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7934 pci_resource_len(pdev, 0));
7935 if (!sp->bar0) {
7936 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7937 dev->name);
7938 ret = -ENOMEM;
7939 goto bar0_remap_failed;
7942 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7943 pci_resource_len(pdev, 2));
7944 if (!sp->bar1) {
7945 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7946 dev->name);
7947 ret = -ENOMEM;
7948 goto bar1_remap_failed;
7951 dev->irq = pdev->irq;
7952 dev->base_addr = (unsigned long) sp->bar0;
7954 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7955 for (j = 0; j < MAX_TX_FIFOS; j++) {
7956 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7957 (sp->bar1 + (j * 0x00020000));
7960 /* Driver entry points */
7961 dev->open = &s2io_open;
7962 dev->stop = &s2io_close;
7963 dev->hard_start_xmit = &s2io_xmit;
7964 dev->get_stats = &s2io_get_stats;
7965 dev->set_multicast_list = &s2io_set_multicast;
7966 dev->do_ioctl = &s2io_ioctl;
7967 dev->set_mac_address = &s2io_set_mac_addr;
7968 dev->change_mtu = &s2io_change_mtu;
7969 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7970 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7971 dev->vlan_rx_register = s2io_vlan_rx_register;
7972 dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7975 * will use eth_mac_addr() for dev->set_mac_address
7976 * mac address will be set every time dev->open() is called
7978 #ifdef CONFIG_NET_POLL_CONTROLLER
7979 dev->poll_controller = s2io_netpoll;
7980 #endif
7982 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7983 if (sp->high_dma_flag == TRUE)
7984 dev->features |= NETIF_F_HIGHDMA;
7985 dev->features |= NETIF_F_TSO;
7986 dev->features |= NETIF_F_TSO6;
7987 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7988 dev->features |= NETIF_F_UFO;
7989 dev->features |= NETIF_F_HW_CSUM;
7991 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
7992 if (config->multiq)
7993 dev->features |= NETIF_F_MULTI_QUEUE;
7994 #endif
7995 dev->tx_timeout = &s2io_tx_watchdog;
7996 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7997 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7998 INIT_WORK(&sp->set_link_task, s2io_set_link);
8000 pci_save_state(sp->pdev);
8002 /* Setting swapper control on the NIC, for proper reset operation */
8003 if (s2io_set_swapper(sp)) {
8004 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
8005 dev->name);
8006 ret = -EAGAIN;
8007 goto set_swap_failed;
8010 /* Verify if the Herc works on the slot its placed into */
8011 if (sp->device_type & XFRAME_II_DEVICE) {
8012 mode = s2io_verify_pci_mode(sp);
8013 if (mode < 0) {
8014 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
8015 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8016 ret = -EBADSLT;
8017 goto set_swap_failed;
8021 if (sp->config.intr_type == MSI_X) {
8022 sp->num_entries = config->rx_ring_num + 1;
8023 ret = s2io_enable_msi_x(sp);
8025 if (!ret) {
8026 ret = s2io_test_msi(sp);
8027 /* rollback MSI-X, will re-enable during add_isr() */
8028 remove_msix_isr(sp);
8030 if (ret) {
8032 DBG_PRINT(ERR_DBG,
8033 "%s: MSI-X requested but failed to enable\n",
8034 dev->name);
8035 sp->config.intr_type = INTA;
8039 if (config->intr_type == MSI_X) {
8040 for (i = 0; i < config->rx_ring_num ; i++)
8041 netif_napi_add(dev, &mac_control->rings[i].napi,
8042 s2io_poll_msix, 64);
8043 } else {
8044 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8047 /* Not needed for Herc */
8048 if (sp->device_type & XFRAME_I_DEVICE) {
8050 * Fix for all "FFs" MAC address problems observed on
8051 * Alpha platforms
8053 fix_mac_address(sp);
8054 s2io_reset(sp);
8058 * MAC address initialization.
8059 * For now only one mac address will be read and used.
8061 bar0 = sp->bar0;
8062 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8063 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8064 writeq(val64, &bar0->rmac_addr_cmd_mem);
8065 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8066 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
8067 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8068 mac_down = (u32) tmp64;
8069 mac_up = (u32) (tmp64 >> 32);
8071 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8072 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8073 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8074 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8075 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8076 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8078 /* Set the factory defined MAC address initially */
8079 dev->addr_len = ETH_ALEN;
8080 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8081 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8083 /* initialize number of multicast & unicast MAC entries variables */
8084 if (sp->device_type == XFRAME_I_DEVICE) {
8085 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8086 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8087 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8088 } else if (sp->device_type == XFRAME_II_DEVICE) {
8089 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8090 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8091 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8094 /* store mac addresses from CAM to s2io_nic structure */
8095 do_s2io_store_unicast_mc(sp);
8097 /* Configure MSIX vector for number of rings configured plus one */
8098 if ((sp->device_type == XFRAME_II_DEVICE) &&
8099 (config->intr_type == MSI_X))
8100 sp->num_entries = config->rx_ring_num + 1;
8102 /* Store the values of the MSIX table in the s2io_nic structure */
8103 store_xmsi_data(sp);
8104 /* reset Nic and bring it to known state */
8105 s2io_reset(sp);
8108 * Initialize link state flags
8109 * and the card state parameter
8111 sp->state = 0;
8113 /* Initialize spinlocks */
8114 for (i = 0; i < sp->config.tx_fifo_num; i++)
8115 spin_lock_init(&mac_control->fifos[i].tx_lock);
8118 * SXE-002: Configure link and activity LED to init state
8119 * on driver load.
8121 subid = sp->pdev->subsystem_device;
8122 if ((subid & 0xFF) >= 0x07) {
8123 val64 = readq(&bar0->gpio_control);
8124 val64 |= 0x0000800000000000ULL;
8125 writeq(val64, &bar0->gpio_control);
8126 val64 = 0x0411040400000000ULL;
8127 writeq(val64, (void __iomem *) bar0 + 0x2700);
8128 val64 = readq(&bar0->gpio_control);
8131 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8133 if (register_netdev(dev)) {
8134 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8135 ret = -ENODEV;
8136 goto register_failed;
8138 s2io_vpd_read(sp);
8139 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8140 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8141 sp->product_name, pdev->revision);
8142 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8143 s2io_driver_version);
8144 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
8145 dev->name, print_mac(mac, dev->dev_addr));
8146 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8147 if (sp->device_type & XFRAME_II_DEVICE) {
8148 mode = s2io_print_pci_mode(sp);
8149 if (mode < 0) {
8150 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8151 ret = -EBADSLT;
8152 unregister_netdev(dev);
8153 goto set_swap_failed;
8156 switch(sp->rxd_mode) {
8157 case RXD_MODE_1:
8158 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8159 dev->name);
8160 break;
8161 case RXD_MODE_3B:
8162 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8163 dev->name);
8164 break;
8167 switch (sp->config.napi) {
8168 case 0:
8169 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8170 break;
8171 case 1:
8172 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8173 break;
8176 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8177 sp->config.tx_fifo_num);
8179 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8180 sp->config.rx_ring_num);
8182 switch(sp->config.intr_type) {
8183 case INTA:
8184 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8185 break;
8186 case MSI_X:
8187 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8188 break;
8190 if (sp->config.multiq) {
8191 for (i = 0; i < sp->config.tx_fifo_num; i++)
8192 mac_control->fifos[i].multiq = config->multiq;
8193 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8194 dev->name);
8195 } else
8196 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8197 dev->name);
8199 switch (sp->config.tx_steering_type) {
8200 case NO_STEERING:
8201 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8202 " transmit\n", dev->name);
8203 break;
8204 case TX_PRIORITY_STEERING:
8205 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8206 " transmit\n", dev->name);
8207 break;
8208 case TX_DEFAULT_STEERING:
8209 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8210 " transmit\n", dev->name);
8213 if (sp->lro)
8214 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8215 dev->name);
8216 if (ufo)
8217 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8218 " enabled\n", dev->name);
8219 /* Initialize device name */
8220 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8223 * Make Link state as off at this point, when the Link change
8224 * interrupt comes the state will be automatically changed to
8225 * the right state.
8227 netif_carrier_off(dev);
8229 return 0;
8231 register_failed:
8232 set_swap_failed:
8233 iounmap(sp->bar1);
8234 bar1_remap_failed:
8235 iounmap(sp->bar0);
8236 bar0_remap_failed:
8237 mem_alloc_failed:
8238 free_shared_mem(sp);
8239 pci_disable_device(pdev);
8240 pci_release_regions(pdev);
8241 pci_set_drvdata(pdev, NULL);
8242 free_netdev(dev);
8244 return ret;
8248 * s2io_rem_nic - Free the PCI device
8249 * @pdev: structure containing the PCI related information of the device.
8250 * Description: This function is called by the Pci subsystem to release a
8251 * PCI device and free up all resource held up by the device. This could
8252 * be in response to a Hot plug event or when the driver is to be removed
8253 * from memory.
8256 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8258 struct net_device *dev =
8259 (struct net_device *) pci_get_drvdata(pdev);
8260 struct s2io_nic *sp;
8262 if (dev == NULL) {
8263 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8264 return;
8267 flush_scheduled_work();
8269 sp = dev->priv;
8270 unregister_netdev(dev);
8272 free_shared_mem(sp);
8273 iounmap(sp->bar0);
8274 iounmap(sp->bar1);
8275 pci_release_regions(pdev);
8276 pci_set_drvdata(pdev, NULL);
8277 free_netdev(dev);
8278 pci_disable_device(pdev);
8282 * s2io_starter - Entry point for the driver
8283 * Description: This function is the entry point for the driver. It verifies
8284 * the module loadable parameters and initializes PCI configuration space.
8287 static int __init s2io_starter(void)
8289 return pci_register_driver(&s2io_driver);
8293 * s2io_closer - Cleanup routine for the driver
8294 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8297 static __exit void s2io_closer(void)
8299 pci_unregister_driver(&s2io_driver);
8300 DBG_PRINT(INIT_DBG, "cleanup done\n");
8303 module_init(s2io_starter);
8304 module_exit(s2io_closer);
8306 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8307 struct tcphdr **tcp, struct RxD_t *rxdp,
8308 struct s2io_nic *sp)
8310 int ip_off;
8311 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8313 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8314 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8315 __FUNCTION__);
8316 return -1;
8319 /* Checking for DIX type or DIX type with VLAN */
8320 if ((l2_type == 0)
8321 || (l2_type == 4)) {
8322 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8324 * If vlan stripping is disabled and the frame is VLAN tagged,
8325 * shift the offset by the VLAN header size bytes.
8327 if ((!vlan_strip_flag) &&
8328 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8329 ip_off += HEADER_VLAN_SIZE;
8330 } else {
8331 /* LLC, SNAP etc are considered non-mergeable */
8332 return -1;
8335 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8336 ip_len = (u8)((*ip)->ihl);
8337 ip_len <<= 2;
8338 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8340 return 0;
8343 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8344 struct tcphdr *tcp)
8346 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8347 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8348 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8349 return -1;
8350 return 0;
8353 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8355 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8358 static void initiate_new_session(struct lro *lro, u8 *l2h,
8359 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8361 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8362 lro->l2h = l2h;
8363 lro->iph = ip;
8364 lro->tcph = tcp;
8365 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8366 lro->tcp_ack = tcp->ack_seq;
8367 lro->sg_num = 1;
8368 lro->total_len = ntohs(ip->tot_len);
8369 lro->frags_len = 0;
8370 lro->vlan_tag = vlan_tag;
8372 * check if we saw TCP timestamp. Other consistency checks have
8373 * already been done.
8375 if (tcp->doff == 8) {
8376 __be32 *ptr;
8377 ptr = (__be32 *)(tcp+1);
8378 lro->saw_ts = 1;
8379 lro->cur_tsval = ntohl(*(ptr+1));
8380 lro->cur_tsecr = *(ptr+2);
8382 lro->in_use = 1;
8385 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8387 struct iphdr *ip = lro->iph;
8388 struct tcphdr *tcp = lro->tcph;
8389 __sum16 nchk;
8390 struct stat_block *statinfo = sp->mac_control.stats_info;
8391 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8393 /* Update L3 header */
8394 ip->tot_len = htons(lro->total_len);
8395 ip->check = 0;
8396 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8397 ip->check = nchk;
8399 /* Update L4 header */
8400 tcp->ack_seq = lro->tcp_ack;
8401 tcp->window = lro->window;
8403 /* Update tsecr field if this session has timestamps enabled */
8404 if (lro->saw_ts) {
8405 __be32 *ptr = (__be32 *)(tcp + 1);
8406 *(ptr+2) = lro->cur_tsecr;
8409 /* Update counters required for calculation of
8410 * average no. of packets aggregated.
8412 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8413 statinfo->sw_stat.num_aggregations++;
8416 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8417 struct tcphdr *tcp, u32 l4_pyld)
8419 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8420 lro->total_len += l4_pyld;
8421 lro->frags_len += l4_pyld;
8422 lro->tcp_next_seq += l4_pyld;
8423 lro->sg_num++;
8425 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8426 lro->tcp_ack = tcp->ack_seq;
8427 lro->window = tcp->window;
8429 if (lro->saw_ts) {
8430 __be32 *ptr;
8431 /* Update tsecr and tsval from this packet */
8432 ptr = (__be32 *)(tcp+1);
8433 lro->cur_tsval = ntohl(*(ptr+1));
8434 lro->cur_tsecr = *(ptr + 2);
8438 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8439 struct tcphdr *tcp, u32 tcp_pyld_len)
8441 u8 *ptr;
8443 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8445 if (!tcp_pyld_len) {
8446 /* Runt frame or a pure ack */
8447 return -1;
8450 if (ip->ihl != 5) /* IP has options */
8451 return -1;
8453 /* If we see CE codepoint in IP header, packet is not mergeable */
8454 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8455 return -1;
8457 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8458 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8459 tcp->ece || tcp->cwr || !tcp->ack) {
8461 * Currently recognize only the ack control word and
8462 * any other control field being set would result in
8463 * flushing the LRO session
8465 return -1;
8469 * Allow only one TCP timestamp option. Don't aggregate if
8470 * any other options are detected.
8472 if (tcp->doff != 5 && tcp->doff != 8)
8473 return -1;
8475 if (tcp->doff == 8) {
8476 ptr = (u8 *)(tcp + 1);
8477 while (*ptr == TCPOPT_NOP)
8478 ptr++;
8479 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8480 return -1;
8482 /* Ensure timestamp value increases monotonically */
8483 if (l_lro)
8484 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8485 return -1;
8487 /* timestamp echo reply should be non-zero */
8488 if (*((__be32 *)(ptr+6)) == 0)
8489 return -1;
8492 return 0;
8495 static int
8496 s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8497 u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8498 struct s2io_nic *sp)
8500 struct iphdr *ip;
8501 struct tcphdr *tcph;
8502 int ret = 0, i;
8503 u16 vlan_tag = 0;
8505 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8506 rxdp, sp))) {
8507 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8508 ip->saddr, ip->daddr);
8509 } else
8510 return ret;
8512 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8513 tcph = (struct tcphdr *)*tcp;
8514 *tcp_len = get_l4_pyld_length(ip, tcph);
8515 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8516 struct lro *l_lro = &ring_data->lro0_n[i];
8517 if (l_lro->in_use) {
8518 if (check_for_socket_match(l_lro, ip, tcph))
8519 continue;
8520 /* Sock pair matched */
8521 *lro = l_lro;
8523 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8524 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8525 "0x%x, actual 0x%x\n", __FUNCTION__,
8526 (*lro)->tcp_next_seq,
8527 ntohl(tcph->seq));
8529 sp->mac_control.stats_info->
8530 sw_stat.outof_sequence_pkts++;
8531 ret = 2;
8532 break;
8535 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8536 ret = 1; /* Aggregate */
8537 else
8538 ret = 2; /* Flush both */
8539 break;
8543 if (ret == 0) {
8544 /* Before searching for available LRO objects,
8545 * check if the pkt is L3/L4 aggregatable. If not
8546 * don't create new LRO session. Just send this
8547 * packet up.
8549 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8550 return 5;
8553 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8554 struct lro *l_lro = &ring_data->lro0_n[i];
8555 if (!(l_lro->in_use)) {
8556 *lro = l_lro;
8557 ret = 3; /* Begin anew */
8558 break;
8563 if (ret == 0) { /* sessions exceeded */
8564 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8565 __FUNCTION__);
8566 *lro = NULL;
8567 return ret;
8570 switch (ret) {
8571 case 3:
8572 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8573 vlan_tag);
8574 break;
8575 case 2:
8576 update_L3L4_header(sp, *lro);
8577 break;
8578 case 1:
8579 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8580 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8581 update_L3L4_header(sp, *lro);
8582 ret = 4; /* Flush the LRO */
8584 break;
8585 default:
8586 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8587 __FUNCTION__);
8588 break;
8591 return ret;
8594 static void clear_lro_session(struct lro *lro)
8596 static u16 lro_struct_size = sizeof(struct lro);
8598 memset(lro, 0, lro_struct_size);
8601 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8603 struct net_device *dev = skb->dev;
8604 struct s2io_nic *sp = dev->priv;
8606 skb->protocol = eth_type_trans(skb, dev);
8607 if (sp->vlgrp && vlan_tag
8608 && (vlan_strip_flag)) {
8609 /* Queueing the vlan frame to the upper layer */
8610 if (sp->config.napi)
8611 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8612 else
8613 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8614 } else {
8615 if (sp->config.napi)
8616 netif_receive_skb(skb);
8617 else
8618 netif_rx(skb);
8622 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8623 struct sk_buff *skb,
8624 u32 tcp_len)
8626 struct sk_buff *first = lro->parent;
8628 first->len += tcp_len;
8629 first->data_len = lro->frags_len;
8630 skb_pull(skb, (skb->len - tcp_len));
8631 if (skb_shinfo(first)->frag_list)
8632 lro->last_frag->next = skb;
8633 else
8634 skb_shinfo(first)->frag_list = skb;
8635 first->truesize += skb->truesize;
8636 lro->last_frag = skb;
8637 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8638 return;
8642 * s2io_io_error_detected - called when PCI error is detected
8643 * @pdev: Pointer to PCI device
8644 * @state: The current pci connection state
8646 * This function is called after a PCI bus error affecting
8647 * this device has been detected.
8649 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8650 pci_channel_state_t state)
8652 struct net_device *netdev = pci_get_drvdata(pdev);
8653 struct s2io_nic *sp = netdev->priv;
8655 netif_device_detach(netdev);
8657 if (netif_running(netdev)) {
8658 /* Bring down the card, while avoiding PCI I/O */
8659 do_s2io_card_down(sp, 0);
8661 pci_disable_device(pdev);
8663 return PCI_ERS_RESULT_NEED_RESET;
8667 * s2io_io_slot_reset - called after the pci bus has been reset.
8668 * @pdev: Pointer to PCI device
8670 * Restart the card from scratch, as if from a cold-boot.
8671 * At this point, the card has exprienced a hard reset,
8672 * followed by fixups by BIOS, and has its config space
8673 * set up identically to what it was at cold boot.
8675 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8677 struct net_device *netdev = pci_get_drvdata(pdev);
8678 struct s2io_nic *sp = netdev->priv;
8680 if (pci_enable_device(pdev)) {
8681 printk(KERN_ERR "s2io: "
8682 "Cannot re-enable PCI device after reset.\n");
8683 return PCI_ERS_RESULT_DISCONNECT;
8686 pci_set_master(pdev);
8687 s2io_reset(sp);
8689 return PCI_ERS_RESULT_RECOVERED;
8693 * s2io_io_resume - called when traffic can start flowing again.
8694 * @pdev: Pointer to PCI device
8696 * This callback is called when the error recovery driver tells
8697 * us that its OK to resume normal operation.
8699 static void s2io_io_resume(struct pci_dev *pdev)
8701 struct net_device *netdev = pci_get_drvdata(pdev);
8702 struct s2io_nic *sp = netdev->priv;
8704 if (netif_running(netdev)) {
8705 if (s2io_card_up(sp)) {
8706 printk(KERN_ERR "s2io: "
8707 "Can't bring device back up after reset.\n");
8708 return;
8711 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8712 s2io_card_down(sp);
8713 printk(KERN_ERR "s2io: "
8714 "Can't resetore mac addr after reset.\n");
8715 return;
8719 netif_device_attach(netdev);
8720 netif_wake_queue(netdev);