namespacecheck: fixes in kernel/sched.c
[linux-2.6/mini2440.git] / kernel / sched.c
blob02a5eeedcb94d4a918e936fc16301821ca28c80f
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
74 #include <asm/tlb.h>
75 #include <asm/irq_regs.h>
77 #include "sched_cpupri.h"
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
84 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
93 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
98 * Helpers for converting nanosecond timing to jiffy resolution
100 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
111 #define DEF_TIMESLICE (100 * HZ / 1000)
114 * single value that denotes runtime == period, ie unlimited time.
116 #define RUNTIME_INF ((u64)~0ULL)
118 #ifdef CONFIG_SMP
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
132 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137 #endif
139 static inline int rt_policy(int policy)
141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 return 1;
143 return 0;
146 static inline int task_has_rt_policy(struct task_struct *p)
148 return rt_policy(p->policy);
152 * This is the priority-queue data structure of the RT scheduling class:
154 struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156 struct list_head xqueue[MAX_RT_PRIO]; /* exclusive queue */
157 struct list_head squeue[MAX_RT_PRIO]; /* shared queue */
160 struct rt_bandwidth {
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
168 static struct rt_bandwidth def_rt_bandwidth;
170 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
172 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
184 if (!overrun)
185 break;
187 idle = do_sched_rt_period_timer(rt_b, overrun);
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
193 static
194 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
199 spin_lock_init(&rt_b->rt_runtime_lock);
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
207 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
209 ktime_t now;
211 if (rt_b->rt_runtime == RUNTIME_INF)
212 return;
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 return;
217 spin_lock(&rt_b->rt_runtime_lock);
218 for (;;) {
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 break;
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
226 HRTIMER_MODE_ABS);
228 spin_unlock(&rt_b->rt_runtime_lock);
231 #ifdef CONFIG_RT_GROUP_SCHED
232 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234 hrtimer_cancel(&rt_b->rt_period_timer);
236 #endif
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
242 static DEFINE_MUTEX(sched_domains_mutex);
244 #ifdef CONFIG_GROUP_SCHED
246 #include <linux/cgroup.h>
248 struct cfs_rq;
250 static LIST_HEAD(task_groups);
252 /* task group related information */
253 struct task_group {
254 #ifdef CONFIG_CGROUP_SCHED
255 struct cgroup_subsys_state css;
256 #endif
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
264 #endif
266 #ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
270 struct rt_bandwidth rt_bandwidth;
271 #endif
273 struct rcu_head rcu;
274 struct list_head list;
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
281 #ifdef CONFIG_USER_SCHED
284 * Root task group.
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
288 struct task_group root_task_group;
290 #ifdef CONFIG_FAIR_GROUP_SCHED
291 /* Default task group's sched entity on each cpu */
292 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293 /* Default task group's cfs_rq on each cpu */
294 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295 #endif
297 #ifdef CONFIG_RT_GROUP_SCHED
298 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 #endif
301 #else
302 #define root_task_group init_task_group
303 #endif
305 /* task_group_lock serializes add/remove of task groups and also changes to
306 * a task group's cpu shares.
308 static DEFINE_SPINLOCK(task_group_lock);
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 #ifdef CONFIG_USER_SCHED
312 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
313 #else
314 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 #endif
318 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
319 * (The default weight is 1024 - so there's no practical
320 * limitation from this.)
322 #define MIN_SHARES 2
323 #define MAX_SHARES (ULONG_MAX - 1)
325 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
326 #endif
328 /* Default task group.
329 * Every task in system belong to this group at bootup.
331 struct task_group init_task_group;
333 /* return group to which a task belongs */
334 static inline struct task_group *task_group(struct task_struct *p)
336 struct task_group *tg;
338 #ifdef CONFIG_USER_SCHED
339 tg = p->user->tg;
340 #elif defined(CONFIG_CGROUP_SCHED)
341 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
342 struct task_group, css);
343 #else
344 tg = &init_task_group;
345 #endif
346 return tg;
349 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
350 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
352 #ifdef CONFIG_FAIR_GROUP_SCHED
353 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
354 p->se.parent = task_group(p)->se[cpu];
355 #endif
357 #ifdef CONFIG_RT_GROUP_SCHED
358 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
359 p->rt.parent = task_group(p)->rt_se[cpu];
360 #endif
363 #else
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
367 #endif /* CONFIG_GROUP_SCHED */
369 /* CFS-related fields in a runqueue */
370 struct cfs_rq {
371 struct load_weight load;
372 unsigned long nr_running;
374 u64 exec_clock;
375 u64 min_vruntime;
377 struct rb_root tasks_timeline;
378 struct rb_node *rb_leftmost;
380 struct list_head tasks;
381 struct list_head *balance_iterator;
384 * 'curr' points to currently running entity on this cfs_rq.
385 * It is set to NULL otherwise (i.e when none are currently running).
387 struct sched_entity *curr, *next;
389 unsigned long nr_spread_over;
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
395 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
396 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
397 * (like users, containers etc.)
399 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
400 * list is used during load balance.
402 struct list_head leaf_cfs_rq_list;
403 struct task_group *tg; /* group that "owns" this runqueue */
404 #endif
407 /* Real-Time classes' related field in a runqueue: */
408 struct rt_rq {
409 struct rt_prio_array active;
410 unsigned long rt_nr_running;
411 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
412 int highest_prio; /* highest queued rt task prio */
413 #endif
414 #ifdef CONFIG_SMP
415 unsigned long rt_nr_migratory;
416 int overloaded;
417 #endif
418 int rt_throttled;
419 u64 rt_time;
420 u64 rt_runtime;
421 /* Nests inside the rq lock: */
422 spinlock_t rt_runtime_lock;
424 #ifdef CONFIG_RT_GROUP_SCHED
425 unsigned long rt_nr_boosted;
427 struct rq *rq;
428 struct list_head leaf_rt_rq_list;
429 struct task_group *tg;
430 struct sched_rt_entity *rt_se;
431 #endif
434 #ifdef CONFIG_SMP
437 * We add the notion of a root-domain which will be used to define per-domain
438 * variables. Each exclusive cpuset essentially defines an island domain by
439 * fully partitioning the member cpus from any other cpuset. Whenever a new
440 * exclusive cpuset is created, we also create and attach a new root-domain
441 * object.
444 struct root_domain {
445 atomic_t refcount;
446 cpumask_t span;
447 cpumask_t online;
450 * The "RT overload" flag: it gets set if a CPU has more than
451 * one runnable RT task.
453 cpumask_t rto_mask;
454 atomic_t rto_count;
455 #ifdef CONFIG_SMP
456 struct cpupri cpupri;
457 #endif
461 * By default the system creates a single root-domain with all cpus as
462 * members (mimicking the global state we have today).
464 static struct root_domain def_root_domain;
466 #endif
469 * This is the main, per-CPU runqueue data structure.
471 * Locking rule: those places that want to lock multiple runqueues
472 * (such as the load balancing or the thread migration code), lock
473 * acquire operations must be ordered by ascending &runqueue.
475 struct rq {
476 /* runqueue lock: */
477 spinlock_t lock;
480 * nr_running and cpu_load should be in the same cacheline because
481 * remote CPUs use both these fields when doing load calculation.
483 unsigned long nr_running;
484 #define CPU_LOAD_IDX_MAX 5
485 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
486 unsigned char idle_at_tick;
487 #ifdef CONFIG_NO_HZ
488 unsigned long last_tick_seen;
489 unsigned char in_nohz_recently;
490 #endif
491 /* capture load from *all* tasks on this cpu: */
492 struct load_weight load;
493 unsigned long nr_load_updates;
494 u64 nr_switches;
496 struct cfs_rq cfs;
497 struct rt_rq rt;
499 #ifdef CONFIG_FAIR_GROUP_SCHED
500 /* list of leaf cfs_rq on this cpu: */
501 struct list_head leaf_cfs_rq_list;
502 #endif
503 #ifdef CONFIG_RT_GROUP_SCHED
504 struct list_head leaf_rt_rq_list;
505 #endif
508 * This is part of a global counter where only the total sum
509 * over all CPUs matters. A task can increase this counter on
510 * one CPU and if it got migrated afterwards it may decrease
511 * it on another CPU. Always updated under the runqueue lock:
513 unsigned long nr_uninterruptible;
515 struct task_struct *curr, *idle;
516 unsigned long next_balance;
517 struct mm_struct *prev_mm;
519 u64 clock;
521 atomic_t nr_iowait;
523 #ifdef CONFIG_SMP
524 struct root_domain *rd;
525 struct sched_domain *sd;
527 /* For active balancing */
528 int active_balance;
529 int push_cpu;
530 /* cpu of this runqueue: */
531 int cpu;
533 struct task_struct *migration_thread;
534 struct list_head migration_queue;
535 #endif
537 #ifdef CONFIG_SCHED_HRTICK
538 unsigned long hrtick_flags;
539 ktime_t hrtick_expire;
540 struct hrtimer hrtick_timer;
541 #endif
543 #ifdef CONFIG_SCHEDSTATS
544 /* latency stats */
545 struct sched_info rq_sched_info;
547 /* sys_sched_yield() stats */
548 unsigned int yld_exp_empty;
549 unsigned int yld_act_empty;
550 unsigned int yld_both_empty;
551 unsigned int yld_count;
553 /* schedule() stats */
554 unsigned int sched_switch;
555 unsigned int sched_count;
556 unsigned int sched_goidle;
558 /* try_to_wake_up() stats */
559 unsigned int ttwu_count;
560 unsigned int ttwu_local;
562 /* BKL stats */
563 unsigned int bkl_count;
564 #endif
565 struct lock_class_key rq_lock_key;
568 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
570 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
572 rq->curr->sched_class->check_preempt_curr(rq, p);
575 static inline int cpu_of(struct rq *rq)
577 #ifdef CONFIG_SMP
578 return rq->cpu;
579 #else
580 return 0;
581 #endif
585 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
586 * See detach_destroy_domains: synchronize_sched for details.
588 * The domain tree of any CPU may only be accessed from within
589 * preempt-disabled sections.
591 #define for_each_domain(cpu, __sd) \
592 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
594 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
595 #define this_rq() (&__get_cpu_var(runqueues))
596 #define task_rq(p) cpu_rq(task_cpu(p))
597 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
599 static inline void update_rq_clock(struct rq *rq)
601 rq->clock = sched_clock_cpu(cpu_of(rq));
605 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
607 #ifdef CONFIG_SCHED_DEBUG
608 # define const_debug __read_mostly
609 #else
610 # define const_debug static const
611 #endif
614 * Debugging: various feature bits
617 #define SCHED_FEAT(name, enabled) \
618 __SCHED_FEAT_##name ,
620 enum {
621 #include "sched_features.h"
624 #undef SCHED_FEAT
626 #define SCHED_FEAT(name, enabled) \
627 (1UL << __SCHED_FEAT_##name) * enabled |
629 const_debug unsigned int sysctl_sched_features =
630 #include "sched_features.h"
633 #undef SCHED_FEAT
635 #ifdef CONFIG_SCHED_DEBUG
636 #define SCHED_FEAT(name, enabled) \
637 #name ,
639 static __read_mostly char *sched_feat_names[] = {
640 #include "sched_features.h"
641 NULL
644 #undef SCHED_FEAT
646 static int sched_feat_open(struct inode *inode, struct file *filp)
648 filp->private_data = inode->i_private;
649 return 0;
652 static ssize_t
653 sched_feat_read(struct file *filp, char __user *ubuf,
654 size_t cnt, loff_t *ppos)
656 char *buf;
657 int r = 0;
658 int len = 0;
659 int i;
661 for (i = 0; sched_feat_names[i]; i++) {
662 len += strlen(sched_feat_names[i]);
663 len += 4;
666 buf = kmalloc(len + 2, GFP_KERNEL);
667 if (!buf)
668 return -ENOMEM;
670 for (i = 0; sched_feat_names[i]; i++) {
671 if (sysctl_sched_features & (1UL << i))
672 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
673 else
674 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
677 r += sprintf(buf + r, "\n");
678 WARN_ON(r >= len + 2);
680 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
682 kfree(buf);
684 return r;
687 static ssize_t
688 sched_feat_write(struct file *filp, const char __user *ubuf,
689 size_t cnt, loff_t *ppos)
691 char buf[64];
692 char *cmp = buf;
693 int neg = 0;
694 int i;
696 if (cnt > 63)
697 cnt = 63;
699 if (copy_from_user(&buf, ubuf, cnt))
700 return -EFAULT;
702 buf[cnt] = 0;
704 if (strncmp(buf, "NO_", 3) == 0) {
705 neg = 1;
706 cmp += 3;
709 for (i = 0; sched_feat_names[i]; i++) {
710 int len = strlen(sched_feat_names[i]);
712 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
713 if (neg)
714 sysctl_sched_features &= ~(1UL << i);
715 else
716 sysctl_sched_features |= (1UL << i);
717 break;
721 if (!sched_feat_names[i])
722 return -EINVAL;
724 filp->f_pos += cnt;
726 return cnt;
729 static struct file_operations sched_feat_fops = {
730 .open = sched_feat_open,
731 .read = sched_feat_read,
732 .write = sched_feat_write,
735 static __init int sched_init_debug(void)
737 debugfs_create_file("sched_features", 0644, NULL, NULL,
738 &sched_feat_fops);
740 return 0;
742 late_initcall(sched_init_debug);
744 #endif
746 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
749 * Number of tasks to iterate in a single balance run.
750 * Limited because this is done with IRQs disabled.
752 const_debug unsigned int sysctl_sched_nr_migrate = 32;
755 * period over which we measure -rt task cpu usage in us.
756 * default: 1s
758 unsigned int sysctl_sched_rt_period = 1000000;
760 static __read_mostly int scheduler_running;
763 * part of the period that we allow rt tasks to run in us.
764 * default: 0.95s
766 int sysctl_sched_rt_runtime = 950000;
768 static inline u64 global_rt_period(void)
770 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
773 static inline u64 global_rt_runtime(void)
775 if (sysctl_sched_rt_period < 0)
776 return RUNTIME_INF;
778 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
781 unsigned long long time_sync_thresh = 100000;
783 static DEFINE_PER_CPU(unsigned long long, time_offset);
784 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
787 * Global lock which we take every now and then to synchronize
788 * the CPUs time. This method is not warp-safe, but it's good
789 * enough to synchronize slowly diverging time sources and thus
790 * it's good enough for tracing:
792 static DEFINE_SPINLOCK(time_sync_lock);
793 static unsigned long long prev_global_time;
795 static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
798 * We want this inlined, to not get tracer function calls
799 * in this critical section:
801 spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
802 __raw_spin_lock(&time_sync_lock.raw_lock);
804 if (time < prev_global_time) {
805 per_cpu(time_offset, cpu) += prev_global_time - time;
806 time = prev_global_time;
807 } else {
808 prev_global_time = time;
811 __raw_spin_unlock(&time_sync_lock.raw_lock);
812 spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
814 return time;
817 static unsigned long long __cpu_clock(int cpu)
819 unsigned long long now;
822 * Only call sched_clock() if the scheduler has already been
823 * initialized (some code might call cpu_clock() very early):
825 if (unlikely(!scheduler_running))
826 return 0;
828 now = sched_clock_cpu(cpu);
830 return now;
834 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
835 * clock constructed from sched_clock():
837 unsigned long long cpu_clock(int cpu)
839 unsigned long long prev_cpu_time, time, delta_time;
840 unsigned long flags;
842 local_irq_save(flags);
843 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
844 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
845 delta_time = time-prev_cpu_time;
847 if (unlikely(delta_time > time_sync_thresh)) {
848 time = __sync_cpu_clock(time, cpu);
849 per_cpu(prev_cpu_time, cpu) = time;
851 local_irq_restore(flags);
853 return time;
855 EXPORT_SYMBOL_GPL(cpu_clock);
857 #ifndef prepare_arch_switch
858 # define prepare_arch_switch(next) do { } while (0)
859 #endif
860 #ifndef finish_arch_switch
861 # define finish_arch_switch(prev) do { } while (0)
862 #endif
864 static inline int task_current(struct rq *rq, struct task_struct *p)
866 return rq->curr == p;
869 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
870 static inline int task_running(struct rq *rq, struct task_struct *p)
872 return task_current(rq, p);
875 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
879 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
881 #ifdef CONFIG_DEBUG_SPINLOCK
882 /* this is a valid case when another task releases the spinlock */
883 rq->lock.owner = current;
884 #endif
886 * If we are tracking spinlock dependencies then we have to
887 * fix up the runqueue lock - which gets 'carried over' from
888 * prev into current:
890 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
892 spin_unlock_irq(&rq->lock);
895 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
896 static inline int task_running(struct rq *rq, struct task_struct *p)
898 #ifdef CONFIG_SMP
899 return p->oncpu;
900 #else
901 return task_current(rq, p);
902 #endif
905 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
907 #ifdef CONFIG_SMP
909 * We can optimise this out completely for !SMP, because the
910 * SMP rebalancing from interrupt is the only thing that cares
911 * here.
913 next->oncpu = 1;
914 #endif
915 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
916 spin_unlock_irq(&rq->lock);
917 #else
918 spin_unlock(&rq->lock);
919 #endif
922 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
924 #ifdef CONFIG_SMP
926 * After ->oncpu is cleared, the task can be moved to a different CPU.
927 * We must ensure this doesn't happen until the switch is completely
928 * finished.
930 smp_wmb();
931 prev->oncpu = 0;
932 #endif
933 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
934 local_irq_enable();
935 #endif
937 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
940 * __task_rq_lock - lock the runqueue a given task resides on.
941 * Must be called interrupts disabled.
943 static inline struct rq *__task_rq_lock(struct task_struct *p)
944 __acquires(rq->lock)
946 for (;;) {
947 struct rq *rq = task_rq(p);
948 spin_lock(&rq->lock);
949 if (likely(rq == task_rq(p)))
950 return rq;
951 spin_unlock(&rq->lock);
956 * task_rq_lock - lock the runqueue a given task resides on and disable
957 * interrupts. Note the ordering: we can safely lookup the task_rq without
958 * explicitly disabling preemption.
960 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
961 __acquires(rq->lock)
963 struct rq *rq;
965 for (;;) {
966 local_irq_save(*flags);
967 rq = task_rq(p);
968 spin_lock(&rq->lock);
969 if (likely(rq == task_rq(p)))
970 return rq;
971 spin_unlock_irqrestore(&rq->lock, *flags);
975 static void __task_rq_unlock(struct rq *rq)
976 __releases(rq->lock)
978 spin_unlock(&rq->lock);
981 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
982 __releases(rq->lock)
984 spin_unlock_irqrestore(&rq->lock, *flags);
988 * this_rq_lock - lock this runqueue and disable interrupts.
990 static struct rq *this_rq_lock(void)
991 __acquires(rq->lock)
993 struct rq *rq;
995 local_irq_disable();
996 rq = this_rq();
997 spin_lock(&rq->lock);
999 return rq;
1002 static void __resched_task(struct task_struct *p, int tif_bit);
1004 static inline void resched_task(struct task_struct *p)
1006 __resched_task(p, TIF_NEED_RESCHED);
1009 #ifdef CONFIG_SCHED_HRTICK
1011 * Use HR-timers to deliver accurate preemption points.
1013 * Its all a bit involved since we cannot program an hrt while holding the
1014 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1015 * reschedule event.
1017 * When we get rescheduled we reprogram the hrtick_timer outside of the
1018 * rq->lock.
1020 static inline void resched_hrt(struct task_struct *p)
1022 __resched_task(p, TIF_HRTICK_RESCHED);
1025 static inline void resched_rq(struct rq *rq)
1027 unsigned long flags;
1029 spin_lock_irqsave(&rq->lock, flags);
1030 resched_task(rq->curr);
1031 spin_unlock_irqrestore(&rq->lock, flags);
1034 enum {
1035 HRTICK_SET, /* re-programm hrtick_timer */
1036 HRTICK_RESET, /* not a new slice */
1037 HRTICK_BLOCK, /* stop hrtick operations */
1041 * Use hrtick when:
1042 * - enabled by features
1043 * - hrtimer is actually high res
1045 static inline int hrtick_enabled(struct rq *rq)
1047 if (!sched_feat(HRTICK))
1048 return 0;
1049 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1050 return 0;
1051 return hrtimer_is_hres_active(&rq->hrtick_timer);
1055 * Called to set the hrtick timer state.
1057 * called with rq->lock held and irqs disabled
1059 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1061 assert_spin_locked(&rq->lock);
1064 * preempt at: now + delay
1066 rq->hrtick_expire =
1067 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1069 * indicate we need to program the timer
1071 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1072 if (reset)
1073 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1076 * New slices are called from the schedule path and don't need a
1077 * forced reschedule.
1079 if (reset)
1080 resched_hrt(rq->curr);
1083 static void hrtick_clear(struct rq *rq)
1085 if (hrtimer_active(&rq->hrtick_timer))
1086 hrtimer_cancel(&rq->hrtick_timer);
1090 * Update the timer from the possible pending state.
1092 static void hrtick_set(struct rq *rq)
1094 ktime_t time;
1095 int set, reset;
1096 unsigned long flags;
1098 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1100 spin_lock_irqsave(&rq->lock, flags);
1101 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1102 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1103 time = rq->hrtick_expire;
1104 clear_thread_flag(TIF_HRTICK_RESCHED);
1105 spin_unlock_irqrestore(&rq->lock, flags);
1107 if (set) {
1108 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1109 if (reset && !hrtimer_active(&rq->hrtick_timer))
1110 resched_rq(rq);
1111 } else
1112 hrtick_clear(rq);
1116 * High-resolution timer tick.
1117 * Runs from hardirq context with interrupts disabled.
1119 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1121 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1123 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1125 spin_lock(&rq->lock);
1126 update_rq_clock(rq);
1127 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1128 spin_unlock(&rq->lock);
1130 return HRTIMER_NORESTART;
1133 static void hotplug_hrtick_disable(int cpu)
1135 struct rq *rq = cpu_rq(cpu);
1136 unsigned long flags;
1138 spin_lock_irqsave(&rq->lock, flags);
1139 rq->hrtick_flags = 0;
1140 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1141 spin_unlock_irqrestore(&rq->lock, flags);
1143 hrtick_clear(rq);
1146 static void hotplug_hrtick_enable(int cpu)
1148 struct rq *rq = cpu_rq(cpu);
1149 unsigned long flags;
1151 spin_lock_irqsave(&rq->lock, flags);
1152 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1153 spin_unlock_irqrestore(&rq->lock, flags);
1156 static int
1157 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1159 int cpu = (int)(long)hcpu;
1161 switch (action) {
1162 case CPU_UP_CANCELED:
1163 case CPU_UP_CANCELED_FROZEN:
1164 case CPU_DOWN_PREPARE:
1165 case CPU_DOWN_PREPARE_FROZEN:
1166 case CPU_DEAD:
1167 case CPU_DEAD_FROZEN:
1168 hotplug_hrtick_disable(cpu);
1169 return NOTIFY_OK;
1171 case CPU_UP_PREPARE:
1172 case CPU_UP_PREPARE_FROZEN:
1173 case CPU_DOWN_FAILED:
1174 case CPU_DOWN_FAILED_FROZEN:
1175 case CPU_ONLINE:
1176 case CPU_ONLINE_FROZEN:
1177 hotplug_hrtick_enable(cpu);
1178 return NOTIFY_OK;
1181 return NOTIFY_DONE;
1184 static void init_hrtick(void)
1186 hotcpu_notifier(hotplug_hrtick, 0);
1189 static void init_rq_hrtick(struct rq *rq)
1191 rq->hrtick_flags = 0;
1192 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1193 rq->hrtick_timer.function = hrtick;
1194 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1197 void hrtick_resched(void)
1199 struct rq *rq;
1200 unsigned long flags;
1202 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1203 return;
1205 local_irq_save(flags);
1206 rq = cpu_rq(smp_processor_id());
1207 hrtick_set(rq);
1208 local_irq_restore(flags);
1210 #else
1211 static inline void hrtick_clear(struct rq *rq)
1215 static inline void hrtick_set(struct rq *rq)
1219 static inline void init_rq_hrtick(struct rq *rq)
1223 void hrtick_resched(void)
1227 static inline void init_hrtick(void)
1230 #endif
1233 * resched_task - mark a task 'to be rescheduled now'.
1235 * On UP this means the setting of the need_resched flag, on SMP it
1236 * might also involve a cross-CPU call to trigger the scheduler on
1237 * the target CPU.
1239 #ifdef CONFIG_SMP
1241 #ifndef tsk_is_polling
1242 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1243 #endif
1245 static void __resched_task(struct task_struct *p, int tif_bit)
1247 int cpu;
1249 assert_spin_locked(&task_rq(p)->lock);
1251 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1252 return;
1254 set_tsk_thread_flag(p, tif_bit);
1256 cpu = task_cpu(p);
1257 if (cpu == smp_processor_id())
1258 return;
1260 /* NEED_RESCHED must be visible before we test polling */
1261 smp_mb();
1262 if (!tsk_is_polling(p))
1263 smp_send_reschedule(cpu);
1266 static void resched_cpu(int cpu)
1268 struct rq *rq = cpu_rq(cpu);
1269 unsigned long flags;
1271 if (!spin_trylock_irqsave(&rq->lock, flags))
1272 return;
1273 resched_task(cpu_curr(cpu));
1274 spin_unlock_irqrestore(&rq->lock, flags);
1277 #ifdef CONFIG_NO_HZ
1279 * When add_timer_on() enqueues a timer into the timer wheel of an
1280 * idle CPU then this timer might expire before the next timer event
1281 * which is scheduled to wake up that CPU. In case of a completely
1282 * idle system the next event might even be infinite time into the
1283 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1284 * leaves the inner idle loop so the newly added timer is taken into
1285 * account when the CPU goes back to idle and evaluates the timer
1286 * wheel for the next timer event.
1288 void wake_up_idle_cpu(int cpu)
1290 struct rq *rq = cpu_rq(cpu);
1292 if (cpu == smp_processor_id())
1293 return;
1296 * This is safe, as this function is called with the timer
1297 * wheel base lock of (cpu) held. When the CPU is on the way
1298 * to idle and has not yet set rq->curr to idle then it will
1299 * be serialized on the timer wheel base lock and take the new
1300 * timer into account automatically.
1302 if (rq->curr != rq->idle)
1303 return;
1306 * We can set TIF_RESCHED on the idle task of the other CPU
1307 * lockless. The worst case is that the other CPU runs the
1308 * idle task through an additional NOOP schedule()
1310 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1312 /* NEED_RESCHED must be visible before we test polling */
1313 smp_mb();
1314 if (!tsk_is_polling(rq->idle))
1315 smp_send_reschedule(cpu);
1317 #endif
1319 #else
1320 static void __resched_task(struct task_struct *p, int tif_bit)
1322 assert_spin_locked(&task_rq(p)->lock);
1323 set_tsk_thread_flag(p, tif_bit);
1325 #endif
1327 #if BITS_PER_LONG == 32
1328 # define WMULT_CONST (~0UL)
1329 #else
1330 # define WMULT_CONST (1UL << 32)
1331 #endif
1333 #define WMULT_SHIFT 32
1336 * Shift right and round:
1338 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1340 static unsigned long
1341 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1342 struct load_weight *lw)
1344 u64 tmp;
1346 if (!lw->inv_weight)
1347 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
1349 tmp = (u64)delta_exec * weight;
1351 * Check whether we'd overflow the 64-bit multiplication:
1353 if (unlikely(tmp > WMULT_CONST))
1354 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1355 WMULT_SHIFT/2);
1356 else
1357 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1359 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1362 static inline unsigned long
1363 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1365 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1368 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1370 lw->weight += inc;
1371 lw->inv_weight = 0;
1374 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1376 lw->weight -= dec;
1377 lw->inv_weight = 0;
1381 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1382 * of tasks with abnormal "nice" values across CPUs the contribution that
1383 * each task makes to its run queue's load is weighted according to its
1384 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1385 * scaled version of the new time slice allocation that they receive on time
1386 * slice expiry etc.
1389 #define WEIGHT_IDLEPRIO 2
1390 #define WMULT_IDLEPRIO (1 << 31)
1393 * Nice levels are multiplicative, with a gentle 10% change for every
1394 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1395 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1396 * that remained on nice 0.
1398 * The "10% effect" is relative and cumulative: from _any_ nice level,
1399 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1400 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1401 * If a task goes up by ~10% and another task goes down by ~10% then
1402 * the relative distance between them is ~25%.)
1404 static const int prio_to_weight[40] = {
1405 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1406 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1407 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1408 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1409 /* 0 */ 1024, 820, 655, 526, 423,
1410 /* 5 */ 335, 272, 215, 172, 137,
1411 /* 10 */ 110, 87, 70, 56, 45,
1412 /* 15 */ 36, 29, 23, 18, 15,
1416 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1418 * In cases where the weight does not change often, we can use the
1419 * precalculated inverse to speed up arithmetics by turning divisions
1420 * into multiplications:
1422 static const u32 prio_to_wmult[40] = {
1423 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1424 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1425 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1426 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1427 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1428 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1429 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1430 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1433 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1436 * runqueue iterator, to support SMP load-balancing between different
1437 * scheduling classes, without having to expose their internal data
1438 * structures to the load-balancing proper:
1440 struct rq_iterator {
1441 void *arg;
1442 struct task_struct *(*start)(void *);
1443 struct task_struct *(*next)(void *);
1446 #ifdef CONFIG_SMP
1447 static unsigned long
1448 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1449 unsigned long max_load_move, struct sched_domain *sd,
1450 enum cpu_idle_type idle, int *all_pinned,
1451 int *this_best_prio, struct rq_iterator *iterator);
1453 static int
1454 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1455 struct sched_domain *sd, enum cpu_idle_type idle,
1456 struct rq_iterator *iterator);
1457 #endif
1459 #ifdef CONFIG_CGROUP_CPUACCT
1460 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1461 #else
1462 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1463 #endif
1465 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1467 update_load_add(&rq->load, load);
1470 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1472 update_load_sub(&rq->load, load);
1475 #ifdef CONFIG_SMP
1476 static unsigned long source_load(int cpu, int type);
1477 static unsigned long target_load(int cpu, int type);
1478 static unsigned long cpu_avg_load_per_task(int cpu);
1479 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1480 #else /* CONFIG_SMP */
1482 #ifdef CONFIG_FAIR_GROUP_SCHED
1483 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1486 #endif
1488 #endif /* CONFIG_SMP */
1490 #include "sched_stats.h"
1491 #include "sched_idletask.c"
1492 #include "sched_fair.c"
1493 #include "sched_rt.c"
1494 #ifdef CONFIG_SCHED_DEBUG
1495 # include "sched_debug.c"
1496 #endif
1498 #define sched_class_highest (&rt_sched_class)
1500 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1502 update_load_add(&rq->load, p->se.load.weight);
1505 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1507 update_load_sub(&rq->load, p->se.load.weight);
1510 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1512 rq->nr_running++;
1513 inc_load(rq, p);
1516 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1518 rq->nr_running--;
1519 dec_load(rq, p);
1522 static void set_load_weight(struct task_struct *p)
1524 if (task_has_rt_policy(p)) {
1525 p->se.load.weight = prio_to_weight[0] * 2;
1526 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1527 return;
1531 * SCHED_IDLE tasks get minimal weight:
1533 if (p->policy == SCHED_IDLE) {
1534 p->se.load.weight = WEIGHT_IDLEPRIO;
1535 p->se.load.inv_weight = WMULT_IDLEPRIO;
1536 return;
1539 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1540 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1543 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1545 sched_info_queued(p);
1546 p->sched_class->enqueue_task(rq, p, wakeup);
1547 p->se.on_rq = 1;
1550 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1552 p->sched_class->dequeue_task(rq, p, sleep);
1553 p->se.on_rq = 0;
1557 * __normal_prio - return the priority that is based on the static prio
1559 static inline int __normal_prio(struct task_struct *p)
1561 return p->static_prio;
1565 * Calculate the expected normal priority: i.e. priority
1566 * without taking RT-inheritance into account. Might be
1567 * boosted by interactivity modifiers. Changes upon fork,
1568 * setprio syscalls, and whenever the interactivity
1569 * estimator recalculates.
1571 static inline int normal_prio(struct task_struct *p)
1573 int prio;
1575 if (task_has_rt_policy(p))
1576 prio = MAX_RT_PRIO-1 - p->rt_priority;
1577 else
1578 prio = __normal_prio(p);
1579 return prio;
1583 * Calculate the current priority, i.e. the priority
1584 * taken into account by the scheduler. This value might
1585 * be boosted by RT tasks, or might be boosted by
1586 * interactivity modifiers. Will be RT if the task got
1587 * RT-boosted. If not then it returns p->normal_prio.
1589 static int effective_prio(struct task_struct *p)
1591 p->normal_prio = normal_prio(p);
1593 * If we are RT tasks or we were boosted to RT priority,
1594 * keep the priority unchanged. Otherwise, update priority
1595 * to the normal priority:
1597 if (!rt_prio(p->prio))
1598 return p->normal_prio;
1599 return p->prio;
1603 * activate_task - move a task to the runqueue.
1605 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1607 if (task_contributes_to_load(p))
1608 rq->nr_uninterruptible--;
1610 enqueue_task(rq, p, wakeup);
1611 inc_nr_running(p, rq);
1615 * deactivate_task - remove a task from the runqueue.
1617 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1619 if (task_contributes_to_load(p))
1620 rq->nr_uninterruptible++;
1622 dequeue_task(rq, p, sleep);
1623 dec_nr_running(p, rq);
1627 * task_curr - is this task currently executing on a CPU?
1628 * @p: the task in question.
1630 inline int task_curr(const struct task_struct *p)
1632 return cpu_curr(task_cpu(p)) == p;
1635 /* Used instead of source_load when we know the type == 0 */
1636 static unsigned long weighted_cpuload(const int cpu)
1638 return cpu_rq(cpu)->load.weight;
1641 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1643 set_task_rq(p, cpu);
1644 #ifdef CONFIG_SMP
1646 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1647 * successfuly executed on another CPU. We must ensure that updates of
1648 * per-task data have been completed by this moment.
1650 smp_wmb();
1651 task_thread_info(p)->cpu = cpu;
1652 #endif
1655 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1656 const struct sched_class *prev_class,
1657 int oldprio, int running)
1659 if (prev_class != p->sched_class) {
1660 if (prev_class->switched_from)
1661 prev_class->switched_from(rq, p, running);
1662 p->sched_class->switched_to(rq, p, running);
1663 } else
1664 p->sched_class->prio_changed(rq, p, oldprio, running);
1667 #ifdef CONFIG_SMP
1670 * Is this task likely cache-hot:
1672 static int
1673 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1675 s64 delta;
1678 * Buddy candidates are cache hot:
1680 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1681 return 1;
1683 if (p->sched_class != &fair_sched_class)
1684 return 0;
1686 if (sysctl_sched_migration_cost == -1)
1687 return 1;
1688 if (sysctl_sched_migration_cost == 0)
1689 return 0;
1691 delta = now - p->se.exec_start;
1693 return delta < (s64)sysctl_sched_migration_cost;
1697 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1699 int old_cpu = task_cpu(p);
1700 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1701 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1702 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1703 u64 clock_offset;
1705 clock_offset = old_rq->clock - new_rq->clock;
1707 #ifdef CONFIG_SCHEDSTATS
1708 if (p->se.wait_start)
1709 p->se.wait_start -= clock_offset;
1710 if (p->se.sleep_start)
1711 p->se.sleep_start -= clock_offset;
1712 if (p->se.block_start)
1713 p->se.block_start -= clock_offset;
1714 if (old_cpu != new_cpu) {
1715 schedstat_inc(p, se.nr_migrations);
1716 if (task_hot(p, old_rq->clock, NULL))
1717 schedstat_inc(p, se.nr_forced2_migrations);
1719 #endif
1720 p->se.vruntime -= old_cfsrq->min_vruntime -
1721 new_cfsrq->min_vruntime;
1723 __set_task_cpu(p, new_cpu);
1726 struct migration_req {
1727 struct list_head list;
1729 struct task_struct *task;
1730 int dest_cpu;
1732 struct completion done;
1736 * The task's runqueue lock must be held.
1737 * Returns true if you have to wait for migration thread.
1739 static int
1740 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1742 struct rq *rq = task_rq(p);
1745 * If the task is not on a runqueue (and not running), then
1746 * it is sufficient to simply update the task's cpu field.
1748 if (!p->se.on_rq && !task_running(rq, p)) {
1749 set_task_cpu(p, dest_cpu);
1750 return 0;
1753 init_completion(&req->done);
1754 req->task = p;
1755 req->dest_cpu = dest_cpu;
1756 list_add(&req->list, &rq->migration_queue);
1758 return 1;
1762 * wait_task_inactive - wait for a thread to unschedule.
1764 * The caller must ensure that the task *will* unschedule sometime soon,
1765 * else this function might spin for a *long* time. This function can't
1766 * be called with interrupts off, or it may introduce deadlock with
1767 * smp_call_function() if an IPI is sent by the same process we are
1768 * waiting to become inactive.
1770 void wait_task_inactive(struct task_struct *p)
1772 unsigned long flags;
1773 int running, on_rq;
1774 struct rq *rq;
1776 for (;;) {
1778 * We do the initial early heuristics without holding
1779 * any task-queue locks at all. We'll only try to get
1780 * the runqueue lock when things look like they will
1781 * work out!
1783 rq = task_rq(p);
1786 * If the task is actively running on another CPU
1787 * still, just relax and busy-wait without holding
1788 * any locks.
1790 * NOTE! Since we don't hold any locks, it's not
1791 * even sure that "rq" stays as the right runqueue!
1792 * But we don't care, since "task_running()" will
1793 * return false if the runqueue has changed and p
1794 * is actually now running somewhere else!
1796 while (task_running(rq, p))
1797 cpu_relax();
1800 * Ok, time to look more closely! We need the rq
1801 * lock now, to be *sure*. If we're wrong, we'll
1802 * just go back and repeat.
1804 rq = task_rq_lock(p, &flags);
1805 running = task_running(rq, p);
1806 on_rq = p->se.on_rq;
1807 task_rq_unlock(rq, &flags);
1810 * Was it really running after all now that we
1811 * checked with the proper locks actually held?
1813 * Oops. Go back and try again..
1815 if (unlikely(running)) {
1816 cpu_relax();
1817 continue;
1821 * It's not enough that it's not actively running,
1822 * it must be off the runqueue _entirely_, and not
1823 * preempted!
1825 * So if it wa still runnable (but just not actively
1826 * running right now), it's preempted, and we should
1827 * yield - it could be a while.
1829 if (unlikely(on_rq)) {
1830 schedule_timeout_uninterruptible(1);
1831 continue;
1835 * Ahh, all good. It wasn't running, and it wasn't
1836 * runnable, which means that it will never become
1837 * running in the future either. We're all done!
1839 break;
1843 /***
1844 * kick_process - kick a running thread to enter/exit the kernel
1845 * @p: the to-be-kicked thread
1847 * Cause a process which is running on another CPU to enter
1848 * kernel-mode, without any delay. (to get signals handled.)
1850 * NOTE: this function doesnt have to take the runqueue lock,
1851 * because all it wants to ensure is that the remote task enters
1852 * the kernel. If the IPI races and the task has been migrated
1853 * to another CPU then no harm is done and the purpose has been
1854 * achieved as well.
1856 void kick_process(struct task_struct *p)
1858 int cpu;
1860 preempt_disable();
1861 cpu = task_cpu(p);
1862 if ((cpu != smp_processor_id()) && task_curr(p))
1863 smp_send_reschedule(cpu);
1864 preempt_enable();
1868 * Return a low guess at the load of a migration-source cpu weighted
1869 * according to the scheduling class and "nice" value.
1871 * We want to under-estimate the load of migration sources, to
1872 * balance conservatively.
1874 static unsigned long source_load(int cpu, int type)
1876 struct rq *rq = cpu_rq(cpu);
1877 unsigned long total = weighted_cpuload(cpu);
1879 if (type == 0)
1880 return total;
1882 return min(rq->cpu_load[type-1], total);
1886 * Return a high guess at the load of a migration-target cpu weighted
1887 * according to the scheduling class and "nice" value.
1889 static unsigned long target_load(int cpu, int type)
1891 struct rq *rq = cpu_rq(cpu);
1892 unsigned long total = weighted_cpuload(cpu);
1894 if (type == 0)
1895 return total;
1897 return max(rq->cpu_load[type-1], total);
1901 * Return the average load per task on the cpu's run queue
1903 static unsigned long cpu_avg_load_per_task(int cpu)
1905 struct rq *rq = cpu_rq(cpu);
1906 unsigned long total = weighted_cpuload(cpu);
1907 unsigned long n = rq->nr_running;
1909 return n ? total / n : SCHED_LOAD_SCALE;
1913 * find_idlest_group finds and returns the least busy CPU group within the
1914 * domain.
1916 static struct sched_group *
1917 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1919 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1920 unsigned long min_load = ULONG_MAX, this_load = 0;
1921 int load_idx = sd->forkexec_idx;
1922 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1924 do {
1925 unsigned long load, avg_load;
1926 int local_group;
1927 int i;
1929 /* Skip over this group if it has no CPUs allowed */
1930 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1931 continue;
1933 local_group = cpu_isset(this_cpu, group->cpumask);
1935 /* Tally up the load of all CPUs in the group */
1936 avg_load = 0;
1938 for_each_cpu_mask(i, group->cpumask) {
1939 /* Bias balancing toward cpus of our domain */
1940 if (local_group)
1941 load = source_load(i, load_idx);
1942 else
1943 load = target_load(i, load_idx);
1945 avg_load += load;
1948 /* Adjust by relative CPU power of the group */
1949 avg_load = sg_div_cpu_power(group,
1950 avg_load * SCHED_LOAD_SCALE);
1952 if (local_group) {
1953 this_load = avg_load;
1954 this = group;
1955 } else if (avg_load < min_load) {
1956 min_load = avg_load;
1957 idlest = group;
1959 } while (group = group->next, group != sd->groups);
1961 if (!idlest || 100*this_load < imbalance*min_load)
1962 return NULL;
1963 return idlest;
1967 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1969 static int
1970 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1971 cpumask_t *tmp)
1973 unsigned long load, min_load = ULONG_MAX;
1974 int idlest = -1;
1975 int i;
1977 /* Traverse only the allowed CPUs */
1978 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
1980 for_each_cpu_mask(i, *tmp) {
1981 load = weighted_cpuload(i);
1983 if (load < min_load || (load == min_load && i == this_cpu)) {
1984 min_load = load;
1985 idlest = i;
1989 return idlest;
1993 * sched_balance_self: balance the current task (running on cpu) in domains
1994 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1995 * SD_BALANCE_EXEC.
1997 * Balance, ie. select the least loaded group.
1999 * Returns the target CPU number, or the same CPU if no balancing is needed.
2001 * preempt must be disabled.
2003 static int sched_balance_self(int cpu, int flag)
2005 struct task_struct *t = current;
2006 struct sched_domain *tmp, *sd = NULL;
2008 for_each_domain(cpu, tmp) {
2010 * If power savings logic is enabled for a domain, stop there.
2012 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2013 break;
2014 if (tmp->flags & flag)
2015 sd = tmp;
2018 while (sd) {
2019 cpumask_t span, tmpmask;
2020 struct sched_group *group;
2021 int new_cpu, weight;
2023 if (!(sd->flags & flag)) {
2024 sd = sd->child;
2025 continue;
2028 span = sd->span;
2029 group = find_idlest_group(sd, t, cpu);
2030 if (!group) {
2031 sd = sd->child;
2032 continue;
2035 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2036 if (new_cpu == -1 || new_cpu == cpu) {
2037 /* Now try balancing at a lower domain level of cpu */
2038 sd = sd->child;
2039 continue;
2042 /* Now try balancing at a lower domain level of new_cpu */
2043 cpu = new_cpu;
2044 sd = NULL;
2045 weight = cpus_weight(span);
2046 for_each_domain(cpu, tmp) {
2047 if (weight <= cpus_weight(tmp->span))
2048 break;
2049 if (tmp->flags & flag)
2050 sd = tmp;
2052 /* while loop will break here if sd == NULL */
2055 return cpu;
2058 #endif /* CONFIG_SMP */
2060 /***
2061 * try_to_wake_up - wake up a thread
2062 * @p: the to-be-woken-up thread
2063 * @state: the mask of task states that can be woken
2064 * @sync: do a synchronous wakeup?
2066 * Put it on the run-queue if it's not already there. The "current"
2067 * thread is always on the run-queue (except when the actual
2068 * re-schedule is in progress), and as such you're allowed to do
2069 * the simpler "current->state = TASK_RUNNING" to mark yourself
2070 * runnable without the overhead of this.
2072 * returns failure only if the task is already active.
2074 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2076 int cpu, orig_cpu, this_cpu, success = 0;
2077 unsigned long flags;
2078 long old_state;
2079 struct rq *rq;
2081 if (!sched_feat(SYNC_WAKEUPS))
2082 sync = 0;
2084 smp_wmb();
2085 rq = task_rq_lock(p, &flags);
2086 old_state = p->state;
2087 if (!(old_state & state))
2088 goto out;
2090 if (p->se.on_rq)
2091 goto out_running;
2093 cpu = task_cpu(p);
2094 orig_cpu = cpu;
2095 this_cpu = smp_processor_id();
2097 #ifdef CONFIG_SMP
2098 if (unlikely(task_running(rq, p)))
2099 goto out_activate;
2101 cpu = p->sched_class->select_task_rq(p, sync);
2102 if (cpu != orig_cpu) {
2103 set_task_cpu(p, cpu);
2104 task_rq_unlock(rq, &flags);
2105 /* might preempt at this point */
2106 rq = task_rq_lock(p, &flags);
2107 old_state = p->state;
2108 if (!(old_state & state))
2109 goto out;
2110 if (p->se.on_rq)
2111 goto out_running;
2113 this_cpu = smp_processor_id();
2114 cpu = task_cpu(p);
2117 #ifdef CONFIG_SCHEDSTATS
2118 schedstat_inc(rq, ttwu_count);
2119 if (cpu == this_cpu)
2120 schedstat_inc(rq, ttwu_local);
2121 else {
2122 struct sched_domain *sd;
2123 for_each_domain(this_cpu, sd) {
2124 if (cpu_isset(cpu, sd->span)) {
2125 schedstat_inc(sd, ttwu_wake_remote);
2126 break;
2130 #endif
2132 out_activate:
2133 #endif /* CONFIG_SMP */
2134 schedstat_inc(p, se.nr_wakeups);
2135 if (sync)
2136 schedstat_inc(p, se.nr_wakeups_sync);
2137 if (orig_cpu != cpu)
2138 schedstat_inc(p, se.nr_wakeups_migrate);
2139 if (cpu == this_cpu)
2140 schedstat_inc(p, se.nr_wakeups_local);
2141 else
2142 schedstat_inc(p, se.nr_wakeups_remote);
2143 update_rq_clock(rq);
2144 activate_task(rq, p, 1);
2145 success = 1;
2147 out_running:
2148 check_preempt_curr(rq, p);
2150 p->state = TASK_RUNNING;
2151 #ifdef CONFIG_SMP
2152 if (p->sched_class->task_wake_up)
2153 p->sched_class->task_wake_up(rq, p);
2154 #endif
2155 out:
2156 task_rq_unlock(rq, &flags);
2158 return success;
2161 int wake_up_process(struct task_struct *p)
2163 return try_to_wake_up(p, TASK_ALL, 0);
2165 EXPORT_SYMBOL(wake_up_process);
2167 int wake_up_state(struct task_struct *p, unsigned int state)
2169 return try_to_wake_up(p, state, 0);
2173 * Perform scheduler related setup for a newly forked process p.
2174 * p is forked by current.
2176 * __sched_fork() is basic setup used by init_idle() too:
2178 static void __sched_fork(struct task_struct *p)
2180 p->se.exec_start = 0;
2181 p->se.sum_exec_runtime = 0;
2182 p->se.prev_sum_exec_runtime = 0;
2183 p->se.last_wakeup = 0;
2184 p->se.avg_overlap = 0;
2186 #ifdef CONFIG_SCHEDSTATS
2187 p->se.wait_start = 0;
2188 p->se.sum_sleep_runtime = 0;
2189 p->se.sleep_start = 0;
2190 p->se.block_start = 0;
2191 p->se.sleep_max = 0;
2192 p->se.block_max = 0;
2193 p->se.exec_max = 0;
2194 p->se.slice_max = 0;
2195 p->se.wait_max = 0;
2196 #endif
2198 INIT_LIST_HEAD(&p->rt.run_list);
2199 p->se.on_rq = 0;
2200 INIT_LIST_HEAD(&p->se.group_node);
2202 #ifdef CONFIG_PREEMPT_NOTIFIERS
2203 INIT_HLIST_HEAD(&p->preempt_notifiers);
2204 #endif
2207 * We mark the process as running here, but have not actually
2208 * inserted it onto the runqueue yet. This guarantees that
2209 * nobody will actually run it, and a signal or other external
2210 * event cannot wake it up and insert it on the runqueue either.
2212 p->state = TASK_RUNNING;
2216 * fork()/clone()-time setup:
2218 void sched_fork(struct task_struct *p, int clone_flags)
2220 int cpu = get_cpu();
2222 __sched_fork(p);
2224 #ifdef CONFIG_SMP
2225 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2226 #endif
2227 set_task_cpu(p, cpu);
2230 * Make sure we do not leak PI boosting priority to the child:
2232 p->prio = current->normal_prio;
2233 if (!rt_prio(p->prio))
2234 p->sched_class = &fair_sched_class;
2236 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2237 if (likely(sched_info_on()))
2238 memset(&p->sched_info, 0, sizeof(p->sched_info));
2239 #endif
2240 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2241 p->oncpu = 0;
2242 #endif
2243 #ifdef CONFIG_PREEMPT
2244 /* Want to start with kernel preemption disabled. */
2245 task_thread_info(p)->preempt_count = 1;
2246 #endif
2247 put_cpu();
2251 * wake_up_new_task - wake up a newly created task for the first time.
2253 * This function will do some initial scheduler statistics housekeeping
2254 * that must be done for every newly created context, then puts the task
2255 * on the runqueue and wakes it.
2257 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2259 unsigned long flags;
2260 struct rq *rq;
2262 rq = task_rq_lock(p, &flags);
2263 BUG_ON(p->state != TASK_RUNNING);
2264 update_rq_clock(rq);
2266 p->prio = effective_prio(p);
2268 if (!p->sched_class->task_new || !current->se.on_rq) {
2269 activate_task(rq, p, 0);
2270 } else {
2272 * Let the scheduling class do new task startup
2273 * management (if any):
2275 p->sched_class->task_new(rq, p);
2276 inc_nr_running(p, rq);
2278 check_preempt_curr(rq, p);
2279 #ifdef CONFIG_SMP
2280 if (p->sched_class->task_wake_up)
2281 p->sched_class->task_wake_up(rq, p);
2282 #endif
2283 task_rq_unlock(rq, &flags);
2286 #ifdef CONFIG_PREEMPT_NOTIFIERS
2289 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2290 * @notifier: notifier struct to register
2292 void preempt_notifier_register(struct preempt_notifier *notifier)
2294 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2296 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2299 * preempt_notifier_unregister - no longer interested in preemption notifications
2300 * @notifier: notifier struct to unregister
2302 * This is safe to call from within a preemption notifier.
2304 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2306 hlist_del(&notifier->link);
2308 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2310 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2312 struct preempt_notifier *notifier;
2313 struct hlist_node *node;
2315 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2316 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2319 static void
2320 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2321 struct task_struct *next)
2323 struct preempt_notifier *notifier;
2324 struct hlist_node *node;
2326 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2327 notifier->ops->sched_out(notifier, next);
2330 #else
2332 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2336 static void
2337 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2338 struct task_struct *next)
2342 #endif
2345 * prepare_task_switch - prepare to switch tasks
2346 * @rq: the runqueue preparing to switch
2347 * @prev: the current task that is being switched out
2348 * @next: the task we are going to switch to.
2350 * This is called with the rq lock held and interrupts off. It must
2351 * be paired with a subsequent finish_task_switch after the context
2352 * switch.
2354 * prepare_task_switch sets up locking and calls architecture specific
2355 * hooks.
2357 static inline void
2358 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2359 struct task_struct *next)
2361 fire_sched_out_preempt_notifiers(prev, next);
2362 prepare_lock_switch(rq, next);
2363 prepare_arch_switch(next);
2367 * finish_task_switch - clean up after a task-switch
2368 * @rq: runqueue associated with task-switch
2369 * @prev: the thread we just switched away from.
2371 * finish_task_switch must be called after the context switch, paired
2372 * with a prepare_task_switch call before the context switch.
2373 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2374 * and do any other architecture-specific cleanup actions.
2376 * Note that we may have delayed dropping an mm in context_switch(). If
2377 * so, we finish that here outside of the runqueue lock. (Doing it
2378 * with the lock held can cause deadlocks; see schedule() for
2379 * details.)
2381 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2382 __releases(rq->lock)
2384 struct mm_struct *mm = rq->prev_mm;
2385 long prev_state;
2387 rq->prev_mm = NULL;
2390 * A task struct has one reference for the use as "current".
2391 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2392 * schedule one last time. The schedule call will never return, and
2393 * the scheduled task must drop that reference.
2394 * The test for TASK_DEAD must occur while the runqueue locks are
2395 * still held, otherwise prev could be scheduled on another cpu, die
2396 * there before we look at prev->state, and then the reference would
2397 * be dropped twice.
2398 * Manfred Spraul <manfred@colorfullife.com>
2400 prev_state = prev->state;
2401 finish_arch_switch(prev);
2402 finish_lock_switch(rq, prev);
2403 #ifdef CONFIG_SMP
2404 if (current->sched_class->post_schedule)
2405 current->sched_class->post_schedule(rq);
2406 #endif
2408 fire_sched_in_preempt_notifiers(current);
2409 if (mm)
2410 mmdrop(mm);
2411 if (unlikely(prev_state == TASK_DEAD)) {
2413 * Remove function-return probe instances associated with this
2414 * task and put them back on the free list.
2416 kprobe_flush_task(prev);
2417 put_task_struct(prev);
2422 * schedule_tail - first thing a freshly forked thread must call.
2423 * @prev: the thread we just switched away from.
2425 asmlinkage void schedule_tail(struct task_struct *prev)
2426 __releases(rq->lock)
2428 struct rq *rq = this_rq();
2430 finish_task_switch(rq, prev);
2431 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2432 /* In this case, finish_task_switch does not reenable preemption */
2433 preempt_enable();
2434 #endif
2435 if (current->set_child_tid)
2436 put_user(task_pid_vnr(current), current->set_child_tid);
2440 * context_switch - switch to the new MM and the new
2441 * thread's register state.
2443 static inline void
2444 context_switch(struct rq *rq, struct task_struct *prev,
2445 struct task_struct *next)
2447 struct mm_struct *mm, *oldmm;
2449 prepare_task_switch(rq, prev, next);
2450 mm = next->mm;
2451 oldmm = prev->active_mm;
2453 * For paravirt, this is coupled with an exit in switch_to to
2454 * combine the page table reload and the switch backend into
2455 * one hypercall.
2457 arch_enter_lazy_cpu_mode();
2459 if (unlikely(!mm)) {
2460 next->active_mm = oldmm;
2461 atomic_inc(&oldmm->mm_count);
2462 enter_lazy_tlb(oldmm, next);
2463 } else
2464 switch_mm(oldmm, mm, next);
2466 if (unlikely(!prev->mm)) {
2467 prev->active_mm = NULL;
2468 rq->prev_mm = oldmm;
2471 * Since the runqueue lock will be released by the next
2472 * task (which is an invalid locking op but in the case
2473 * of the scheduler it's an obvious special-case), so we
2474 * do an early lockdep release here:
2476 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2477 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2478 #endif
2480 /* Here we just switch the register state and the stack. */
2481 switch_to(prev, next, prev);
2483 barrier();
2485 * this_rq must be evaluated again because prev may have moved
2486 * CPUs since it called schedule(), thus the 'rq' on its stack
2487 * frame will be invalid.
2489 finish_task_switch(this_rq(), prev);
2493 * nr_running, nr_uninterruptible and nr_context_switches:
2495 * externally visible scheduler statistics: current number of runnable
2496 * threads, current number of uninterruptible-sleeping threads, total
2497 * number of context switches performed since bootup.
2499 unsigned long nr_running(void)
2501 unsigned long i, sum = 0;
2503 for_each_online_cpu(i)
2504 sum += cpu_rq(i)->nr_running;
2506 return sum;
2509 unsigned long nr_uninterruptible(void)
2511 unsigned long i, sum = 0;
2513 for_each_possible_cpu(i)
2514 sum += cpu_rq(i)->nr_uninterruptible;
2517 * Since we read the counters lockless, it might be slightly
2518 * inaccurate. Do not allow it to go below zero though:
2520 if (unlikely((long)sum < 0))
2521 sum = 0;
2523 return sum;
2526 unsigned long long nr_context_switches(void)
2528 int i;
2529 unsigned long long sum = 0;
2531 for_each_possible_cpu(i)
2532 sum += cpu_rq(i)->nr_switches;
2534 return sum;
2537 unsigned long nr_iowait(void)
2539 unsigned long i, sum = 0;
2541 for_each_possible_cpu(i)
2542 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2544 return sum;
2547 unsigned long nr_active(void)
2549 unsigned long i, running = 0, uninterruptible = 0;
2551 for_each_online_cpu(i) {
2552 running += cpu_rq(i)->nr_running;
2553 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2556 if (unlikely((long)uninterruptible < 0))
2557 uninterruptible = 0;
2559 return running + uninterruptible;
2563 * Update rq->cpu_load[] statistics. This function is usually called every
2564 * scheduler tick (TICK_NSEC).
2566 static void update_cpu_load(struct rq *this_rq)
2568 unsigned long this_load = this_rq->load.weight;
2569 int i, scale;
2571 this_rq->nr_load_updates++;
2573 /* Update our load: */
2574 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2575 unsigned long old_load, new_load;
2577 /* scale is effectively 1 << i now, and >> i divides by scale */
2579 old_load = this_rq->cpu_load[i];
2580 new_load = this_load;
2582 * Round up the averaging division if load is increasing. This
2583 * prevents us from getting stuck on 9 if the load is 10, for
2584 * example.
2586 if (new_load > old_load)
2587 new_load += scale-1;
2588 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2592 #ifdef CONFIG_SMP
2595 * double_rq_lock - safely lock two runqueues
2597 * Note this does not disable interrupts like task_rq_lock,
2598 * you need to do so manually before calling.
2600 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2601 __acquires(rq1->lock)
2602 __acquires(rq2->lock)
2604 BUG_ON(!irqs_disabled());
2605 if (rq1 == rq2) {
2606 spin_lock(&rq1->lock);
2607 __acquire(rq2->lock); /* Fake it out ;) */
2608 } else {
2609 if (rq1 < rq2) {
2610 spin_lock(&rq1->lock);
2611 spin_lock(&rq2->lock);
2612 } else {
2613 spin_lock(&rq2->lock);
2614 spin_lock(&rq1->lock);
2617 update_rq_clock(rq1);
2618 update_rq_clock(rq2);
2622 * double_rq_unlock - safely unlock two runqueues
2624 * Note this does not restore interrupts like task_rq_unlock,
2625 * you need to do so manually after calling.
2627 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2628 __releases(rq1->lock)
2629 __releases(rq2->lock)
2631 spin_unlock(&rq1->lock);
2632 if (rq1 != rq2)
2633 spin_unlock(&rq2->lock);
2634 else
2635 __release(rq2->lock);
2639 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2641 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2642 __releases(this_rq->lock)
2643 __acquires(busiest->lock)
2644 __acquires(this_rq->lock)
2646 int ret = 0;
2648 if (unlikely(!irqs_disabled())) {
2649 /* printk() doesn't work good under rq->lock */
2650 spin_unlock(&this_rq->lock);
2651 BUG_ON(1);
2653 if (unlikely(!spin_trylock(&busiest->lock))) {
2654 if (busiest < this_rq) {
2655 spin_unlock(&this_rq->lock);
2656 spin_lock(&busiest->lock);
2657 spin_lock(&this_rq->lock);
2658 ret = 1;
2659 } else
2660 spin_lock(&busiest->lock);
2662 return ret;
2666 * If dest_cpu is allowed for this process, migrate the task to it.
2667 * This is accomplished by forcing the cpu_allowed mask to only
2668 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2669 * the cpu_allowed mask is restored.
2671 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2673 struct migration_req req;
2674 unsigned long flags;
2675 struct rq *rq;
2677 rq = task_rq_lock(p, &flags);
2678 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2679 || unlikely(cpu_is_offline(dest_cpu)))
2680 goto out;
2682 /* force the process onto the specified CPU */
2683 if (migrate_task(p, dest_cpu, &req)) {
2684 /* Need to wait for migration thread (might exit: take ref). */
2685 struct task_struct *mt = rq->migration_thread;
2687 get_task_struct(mt);
2688 task_rq_unlock(rq, &flags);
2689 wake_up_process(mt);
2690 put_task_struct(mt);
2691 wait_for_completion(&req.done);
2693 return;
2695 out:
2696 task_rq_unlock(rq, &flags);
2700 * sched_exec - execve() is a valuable balancing opportunity, because at
2701 * this point the task has the smallest effective memory and cache footprint.
2703 void sched_exec(void)
2705 int new_cpu, this_cpu = get_cpu();
2706 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2707 put_cpu();
2708 if (new_cpu != this_cpu)
2709 sched_migrate_task(current, new_cpu);
2713 * pull_task - move a task from a remote runqueue to the local runqueue.
2714 * Both runqueues must be locked.
2716 static void pull_task(struct rq *src_rq, struct task_struct *p,
2717 struct rq *this_rq, int this_cpu)
2719 deactivate_task(src_rq, p, 0);
2720 set_task_cpu(p, this_cpu);
2721 activate_task(this_rq, p, 0);
2723 * Note that idle threads have a prio of MAX_PRIO, for this test
2724 * to be always true for them.
2726 check_preempt_curr(this_rq, p);
2730 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2732 static
2733 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2734 struct sched_domain *sd, enum cpu_idle_type idle,
2735 int *all_pinned)
2738 * We do not migrate tasks that are:
2739 * 1) running (obviously), or
2740 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2741 * 3) are cache-hot on their current CPU.
2743 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2744 schedstat_inc(p, se.nr_failed_migrations_affine);
2745 return 0;
2747 *all_pinned = 0;
2749 if (task_running(rq, p)) {
2750 schedstat_inc(p, se.nr_failed_migrations_running);
2751 return 0;
2755 * Aggressive migration if:
2756 * 1) task is cache cold, or
2757 * 2) too many balance attempts have failed.
2760 if (!task_hot(p, rq->clock, sd) ||
2761 sd->nr_balance_failed > sd->cache_nice_tries) {
2762 #ifdef CONFIG_SCHEDSTATS
2763 if (task_hot(p, rq->clock, sd)) {
2764 schedstat_inc(sd, lb_hot_gained[idle]);
2765 schedstat_inc(p, se.nr_forced_migrations);
2767 #endif
2768 return 1;
2771 if (task_hot(p, rq->clock, sd)) {
2772 schedstat_inc(p, se.nr_failed_migrations_hot);
2773 return 0;
2775 return 1;
2778 static unsigned long
2779 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2780 unsigned long max_load_move, struct sched_domain *sd,
2781 enum cpu_idle_type idle, int *all_pinned,
2782 int *this_best_prio, struct rq_iterator *iterator)
2784 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2785 struct task_struct *p;
2786 long rem_load_move = max_load_move;
2788 if (max_load_move == 0)
2789 goto out;
2791 pinned = 1;
2794 * Start the load-balancing iterator:
2796 p = iterator->start(iterator->arg);
2797 next:
2798 if (!p || loops++ > sysctl_sched_nr_migrate)
2799 goto out;
2801 * To help distribute high priority tasks across CPUs we don't
2802 * skip a task if it will be the highest priority task (i.e. smallest
2803 * prio value) on its new queue regardless of its load weight
2805 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2806 SCHED_LOAD_SCALE_FUZZ;
2807 if ((skip_for_load && p->prio >= *this_best_prio) ||
2808 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2809 p = iterator->next(iterator->arg);
2810 goto next;
2813 pull_task(busiest, p, this_rq, this_cpu);
2814 pulled++;
2815 rem_load_move -= p->se.load.weight;
2818 * We only want to steal up to the prescribed amount of weighted load.
2820 if (rem_load_move > 0) {
2821 if (p->prio < *this_best_prio)
2822 *this_best_prio = p->prio;
2823 p = iterator->next(iterator->arg);
2824 goto next;
2826 out:
2828 * Right now, this is one of only two places pull_task() is called,
2829 * so we can safely collect pull_task() stats here rather than
2830 * inside pull_task().
2832 schedstat_add(sd, lb_gained[idle], pulled);
2834 if (all_pinned)
2835 *all_pinned = pinned;
2837 return max_load_move - rem_load_move;
2841 * move_tasks tries to move up to max_load_move weighted load from busiest to
2842 * this_rq, as part of a balancing operation within domain "sd".
2843 * Returns 1 if successful and 0 otherwise.
2845 * Called with both runqueues locked.
2847 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2848 unsigned long max_load_move,
2849 struct sched_domain *sd, enum cpu_idle_type idle,
2850 int *all_pinned)
2852 const struct sched_class *class = sched_class_highest;
2853 unsigned long total_load_moved = 0;
2854 int this_best_prio = this_rq->curr->prio;
2856 do {
2857 total_load_moved +=
2858 class->load_balance(this_rq, this_cpu, busiest,
2859 max_load_move - total_load_moved,
2860 sd, idle, all_pinned, &this_best_prio);
2861 class = class->next;
2862 } while (class && max_load_move > total_load_moved);
2864 return total_load_moved > 0;
2867 static int
2868 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2869 struct sched_domain *sd, enum cpu_idle_type idle,
2870 struct rq_iterator *iterator)
2872 struct task_struct *p = iterator->start(iterator->arg);
2873 int pinned = 0;
2875 while (p) {
2876 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2877 pull_task(busiest, p, this_rq, this_cpu);
2879 * Right now, this is only the second place pull_task()
2880 * is called, so we can safely collect pull_task()
2881 * stats here rather than inside pull_task().
2883 schedstat_inc(sd, lb_gained[idle]);
2885 return 1;
2887 p = iterator->next(iterator->arg);
2890 return 0;
2894 * move_one_task tries to move exactly one task from busiest to this_rq, as
2895 * part of active balancing operations within "domain".
2896 * Returns 1 if successful and 0 otherwise.
2898 * Called with both runqueues locked.
2900 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2901 struct sched_domain *sd, enum cpu_idle_type idle)
2903 const struct sched_class *class;
2905 for (class = sched_class_highest; class; class = class->next)
2906 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2907 return 1;
2909 return 0;
2913 * find_busiest_group finds and returns the busiest CPU group within the
2914 * domain. It calculates and returns the amount of weighted load which
2915 * should be moved to restore balance via the imbalance parameter.
2917 static struct sched_group *
2918 find_busiest_group(struct sched_domain *sd, int this_cpu,
2919 unsigned long *imbalance, enum cpu_idle_type idle,
2920 int *sd_idle, const cpumask_t *cpus, int *balance)
2922 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2923 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2924 unsigned long max_pull;
2925 unsigned long busiest_load_per_task, busiest_nr_running;
2926 unsigned long this_load_per_task, this_nr_running;
2927 int load_idx, group_imb = 0;
2928 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2929 int power_savings_balance = 1;
2930 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2931 unsigned long min_nr_running = ULONG_MAX;
2932 struct sched_group *group_min = NULL, *group_leader = NULL;
2933 #endif
2935 max_load = this_load = total_load = total_pwr = 0;
2936 busiest_load_per_task = busiest_nr_running = 0;
2937 this_load_per_task = this_nr_running = 0;
2938 if (idle == CPU_NOT_IDLE)
2939 load_idx = sd->busy_idx;
2940 else if (idle == CPU_NEWLY_IDLE)
2941 load_idx = sd->newidle_idx;
2942 else
2943 load_idx = sd->idle_idx;
2945 do {
2946 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2947 int local_group;
2948 int i;
2949 int __group_imb = 0;
2950 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2951 unsigned long sum_nr_running, sum_weighted_load;
2953 local_group = cpu_isset(this_cpu, group->cpumask);
2955 if (local_group)
2956 balance_cpu = first_cpu(group->cpumask);
2958 /* Tally up the load of all CPUs in the group */
2959 sum_weighted_load = sum_nr_running = avg_load = 0;
2960 max_cpu_load = 0;
2961 min_cpu_load = ~0UL;
2963 for_each_cpu_mask(i, group->cpumask) {
2964 struct rq *rq;
2966 if (!cpu_isset(i, *cpus))
2967 continue;
2969 rq = cpu_rq(i);
2971 if (*sd_idle && rq->nr_running)
2972 *sd_idle = 0;
2974 /* Bias balancing toward cpus of our domain */
2975 if (local_group) {
2976 if (idle_cpu(i) && !first_idle_cpu) {
2977 first_idle_cpu = 1;
2978 balance_cpu = i;
2981 load = target_load(i, load_idx);
2982 } else {
2983 load = source_load(i, load_idx);
2984 if (load > max_cpu_load)
2985 max_cpu_load = load;
2986 if (min_cpu_load > load)
2987 min_cpu_load = load;
2990 avg_load += load;
2991 sum_nr_running += rq->nr_running;
2992 sum_weighted_load += weighted_cpuload(i);
2996 * First idle cpu or the first cpu(busiest) in this sched group
2997 * is eligible for doing load balancing at this and above
2998 * domains. In the newly idle case, we will allow all the cpu's
2999 * to do the newly idle load balance.
3001 if (idle != CPU_NEWLY_IDLE && local_group &&
3002 balance_cpu != this_cpu && balance) {
3003 *balance = 0;
3004 goto ret;
3007 total_load += avg_load;
3008 total_pwr += group->__cpu_power;
3010 /* Adjust by relative CPU power of the group */
3011 avg_load = sg_div_cpu_power(group,
3012 avg_load * SCHED_LOAD_SCALE);
3014 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3015 __group_imb = 1;
3017 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3019 if (local_group) {
3020 this_load = avg_load;
3021 this = group;
3022 this_nr_running = sum_nr_running;
3023 this_load_per_task = sum_weighted_load;
3024 } else if (avg_load > max_load &&
3025 (sum_nr_running > group_capacity || __group_imb)) {
3026 max_load = avg_load;
3027 busiest = group;
3028 busiest_nr_running = sum_nr_running;
3029 busiest_load_per_task = sum_weighted_load;
3030 group_imb = __group_imb;
3033 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3035 * Busy processors will not participate in power savings
3036 * balance.
3038 if (idle == CPU_NOT_IDLE ||
3039 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3040 goto group_next;
3043 * If the local group is idle or completely loaded
3044 * no need to do power savings balance at this domain
3046 if (local_group && (this_nr_running >= group_capacity ||
3047 !this_nr_running))
3048 power_savings_balance = 0;
3051 * If a group is already running at full capacity or idle,
3052 * don't include that group in power savings calculations
3054 if (!power_savings_balance || sum_nr_running >= group_capacity
3055 || !sum_nr_running)
3056 goto group_next;
3059 * Calculate the group which has the least non-idle load.
3060 * This is the group from where we need to pick up the load
3061 * for saving power
3063 if ((sum_nr_running < min_nr_running) ||
3064 (sum_nr_running == min_nr_running &&
3065 first_cpu(group->cpumask) <
3066 first_cpu(group_min->cpumask))) {
3067 group_min = group;
3068 min_nr_running = sum_nr_running;
3069 min_load_per_task = sum_weighted_load /
3070 sum_nr_running;
3074 * Calculate the group which is almost near its
3075 * capacity but still has some space to pick up some load
3076 * from other group and save more power
3078 if (sum_nr_running <= group_capacity - 1) {
3079 if (sum_nr_running > leader_nr_running ||
3080 (sum_nr_running == leader_nr_running &&
3081 first_cpu(group->cpumask) >
3082 first_cpu(group_leader->cpumask))) {
3083 group_leader = group;
3084 leader_nr_running = sum_nr_running;
3087 group_next:
3088 #endif
3089 group = group->next;
3090 } while (group != sd->groups);
3092 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3093 goto out_balanced;
3095 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3097 if (this_load >= avg_load ||
3098 100*max_load <= sd->imbalance_pct*this_load)
3099 goto out_balanced;
3101 busiest_load_per_task /= busiest_nr_running;
3102 if (group_imb)
3103 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3106 * We're trying to get all the cpus to the average_load, so we don't
3107 * want to push ourselves above the average load, nor do we wish to
3108 * reduce the max loaded cpu below the average load, as either of these
3109 * actions would just result in more rebalancing later, and ping-pong
3110 * tasks around. Thus we look for the minimum possible imbalance.
3111 * Negative imbalances (*we* are more loaded than anyone else) will
3112 * be counted as no imbalance for these purposes -- we can't fix that
3113 * by pulling tasks to us. Be careful of negative numbers as they'll
3114 * appear as very large values with unsigned longs.
3116 if (max_load <= busiest_load_per_task)
3117 goto out_balanced;
3120 * In the presence of smp nice balancing, certain scenarios can have
3121 * max load less than avg load(as we skip the groups at or below
3122 * its cpu_power, while calculating max_load..)
3124 if (max_load < avg_load) {
3125 *imbalance = 0;
3126 goto small_imbalance;
3129 /* Don't want to pull so many tasks that a group would go idle */
3130 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3132 /* How much load to actually move to equalise the imbalance */
3133 *imbalance = min(max_pull * busiest->__cpu_power,
3134 (avg_load - this_load) * this->__cpu_power)
3135 / SCHED_LOAD_SCALE;
3138 * if *imbalance is less than the average load per runnable task
3139 * there is no gaurantee that any tasks will be moved so we'll have
3140 * a think about bumping its value to force at least one task to be
3141 * moved
3143 if (*imbalance < busiest_load_per_task) {
3144 unsigned long tmp, pwr_now, pwr_move;
3145 unsigned int imbn;
3147 small_imbalance:
3148 pwr_move = pwr_now = 0;
3149 imbn = 2;
3150 if (this_nr_running) {
3151 this_load_per_task /= this_nr_running;
3152 if (busiest_load_per_task > this_load_per_task)
3153 imbn = 1;
3154 } else
3155 this_load_per_task = SCHED_LOAD_SCALE;
3157 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3158 busiest_load_per_task * imbn) {
3159 *imbalance = busiest_load_per_task;
3160 return busiest;
3164 * OK, we don't have enough imbalance to justify moving tasks,
3165 * however we may be able to increase total CPU power used by
3166 * moving them.
3169 pwr_now += busiest->__cpu_power *
3170 min(busiest_load_per_task, max_load);
3171 pwr_now += this->__cpu_power *
3172 min(this_load_per_task, this_load);
3173 pwr_now /= SCHED_LOAD_SCALE;
3175 /* Amount of load we'd subtract */
3176 tmp = sg_div_cpu_power(busiest,
3177 busiest_load_per_task * SCHED_LOAD_SCALE);
3178 if (max_load > tmp)
3179 pwr_move += busiest->__cpu_power *
3180 min(busiest_load_per_task, max_load - tmp);
3182 /* Amount of load we'd add */
3183 if (max_load * busiest->__cpu_power <
3184 busiest_load_per_task * SCHED_LOAD_SCALE)
3185 tmp = sg_div_cpu_power(this,
3186 max_load * busiest->__cpu_power);
3187 else
3188 tmp = sg_div_cpu_power(this,
3189 busiest_load_per_task * SCHED_LOAD_SCALE);
3190 pwr_move += this->__cpu_power *
3191 min(this_load_per_task, this_load + tmp);
3192 pwr_move /= SCHED_LOAD_SCALE;
3194 /* Move if we gain throughput */
3195 if (pwr_move > pwr_now)
3196 *imbalance = busiest_load_per_task;
3199 return busiest;
3201 out_balanced:
3202 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3203 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3204 goto ret;
3206 if (this == group_leader && group_leader != group_min) {
3207 *imbalance = min_load_per_task;
3208 return group_min;
3210 #endif
3211 ret:
3212 *imbalance = 0;
3213 return NULL;
3217 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3219 static struct rq *
3220 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3221 unsigned long imbalance, const cpumask_t *cpus)
3223 struct rq *busiest = NULL, *rq;
3224 unsigned long max_load = 0;
3225 int i;
3227 for_each_cpu_mask(i, group->cpumask) {
3228 unsigned long wl;
3230 if (!cpu_isset(i, *cpus))
3231 continue;
3233 rq = cpu_rq(i);
3234 wl = weighted_cpuload(i);
3236 if (rq->nr_running == 1 && wl > imbalance)
3237 continue;
3239 if (wl > max_load) {
3240 max_load = wl;
3241 busiest = rq;
3245 return busiest;
3249 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3250 * so long as it is large enough.
3252 #define MAX_PINNED_INTERVAL 512
3255 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3256 * tasks if there is an imbalance.
3258 static int load_balance(int this_cpu, struct rq *this_rq,
3259 struct sched_domain *sd, enum cpu_idle_type idle,
3260 int *balance, cpumask_t *cpus)
3262 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3263 struct sched_group *group;
3264 unsigned long imbalance;
3265 struct rq *busiest;
3266 unsigned long flags;
3268 cpus_setall(*cpus);
3271 * When power savings policy is enabled for the parent domain, idle
3272 * sibling can pick up load irrespective of busy siblings. In this case,
3273 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3274 * portraying it as CPU_NOT_IDLE.
3276 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3277 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3278 sd_idle = 1;
3280 schedstat_inc(sd, lb_count[idle]);
3282 redo:
3283 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3284 cpus, balance);
3286 if (*balance == 0)
3287 goto out_balanced;
3289 if (!group) {
3290 schedstat_inc(sd, lb_nobusyg[idle]);
3291 goto out_balanced;
3294 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3295 if (!busiest) {
3296 schedstat_inc(sd, lb_nobusyq[idle]);
3297 goto out_balanced;
3300 BUG_ON(busiest == this_rq);
3302 schedstat_add(sd, lb_imbalance[idle], imbalance);
3304 ld_moved = 0;
3305 if (busiest->nr_running > 1) {
3307 * Attempt to move tasks. If find_busiest_group has found
3308 * an imbalance but busiest->nr_running <= 1, the group is
3309 * still unbalanced. ld_moved simply stays zero, so it is
3310 * correctly treated as an imbalance.
3312 local_irq_save(flags);
3313 double_rq_lock(this_rq, busiest);
3314 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3315 imbalance, sd, idle, &all_pinned);
3316 double_rq_unlock(this_rq, busiest);
3317 local_irq_restore(flags);
3320 * some other cpu did the load balance for us.
3322 if (ld_moved && this_cpu != smp_processor_id())
3323 resched_cpu(this_cpu);
3325 /* All tasks on this runqueue were pinned by CPU affinity */
3326 if (unlikely(all_pinned)) {
3327 cpu_clear(cpu_of(busiest), *cpus);
3328 if (!cpus_empty(*cpus))
3329 goto redo;
3330 goto out_balanced;
3334 if (!ld_moved) {
3335 schedstat_inc(sd, lb_failed[idle]);
3336 sd->nr_balance_failed++;
3338 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3340 spin_lock_irqsave(&busiest->lock, flags);
3342 /* don't kick the migration_thread, if the curr
3343 * task on busiest cpu can't be moved to this_cpu
3345 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3346 spin_unlock_irqrestore(&busiest->lock, flags);
3347 all_pinned = 1;
3348 goto out_one_pinned;
3351 if (!busiest->active_balance) {
3352 busiest->active_balance = 1;
3353 busiest->push_cpu = this_cpu;
3354 active_balance = 1;
3356 spin_unlock_irqrestore(&busiest->lock, flags);
3357 if (active_balance)
3358 wake_up_process(busiest->migration_thread);
3361 * We've kicked active balancing, reset the failure
3362 * counter.
3364 sd->nr_balance_failed = sd->cache_nice_tries+1;
3366 } else
3367 sd->nr_balance_failed = 0;
3369 if (likely(!active_balance)) {
3370 /* We were unbalanced, so reset the balancing interval */
3371 sd->balance_interval = sd->min_interval;
3372 } else {
3374 * If we've begun active balancing, start to back off. This
3375 * case may not be covered by the all_pinned logic if there
3376 * is only 1 task on the busy runqueue (because we don't call
3377 * move_tasks).
3379 if (sd->balance_interval < sd->max_interval)
3380 sd->balance_interval *= 2;
3383 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3384 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3385 return -1;
3386 return ld_moved;
3388 out_balanced:
3389 schedstat_inc(sd, lb_balanced[idle]);
3391 sd->nr_balance_failed = 0;
3393 out_one_pinned:
3394 /* tune up the balancing interval */
3395 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3396 (sd->balance_interval < sd->max_interval))
3397 sd->balance_interval *= 2;
3399 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3400 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3401 return -1;
3402 return 0;
3406 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3407 * tasks if there is an imbalance.
3409 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3410 * this_rq is locked.
3412 static int
3413 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3414 cpumask_t *cpus)
3416 struct sched_group *group;
3417 struct rq *busiest = NULL;
3418 unsigned long imbalance;
3419 int ld_moved = 0;
3420 int sd_idle = 0;
3421 int all_pinned = 0;
3423 cpus_setall(*cpus);
3426 * When power savings policy is enabled for the parent domain, idle
3427 * sibling can pick up load irrespective of busy siblings. In this case,
3428 * let the state of idle sibling percolate up as IDLE, instead of
3429 * portraying it as CPU_NOT_IDLE.
3431 if (sd->flags & SD_SHARE_CPUPOWER &&
3432 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3433 sd_idle = 1;
3435 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3436 redo:
3437 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3438 &sd_idle, cpus, NULL);
3439 if (!group) {
3440 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3441 goto out_balanced;
3444 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3445 if (!busiest) {
3446 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3447 goto out_balanced;
3450 BUG_ON(busiest == this_rq);
3452 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3454 ld_moved = 0;
3455 if (busiest->nr_running > 1) {
3456 /* Attempt to move tasks */
3457 double_lock_balance(this_rq, busiest);
3458 /* this_rq->clock is already updated */
3459 update_rq_clock(busiest);
3460 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3461 imbalance, sd, CPU_NEWLY_IDLE,
3462 &all_pinned);
3463 spin_unlock(&busiest->lock);
3465 if (unlikely(all_pinned)) {
3466 cpu_clear(cpu_of(busiest), *cpus);
3467 if (!cpus_empty(*cpus))
3468 goto redo;
3472 if (!ld_moved) {
3473 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3474 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3475 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3476 return -1;
3477 } else
3478 sd->nr_balance_failed = 0;
3480 return ld_moved;
3482 out_balanced:
3483 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3484 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3485 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3486 return -1;
3487 sd->nr_balance_failed = 0;
3489 return 0;
3493 * idle_balance is called by schedule() if this_cpu is about to become
3494 * idle. Attempts to pull tasks from other CPUs.
3496 static void idle_balance(int this_cpu, struct rq *this_rq)
3498 struct sched_domain *sd;
3499 int pulled_task = -1;
3500 unsigned long next_balance = jiffies + HZ;
3501 cpumask_t tmpmask;
3503 for_each_domain(this_cpu, sd) {
3504 unsigned long interval;
3506 if (!(sd->flags & SD_LOAD_BALANCE))
3507 continue;
3509 if (sd->flags & SD_BALANCE_NEWIDLE)
3510 /* If we've pulled tasks over stop searching: */
3511 pulled_task = load_balance_newidle(this_cpu, this_rq,
3512 sd, &tmpmask);
3514 interval = msecs_to_jiffies(sd->balance_interval);
3515 if (time_after(next_balance, sd->last_balance + interval))
3516 next_balance = sd->last_balance + interval;
3517 if (pulled_task)
3518 break;
3520 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3522 * We are going idle. next_balance may be set based on
3523 * a busy processor. So reset next_balance.
3525 this_rq->next_balance = next_balance;
3530 * active_load_balance is run by migration threads. It pushes running tasks
3531 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3532 * running on each physical CPU where possible, and avoids physical /
3533 * logical imbalances.
3535 * Called with busiest_rq locked.
3537 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3539 int target_cpu = busiest_rq->push_cpu;
3540 struct sched_domain *sd;
3541 struct rq *target_rq;
3543 /* Is there any task to move? */
3544 if (busiest_rq->nr_running <= 1)
3545 return;
3547 target_rq = cpu_rq(target_cpu);
3550 * This condition is "impossible", if it occurs
3551 * we need to fix it. Originally reported by
3552 * Bjorn Helgaas on a 128-cpu setup.
3554 BUG_ON(busiest_rq == target_rq);
3556 /* move a task from busiest_rq to target_rq */
3557 double_lock_balance(busiest_rq, target_rq);
3558 update_rq_clock(busiest_rq);
3559 update_rq_clock(target_rq);
3561 /* Search for an sd spanning us and the target CPU. */
3562 for_each_domain(target_cpu, sd) {
3563 if ((sd->flags & SD_LOAD_BALANCE) &&
3564 cpu_isset(busiest_cpu, sd->span))
3565 break;
3568 if (likely(sd)) {
3569 schedstat_inc(sd, alb_count);
3571 if (move_one_task(target_rq, target_cpu, busiest_rq,
3572 sd, CPU_IDLE))
3573 schedstat_inc(sd, alb_pushed);
3574 else
3575 schedstat_inc(sd, alb_failed);
3577 spin_unlock(&target_rq->lock);
3580 #ifdef CONFIG_NO_HZ
3581 static struct {
3582 atomic_t load_balancer;
3583 cpumask_t cpu_mask;
3584 } nohz ____cacheline_aligned = {
3585 .load_balancer = ATOMIC_INIT(-1),
3586 .cpu_mask = CPU_MASK_NONE,
3590 * This routine will try to nominate the ilb (idle load balancing)
3591 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3592 * load balancing on behalf of all those cpus. If all the cpus in the system
3593 * go into this tickless mode, then there will be no ilb owner (as there is
3594 * no need for one) and all the cpus will sleep till the next wakeup event
3595 * arrives...
3597 * For the ilb owner, tick is not stopped. And this tick will be used
3598 * for idle load balancing. ilb owner will still be part of
3599 * nohz.cpu_mask..
3601 * While stopping the tick, this cpu will become the ilb owner if there
3602 * is no other owner. And will be the owner till that cpu becomes busy
3603 * or if all cpus in the system stop their ticks at which point
3604 * there is no need for ilb owner.
3606 * When the ilb owner becomes busy, it nominates another owner, during the
3607 * next busy scheduler_tick()
3609 int select_nohz_load_balancer(int stop_tick)
3611 int cpu = smp_processor_id();
3613 if (stop_tick) {
3614 cpu_set(cpu, nohz.cpu_mask);
3615 cpu_rq(cpu)->in_nohz_recently = 1;
3618 * If we are going offline and still the leader, give up!
3620 if (cpu_is_offline(cpu) &&
3621 atomic_read(&nohz.load_balancer) == cpu) {
3622 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3623 BUG();
3624 return 0;
3627 /* time for ilb owner also to sleep */
3628 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3629 if (atomic_read(&nohz.load_balancer) == cpu)
3630 atomic_set(&nohz.load_balancer, -1);
3631 return 0;
3634 if (atomic_read(&nohz.load_balancer) == -1) {
3635 /* make me the ilb owner */
3636 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3637 return 1;
3638 } else if (atomic_read(&nohz.load_balancer) == cpu)
3639 return 1;
3640 } else {
3641 if (!cpu_isset(cpu, nohz.cpu_mask))
3642 return 0;
3644 cpu_clear(cpu, nohz.cpu_mask);
3646 if (atomic_read(&nohz.load_balancer) == cpu)
3647 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3648 BUG();
3650 return 0;
3652 #endif
3654 static DEFINE_SPINLOCK(balancing);
3657 * It checks each scheduling domain to see if it is due to be balanced,
3658 * and initiates a balancing operation if so.
3660 * Balancing parameters are set up in arch_init_sched_domains.
3662 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3664 int balance = 1;
3665 struct rq *rq = cpu_rq(cpu);
3666 unsigned long interval;
3667 struct sched_domain *sd;
3668 /* Earliest time when we have to do rebalance again */
3669 unsigned long next_balance = jiffies + 60*HZ;
3670 int update_next_balance = 0;
3671 int need_serialize;
3672 cpumask_t tmp;
3674 for_each_domain(cpu, sd) {
3675 if (!(sd->flags & SD_LOAD_BALANCE))
3676 continue;
3678 interval = sd->balance_interval;
3679 if (idle != CPU_IDLE)
3680 interval *= sd->busy_factor;
3682 /* scale ms to jiffies */
3683 interval = msecs_to_jiffies(interval);
3684 if (unlikely(!interval))
3685 interval = 1;
3686 if (interval > HZ*NR_CPUS/10)
3687 interval = HZ*NR_CPUS/10;
3689 need_serialize = sd->flags & SD_SERIALIZE;
3691 if (need_serialize) {
3692 if (!spin_trylock(&balancing))
3693 goto out;
3696 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3697 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3699 * We've pulled tasks over so either we're no
3700 * longer idle, or one of our SMT siblings is
3701 * not idle.
3703 idle = CPU_NOT_IDLE;
3705 sd->last_balance = jiffies;
3707 if (need_serialize)
3708 spin_unlock(&balancing);
3709 out:
3710 if (time_after(next_balance, sd->last_balance + interval)) {
3711 next_balance = sd->last_balance + interval;
3712 update_next_balance = 1;
3716 * Stop the load balance at this level. There is another
3717 * CPU in our sched group which is doing load balancing more
3718 * actively.
3720 if (!balance)
3721 break;
3725 * next_balance will be updated only when there is a need.
3726 * When the cpu is attached to null domain for ex, it will not be
3727 * updated.
3729 if (likely(update_next_balance))
3730 rq->next_balance = next_balance;
3734 * run_rebalance_domains is triggered when needed from the scheduler tick.
3735 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3736 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3738 static void run_rebalance_domains(struct softirq_action *h)
3740 int this_cpu = smp_processor_id();
3741 struct rq *this_rq = cpu_rq(this_cpu);
3742 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3743 CPU_IDLE : CPU_NOT_IDLE;
3745 rebalance_domains(this_cpu, idle);
3747 #ifdef CONFIG_NO_HZ
3749 * If this cpu is the owner for idle load balancing, then do the
3750 * balancing on behalf of the other idle cpus whose ticks are
3751 * stopped.
3753 if (this_rq->idle_at_tick &&
3754 atomic_read(&nohz.load_balancer) == this_cpu) {
3755 cpumask_t cpus = nohz.cpu_mask;
3756 struct rq *rq;
3757 int balance_cpu;
3759 cpu_clear(this_cpu, cpus);
3760 for_each_cpu_mask(balance_cpu, cpus) {
3762 * If this cpu gets work to do, stop the load balancing
3763 * work being done for other cpus. Next load
3764 * balancing owner will pick it up.
3766 if (need_resched())
3767 break;
3769 rebalance_domains(balance_cpu, CPU_IDLE);
3771 rq = cpu_rq(balance_cpu);
3772 if (time_after(this_rq->next_balance, rq->next_balance))
3773 this_rq->next_balance = rq->next_balance;
3776 #endif
3780 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3782 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3783 * idle load balancing owner or decide to stop the periodic load balancing,
3784 * if the whole system is idle.
3786 static inline void trigger_load_balance(struct rq *rq, int cpu)
3788 #ifdef CONFIG_NO_HZ
3790 * If we were in the nohz mode recently and busy at the current
3791 * scheduler tick, then check if we need to nominate new idle
3792 * load balancer.
3794 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3795 rq->in_nohz_recently = 0;
3797 if (atomic_read(&nohz.load_balancer) == cpu) {
3798 cpu_clear(cpu, nohz.cpu_mask);
3799 atomic_set(&nohz.load_balancer, -1);
3802 if (atomic_read(&nohz.load_balancer) == -1) {
3804 * simple selection for now: Nominate the
3805 * first cpu in the nohz list to be the next
3806 * ilb owner.
3808 * TBD: Traverse the sched domains and nominate
3809 * the nearest cpu in the nohz.cpu_mask.
3811 int ilb = first_cpu(nohz.cpu_mask);
3813 if (ilb < nr_cpu_ids)
3814 resched_cpu(ilb);
3819 * If this cpu is idle and doing idle load balancing for all the
3820 * cpus with ticks stopped, is it time for that to stop?
3822 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3823 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3824 resched_cpu(cpu);
3825 return;
3829 * If this cpu is idle and the idle load balancing is done by
3830 * someone else, then no need raise the SCHED_SOFTIRQ
3832 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3833 cpu_isset(cpu, nohz.cpu_mask))
3834 return;
3835 #endif
3836 if (time_after_eq(jiffies, rq->next_balance))
3837 raise_softirq(SCHED_SOFTIRQ);
3840 #else /* CONFIG_SMP */
3843 * on UP we do not need to balance between CPUs:
3845 static inline void idle_balance(int cpu, struct rq *rq)
3849 #endif
3851 DEFINE_PER_CPU(struct kernel_stat, kstat);
3853 EXPORT_PER_CPU_SYMBOL(kstat);
3856 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3857 * that have not yet been banked in case the task is currently running.
3859 unsigned long long task_sched_runtime(struct task_struct *p)
3861 unsigned long flags;
3862 u64 ns, delta_exec;
3863 struct rq *rq;
3865 rq = task_rq_lock(p, &flags);
3866 ns = p->se.sum_exec_runtime;
3867 if (task_current(rq, p)) {
3868 update_rq_clock(rq);
3869 delta_exec = rq->clock - p->se.exec_start;
3870 if ((s64)delta_exec > 0)
3871 ns += delta_exec;
3873 task_rq_unlock(rq, &flags);
3875 return ns;
3879 * Account user cpu time to a process.
3880 * @p: the process that the cpu time gets accounted to
3881 * @cputime: the cpu time spent in user space since the last update
3883 void account_user_time(struct task_struct *p, cputime_t cputime)
3885 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3886 cputime64_t tmp;
3888 p->utime = cputime_add(p->utime, cputime);
3890 /* Add user time to cpustat. */
3891 tmp = cputime_to_cputime64(cputime);
3892 if (TASK_NICE(p) > 0)
3893 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3894 else
3895 cpustat->user = cputime64_add(cpustat->user, tmp);
3899 * Account guest cpu time to a process.
3900 * @p: the process that the cpu time gets accounted to
3901 * @cputime: the cpu time spent in virtual machine since the last update
3903 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3905 cputime64_t tmp;
3906 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3908 tmp = cputime_to_cputime64(cputime);
3910 p->utime = cputime_add(p->utime, cputime);
3911 p->gtime = cputime_add(p->gtime, cputime);
3913 cpustat->user = cputime64_add(cpustat->user, tmp);
3914 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3918 * Account scaled user cpu time to a process.
3919 * @p: the process that the cpu time gets accounted to
3920 * @cputime: the cpu time spent in user space since the last update
3922 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3924 p->utimescaled = cputime_add(p->utimescaled, cputime);
3928 * Account system cpu time to a process.
3929 * @p: the process that the cpu time gets accounted to
3930 * @hardirq_offset: the offset to subtract from hardirq_count()
3931 * @cputime: the cpu time spent in kernel space since the last update
3933 void account_system_time(struct task_struct *p, int hardirq_offset,
3934 cputime_t cputime)
3936 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3937 struct rq *rq = this_rq();
3938 cputime64_t tmp;
3940 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3941 account_guest_time(p, cputime);
3942 return;
3945 p->stime = cputime_add(p->stime, cputime);
3947 /* Add system time to cpustat. */
3948 tmp = cputime_to_cputime64(cputime);
3949 if (hardirq_count() - hardirq_offset)
3950 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3951 else if (softirq_count())
3952 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3953 else if (p != rq->idle)
3954 cpustat->system = cputime64_add(cpustat->system, tmp);
3955 else if (atomic_read(&rq->nr_iowait) > 0)
3956 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3957 else
3958 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3959 /* Account for system time used */
3960 acct_update_integrals(p);
3964 * Account scaled system cpu time to a process.
3965 * @p: the process that the cpu time gets accounted to
3966 * @hardirq_offset: the offset to subtract from hardirq_count()
3967 * @cputime: the cpu time spent in kernel space since the last update
3969 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3971 p->stimescaled = cputime_add(p->stimescaled, cputime);
3975 * Account for involuntary wait time.
3976 * @p: the process from which the cpu time has been stolen
3977 * @steal: the cpu time spent in involuntary wait
3979 void account_steal_time(struct task_struct *p, cputime_t steal)
3981 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3982 cputime64_t tmp = cputime_to_cputime64(steal);
3983 struct rq *rq = this_rq();
3985 if (p == rq->idle) {
3986 p->stime = cputime_add(p->stime, steal);
3987 if (atomic_read(&rq->nr_iowait) > 0)
3988 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3989 else
3990 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3991 } else
3992 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3996 * This function gets called by the timer code, with HZ frequency.
3997 * We call it with interrupts disabled.
3999 * It also gets called by the fork code, when changing the parent's
4000 * timeslices.
4002 void scheduler_tick(void)
4004 int cpu = smp_processor_id();
4005 struct rq *rq = cpu_rq(cpu);
4006 struct task_struct *curr = rq->curr;
4008 sched_clock_tick();
4010 spin_lock(&rq->lock);
4011 update_rq_clock(rq);
4012 update_cpu_load(rq);
4013 curr->sched_class->task_tick(rq, curr, 0);
4014 spin_unlock(&rq->lock);
4016 #ifdef CONFIG_SMP
4017 rq->idle_at_tick = idle_cpu(cpu);
4018 trigger_load_balance(rq, cpu);
4019 #endif
4022 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4024 void __kprobes add_preempt_count(int val)
4027 * Underflow?
4029 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4030 return;
4031 preempt_count() += val;
4033 * Spinlock count overflowing soon?
4035 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4036 PREEMPT_MASK - 10);
4038 EXPORT_SYMBOL(add_preempt_count);
4040 void __kprobes sub_preempt_count(int val)
4043 * Underflow?
4045 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4046 return;
4048 * Is the spinlock portion underflowing?
4050 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4051 !(preempt_count() & PREEMPT_MASK)))
4052 return;
4054 preempt_count() -= val;
4056 EXPORT_SYMBOL(sub_preempt_count);
4058 #endif
4061 * Print scheduling while atomic bug:
4063 static noinline void __schedule_bug(struct task_struct *prev)
4065 struct pt_regs *regs = get_irq_regs();
4067 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4068 prev->comm, prev->pid, preempt_count());
4070 debug_show_held_locks(prev);
4071 if (irqs_disabled())
4072 print_irqtrace_events(prev);
4074 if (regs)
4075 show_regs(regs);
4076 else
4077 dump_stack();
4081 * Various schedule()-time debugging checks and statistics:
4083 static inline void schedule_debug(struct task_struct *prev)
4086 * Test if we are atomic. Since do_exit() needs to call into
4087 * schedule() atomically, we ignore that path for now.
4088 * Otherwise, whine if we are scheduling when we should not be.
4090 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4091 __schedule_bug(prev);
4093 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4095 schedstat_inc(this_rq(), sched_count);
4096 #ifdef CONFIG_SCHEDSTATS
4097 if (unlikely(prev->lock_depth >= 0)) {
4098 schedstat_inc(this_rq(), bkl_count);
4099 schedstat_inc(prev, sched_info.bkl_count);
4101 #endif
4105 * Pick up the highest-prio task:
4107 static inline struct task_struct *
4108 pick_next_task(struct rq *rq, struct task_struct *prev)
4110 const struct sched_class *class;
4111 struct task_struct *p;
4114 * Optimization: we know that if all tasks are in
4115 * the fair class we can call that function directly:
4117 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4118 p = fair_sched_class.pick_next_task(rq);
4119 if (likely(p))
4120 return p;
4123 class = sched_class_highest;
4124 for ( ; ; ) {
4125 p = class->pick_next_task(rq);
4126 if (p)
4127 return p;
4129 * Will never be NULL as the idle class always
4130 * returns a non-NULL p:
4132 class = class->next;
4137 * schedule() is the main scheduler function.
4139 asmlinkage void __sched schedule(void)
4141 struct task_struct *prev, *next;
4142 unsigned long *switch_count;
4143 struct rq *rq;
4144 int cpu, hrtick = sched_feat(HRTICK);
4146 need_resched:
4147 preempt_disable();
4148 cpu = smp_processor_id();
4149 rq = cpu_rq(cpu);
4150 rcu_qsctr_inc(cpu);
4151 prev = rq->curr;
4152 switch_count = &prev->nivcsw;
4154 release_kernel_lock(prev);
4155 need_resched_nonpreemptible:
4157 schedule_debug(prev);
4159 if (hrtick)
4160 hrtick_clear(rq);
4163 * Do the rq-clock update outside the rq lock:
4165 local_irq_disable();
4166 update_rq_clock(rq);
4167 spin_lock(&rq->lock);
4168 clear_tsk_need_resched(prev);
4170 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4171 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4172 signal_pending(prev))) {
4173 prev->state = TASK_RUNNING;
4174 } else {
4175 deactivate_task(rq, prev, 1);
4177 switch_count = &prev->nvcsw;
4180 #ifdef CONFIG_SMP
4181 if (prev->sched_class->pre_schedule)
4182 prev->sched_class->pre_schedule(rq, prev);
4183 #endif
4185 if (unlikely(!rq->nr_running))
4186 idle_balance(cpu, rq);
4188 prev->sched_class->put_prev_task(rq, prev);
4189 next = pick_next_task(rq, prev);
4191 if (likely(prev != next)) {
4192 sched_info_switch(prev, next);
4194 rq->nr_switches++;
4195 rq->curr = next;
4196 ++*switch_count;
4198 context_switch(rq, prev, next); /* unlocks the rq */
4200 * the context switch might have flipped the stack from under
4201 * us, hence refresh the local variables.
4203 cpu = smp_processor_id();
4204 rq = cpu_rq(cpu);
4205 } else
4206 spin_unlock_irq(&rq->lock);
4208 if (hrtick)
4209 hrtick_set(rq);
4211 if (unlikely(reacquire_kernel_lock(current) < 0))
4212 goto need_resched_nonpreemptible;
4214 preempt_enable_no_resched();
4215 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4216 goto need_resched;
4218 EXPORT_SYMBOL(schedule);
4220 #ifdef CONFIG_PREEMPT
4222 * this is the entry point to schedule() from in-kernel preemption
4223 * off of preempt_enable. Kernel preemptions off return from interrupt
4224 * occur there and call schedule directly.
4226 asmlinkage void __sched preempt_schedule(void)
4228 struct thread_info *ti = current_thread_info();
4231 * If there is a non-zero preempt_count or interrupts are disabled,
4232 * we do not want to preempt the current task. Just return..
4234 if (likely(ti->preempt_count || irqs_disabled()))
4235 return;
4237 do {
4238 add_preempt_count(PREEMPT_ACTIVE);
4239 schedule();
4240 sub_preempt_count(PREEMPT_ACTIVE);
4243 * Check again in case we missed a preemption opportunity
4244 * between schedule and now.
4246 barrier();
4247 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4249 EXPORT_SYMBOL(preempt_schedule);
4252 * this is the entry point to schedule() from kernel preemption
4253 * off of irq context.
4254 * Note, that this is called and return with irqs disabled. This will
4255 * protect us against recursive calling from irq.
4257 asmlinkage void __sched preempt_schedule_irq(void)
4259 struct thread_info *ti = current_thread_info();
4261 /* Catch callers which need to be fixed */
4262 BUG_ON(ti->preempt_count || !irqs_disabled());
4264 do {
4265 add_preempt_count(PREEMPT_ACTIVE);
4266 local_irq_enable();
4267 schedule();
4268 local_irq_disable();
4269 sub_preempt_count(PREEMPT_ACTIVE);
4272 * Check again in case we missed a preemption opportunity
4273 * between schedule and now.
4275 barrier();
4276 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4279 #endif /* CONFIG_PREEMPT */
4281 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4282 void *key)
4284 return try_to_wake_up(curr->private, mode, sync);
4286 EXPORT_SYMBOL(default_wake_function);
4289 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4290 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4291 * number) then we wake all the non-exclusive tasks and one exclusive task.
4293 * There are circumstances in which we can try to wake a task which has already
4294 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4295 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4297 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4298 int nr_exclusive, int sync, void *key)
4300 wait_queue_t *curr, *next;
4302 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4303 unsigned flags = curr->flags;
4305 if (curr->func(curr, mode, sync, key) &&
4306 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4307 break;
4312 * __wake_up - wake up threads blocked on a waitqueue.
4313 * @q: the waitqueue
4314 * @mode: which threads
4315 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4316 * @key: is directly passed to the wakeup function
4318 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4319 int nr_exclusive, void *key)
4321 unsigned long flags;
4323 spin_lock_irqsave(&q->lock, flags);
4324 __wake_up_common(q, mode, nr_exclusive, 0, key);
4325 spin_unlock_irqrestore(&q->lock, flags);
4327 EXPORT_SYMBOL(__wake_up);
4330 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4332 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4334 __wake_up_common(q, mode, 1, 0, NULL);
4338 * __wake_up_sync - wake up threads blocked on a waitqueue.
4339 * @q: the waitqueue
4340 * @mode: which threads
4341 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4343 * The sync wakeup differs that the waker knows that it will schedule
4344 * away soon, so while the target thread will be woken up, it will not
4345 * be migrated to another CPU - ie. the two threads are 'synchronized'
4346 * with each other. This can prevent needless bouncing between CPUs.
4348 * On UP it can prevent extra preemption.
4350 void
4351 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4353 unsigned long flags;
4354 int sync = 1;
4356 if (unlikely(!q))
4357 return;
4359 if (unlikely(!nr_exclusive))
4360 sync = 0;
4362 spin_lock_irqsave(&q->lock, flags);
4363 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4364 spin_unlock_irqrestore(&q->lock, flags);
4366 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4368 void complete(struct completion *x)
4370 unsigned long flags;
4372 spin_lock_irqsave(&x->wait.lock, flags);
4373 x->done++;
4374 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4375 spin_unlock_irqrestore(&x->wait.lock, flags);
4377 EXPORT_SYMBOL(complete);
4379 void complete_all(struct completion *x)
4381 unsigned long flags;
4383 spin_lock_irqsave(&x->wait.lock, flags);
4384 x->done += UINT_MAX/2;
4385 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4386 spin_unlock_irqrestore(&x->wait.lock, flags);
4388 EXPORT_SYMBOL(complete_all);
4390 static inline long __sched
4391 do_wait_for_common(struct completion *x, long timeout, int state)
4393 if (!x->done) {
4394 DECLARE_WAITQUEUE(wait, current);
4396 wait.flags |= WQ_FLAG_EXCLUSIVE;
4397 __add_wait_queue_tail(&x->wait, &wait);
4398 do {
4399 if ((state == TASK_INTERRUPTIBLE &&
4400 signal_pending(current)) ||
4401 (state == TASK_KILLABLE &&
4402 fatal_signal_pending(current))) {
4403 __remove_wait_queue(&x->wait, &wait);
4404 return -ERESTARTSYS;
4406 __set_current_state(state);
4407 spin_unlock_irq(&x->wait.lock);
4408 timeout = schedule_timeout(timeout);
4409 spin_lock_irq(&x->wait.lock);
4410 if (!timeout) {
4411 __remove_wait_queue(&x->wait, &wait);
4412 return timeout;
4414 } while (!x->done);
4415 __remove_wait_queue(&x->wait, &wait);
4417 x->done--;
4418 return timeout;
4421 static long __sched
4422 wait_for_common(struct completion *x, long timeout, int state)
4424 might_sleep();
4426 spin_lock_irq(&x->wait.lock);
4427 timeout = do_wait_for_common(x, timeout, state);
4428 spin_unlock_irq(&x->wait.lock);
4429 return timeout;
4432 void __sched wait_for_completion(struct completion *x)
4434 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4436 EXPORT_SYMBOL(wait_for_completion);
4438 unsigned long __sched
4439 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4441 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4443 EXPORT_SYMBOL(wait_for_completion_timeout);
4445 int __sched wait_for_completion_interruptible(struct completion *x)
4447 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4448 if (t == -ERESTARTSYS)
4449 return t;
4450 return 0;
4452 EXPORT_SYMBOL(wait_for_completion_interruptible);
4454 unsigned long __sched
4455 wait_for_completion_interruptible_timeout(struct completion *x,
4456 unsigned long timeout)
4458 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4460 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4462 int __sched wait_for_completion_killable(struct completion *x)
4464 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4465 if (t == -ERESTARTSYS)
4466 return t;
4467 return 0;
4469 EXPORT_SYMBOL(wait_for_completion_killable);
4471 static long __sched
4472 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4474 unsigned long flags;
4475 wait_queue_t wait;
4477 init_waitqueue_entry(&wait, current);
4479 __set_current_state(state);
4481 spin_lock_irqsave(&q->lock, flags);
4482 __add_wait_queue(q, &wait);
4483 spin_unlock(&q->lock);
4484 timeout = schedule_timeout(timeout);
4485 spin_lock_irq(&q->lock);
4486 __remove_wait_queue(q, &wait);
4487 spin_unlock_irqrestore(&q->lock, flags);
4489 return timeout;
4492 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4494 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4496 EXPORT_SYMBOL(interruptible_sleep_on);
4498 long __sched
4499 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4501 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4503 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4505 void __sched sleep_on(wait_queue_head_t *q)
4507 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4509 EXPORT_SYMBOL(sleep_on);
4511 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4513 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4515 EXPORT_SYMBOL(sleep_on_timeout);
4517 #ifdef CONFIG_RT_MUTEXES
4520 * rt_mutex_setprio - set the current priority of a task
4521 * @p: task
4522 * @prio: prio value (kernel-internal form)
4524 * This function changes the 'effective' priority of a task. It does
4525 * not touch ->normal_prio like __setscheduler().
4527 * Used by the rt_mutex code to implement priority inheritance logic.
4529 void rt_mutex_setprio(struct task_struct *p, int prio)
4531 unsigned long flags;
4532 int oldprio, on_rq, running;
4533 struct rq *rq;
4534 const struct sched_class *prev_class = p->sched_class;
4536 BUG_ON(prio < 0 || prio > MAX_PRIO);
4538 rq = task_rq_lock(p, &flags);
4539 update_rq_clock(rq);
4541 oldprio = p->prio;
4542 on_rq = p->se.on_rq;
4543 running = task_current(rq, p);
4544 if (on_rq)
4545 dequeue_task(rq, p, 0);
4546 if (running)
4547 p->sched_class->put_prev_task(rq, p);
4549 if (rt_prio(prio))
4550 p->sched_class = &rt_sched_class;
4551 else
4552 p->sched_class = &fair_sched_class;
4554 p->prio = prio;
4556 if (running)
4557 p->sched_class->set_curr_task(rq);
4558 if (on_rq) {
4559 enqueue_task(rq, p, 0);
4561 check_class_changed(rq, p, prev_class, oldprio, running);
4563 task_rq_unlock(rq, &flags);
4566 #endif
4568 void set_user_nice(struct task_struct *p, long nice)
4570 int old_prio, delta, on_rq;
4571 unsigned long flags;
4572 struct rq *rq;
4574 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4575 return;
4577 * We have to be careful, if called from sys_setpriority(),
4578 * the task might be in the middle of scheduling on another CPU.
4580 rq = task_rq_lock(p, &flags);
4581 update_rq_clock(rq);
4583 * The RT priorities are set via sched_setscheduler(), but we still
4584 * allow the 'normal' nice value to be set - but as expected
4585 * it wont have any effect on scheduling until the task is
4586 * SCHED_FIFO/SCHED_RR:
4588 if (task_has_rt_policy(p)) {
4589 p->static_prio = NICE_TO_PRIO(nice);
4590 goto out_unlock;
4592 on_rq = p->se.on_rq;
4593 if (on_rq) {
4594 dequeue_task(rq, p, 0);
4595 dec_load(rq, p);
4598 p->static_prio = NICE_TO_PRIO(nice);
4599 set_load_weight(p);
4600 old_prio = p->prio;
4601 p->prio = effective_prio(p);
4602 delta = p->prio - old_prio;
4604 if (on_rq) {
4605 enqueue_task(rq, p, 0);
4606 inc_load(rq, p);
4608 * If the task increased its priority or is running and
4609 * lowered its priority, then reschedule its CPU:
4611 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4612 resched_task(rq->curr);
4614 out_unlock:
4615 task_rq_unlock(rq, &flags);
4617 EXPORT_SYMBOL(set_user_nice);
4620 * can_nice - check if a task can reduce its nice value
4621 * @p: task
4622 * @nice: nice value
4624 int can_nice(const struct task_struct *p, const int nice)
4626 /* convert nice value [19,-20] to rlimit style value [1,40] */
4627 int nice_rlim = 20 - nice;
4629 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4630 capable(CAP_SYS_NICE));
4633 #ifdef __ARCH_WANT_SYS_NICE
4636 * sys_nice - change the priority of the current process.
4637 * @increment: priority increment
4639 * sys_setpriority is a more generic, but much slower function that
4640 * does similar things.
4642 asmlinkage long sys_nice(int increment)
4644 long nice, retval;
4647 * Setpriority might change our priority at the same moment.
4648 * We don't have to worry. Conceptually one call occurs first
4649 * and we have a single winner.
4651 if (increment < -40)
4652 increment = -40;
4653 if (increment > 40)
4654 increment = 40;
4656 nice = PRIO_TO_NICE(current->static_prio) + increment;
4657 if (nice < -20)
4658 nice = -20;
4659 if (nice > 19)
4660 nice = 19;
4662 if (increment < 0 && !can_nice(current, nice))
4663 return -EPERM;
4665 retval = security_task_setnice(current, nice);
4666 if (retval)
4667 return retval;
4669 set_user_nice(current, nice);
4670 return 0;
4673 #endif
4676 * task_prio - return the priority value of a given task.
4677 * @p: the task in question.
4679 * This is the priority value as seen by users in /proc.
4680 * RT tasks are offset by -200. Normal tasks are centered
4681 * around 0, value goes from -16 to +15.
4683 int task_prio(const struct task_struct *p)
4685 return p->prio - MAX_RT_PRIO;
4689 * task_nice - return the nice value of a given task.
4690 * @p: the task in question.
4692 int task_nice(const struct task_struct *p)
4694 return TASK_NICE(p);
4696 EXPORT_SYMBOL(task_nice);
4699 * idle_cpu - is a given cpu idle currently?
4700 * @cpu: the processor in question.
4702 int idle_cpu(int cpu)
4704 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4708 * idle_task - return the idle task for a given cpu.
4709 * @cpu: the processor in question.
4711 struct task_struct *idle_task(int cpu)
4713 return cpu_rq(cpu)->idle;
4717 * find_process_by_pid - find a process with a matching PID value.
4718 * @pid: the pid in question.
4720 static struct task_struct *find_process_by_pid(pid_t pid)
4722 return pid ? find_task_by_vpid(pid) : current;
4725 /* Actually do priority change: must hold rq lock. */
4726 static void
4727 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4729 BUG_ON(p->se.on_rq);
4731 p->policy = policy;
4732 switch (p->policy) {
4733 case SCHED_NORMAL:
4734 case SCHED_BATCH:
4735 case SCHED_IDLE:
4736 p->sched_class = &fair_sched_class;
4737 break;
4738 case SCHED_FIFO:
4739 case SCHED_RR:
4740 p->sched_class = &rt_sched_class;
4741 break;
4744 p->rt_priority = prio;
4745 p->normal_prio = normal_prio(p);
4746 /* we are holding p->pi_lock already */
4747 p->prio = rt_mutex_getprio(p);
4748 set_load_weight(p);
4752 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4753 * @p: the task in question.
4754 * @policy: new policy.
4755 * @param: structure containing the new RT priority.
4757 * NOTE that the task may be already dead.
4759 int sched_setscheduler(struct task_struct *p, int policy,
4760 struct sched_param *param)
4762 int retval, oldprio, oldpolicy = -1, on_rq, running;
4763 unsigned long flags;
4764 const struct sched_class *prev_class = p->sched_class;
4765 struct rq *rq;
4767 /* may grab non-irq protected spin_locks */
4768 BUG_ON(in_interrupt());
4769 recheck:
4770 /* double check policy once rq lock held */
4771 if (policy < 0)
4772 policy = oldpolicy = p->policy;
4773 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4774 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4775 policy != SCHED_IDLE)
4776 return -EINVAL;
4778 * Valid priorities for SCHED_FIFO and SCHED_RR are
4779 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4780 * SCHED_BATCH and SCHED_IDLE is 0.
4782 if (param->sched_priority < 0 ||
4783 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4784 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4785 return -EINVAL;
4786 if (rt_policy(policy) != (param->sched_priority != 0))
4787 return -EINVAL;
4790 * Allow unprivileged RT tasks to decrease priority:
4792 if (!capable(CAP_SYS_NICE)) {
4793 if (rt_policy(policy)) {
4794 unsigned long rlim_rtprio;
4796 if (!lock_task_sighand(p, &flags))
4797 return -ESRCH;
4798 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4799 unlock_task_sighand(p, &flags);
4801 /* can't set/change the rt policy */
4802 if (policy != p->policy && !rlim_rtprio)
4803 return -EPERM;
4805 /* can't increase priority */
4806 if (param->sched_priority > p->rt_priority &&
4807 param->sched_priority > rlim_rtprio)
4808 return -EPERM;
4811 * Like positive nice levels, dont allow tasks to
4812 * move out of SCHED_IDLE either:
4814 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4815 return -EPERM;
4817 /* can't change other user's priorities */
4818 if ((current->euid != p->euid) &&
4819 (current->euid != p->uid))
4820 return -EPERM;
4823 #ifdef CONFIG_RT_GROUP_SCHED
4825 * Do not allow realtime tasks into groups that have no runtime
4826 * assigned.
4828 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4829 return -EPERM;
4830 #endif
4832 retval = security_task_setscheduler(p, policy, param);
4833 if (retval)
4834 return retval;
4836 * make sure no PI-waiters arrive (or leave) while we are
4837 * changing the priority of the task:
4839 spin_lock_irqsave(&p->pi_lock, flags);
4841 * To be able to change p->policy safely, the apropriate
4842 * runqueue lock must be held.
4844 rq = __task_rq_lock(p);
4845 /* recheck policy now with rq lock held */
4846 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4847 policy = oldpolicy = -1;
4848 __task_rq_unlock(rq);
4849 spin_unlock_irqrestore(&p->pi_lock, flags);
4850 goto recheck;
4852 update_rq_clock(rq);
4853 on_rq = p->se.on_rq;
4854 running = task_current(rq, p);
4855 if (on_rq)
4856 deactivate_task(rq, p, 0);
4857 if (running)
4858 p->sched_class->put_prev_task(rq, p);
4860 oldprio = p->prio;
4861 __setscheduler(rq, p, policy, param->sched_priority);
4863 if (running)
4864 p->sched_class->set_curr_task(rq);
4865 if (on_rq) {
4866 activate_task(rq, p, 0);
4868 check_class_changed(rq, p, prev_class, oldprio, running);
4870 __task_rq_unlock(rq);
4871 spin_unlock_irqrestore(&p->pi_lock, flags);
4873 rt_mutex_adjust_pi(p);
4875 return 0;
4877 EXPORT_SYMBOL_GPL(sched_setscheduler);
4879 static int
4880 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4882 struct sched_param lparam;
4883 struct task_struct *p;
4884 int retval;
4886 if (!param || pid < 0)
4887 return -EINVAL;
4888 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4889 return -EFAULT;
4891 rcu_read_lock();
4892 retval = -ESRCH;
4893 p = find_process_by_pid(pid);
4894 if (p != NULL)
4895 retval = sched_setscheduler(p, policy, &lparam);
4896 rcu_read_unlock();
4898 return retval;
4902 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4903 * @pid: the pid in question.
4904 * @policy: new policy.
4905 * @param: structure containing the new RT priority.
4907 asmlinkage long
4908 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4910 /* negative values for policy are not valid */
4911 if (policy < 0)
4912 return -EINVAL;
4914 return do_sched_setscheduler(pid, policy, param);
4918 * sys_sched_setparam - set/change the RT priority of a thread
4919 * @pid: the pid in question.
4920 * @param: structure containing the new RT priority.
4922 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4924 return do_sched_setscheduler(pid, -1, param);
4928 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4929 * @pid: the pid in question.
4931 asmlinkage long sys_sched_getscheduler(pid_t pid)
4933 struct task_struct *p;
4934 int retval;
4936 if (pid < 0)
4937 return -EINVAL;
4939 retval = -ESRCH;
4940 read_lock(&tasklist_lock);
4941 p = find_process_by_pid(pid);
4942 if (p) {
4943 retval = security_task_getscheduler(p);
4944 if (!retval)
4945 retval = p->policy;
4947 read_unlock(&tasklist_lock);
4948 return retval;
4952 * sys_sched_getscheduler - get the RT priority of a thread
4953 * @pid: the pid in question.
4954 * @param: structure containing the RT priority.
4956 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4958 struct sched_param lp;
4959 struct task_struct *p;
4960 int retval;
4962 if (!param || pid < 0)
4963 return -EINVAL;
4965 read_lock(&tasklist_lock);
4966 p = find_process_by_pid(pid);
4967 retval = -ESRCH;
4968 if (!p)
4969 goto out_unlock;
4971 retval = security_task_getscheduler(p);
4972 if (retval)
4973 goto out_unlock;
4975 lp.sched_priority = p->rt_priority;
4976 read_unlock(&tasklist_lock);
4979 * This one might sleep, we cannot do it with a spinlock held ...
4981 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4983 return retval;
4985 out_unlock:
4986 read_unlock(&tasklist_lock);
4987 return retval;
4990 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
4992 cpumask_t cpus_allowed;
4993 cpumask_t new_mask = *in_mask;
4994 struct task_struct *p;
4995 int retval;
4997 get_online_cpus();
4998 read_lock(&tasklist_lock);
5000 p = find_process_by_pid(pid);
5001 if (!p) {
5002 read_unlock(&tasklist_lock);
5003 put_online_cpus();
5004 return -ESRCH;
5008 * It is not safe to call set_cpus_allowed with the
5009 * tasklist_lock held. We will bump the task_struct's
5010 * usage count and then drop tasklist_lock.
5012 get_task_struct(p);
5013 read_unlock(&tasklist_lock);
5015 retval = -EPERM;
5016 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5017 !capable(CAP_SYS_NICE))
5018 goto out_unlock;
5020 retval = security_task_setscheduler(p, 0, NULL);
5021 if (retval)
5022 goto out_unlock;
5024 cpuset_cpus_allowed(p, &cpus_allowed);
5025 cpus_and(new_mask, new_mask, cpus_allowed);
5026 again:
5027 retval = set_cpus_allowed_ptr(p, &new_mask);
5029 if (!retval) {
5030 cpuset_cpus_allowed(p, &cpus_allowed);
5031 if (!cpus_subset(new_mask, cpus_allowed)) {
5033 * We must have raced with a concurrent cpuset
5034 * update. Just reset the cpus_allowed to the
5035 * cpuset's cpus_allowed
5037 new_mask = cpus_allowed;
5038 goto again;
5041 out_unlock:
5042 put_task_struct(p);
5043 put_online_cpus();
5044 return retval;
5047 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5048 cpumask_t *new_mask)
5050 if (len < sizeof(cpumask_t)) {
5051 memset(new_mask, 0, sizeof(cpumask_t));
5052 } else if (len > sizeof(cpumask_t)) {
5053 len = sizeof(cpumask_t);
5055 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5059 * sys_sched_setaffinity - set the cpu affinity of a process
5060 * @pid: pid of the process
5061 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5062 * @user_mask_ptr: user-space pointer to the new cpu mask
5064 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5065 unsigned long __user *user_mask_ptr)
5067 cpumask_t new_mask;
5068 int retval;
5070 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5071 if (retval)
5072 return retval;
5074 return sched_setaffinity(pid, &new_mask);
5078 * Represents all cpu's present in the system
5079 * In systems capable of hotplug, this map could dynamically grow
5080 * as new cpu's are detected in the system via any platform specific
5081 * method, such as ACPI for e.g.
5084 cpumask_t cpu_present_map __read_mostly;
5085 EXPORT_SYMBOL(cpu_present_map);
5087 #ifndef CONFIG_SMP
5088 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5089 EXPORT_SYMBOL(cpu_online_map);
5091 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5092 EXPORT_SYMBOL(cpu_possible_map);
5093 #endif
5095 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5097 struct task_struct *p;
5098 int retval;
5100 get_online_cpus();
5101 read_lock(&tasklist_lock);
5103 retval = -ESRCH;
5104 p = find_process_by_pid(pid);
5105 if (!p)
5106 goto out_unlock;
5108 retval = security_task_getscheduler(p);
5109 if (retval)
5110 goto out_unlock;
5112 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5114 out_unlock:
5115 read_unlock(&tasklist_lock);
5116 put_online_cpus();
5118 return retval;
5122 * sys_sched_getaffinity - get the cpu affinity of a process
5123 * @pid: pid of the process
5124 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5125 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5127 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5128 unsigned long __user *user_mask_ptr)
5130 int ret;
5131 cpumask_t mask;
5133 if (len < sizeof(cpumask_t))
5134 return -EINVAL;
5136 ret = sched_getaffinity(pid, &mask);
5137 if (ret < 0)
5138 return ret;
5140 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5141 return -EFAULT;
5143 return sizeof(cpumask_t);
5147 * sys_sched_yield - yield the current processor to other threads.
5149 * This function yields the current CPU to other tasks. If there are no
5150 * other threads running on this CPU then this function will return.
5152 asmlinkage long sys_sched_yield(void)
5154 struct rq *rq = this_rq_lock();
5156 schedstat_inc(rq, yld_count);
5157 current->sched_class->yield_task(rq);
5160 * Since we are going to call schedule() anyway, there's
5161 * no need to preempt or enable interrupts:
5163 __release(rq->lock);
5164 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5165 _raw_spin_unlock(&rq->lock);
5166 preempt_enable_no_resched();
5168 schedule();
5170 return 0;
5173 static void __cond_resched(void)
5175 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5176 __might_sleep(__FILE__, __LINE__);
5177 #endif
5179 * The BKS might be reacquired before we have dropped
5180 * PREEMPT_ACTIVE, which could trigger a second
5181 * cond_resched() call.
5183 do {
5184 add_preempt_count(PREEMPT_ACTIVE);
5185 schedule();
5186 sub_preempt_count(PREEMPT_ACTIVE);
5187 } while (need_resched());
5190 int __sched _cond_resched(void)
5192 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5193 system_state == SYSTEM_RUNNING) {
5194 __cond_resched();
5195 return 1;
5197 return 0;
5199 EXPORT_SYMBOL(_cond_resched);
5202 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5203 * call schedule, and on return reacquire the lock.
5205 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5206 * operations here to prevent schedule() from being called twice (once via
5207 * spin_unlock(), once by hand).
5209 int cond_resched_lock(spinlock_t *lock)
5211 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5212 int ret = 0;
5214 if (spin_needbreak(lock) || resched) {
5215 spin_unlock(lock);
5216 if (resched && need_resched())
5217 __cond_resched();
5218 else
5219 cpu_relax();
5220 ret = 1;
5221 spin_lock(lock);
5223 return ret;
5225 EXPORT_SYMBOL(cond_resched_lock);
5227 int __sched cond_resched_softirq(void)
5229 BUG_ON(!in_softirq());
5231 if (need_resched() && system_state == SYSTEM_RUNNING) {
5232 local_bh_enable();
5233 __cond_resched();
5234 local_bh_disable();
5235 return 1;
5237 return 0;
5239 EXPORT_SYMBOL(cond_resched_softirq);
5242 * yield - yield the current processor to other threads.
5244 * This is a shortcut for kernel-space yielding - it marks the
5245 * thread runnable and calls sys_sched_yield().
5247 void __sched yield(void)
5249 set_current_state(TASK_RUNNING);
5250 sys_sched_yield();
5252 EXPORT_SYMBOL(yield);
5255 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5256 * that process accounting knows that this is a task in IO wait state.
5258 * But don't do that if it is a deliberate, throttling IO wait (this task
5259 * has set its backing_dev_info: the queue against which it should throttle)
5261 void __sched io_schedule(void)
5263 struct rq *rq = &__raw_get_cpu_var(runqueues);
5265 delayacct_blkio_start();
5266 atomic_inc(&rq->nr_iowait);
5267 schedule();
5268 atomic_dec(&rq->nr_iowait);
5269 delayacct_blkio_end();
5271 EXPORT_SYMBOL(io_schedule);
5273 long __sched io_schedule_timeout(long timeout)
5275 struct rq *rq = &__raw_get_cpu_var(runqueues);
5276 long ret;
5278 delayacct_blkio_start();
5279 atomic_inc(&rq->nr_iowait);
5280 ret = schedule_timeout(timeout);
5281 atomic_dec(&rq->nr_iowait);
5282 delayacct_blkio_end();
5283 return ret;
5287 * sys_sched_get_priority_max - return maximum RT priority.
5288 * @policy: scheduling class.
5290 * this syscall returns the maximum rt_priority that can be used
5291 * by a given scheduling class.
5293 asmlinkage long sys_sched_get_priority_max(int policy)
5295 int ret = -EINVAL;
5297 switch (policy) {
5298 case SCHED_FIFO:
5299 case SCHED_RR:
5300 ret = MAX_USER_RT_PRIO-1;
5301 break;
5302 case SCHED_NORMAL:
5303 case SCHED_BATCH:
5304 case SCHED_IDLE:
5305 ret = 0;
5306 break;
5308 return ret;
5312 * sys_sched_get_priority_min - return minimum RT priority.
5313 * @policy: scheduling class.
5315 * this syscall returns the minimum rt_priority that can be used
5316 * by a given scheduling class.
5318 asmlinkage long sys_sched_get_priority_min(int policy)
5320 int ret = -EINVAL;
5322 switch (policy) {
5323 case SCHED_FIFO:
5324 case SCHED_RR:
5325 ret = 1;
5326 break;
5327 case SCHED_NORMAL:
5328 case SCHED_BATCH:
5329 case SCHED_IDLE:
5330 ret = 0;
5332 return ret;
5336 * sys_sched_rr_get_interval - return the default timeslice of a process.
5337 * @pid: pid of the process.
5338 * @interval: userspace pointer to the timeslice value.
5340 * this syscall writes the default timeslice value of a given process
5341 * into the user-space timespec buffer. A value of '0' means infinity.
5343 asmlinkage
5344 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5346 struct task_struct *p;
5347 unsigned int time_slice;
5348 int retval;
5349 struct timespec t;
5351 if (pid < 0)
5352 return -EINVAL;
5354 retval = -ESRCH;
5355 read_lock(&tasklist_lock);
5356 p = find_process_by_pid(pid);
5357 if (!p)
5358 goto out_unlock;
5360 retval = security_task_getscheduler(p);
5361 if (retval)
5362 goto out_unlock;
5365 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5366 * tasks that are on an otherwise idle runqueue:
5368 time_slice = 0;
5369 if (p->policy == SCHED_RR) {
5370 time_slice = DEF_TIMESLICE;
5371 } else if (p->policy != SCHED_FIFO) {
5372 struct sched_entity *se = &p->se;
5373 unsigned long flags;
5374 struct rq *rq;
5376 rq = task_rq_lock(p, &flags);
5377 if (rq->cfs.load.weight)
5378 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5379 task_rq_unlock(rq, &flags);
5381 read_unlock(&tasklist_lock);
5382 jiffies_to_timespec(time_slice, &t);
5383 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5384 return retval;
5386 out_unlock:
5387 read_unlock(&tasklist_lock);
5388 return retval;
5391 static const char stat_nam[] = "RSDTtZX";
5393 void sched_show_task(struct task_struct *p)
5395 unsigned long free = 0;
5396 unsigned state;
5398 state = p->state ? __ffs(p->state) + 1 : 0;
5399 printk(KERN_INFO "%-13.13s %c", p->comm,
5400 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5401 #if BITS_PER_LONG == 32
5402 if (state == TASK_RUNNING)
5403 printk(KERN_CONT " running ");
5404 else
5405 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5406 #else
5407 if (state == TASK_RUNNING)
5408 printk(KERN_CONT " running task ");
5409 else
5410 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5411 #endif
5412 #ifdef CONFIG_DEBUG_STACK_USAGE
5414 unsigned long *n = end_of_stack(p);
5415 while (!*n)
5416 n++;
5417 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5419 #endif
5420 printk(KERN_CONT "%5lu %5d %6d\n", free,
5421 task_pid_nr(p), task_pid_nr(p->real_parent));
5423 show_stack(p, NULL);
5426 void show_state_filter(unsigned long state_filter)
5428 struct task_struct *g, *p;
5430 #if BITS_PER_LONG == 32
5431 printk(KERN_INFO
5432 " task PC stack pid father\n");
5433 #else
5434 printk(KERN_INFO
5435 " task PC stack pid father\n");
5436 #endif
5437 read_lock(&tasklist_lock);
5438 do_each_thread(g, p) {
5440 * reset the NMI-timeout, listing all files on a slow
5441 * console might take alot of time:
5443 touch_nmi_watchdog();
5444 if (!state_filter || (p->state & state_filter))
5445 sched_show_task(p);
5446 } while_each_thread(g, p);
5448 touch_all_softlockup_watchdogs();
5450 #ifdef CONFIG_SCHED_DEBUG
5451 sysrq_sched_debug_show();
5452 #endif
5453 read_unlock(&tasklist_lock);
5455 * Only show locks if all tasks are dumped:
5457 if (state_filter == -1)
5458 debug_show_all_locks();
5461 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5463 idle->sched_class = &idle_sched_class;
5467 * init_idle - set up an idle thread for a given CPU
5468 * @idle: task in question
5469 * @cpu: cpu the idle task belongs to
5471 * NOTE: this function does not set the idle thread's NEED_RESCHED
5472 * flag, to make booting more robust.
5474 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5476 struct rq *rq = cpu_rq(cpu);
5477 unsigned long flags;
5479 __sched_fork(idle);
5480 idle->se.exec_start = sched_clock();
5482 idle->prio = idle->normal_prio = MAX_PRIO;
5483 idle->cpus_allowed = cpumask_of_cpu(cpu);
5484 __set_task_cpu(idle, cpu);
5486 spin_lock_irqsave(&rq->lock, flags);
5487 rq->curr = rq->idle = idle;
5488 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5489 idle->oncpu = 1;
5490 #endif
5491 spin_unlock_irqrestore(&rq->lock, flags);
5493 /* Set the preempt count _outside_ the spinlocks! */
5494 #if defined(CONFIG_PREEMPT)
5495 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5496 #else
5497 task_thread_info(idle)->preempt_count = 0;
5498 #endif
5500 * The idle tasks have their own, simple scheduling class:
5502 idle->sched_class = &idle_sched_class;
5506 * In a system that switches off the HZ timer nohz_cpu_mask
5507 * indicates which cpus entered this state. This is used
5508 * in the rcu update to wait only for active cpus. For system
5509 * which do not switch off the HZ timer nohz_cpu_mask should
5510 * always be CPU_MASK_NONE.
5512 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5515 * Increase the granularity value when there are more CPUs,
5516 * because with more CPUs the 'effective latency' as visible
5517 * to users decreases. But the relationship is not linear,
5518 * so pick a second-best guess by going with the log2 of the
5519 * number of CPUs.
5521 * This idea comes from the SD scheduler of Con Kolivas:
5523 static inline void sched_init_granularity(void)
5525 unsigned int factor = 1 + ilog2(num_online_cpus());
5526 const unsigned long limit = 200000000;
5528 sysctl_sched_min_granularity *= factor;
5529 if (sysctl_sched_min_granularity > limit)
5530 sysctl_sched_min_granularity = limit;
5532 sysctl_sched_latency *= factor;
5533 if (sysctl_sched_latency > limit)
5534 sysctl_sched_latency = limit;
5536 sysctl_sched_wakeup_granularity *= factor;
5539 #ifdef CONFIG_SMP
5541 * This is how migration works:
5543 * 1) we queue a struct migration_req structure in the source CPU's
5544 * runqueue and wake up that CPU's migration thread.
5545 * 2) we down() the locked semaphore => thread blocks.
5546 * 3) migration thread wakes up (implicitly it forces the migrated
5547 * thread off the CPU)
5548 * 4) it gets the migration request and checks whether the migrated
5549 * task is still in the wrong runqueue.
5550 * 5) if it's in the wrong runqueue then the migration thread removes
5551 * it and puts it into the right queue.
5552 * 6) migration thread up()s the semaphore.
5553 * 7) we wake up and the migration is done.
5557 * Change a given task's CPU affinity. Migrate the thread to a
5558 * proper CPU and schedule it away if the CPU it's executing on
5559 * is removed from the allowed bitmask.
5561 * NOTE: the caller must have a valid reference to the task, the
5562 * task must not exit() & deallocate itself prematurely. The
5563 * call is not atomic; no spinlocks may be held.
5565 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5567 struct migration_req req;
5568 unsigned long flags;
5569 struct rq *rq;
5570 int ret = 0;
5572 rq = task_rq_lock(p, &flags);
5573 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5574 ret = -EINVAL;
5575 goto out;
5578 if (p->sched_class->set_cpus_allowed)
5579 p->sched_class->set_cpus_allowed(p, new_mask);
5580 else {
5581 p->cpus_allowed = *new_mask;
5582 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5585 /* Can the task run on the task's current CPU? If so, we're done */
5586 if (cpu_isset(task_cpu(p), *new_mask))
5587 goto out;
5589 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5590 /* Need help from migration thread: drop lock and wait. */
5591 task_rq_unlock(rq, &flags);
5592 wake_up_process(rq->migration_thread);
5593 wait_for_completion(&req.done);
5594 tlb_migrate_finish(p->mm);
5595 return 0;
5597 out:
5598 task_rq_unlock(rq, &flags);
5600 return ret;
5602 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5605 * Move (not current) task off this cpu, onto dest cpu. We're doing
5606 * this because either it can't run here any more (set_cpus_allowed()
5607 * away from this CPU, or CPU going down), or because we're
5608 * attempting to rebalance this task on exec (sched_exec).
5610 * So we race with normal scheduler movements, but that's OK, as long
5611 * as the task is no longer on this CPU.
5613 * Returns non-zero if task was successfully migrated.
5615 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5617 struct rq *rq_dest, *rq_src;
5618 int ret = 0, on_rq;
5620 if (unlikely(cpu_is_offline(dest_cpu)))
5621 return ret;
5623 rq_src = cpu_rq(src_cpu);
5624 rq_dest = cpu_rq(dest_cpu);
5626 double_rq_lock(rq_src, rq_dest);
5627 /* Already moved. */
5628 if (task_cpu(p) != src_cpu)
5629 goto out;
5630 /* Affinity changed (again). */
5631 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5632 goto out;
5634 on_rq = p->se.on_rq;
5635 if (on_rq)
5636 deactivate_task(rq_src, p, 0);
5638 set_task_cpu(p, dest_cpu);
5639 if (on_rq) {
5640 activate_task(rq_dest, p, 0);
5641 check_preempt_curr(rq_dest, p);
5643 ret = 1;
5644 out:
5645 double_rq_unlock(rq_src, rq_dest);
5646 return ret;
5650 * migration_thread - this is a highprio system thread that performs
5651 * thread migration by bumping thread off CPU then 'pushing' onto
5652 * another runqueue.
5654 static int migration_thread(void *data)
5656 int cpu = (long)data;
5657 struct rq *rq;
5659 rq = cpu_rq(cpu);
5660 BUG_ON(rq->migration_thread != current);
5662 set_current_state(TASK_INTERRUPTIBLE);
5663 while (!kthread_should_stop()) {
5664 struct migration_req *req;
5665 struct list_head *head;
5667 spin_lock_irq(&rq->lock);
5669 if (cpu_is_offline(cpu)) {
5670 spin_unlock_irq(&rq->lock);
5671 goto wait_to_die;
5674 if (rq->active_balance) {
5675 active_load_balance(rq, cpu);
5676 rq->active_balance = 0;
5679 head = &rq->migration_queue;
5681 if (list_empty(head)) {
5682 spin_unlock_irq(&rq->lock);
5683 schedule();
5684 set_current_state(TASK_INTERRUPTIBLE);
5685 continue;
5687 req = list_entry(head->next, struct migration_req, list);
5688 list_del_init(head->next);
5690 spin_unlock(&rq->lock);
5691 __migrate_task(req->task, cpu, req->dest_cpu);
5692 local_irq_enable();
5694 complete(&req->done);
5696 __set_current_state(TASK_RUNNING);
5697 return 0;
5699 wait_to_die:
5700 /* Wait for kthread_stop */
5701 set_current_state(TASK_INTERRUPTIBLE);
5702 while (!kthread_should_stop()) {
5703 schedule();
5704 set_current_state(TASK_INTERRUPTIBLE);
5706 __set_current_state(TASK_RUNNING);
5707 return 0;
5710 #ifdef CONFIG_HOTPLUG_CPU
5712 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5714 int ret;
5716 local_irq_disable();
5717 ret = __migrate_task(p, src_cpu, dest_cpu);
5718 local_irq_enable();
5719 return ret;
5723 * Figure out where task on dead CPU should go, use force if necessary.
5724 * NOTE: interrupts should be disabled by the caller
5726 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5728 unsigned long flags;
5729 cpumask_t mask;
5730 struct rq *rq;
5731 int dest_cpu;
5733 do {
5734 /* On same node? */
5735 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5736 cpus_and(mask, mask, p->cpus_allowed);
5737 dest_cpu = any_online_cpu(mask);
5739 /* On any allowed CPU? */
5740 if (dest_cpu >= nr_cpu_ids)
5741 dest_cpu = any_online_cpu(p->cpus_allowed);
5743 /* No more Mr. Nice Guy. */
5744 if (dest_cpu >= nr_cpu_ids) {
5745 cpumask_t cpus_allowed;
5747 cpuset_cpus_allowed_locked(p, &cpus_allowed);
5749 * Try to stay on the same cpuset, where the
5750 * current cpuset may be a subset of all cpus.
5751 * The cpuset_cpus_allowed_locked() variant of
5752 * cpuset_cpus_allowed() will not block. It must be
5753 * called within calls to cpuset_lock/cpuset_unlock.
5755 rq = task_rq_lock(p, &flags);
5756 p->cpus_allowed = cpus_allowed;
5757 dest_cpu = any_online_cpu(p->cpus_allowed);
5758 task_rq_unlock(rq, &flags);
5761 * Don't tell them about moving exiting tasks or
5762 * kernel threads (both mm NULL), since they never
5763 * leave kernel.
5765 if (p->mm && printk_ratelimit()) {
5766 printk(KERN_INFO "process %d (%s) no "
5767 "longer affine to cpu%d\n",
5768 task_pid_nr(p), p->comm, dead_cpu);
5771 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5775 * While a dead CPU has no uninterruptible tasks queued at this point,
5776 * it might still have a nonzero ->nr_uninterruptible counter, because
5777 * for performance reasons the counter is not stricly tracking tasks to
5778 * their home CPUs. So we just add the counter to another CPU's counter,
5779 * to keep the global sum constant after CPU-down:
5781 static void migrate_nr_uninterruptible(struct rq *rq_src)
5783 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
5784 unsigned long flags;
5786 local_irq_save(flags);
5787 double_rq_lock(rq_src, rq_dest);
5788 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5789 rq_src->nr_uninterruptible = 0;
5790 double_rq_unlock(rq_src, rq_dest);
5791 local_irq_restore(flags);
5794 /* Run through task list and migrate tasks from the dead cpu. */
5795 static void migrate_live_tasks(int src_cpu)
5797 struct task_struct *p, *t;
5799 read_lock(&tasklist_lock);
5801 do_each_thread(t, p) {
5802 if (p == current)
5803 continue;
5805 if (task_cpu(p) == src_cpu)
5806 move_task_off_dead_cpu(src_cpu, p);
5807 } while_each_thread(t, p);
5809 read_unlock(&tasklist_lock);
5813 * Schedules idle task to be the next runnable task on current CPU.
5814 * It does so by boosting its priority to highest possible.
5815 * Used by CPU offline code.
5817 void sched_idle_next(void)
5819 int this_cpu = smp_processor_id();
5820 struct rq *rq = cpu_rq(this_cpu);
5821 struct task_struct *p = rq->idle;
5822 unsigned long flags;
5824 /* cpu has to be offline */
5825 BUG_ON(cpu_online(this_cpu));
5828 * Strictly not necessary since rest of the CPUs are stopped by now
5829 * and interrupts disabled on the current cpu.
5831 spin_lock_irqsave(&rq->lock, flags);
5833 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5835 update_rq_clock(rq);
5836 activate_task(rq, p, 0);
5838 spin_unlock_irqrestore(&rq->lock, flags);
5842 * Ensures that the idle task is using init_mm right before its cpu goes
5843 * offline.
5845 void idle_task_exit(void)
5847 struct mm_struct *mm = current->active_mm;
5849 BUG_ON(cpu_online(smp_processor_id()));
5851 if (mm != &init_mm)
5852 switch_mm(mm, &init_mm, current);
5853 mmdrop(mm);
5856 /* called under rq->lock with disabled interrupts */
5857 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5859 struct rq *rq = cpu_rq(dead_cpu);
5861 /* Must be exiting, otherwise would be on tasklist. */
5862 BUG_ON(!p->exit_state);
5864 /* Cannot have done final schedule yet: would have vanished. */
5865 BUG_ON(p->state == TASK_DEAD);
5867 get_task_struct(p);
5870 * Drop lock around migration; if someone else moves it,
5871 * that's OK. No task can be added to this CPU, so iteration is
5872 * fine.
5874 spin_unlock_irq(&rq->lock);
5875 move_task_off_dead_cpu(dead_cpu, p);
5876 spin_lock_irq(&rq->lock);
5878 put_task_struct(p);
5881 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5882 static void migrate_dead_tasks(unsigned int dead_cpu)
5884 struct rq *rq = cpu_rq(dead_cpu);
5885 struct task_struct *next;
5887 for ( ; ; ) {
5888 if (!rq->nr_running)
5889 break;
5890 update_rq_clock(rq);
5891 next = pick_next_task(rq, rq->curr);
5892 if (!next)
5893 break;
5894 migrate_dead(dead_cpu, next);
5898 #endif /* CONFIG_HOTPLUG_CPU */
5900 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5902 static struct ctl_table sd_ctl_dir[] = {
5904 .procname = "sched_domain",
5905 .mode = 0555,
5907 {0, },
5910 static struct ctl_table sd_ctl_root[] = {
5912 .ctl_name = CTL_KERN,
5913 .procname = "kernel",
5914 .mode = 0555,
5915 .child = sd_ctl_dir,
5917 {0, },
5920 static struct ctl_table *sd_alloc_ctl_entry(int n)
5922 struct ctl_table *entry =
5923 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5925 return entry;
5928 static void sd_free_ctl_entry(struct ctl_table **tablep)
5930 struct ctl_table *entry;
5933 * In the intermediate directories, both the child directory and
5934 * procname are dynamically allocated and could fail but the mode
5935 * will always be set. In the lowest directory the names are
5936 * static strings and all have proc handlers.
5938 for (entry = *tablep; entry->mode; entry++) {
5939 if (entry->child)
5940 sd_free_ctl_entry(&entry->child);
5941 if (entry->proc_handler == NULL)
5942 kfree(entry->procname);
5945 kfree(*tablep);
5946 *tablep = NULL;
5949 static void
5950 set_table_entry(struct ctl_table *entry,
5951 const char *procname, void *data, int maxlen,
5952 mode_t mode, proc_handler *proc_handler)
5954 entry->procname = procname;
5955 entry->data = data;
5956 entry->maxlen = maxlen;
5957 entry->mode = mode;
5958 entry->proc_handler = proc_handler;
5961 static struct ctl_table *
5962 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5964 struct ctl_table *table = sd_alloc_ctl_entry(12);
5966 if (table == NULL)
5967 return NULL;
5969 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5970 sizeof(long), 0644, proc_doulongvec_minmax);
5971 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5972 sizeof(long), 0644, proc_doulongvec_minmax);
5973 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5974 sizeof(int), 0644, proc_dointvec_minmax);
5975 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5976 sizeof(int), 0644, proc_dointvec_minmax);
5977 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5978 sizeof(int), 0644, proc_dointvec_minmax);
5979 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5980 sizeof(int), 0644, proc_dointvec_minmax);
5981 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5982 sizeof(int), 0644, proc_dointvec_minmax);
5983 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5984 sizeof(int), 0644, proc_dointvec_minmax);
5985 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5986 sizeof(int), 0644, proc_dointvec_minmax);
5987 set_table_entry(&table[9], "cache_nice_tries",
5988 &sd->cache_nice_tries,
5989 sizeof(int), 0644, proc_dointvec_minmax);
5990 set_table_entry(&table[10], "flags", &sd->flags,
5991 sizeof(int), 0644, proc_dointvec_minmax);
5992 /* &table[11] is terminator */
5994 return table;
5997 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5999 struct ctl_table *entry, *table;
6000 struct sched_domain *sd;
6001 int domain_num = 0, i;
6002 char buf[32];
6004 for_each_domain(cpu, sd)
6005 domain_num++;
6006 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6007 if (table == NULL)
6008 return NULL;
6010 i = 0;
6011 for_each_domain(cpu, sd) {
6012 snprintf(buf, 32, "domain%d", i);
6013 entry->procname = kstrdup(buf, GFP_KERNEL);
6014 entry->mode = 0555;
6015 entry->child = sd_alloc_ctl_domain_table(sd);
6016 entry++;
6017 i++;
6019 return table;
6022 static struct ctl_table_header *sd_sysctl_header;
6023 static void register_sched_domain_sysctl(void)
6025 int i, cpu_num = num_online_cpus();
6026 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6027 char buf[32];
6029 WARN_ON(sd_ctl_dir[0].child);
6030 sd_ctl_dir[0].child = entry;
6032 if (entry == NULL)
6033 return;
6035 for_each_online_cpu(i) {
6036 snprintf(buf, 32, "cpu%d", i);
6037 entry->procname = kstrdup(buf, GFP_KERNEL);
6038 entry->mode = 0555;
6039 entry->child = sd_alloc_ctl_cpu_table(i);
6040 entry++;
6043 WARN_ON(sd_sysctl_header);
6044 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6047 /* may be called multiple times per register */
6048 static void unregister_sched_domain_sysctl(void)
6050 if (sd_sysctl_header)
6051 unregister_sysctl_table(sd_sysctl_header);
6052 sd_sysctl_header = NULL;
6053 if (sd_ctl_dir[0].child)
6054 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6056 #else
6057 static void register_sched_domain_sysctl(void)
6060 static void unregister_sched_domain_sysctl(void)
6063 #endif
6066 * migration_call - callback that gets triggered when a CPU is added.
6067 * Here we can start up the necessary migration thread for the new CPU.
6069 static int __cpuinit
6070 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6072 struct task_struct *p;
6073 int cpu = (long)hcpu;
6074 unsigned long flags;
6075 struct rq *rq;
6077 switch (action) {
6079 case CPU_UP_PREPARE:
6080 case CPU_UP_PREPARE_FROZEN:
6081 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6082 if (IS_ERR(p))
6083 return NOTIFY_BAD;
6084 kthread_bind(p, cpu);
6085 /* Must be high prio: stop_machine expects to yield to it. */
6086 rq = task_rq_lock(p, &flags);
6087 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6088 task_rq_unlock(rq, &flags);
6089 cpu_rq(cpu)->migration_thread = p;
6090 break;
6092 case CPU_ONLINE:
6093 case CPU_ONLINE_FROZEN:
6094 /* Strictly unnecessary, as first user will wake it. */
6095 wake_up_process(cpu_rq(cpu)->migration_thread);
6097 /* Update our root-domain */
6098 rq = cpu_rq(cpu);
6099 spin_lock_irqsave(&rq->lock, flags);
6100 if (rq->rd) {
6101 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6102 cpu_set(cpu, rq->rd->online);
6104 spin_unlock_irqrestore(&rq->lock, flags);
6105 break;
6107 #ifdef CONFIG_HOTPLUG_CPU
6108 case CPU_UP_CANCELED:
6109 case CPU_UP_CANCELED_FROZEN:
6110 if (!cpu_rq(cpu)->migration_thread)
6111 break;
6112 /* Unbind it from offline cpu so it can run. Fall thru. */
6113 kthread_bind(cpu_rq(cpu)->migration_thread,
6114 any_online_cpu(cpu_online_map));
6115 kthread_stop(cpu_rq(cpu)->migration_thread);
6116 cpu_rq(cpu)->migration_thread = NULL;
6117 break;
6119 case CPU_DEAD:
6120 case CPU_DEAD_FROZEN:
6121 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6122 migrate_live_tasks(cpu);
6123 rq = cpu_rq(cpu);
6124 kthread_stop(rq->migration_thread);
6125 rq->migration_thread = NULL;
6126 /* Idle task back to normal (off runqueue, low prio) */
6127 spin_lock_irq(&rq->lock);
6128 update_rq_clock(rq);
6129 deactivate_task(rq, rq->idle, 0);
6130 rq->idle->static_prio = MAX_PRIO;
6131 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6132 rq->idle->sched_class = &idle_sched_class;
6133 migrate_dead_tasks(cpu);
6134 spin_unlock_irq(&rq->lock);
6135 cpuset_unlock();
6136 migrate_nr_uninterruptible(rq);
6137 BUG_ON(rq->nr_running != 0);
6140 * No need to migrate the tasks: it was best-effort if
6141 * they didn't take sched_hotcpu_mutex. Just wake up
6142 * the requestors.
6144 spin_lock_irq(&rq->lock);
6145 while (!list_empty(&rq->migration_queue)) {
6146 struct migration_req *req;
6148 req = list_entry(rq->migration_queue.next,
6149 struct migration_req, list);
6150 list_del_init(&req->list);
6151 complete(&req->done);
6153 spin_unlock_irq(&rq->lock);
6154 break;
6156 case CPU_DYING:
6157 case CPU_DYING_FROZEN:
6158 /* Update our root-domain */
6159 rq = cpu_rq(cpu);
6160 spin_lock_irqsave(&rq->lock, flags);
6161 if (rq->rd) {
6162 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6163 cpu_clear(cpu, rq->rd->online);
6165 spin_unlock_irqrestore(&rq->lock, flags);
6166 break;
6167 #endif
6169 return NOTIFY_OK;
6172 /* Register at highest priority so that task migration (migrate_all_tasks)
6173 * happens before everything else.
6175 static struct notifier_block __cpuinitdata migration_notifier = {
6176 .notifier_call = migration_call,
6177 .priority = 10
6180 void __init migration_init(void)
6182 void *cpu = (void *)(long)smp_processor_id();
6183 int err;
6185 /* Start one for the boot CPU: */
6186 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6187 BUG_ON(err == NOTIFY_BAD);
6188 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6189 register_cpu_notifier(&migration_notifier);
6191 #endif
6193 #ifdef CONFIG_SMP
6195 #ifdef CONFIG_SCHED_DEBUG
6197 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6198 cpumask_t *groupmask)
6200 struct sched_group *group = sd->groups;
6201 char str[256];
6203 cpulist_scnprintf(str, sizeof(str), sd->span);
6204 cpus_clear(*groupmask);
6206 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6208 if (!(sd->flags & SD_LOAD_BALANCE)) {
6209 printk("does not load-balance\n");
6210 if (sd->parent)
6211 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6212 " has parent");
6213 return -1;
6216 printk(KERN_CONT "span %s\n", str);
6218 if (!cpu_isset(cpu, sd->span)) {
6219 printk(KERN_ERR "ERROR: domain->span does not contain "
6220 "CPU%d\n", cpu);
6222 if (!cpu_isset(cpu, group->cpumask)) {
6223 printk(KERN_ERR "ERROR: domain->groups does not contain"
6224 " CPU%d\n", cpu);
6227 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6228 do {
6229 if (!group) {
6230 printk("\n");
6231 printk(KERN_ERR "ERROR: group is NULL\n");
6232 break;
6235 if (!group->__cpu_power) {
6236 printk(KERN_CONT "\n");
6237 printk(KERN_ERR "ERROR: domain->cpu_power not "
6238 "set\n");
6239 break;
6242 if (!cpus_weight(group->cpumask)) {
6243 printk(KERN_CONT "\n");
6244 printk(KERN_ERR "ERROR: empty group\n");
6245 break;
6248 if (cpus_intersects(*groupmask, group->cpumask)) {
6249 printk(KERN_CONT "\n");
6250 printk(KERN_ERR "ERROR: repeated CPUs\n");
6251 break;
6254 cpus_or(*groupmask, *groupmask, group->cpumask);
6256 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6257 printk(KERN_CONT " %s", str);
6259 group = group->next;
6260 } while (group != sd->groups);
6261 printk(KERN_CONT "\n");
6263 if (!cpus_equal(sd->span, *groupmask))
6264 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6266 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6267 printk(KERN_ERR "ERROR: parent span is not a superset "
6268 "of domain->span\n");
6269 return 0;
6272 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6274 cpumask_t *groupmask;
6275 int level = 0;
6277 if (!sd) {
6278 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6279 return;
6282 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6284 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6285 if (!groupmask) {
6286 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6287 return;
6290 for (;;) {
6291 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6292 break;
6293 level++;
6294 sd = sd->parent;
6295 if (!sd)
6296 break;
6298 kfree(groupmask);
6300 #else
6301 # define sched_domain_debug(sd, cpu) do { } while (0)
6302 #endif
6304 static int sd_degenerate(struct sched_domain *sd)
6306 if (cpus_weight(sd->span) == 1)
6307 return 1;
6309 /* Following flags need at least 2 groups */
6310 if (sd->flags & (SD_LOAD_BALANCE |
6311 SD_BALANCE_NEWIDLE |
6312 SD_BALANCE_FORK |
6313 SD_BALANCE_EXEC |
6314 SD_SHARE_CPUPOWER |
6315 SD_SHARE_PKG_RESOURCES)) {
6316 if (sd->groups != sd->groups->next)
6317 return 0;
6320 /* Following flags don't use groups */
6321 if (sd->flags & (SD_WAKE_IDLE |
6322 SD_WAKE_AFFINE |
6323 SD_WAKE_BALANCE))
6324 return 0;
6326 return 1;
6329 static int
6330 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6332 unsigned long cflags = sd->flags, pflags = parent->flags;
6334 if (sd_degenerate(parent))
6335 return 1;
6337 if (!cpus_equal(sd->span, parent->span))
6338 return 0;
6340 /* Does parent contain flags not in child? */
6341 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6342 if (cflags & SD_WAKE_AFFINE)
6343 pflags &= ~SD_WAKE_BALANCE;
6344 /* Flags needing groups don't count if only 1 group in parent */
6345 if (parent->groups == parent->groups->next) {
6346 pflags &= ~(SD_LOAD_BALANCE |
6347 SD_BALANCE_NEWIDLE |
6348 SD_BALANCE_FORK |
6349 SD_BALANCE_EXEC |
6350 SD_SHARE_CPUPOWER |
6351 SD_SHARE_PKG_RESOURCES);
6353 if (~cflags & pflags)
6354 return 0;
6356 return 1;
6359 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6361 unsigned long flags;
6362 const struct sched_class *class;
6364 spin_lock_irqsave(&rq->lock, flags);
6366 if (rq->rd) {
6367 struct root_domain *old_rd = rq->rd;
6369 for (class = sched_class_highest; class; class = class->next) {
6370 if (class->leave_domain)
6371 class->leave_domain(rq);
6374 cpu_clear(rq->cpu, old_rd->span);
6375 cpu_clear(rq->cpu, old_rd->online);
6377 if (atomic_dec_and_test(&old_rd->refcount))
6378 kfree(old_rd);
6381 atomic_inc(&rd->refcount);
6382 rq->rd = rd;
6384 cpu_set(rq->cpu, rd->span);
6385 if (cpu_isset(rq->cpu, cpu_online_map))
6386 cpu_set(rq->cpu, rd->online);
6388 for (class = sched_class_highest; class; class = class->next) {
6389 if (class->join_domain)
6390 class->join_domain(rq);
6393 spin_unlock_irqrestore(&rq->lock, flags);
6396 static void init_rootdomain(struct root_domain *rd)
6398 memset(rd, 0, sizeof(*rd));
6400 cpus_clear(rd->span);
6401 cpus_clear(rd->online);
6403 cpupri_init(&rd->cpupri);
6406 static void init_defrootdomain(void)
6408 init_rootdomain(&def_root_domain);
6409 atomic_set(&def_root_domain.refcount, 1);
6412 static struct root_domain *alloc_rootdomain(void)
6414 struct root_domain *rd;
6416 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6417 if (!rd)
6418 return NULL;
6420 init_rootdomain(rd);
6422 return rd;
6426 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6427 * hold the hotplug lock.
6429 static void
6430 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6432 struct rq *rq = cpu_rq(cpu);
6433 struct sched_domain *tmp;
6435 /* Remove the sched domains which do not contribute to scheduling. */
6436 for (tmp = sd; tmp; tmp = tmp->parent) {
6437 struct sched_domain *parent = tmp->parent;
6438 if (!parent)
6439 break;
6440 if (sd_parent_degenerate(tmp, parent)) {
6441 tmp->parent = parent->parent;
6442 if (parent->parent)
6443 parent->parent->child = tmp;
6447 if (sd && sd_degenerate(sd)) {
6448 sd = sd->parent;
6449 if (sd)
6450 sd->child = NULL;
6453 sched_domain_debug(sd, cpu);
6455 rq_attach_root(rq, rd);
6456 rcu_assign_pointer(rq->sd, sd);
6459 /* cpus with isolated domains */
6460 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6462 /* Setup the mask of cpus configured for isolated domains */
6463 static int __init isolated_cpu_setup(char *str)
6465 int ints[NR_CPUS], i;
6467 str = get_options(str, ARRAY_SIZE(ints), ints);
6468 cpus_clear(cpu_isolated_map);
6469 for (i = 1; i <= ints[0]; i++)
6470 if (ints[i] < NR_CPUS)
6471 cpu_set(ints[i], cpu_isolated_map);
6472 return 1;
6475 __setup("isolcpus=", isolated_cpu_setup);
6478 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6479 * to a function which identifies what group(along with sched group) a CPU
6480 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6481 * (due to the fact that we keep track of groups covered with a cpumask_t).
6483 * init_sched_build_groups will build a circular linked list of the groups
6484 * covered by the given span, and will set each group's ->cpumask correctly,
6485 * and ->cpu_power to 0.
6487 static void
6488 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6489 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6490 struct sched_group **sg,
6491 cpumask_t *tmpmask),
6492 cpumask_t *covered, cpumask_t *tmpmask)
6494 struct sched_group *first = NULL, *last = NULL;
6495 int i;
6497 cpus_clear(*covered);
6499 for_each_cpu_mask(i, *span) {
6500 struct sched_group *sg;
6501 int group = group_fn(i, cpu_map, &sg, tmpmask);
6502 int j;
6504 if (cpu_isset(i, *covered))
6505 continue;
6507 cpus_clear(sg->cpumask);
6508 sg->__cpu_power = 0;
6510 for_each_cpu_mask(j, *span) {
6511 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6512 continue;
6514 cpu_set(j, *covered);
6515 cpu_set(j, sg->cpumask);
6517 if (!first)
6518 first = sg;
6519 if (last)
6520 last->next = sg;
6521 last = sg;
6523 last->next = first;
6526 #define SD_NODES_PER_DOMAIN 16
6528 #ifdef CONFIG_NUMA
6531 * find_next_best_node - find the next node to include in a sched_domain
6532 * @node: node whose sched_domain we're building
6533 * @used_nodes: nodes already in the sched_domain
6535 * Find the next node to include in a given scheduling domain. Simply
6536 * finds the closest node not already in the @used_nodes map.
6538 * Should use nodemask_t.
6540 static int find_next_best_node(int node, nodemask_t *used_nodes)
6542 int i, n, val, min_val, best_node = 0;
6544 min_val = INT_MAX;
6546 for (i = 0; i < MAX_NUMNODES; i++) {
6547 /* Start at @node */
6548 n = (node + i) % MAX_NUMNODES;
6550 if (!nr_cpus_node(n))
6551 continue;
6553 /* Skip already used nodes */
6554 if (node_isset(n, *used_nodes))
6555 continue;
6557 /* Simple min distance search */
6558 val = node_distance(node, n);
6560 if (val < min_val) {
6561 min_val = val;
6562 best_node = n;
6566 node_set(best_node, *used_nodes);
6567 return best_node;
6571 * sched_domain_node_span - get a cpumask for a node's sched_domain
6572 * @node: node whose cpumask we're constructing
6573 * @span: resulting cpumask
6575 * Given a node, construct a good cpumask for its sched_domain to span. It
6576 * should be one that prevents unnecessary balancing, but also spreads tasks
6577 * out optimally.
6579 static void sched_domain_node_span(int node, cpumask_t *span)
6581 nodemask_t used_nodes;
6582 node_to_cpumask_ptr(nodemask, node);
6583 int i;
6585 cpus_clear(*span);
6586 nodes_clear(used_nodes);
6588 cpus_or(*span, *span, *nodemask);
6589 node_set(node, used_nodes);
6591 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6592 int next_node = find_next_best_node(node, &used_nodes);
6594 node_to_cpumask_ptr_next(nodemask, next_node);
6595 cpus_or(*span, *span, *nodemask);
6598 #endif
6600 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6603 * SMT sched-domains:
6605 #ifdef CONFIG_SCHED_SMT
6606 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6607 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6609 static int
6610 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6611 cpumask_t *unused)
6613 if (sg)
6614 *sg = &per_cpu(sched_group_cpus, cpu);
6615 return cpu;
6617 #endif
6620 * multi-core sched-domains:
6622 #ifdef CONFIG_SCHED_MC
6623 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6624 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6625 #endif
6627 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6628 static int
6629 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6630 cpumask_t *mask)
6632 int group;
6634 *mask = per_cpu(cpu_sibling_map, cpu);
6635 cpus_and(*mask, *mask, *cpu_map);
6636 group = first_cpu(*mask);
6637 if (sg)
6638 *sg = &per_cpu(sched_group_core, group);
6639 return group;
6641 #elif defined(CONFIG_SCHED_MC)
6642 static int
6643 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6644 cpumask_t *unused)
6646 if (sg)
6647 *sg = &per_cpu(sched_group_core, cpu);
6648 return cpu;
6650 #endif
6652 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6653 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6655 static int
6656 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6657 cpumask_t *mask)
6659 int group;
6660 #ifdef CONFIG_SCHED_MC
6661 *mask = cpu_coregroup_map(cpu);
6662 cpus_and(*mask, *mask, *cpu_map);
6663 group = first_cpu(*mask);
6664 #elif defined(CONFIG_SCHED_SMT)
6665 *mask = per_cpu(cpu_sibling_map, cpu);
6666 cpus_and(*mask, *mask, *cpu_map);
6667 group = first_cpu(*mask);
6668 #else
6669 group = cpu;
6670 #endif
6671 if (sg)
6672 *sg = &per_cpu(sched_group_phys, group);
6673 return group;
6676 #ifdef CONFIG_NUMA
6678 * The init_sched_build_groups can't handle what we want to do with node
6679 * groups, so roll our own. Now each node has its own list of groups which
6680 * gets dynamically allocated.
6682 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6683 static struct sched_group ***sched_group_nodes_bycpu;
6685 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6686 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6688 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6689 struct sched_group **sg, cpumask_t *nodemask)
6691 int group;
6693 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6694 cpus_and(*nodemask, *nodemask, *cpu_map);
6695 group = first_cpu(*nodemask);
6697 if (sg)
6698 *sg = &per_cpu(sched_group_allnodes, group);
6699 return group;
6702 static void init_numa_sched_groups_power(struct sched_group *group_head)
6704 struct sched_group *sg = group_head;
6705 int j;
6707 if (!sg)
6708 return;
6709 do {
6710 for_each_cpu_mask(j, sg->cpumask) {
6711 struct sched_domain *sd;
6713 sd = &per_cpu(phys_domains, j);
6714 if (j != first_cpu(sd->groups->cpumask)) {
6716 * Only add "power" once for each
6717 * physical package.
6719 continue;
6722 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6724 sg = sg->next;
6725 } while (sg != group_head);
6727 #endif
6729 #ifdef CONFIG_NUMA
6730 /* Free memory allocated for various sched_group structures */
6731 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6733 int cpu, i;
6735 for_each_cpu_mask(cpu, *cpu_map) {
6736 struct sched_group **sched_group_nodes
6737 = sched_group_nodes_bycpu[cpu];
6739 if (!sched_group_nodes)
6740 continue;
6742 for (i = 0; i < MAX_NUMNODES; i++) {
6743 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6745 *nodemask = node_to_cpumask(i);
6746 cpus_and(*nodemask, *nodemask, *cpu_map);
6747 if (cpus_empty(*nodemask))
6748 continue;
6750 if (sg == NULL)
6751 continue;
6752 sg = sg->next;
6753 next_sg:
6754 oldsg = sg;
6755 sg = sg->next;
6756 kfree(oldsg);
6757 if (oldsg != sched_group_nodes[i])
6758 goto next_sg;
6760 kfree(sched_group_nodes);
6761 sched_group_nodes_bycpu[cpu] = NULL;
6764 #else
6765 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6768 #endif
6771 * Initialize sched groups cpu_power.
6773 * cpu_power indicates the capacity of sched group, which is used while
6774 * distributing the load between different sched groups in a sched domain.
6775 * Typically cpu_power for all the groups in a sched domain will be same unless
6776 * there are asymmetries in the topology. If there are asymmetries, group
6777 * having more cpu_power will pickup more load compared to the group having
6778 * less cpu_power.
6780 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6781 * the maximum number of tasks a group can handle in the presence of other idle
6782 * or lightly loaded groups in the same sched domain.
6784 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6786 struct sched_domain *child;
6787 struct sched_group *group;
6789 WARN_ON(!sd || !sd->groups);
6791 if (cpu != first_cpu(sd->groups->cpumask))
6792 return;
6794 child = sd->child;
6796 sd->groups->__cpu_power = 0;
6799 * For perf policy, if the groups in child domain share resources
6800 * (for example cores sharing some portions of the cache hierarchy
6801 * or SMT), then set this domain groups cpu_power such that each group
6802 * can handle only one task, when there are other idle groups in the
6803 * same sched domain.
6805 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6806 (child->flags &
6807 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6808 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6809 return;
6813 * add cpu_power of each child group to this groups cpu_power
6815 group = child->groups;
6816 do {
6817 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6818 group = group->next;
6819 } while (group != child->groups);
6823 * Initializers for schedule domains
6824 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6827 #define SD_INIT(sd, type) sd_init_##type(sd)
6828 #define SD_INIT_FUNC(type) \
6829 static noinline void sd_init_##type(struct sched_domain *sd) \
6831 memset(sd, 0, sizeof(*sd)); \
6832 *sd = SD_##type##_INIT; \
6833 sd->level = SD_LV_##type; \
6836 SD_INIT_FUNC(CPU)
6837 #ifdef CONFIG_NUMA
6838 SD_INIT_FUNC(ALLNODES)
6839 SD_INIT_FUNC(NODE)
6840 #endif
6841 #ifdef CONFIG_SCHED_SMT
6842 SD_INIT_FUNC(SIBLING)
6843 #endif
6844 #ifdef CONFIG_SCHED_MC
6845 SD_INIT_FUNC(MC)
6846 #endif
6849 * To minimize stack usage kmalloc room for cpumasks and share the
6850 * space as the usage in build_sched_domains() dictates. Used only
6851 * if the amount of space is significant.
6853 struct allmasks {
6854 cpumask_t tmpmask; /* make this one first */
6855 union {
6856 cpumask_t nodemask;
6857 cpumask_t this_sibling_map;
6858 cpumask_t this_core_map;
6860 cpumask_t send_covered;
6862 #ifdef CONFIG_NUMA
6863 cpumask_t domainspan;
6864 cpumask_t covered;
6865 cpumask_t notcovered;
6866 #endif
6869 #if NR_CPUS > 128
6870 #define SCHED_CPUMASK_ALLOC 1
6871 #define SCHED_CPUMASK_FREE(v) kfree(v)
6872 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6873 #else
6874 #define SCHED_CPUMASK_ALLOC 0
6875 #define SCHED_CPUMASK_FREE(v)
6876 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6877 #endif
6879 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6880 ((unsigned long)(a) + offsetof(struct allmasks, v))
6882 static int default_relax_domain_level = -1;
6884 static int __init setup_relax_domain_level(char *str)
6886 default_relax_domain_level = simple_strtoul(str, NULL, 0);
6887 return 1;
6889 __setup("relax_domain_level=", setup_relax_domain_level);
6891 static void set_domain_attribute(struct sched_domain *sd,
6892 struct sched_domain_attr *attr)
6894 int request;
6896 if (!attr || attr->relax_domain_level < 0) {
6897 if (default_relax_domain_level < 0)
6898 return;
6899 else
6900 request = default_relax_domain_level;
6901 } else
6902 request = attr->relax_domain_level;
6903 if (request < sd->level) {
6904 /* turn off idle balance on this domain */
6905 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
6906 } else {
6907 /* turn on idle balance on this domain */
6908 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
6913 * Build sched domains for a given set of cpus and attach the sched domains
6914 * to the individual cpus
6916 static int __build_sched_domains(const cpumask_t *cpu_map,
6917 struct sched_domain_attr *attr)
6919 int i;
6920 struct root_domain *rd;
6921 SCHED_CPUMASK_DECLARE(allmasks);
6922 cpumask_t *tmpmask;
6923 #ifdef CONFIG_NUMA
6924 struct sched_group **sched_group_nodes = NULL;
6925 int sd_allnodes = 0;
6928 * Allocate the per-node list of sched groups
6930 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6931 GFP_KERNEL);
6932 if (!sched_group_nodes) {
6933 printk(KERN_WARNING "Can not alloc sched group node list\n");
6934 return -ENOMEM;
6936 #endif
6938 rd = alloc_rootdomain();
6939 if (!rd) {
6940 printk(KERN_WARNING "Cannot alloc root domain\n");
6941 #ifdef CONFIG_NUMA
6942 kfree(sched_group_nodes);
6943 #endif
6944 return -ENOMEM;
6947 #if SCHED_CPUMASK_ALLOC
6948 /* get space for all scratch cpumask variables */
6949 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6950 if (!allmasks) {
6951 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6952 kfree(rd);
6953 #ifdef CONFIG_NUMA
6954 kfree(sched_group_nodes);
6955 #endif
6956 return -ENOMEM;
6958 #endif
6959 tmpmask = (cpumask_t *)allmasks;
6962 #ifdef CONFIG_NUMA
6963 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6964 #endif
6967 * Set up domains for cpus specified by the cpu_map.
6969 for_each_cpu_mask(i, *cpu_map) {
6970 struct sched_domain *sd = NULL, *p;
6971 SCHED_CPUMASK_VAR(nodemask, allmasks);
6973 *nodemask = node_to_cpumask(cpu_to_node(i));
6974 cpus_and(*nodemask, *nodemask, *cpu_map);
6976 #ifdef CONFIG_NUMA
6977 if (cpus_weight(*cpu_map) >
6978 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
6979 sd = &per_cpu(allnodes_domains, i);
6980 SD_INIT(sd, ALLNODES);
6981 set_domain_attribute(sd, attr);
6982 sd->span = *cpu_map;
6983 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
6984 p = sd;
6985 sd_allnodes = 1;
6986 } else
6987 p = NULL;
6989 sd = &per_cpu(node_domains, i);
6990 SD_INIT(sd, NODE);
6991 set_domain_attribute(sd, attr);
6992 sched_domain_node_span(cpu_to_node(i), &sd->span);
6993 sd->parent = p;
6994 if (p)
6995 p->child = sd;
6996 cpus_and(sd->span, sd->span, *cpu_map);
6997 #endif
6999 p = sd;
7000 sd = &per_cpu(phys_domains, i);
7001 SD_INIT(sd, CPU);
7002 set_domain_attribute(sd, attr);
7003 sd->span = *nodemask;
7004 sd->parent = p;
7005 if (p)
7006 p->child = sd;
7007 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7009 #ifdef CONFIG_SCHED_MC
7010 p = sd;
7011 sd = &per_cpu(core_domains, i);
7012 SD_INIT(sd, MC);
7013 set_domain_attribute(sd, attr);
7014 sd->span = cpu_coregroup_map(i);
7015 cpus_and(sd->span, sd->span, *cpu_map);
7016 sd->parent = p;
7017 p->child = sd;
7018 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7019 #endif
7021 #ifdef CONFIG_SCHED_SMT
7022 p = sd;
7023 sd = &per_cpu(cpu_domains, i);
7024 SD_INIT(sd, SIBLING);
7025 set_domain_attribute(sd, attr);
7026 sd->span = per_cpu(cpu_sibling_map, i);
7027 cpus_and(sd->span, sd->span, *cpu_map);
7028 sd->parent = p;
7029 p->child = sd;
7030 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7031 #endif
7034 #ifdef CONFIG_SCHED_SMT
7035 /* Set up CPU (sibling) groups */
7036 for_each_cpu_mask(i, *cpu_map) {
7037 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7038 SCHED_CPUMASK_VAR(send_covered, allmasks);
7040 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7041 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7042 if (i != first_cpu(*this_sibling_map))
7043 continue;
7045 init_sched_build_groups(this_sibling_map, cpu_map,
7046 &cpu_to_cpu_group,
7047 send_covered, tmpmask);
7049 #endif
7051 #ifdef CONFIG_SCHED_MC
7052 /* Set up multi-core groups */
7053 for_each_cpu_mask(i, *cpu_map) {
7054 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7055 SCHED_CPUMASK_VAR(send_covered, allmasks);
7057 *this_core_map = cpu_coregroup_map(i);
7058 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7059 if (i != first_cpu(*this_core_map))
7060 continue;
7062 init_sched_build_groups(this_core_map, cpu_map,
7063 &cpu_to_core_group,
7064 send_covered, tmpmask);
7066 #endif
7068 /* Set up physical groups */
7069 for (i = 0; i < MAX_NUMNODES; i++) {
7070 SCHED_CPUMASK_VAR(nodemask, allmasks);
7071 SCHED_CPUMASK_VAR(send_covered, allmasks);
7073 *nodemask = node_to_cpumask(i);
7074 cpus_and(*nodemask, *nodemask, *cpu_map);
7075 if (cpus_empty(*nodemask))
7076 continue;
7078 init_sched_build_groups(nodemask, cpu_map,
7079 &cpu_to_phys_group,
7080 send_covered, tmpmask);
7083 #ifdef CONFIG_NUMA
7084 /* Set up node groups */
7085 if (sd_allnodes) {
7086 SCHED_CPUMASK_VAR(send_covered, allmasks);
7088 init_sched_build_groups(cpu_map, cpu_map,
7089 &cpu_to_allnodes_group,
7090 send_covered, tmpmask);
7093 for (i = 0; i < MAX_NUMNODES; i++) {
7094 /* Set up node groups */
7095 struct sched_group *sg, *prev;
7096 SCHED_CPUMASK_VAR(nodemask, allmasks);
7097 SCHED_CPUMASK_VAR(domainspan, allmasks);
7098 SCHED_CPUMASK_VAR(covered, allmasks);
7099 int j;
7101 *nodemask = node_to_cpumask(i);
7102 cpus_clear(*covered);
7104 cpus_and(*nodemask, *nodemask, *cpu_map);
7105 if (cpus_empty(*nodemask)) {
7106 sched_group_nodes[i] = NULL;
7107 continue;
7110 sched_domain_node_span(i, domainspan);
7111 cpus_and(*domainspan, *domainspan, *cpu_map);
7113 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7114 if (!sg) {
7115 printk(KERN_WARNING "Can not alloc domain group for "
7116 "node %d\n", i);
7117 goto error;
7119 sched_group_nodes[i] = sg;
7120 for_each_cpu_mask(j, *nodemask) {
7121 struct sched_domain *sd;
7123 sd = &per_cpu(node_domains, j);
7124 sd->groups = sg;
7126 sg->__cpu_power = 0;
7127 sg->cpumask = *nodemask;
7128 sg->next = sg;
7129 cpus_or(*covered, *covered, *nodemask);
7130 prev = sg;
7132 for (j = 0; j < MAX_NUMNODES; j++) {
7133 SCHED_CPUMASK_VAR(notcovered, allmasks);
7134 int n = (i + j) % MAX_NUMNODES;
7135 node_to_cpumask_ptr(pnodemask, n);
7137 cpus_complement(*notcovered, *covered);
7138 cpus_and(*tmpmask, *notcovered, *cpu_map);
7139 cpus_and(*tmpmask, *tmpmask, *domainspan);
7140 if (cpus_empty(*tmpmask))
7141 break;
7143 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7144 if (cpus_empty(*tmpmask))
7145 continue;
7147 sg = kmalloc_node(sizeof(struct sched_group),
7148 GFP_KERNEL, i);
7149 if (!sg) {
7150 printk(KERN_WARNING
7151 "Can not alloc domain group for node %d\n", j);
7152 goto error;
7154 sg->__cpu_power = 0;
7155 sg->cpumask = *tmpmask;
7156 sg->next = prev->next;
7157 cpus_or(*covered, *covered, *tmpmask);
7158 prev->next = sg;
7159 prev = sg;
7162 #endif
7164 /* Calculate CPU power for physical packages and nodes */
7165 #ifdef CONFIG_SCHED_SMT
7166 for_each_cpu_mask(i, *cpu_map) {
7167 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7169 init_sched_groups_power(i, sd);
7171 #endif
7172 #ifdef CONFIG_SCHED_MC
7173 for_each_cpu_mask(i, *cpu_map) {
7174 struct sched_domain *sd = &per_cpu(core_domains, i);
7176 init_sched_groups_power(i, sd);
7178 #endif
7180 for_each_cpu_mask(i, *cpu_map) {
7181 struct sched_domain *sd = &per_cpu(phys_domains, i);
7183 init_sched_groups_power(i, sd);
7186 #ifdef CONFIG_NUMA
7187 for (i = 0; i < MAX_NUMNODES; i++)
7188 init_numa_sched_groups_power(sched_group_nodes[i]);
7190 if (sd_allnodes) {
7191 struct sched_group *sg;
7193 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7194 tmpmask);
7195 init_numa_sched_groups_power(sg);
7197 #endif
7199 /* Attach the domains */
7200 for_each_cpu_mask(i, *cpu_map) {
7201 struct sched_domain *sd;
7202 #ifdef CONFIG_SCHED_SMT
7203 sd = &per_cpu(cpu_domains, i);
7204 #elif defined(CONFIG_SCHED_MC)
7205 sd = &per_cpu(core_domains, i);
7206 #else
7207 sd = &per_cpu(phys_domains, i);
7208 #endif
7209 cpu_attach_domain(sd, rd, i);
7212 SCHED_CPUMASK_FREE((void *)allmasks);
7213 return 0;
7215 #ifdef CONFIG_NUMA
7216 error:
7217 free_sched_groups(cpu_map, tmpmask);
7218 SCHED_CPUMASK_FREE((void *)allmasks);
7219 return -ENOMEM;
7220 #endif
7223 static int build_sched_domains(const cpumask_t *cpu_map)
7225 return __build_sched_domains(cpu_map, NULL);
7228 static cpumask_t *doms_cur; /* current sched domains */
7229 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7230 static struct sched_domain_attr *dattr_cur;
7231 /* attribues of custom domains in 'doms_cur' */
7234 * Special case: If a kmalloc of a doms_cur partition (array of
7235 * cpumask_t) fails, then fallback to a single sched domain,
7236 * as determined by the single cpumask_t fallback_doms.
7238 static cpumask_t fallback_doms;
7240 void __attribute__((weak)) arch_update_cpu_topology(void)
7245 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7246 * For now this just excludes isolated cpus, but could be used to
7247 * exclude other special cases in the future.
7249 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7251 int err;
7253 arch_update_cpu_topology();
7254 ndoms_cur = 1;
7255 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7256 if (!doms_cur)
7257 doms_cur = &fallback_doms;
7258 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7259 dattr_cur = NULL;
7260 err = build_sched_domains(doms_cur);
7261 register_sched_domain_sysctl();
7263 return err;
7266 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7267 cpumask_t *tmpmask)
7269 free_sched_groups(cpu_map, tmpmask);
7273 * Detach sched domains from a group of cpus specified in cpu_map
7274 * These cpus will now be attached to the NULL domain
7276 static void detach_destroy_domains(const cpumask_t *cpu_map)
7278 cpumask_t tmpmask;
7279 int i;
7281 unregister_sched_domain_sysctl();
7283 for_each_cpu_mask(i, *cpu_map)
7284 cpu_attach_domain(NULL, &def_root_domain, i);
7285 synchronize_sched();
7286 arch_destroy_sched_domains(cpu_map, &tmpmask);
7289 /* handle null as "default" */
7290 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7291 struct sched_domain_attr *new, int idx_new)
7293 struct sched_domain_attr tmp;
7295 /* fast path */
7296 if (!new && !cur)
7297 return 1;
7299 tmp = SD_ATTR_INIT;
7300 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7301 new ? (new + idx_new) : &tmp,
7302 sizeof(struct sched_domain_attr));
7306 * Partition sched domains as specified by the 'ndoms_new'
7307 * cpumasks in the array doms_new[] of cpumasks. This compares
7308 * doms_new[] to the current sched domain partitioning, doms_cur[].
7309 * It destroys each deleted domain and builds each new domain.
7311 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7312 * The masks don't intersect (don't overlap.) We should setup one
7313 * sched domain for each mask. CPUs not in any of the cpumasks will
7314 * not be load balanced. If the same cpumask appears both in the
7315 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7316 * it as it is.
7318 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7319 * ownership of it and will kfree it when done with it. If the caller
7320 * failed the kmalloc call, then it can pass in doms_new == NULL,
7321 * and partition_sched_domains() will fallback to the single partition
7322 * 'fallback_doms'.
7324 * Call with hotplug lock held
7326 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7327 struct sched_domain_attr *dattr_new)
7329 int i, j;
7331 mutex_lock(&sched_domains_mutex);
7333 /* always unregister in case we don't destroy any domains */
7334 unregister_sched_domain_sysctl();
7336 if (doms_new == NULL) {
7337 ndoms_new = 1;
7338 doms_new = &fallback_doms;
7339 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7340 dattr_new = NULL;
7343 /* Destroy deleted domains */
7344 for (i = 0; i < ndoms_cur; i++) {
7345 for (j = 0; j < ndoms_new; j++) {
7346 if (cpus_equal(doms_cur[i], doms_new[j])
7347 && dattrs_equal(dattr_cur, i, dattr_new, j))
7348 goto match1;
7350 /* no match - a current sched domain not in new doms_new[] */
7351 detach_destroy_domains(doms_cur + i);
7352 match1:
7356 /* Build new domains */
7357 for (i = 0; i < ndoms_new; i++) {
7358 for (j = 0; j < ndoms_cur; j++) {
7359 if (cpus_equal(doms_new[i], doms_cur[j])
7360 && dattrs_equal(dattr_new, i, dattr_cur, j))
7361 goto match2;
7363 /* no match - add a new doms_new */
7364 __build_sched_domains(doms_new + i,
7365 dattr_new ? dattr_new + i : NULL);
7366 match2:
7370 /* Remember the new sched domains */
7371 if (doms_cur != &fallback_doms)
7372 kfree(doms_cur);
7373 kfree(dattr_cur); /* kfree(NULL) is safe */
7374 doms_cur = doms_new;
7375 dattr_cur = dattr_new;
7376 ndoms_cur = ndoms_new;
7378 register_sched_domain_sysctl();
7380 mutex_unlock(&sched_domains_mutex);
7383 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7384 int arch_reinit_sched_domains(void)
7386 int err;
7388 get_online_cpus();
7389 mutex_lock(&sched_domains_mutex);
7390 detach_destroy_domains(&cpu_online_map);
7391 err = arch_init_sched_domains(&cpu_online_map);
7392 mutex_unlock(&sched_domains_mutex);
7393 put_online_cpus();
7395 return err;
7398 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7400 int ret;
7402 if (buf[0] != '0' && buf[0] != '1')
7403 return -EINVAL;
7405 if (smt)
7406 sched_smt_power_savings = (buf[0] == '1');
7407 else
7408 sched_mc_power_savings = (buf[0] == '1');
7410 ret = arch_reinit_sched_domains();
7412 return ret ? ret : count;
7415 #ifdef CONFIG_SCHED_MC
7416 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7418 return sprintf(page, "%u\n", sched_mc_power_savings);
7420 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7421 const char *buf, size_t count)
7423 return sched_power_savings_store(buf, count, 0);
7425 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7426 sched_mc_power_savings_store);
7427 #endif
7429 #ifdef CONFIG_SCHED_SMT
7430 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7432 return sprintf(page, "%u\n", sched_smt_power_savings);
7434 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7435 const char *buf, size_t count)
7437 return sched_power_savings_store(buf, count, 1);
7439 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7440 sched_smt_power_savings_store);
7441 #endif
7443 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7445 int err = 0;
7447 #ifdef CONFIG_SCHED_SMT
7448 if (smt_capable())
7449 err = sysfs_create_file(&cls->kset.kobj,
7450 &attr_sched_smt_power_savings.attr);
7451 #endif
7452 #ifdef CONFIG_SCHED_MC
7453 if (!err && mc_capable())
7454 err = sysfs_create_file(&cls->kset.kobj,
7455 &attr_sched_mc_power_savings.attr);
7456 #endif
7457 return err;
7459 #endif
7462 * Force a reinitialization of the sched domains hierarchy. The domains
7463 * and groups cannot be updated in place without racing with the balancing
7464 * code, so we temporarily attach all running cpus to the NULL domain
7465 * which will prevent rebalancing while the sched domains are recalculated.
7467 static int update_sched_domains(struct notifier_block *nfb,
7468 unsigned long action, void *hcpu)
7470 switch (action) {
7471 case CPU_UP_PREPARE:
7472 case CPU_UP_PREPARE_FROZEN:
7473 case CPU_DOWN_PREPARE:
7474 case CPU_DOWN_PREPARE_FROZEN:
7475 detach_destroy_domains(&cpu_online_map);
7476 return NOTIFY_OK;
7478 case CPU_UP_CANCELED:
7479 case CPU_UP_CANCELED_FROZEN:
7480 case CPU_DOWN_FAILED:
7481 case CPU_DOWN_FAILED_FROZEN:
7482 case CPU_ONLINE:
7483 case CPU_ONLINE_FROZEN:
7484 case CPU_DEAD:
7485 case CPU_DEAD_FROZEN:
7487 * Fall through and re-initialise the domains.
7489 break;
7490 default:
7491 return NOTIFY_DONE;
7494 /* The hotplug lock is already held by cpu_up/cpu_down */
7495 arch_init_sched_domains(&cpu_online_map);
7497 return NOTIFY_OK;
7500 void __init sched_init_smp(void)
7502 cpumask_t non_isolated_cpus;
7504 #if defined(CONFIG_NUMA)
7505 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7506 GFP_KERNEL);
7507 BUG_ON(sched_group_nodes_bycpu == NULL);
7508 #endif
7509 get_online_cpus();
7510 mutex_lock(&sched_domains_mutex);
7511 arch_init_sched_domains(&cpu_online_map);
7512 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7513 if (cpus_empty(non_isolated_cpus))
7514 cpu_set(smp_processor_id(), non_isolated_cpus);
7515 mutex_unlock(&sched_domains_mutex);
7516 put_online_cpus();
7517 /* XXX: Theoretical race here - CPU may be hotplugged now */
7518 hotcpu_notifier(update_sched_domains, 0);
7519 init_hrtick();
7521 /* Move init over to a non-isolated CPU */
7522 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7523 BUG();
7524 sched_init_granularity();
7526 #else
7527 void __init sched_init_smp(void)
7529 sched_init_granularity();
7531 #endif /* CONFIG_SMP */
7533 int in_sched_functions(unsigned long addr)
7535 return in_lock_functions(addr) ||
7536 (addr >= (unsigned long)__sched_text_start
7537 && addr < (unsigned long)__sched_text_end);
7540 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7542 cfs_rq->tasks_timeline = RB_ROOT;
7543 INIT_LIST_HEAD(&cfs_rq->tasks);
7544 #ifdef CONFIG_FAIR_GROUP_SCHED
7545 cfs_rq->rq = rq;
7546 #endif
7547 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7550 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7552 struct rt_prio_array *array;
7553 int i;
7555 array = &rt_rq->active;
7556 for (i = 0; i < MAX_RT_PRIO; i++) {
7557 INIT_LIST_HEAD(array->xqueue + i);
7558 INIT_LIST_HEAD(array->squeue + i);
7559 __clear_bit(i, array->bitmap);
7561 /* delimiter for bitsearch: */
7562 __set_bit(MAX_RT_PRIO, array->bitmap);
7564 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7565 rt_rq->highest_prio = MAX_RT_PRIO;
7566 #endif
7567 #ifdef CONFIG_SMP
7568 rt_rq->rt_nr_migratory = 0;
7569 rt_rq->overloaded = 0;
7570 #endif
7572 rt_rq->rt_time = 0;
7573 rt_rq->rt_throttled = 0;
7574 rt_rq->rt_runtime = 0;
7575 spin_lock_init(&rt_rq->rt_runtime_lock);
7577 #ifdef CONFIG_RT_GROUP_SCHED
7578 rt_rq->rt_nr_boosted = 0;
7579 rt_rq->rq = rq;
7580 #endif
7583 #ifdef CONFIG_FAIR_GROUP_SCHED
7584 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7585 struct sched_entity *se, int cpu, int add,
7586 struct sched_entity *parent)
7588 struct rq *rq = cpu_rq(cpu);
7589 tg->cfs_rq[cpu] = cfs_rq;
7590 init_cfs_rq(cfs_rq, rq);
7591 cfs_rq->tg = tg;
7592 if (add)
7593 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7595 tg->se[cpu] = se;
7596 /* se could be NULL for init_task_group */
7597 if (!se)
7598 return;
7600 if (!parent)
7601 se->cfs_rq = &rq->cfs;
7602 else
7603 se->cfs_rq = parent->my_q;
7605 se->my_q = cfs_rq;
7606 se->load.weight = tg->shares;
7607 se->load.inv_weight = 0;
7608 se->parent = parent;
7610 #endif
7612 #ifdef CONFIG_RT_GROUP_SCHED
7613 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7614 struct sched_rt_entity *rt_se, int cpu, int add,
7615 struct sched_rt_entity *parent)
7617 struct rq *rq = cpu_rq(cpu);
7619 tg->rt_rq[cpu] = rt_rq;
7620 init_rt_rq(rt_rq, rq);
7621 rt_rq->tg = tg;
7622 rt_rq->rt_se = rt_se;
7623 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7624 if (add)
7625 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7627 tg->rt_se[cpu] = rt_se;
7628 if (!rt_se)
7629 return;
7631 if (!parent)
7632 rt_se->rt_rq = &rq->rt;
7633 else
7634 rt_se->rt_rq = parent->my_q;
7636 rt_se->rt_rq = &rq->rt;
7637 rt_se->my_q = rt_rq;
7638 rt_se->parent = parent;
7639 INIT_LIST_HEAD(&rt_se->run_list);
7641 #endif
7643 void __init sched_init(void)
7645 int i, j;
7646 unsigned long alloc_size = 0, ptr;
7648 #ifdef CONFIG_FAIR_GROUP_SCHED
7649 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7650 #endif
7651 #ifdef CONFIG_RT_GROUP_SCHED
7652 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7653 #endif
7654 #ifdef CONFIG_USER_SCHED
7655 alloc_size *= 2;
7656 #endif
7658 * As sched_init() is called before page_alloc is setup,
7659 * we use alloc_bootmem().
7661 if (alloc_size) {
7662 ptr = (unsigned long)alloc_bootmem(alloc_size);
7664 #ifdef CONFIG_FAIR_GROUP_SCHED
7665 init_task_group.se = (struct sched_entity **)ptr;
7666 ptr += nr_cpu_ids * sizeof(void **);
7668 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7669 ptr += nr_cpu_ids * sizeof(void **);
7671 #ifdef CONFIG_USER_SCHED
7672 root_task_group.se = (struct sched_entity **)ptr;
7673 ptr += nr_cpu_ids * sizeof(void **);
7675 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7676 ptr += nr_cpu_ids * sizeof(void **);
7677 #endif
7678 #endif
7679 #ifdef CONFIG_RT_GROUP_SCHED
7680 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7681 ptr += nr_cpu_ids * sizeof(void **);
7683 init_task_group.rt_rq = (struct rt_rq **)ptr;
7684 ptr += nr_cpu_ids * sizeof(void **);
7686 #ifdef CONFIG_USER_SCHED
7687 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7688 ptr += nr_cpu_ids * sizeof(void **);
7690 root_task_group.rt_rq = (struct rt_rq **)ptr;
7691 ptr += nr_cpu_ids * sizeof(void **);
7692 #endif
7693 #endif
7696 #ifdef CONFIG_SMP
7697 init_defrootdomain();
7698 #endif
7700 init_rt_bandwidth(&def_rt_bandwidth,
7701 global_rt_period(), global_rt_runtime());
7703 #ifdef CONFIG_RT_GROUP_SCHED
7704 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7705 global_rt_period(), global_rt_runtime());
7706 #ifdef CONFIG_USER_SCHED
7707 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7708 global_rt_period(), RUNTIME_INF);
7709 #endif
7710 #endif
7712 #ifdef CONFIG_GROUP_SCHED
7713 list_add(&init_task_group.list, &task_groups);
7714 INIT_LIST_HEAD(&init_task_group.children);
7716 #ifdef CONFIG_USER_SCHED
7717 INIT_LIST_HEAD(&root_task_group.children);
7718 init_task_group.parent = &root_task_group;
7719 list_add(&init_task_group.siblings, &root_task_group.children);
7720 #endif
7721 #endif
7723 for_each_possible_cpu(i) {
7724 struct rq *rq;
7726 rq = cpu_rq(i);
7727 spin_lock_init(&rq->lock);
7728 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7729 rq->nr_running = 0;
7730 init_cfs_rq(&rq->cfs, rq);
7731 init_rt_rq(&rq->rt, rq);
7732 #ifdef CONFIG_FAIR_GROUP_SCHED
7733 init_task_group.shares = init_task_group_load;
7734 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7735 #ifdef CONFIG_CGROUP_SCHED
7737 * How much cpu bandwidth does init_task_group get?
7739 * In case of task-groups formed thr' the cgroup filesystem, it
7740 * gets 100% of the cpu resources in the system. This overall
7741 * system cpu resource is divided among the tasks of
7742 * init_task_group and its child task-groups in a fair manner,
7743 * based on each entity's (task or task-group's) weight
7744 * (se->load.weight).
7746 * In other words, if init_task_group has 10 tasks of weight
7747 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7748 * then A0's share of the cpu resource is:
7750 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7752 * We achieve this by letting init_task_group's tasks sit
7753 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7755 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7756 #elif defined CONFIG_USER_SCHED
7757 root_task_group.shares = NICE_0_LOAD;
7758 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
7760 * In case of task-groups formed thr' the user id of tasks,
7761 * init_task_group represents tasks belonging to root user.
7762 * Hence it forms a sibling of all subsequent groups formed.
7763 * In this case, init_task_group gets only a fraction of overall
7764 * system cpu resource, based on the weight assigned to root
7765 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7766 * by letting tasks of init_task_group sit in a separate cfs_rq
7767 * (init_cfs_rq) and having one entity represent this group of
7768 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7770 init_tg_cfs_entry(&init_task_group,
7771 &per_cpu(init_cfs_rq, i),
7772 &per_cpu(init_sched_entity, i), i, 1,
7773 root_task_group.se[i]);
7775 #endif
7776 #endif /* CONFIG_FAIR_GROUP_SCHED */
7778 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7779 #ifdef CONFIG_RT_GROUP_SCHED
7780 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7781 #ifdef CONFIG_CGROUP_SCHED
7782 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7783 #elif defined CONFIG_USER_SCHED
7784 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7785 init_tg_rt_entry(&init_task_group,
7786 &per_cpu(init_rt_rq, i),
7787 &per_cpu(init_sched_rt_entity, i), i, 1,
7788 root_task_group.rt_se[i]);
7789 #endif
7790 #endif
7792 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7793 rq->cpu_load[j] = 0;
7794 #ifdef CONFIG_SMP
7795 rq->sd = NULL;
7796 rq->rd = NULL;
7797 rq->active_balance = 0;
7798 rq->next_balance = jiffies;
7799 rq->push_cpu = 0;
7800 rq->cpu = i;
7801 rq->migration_thread = NULL;
7802 INIT_LIST_HEAD(&rq->migration_queue);
7803 rq_attach_root(rq, &def_root_domain);
7804 #endif
7805 init_rq_hrtick(rq);
7806 atomic_set(&rq->nr_iowait, 0);
7809 set_load_weight(&init_task);
7811 #ifdef CONFIG_PREEMPT_NOTIFIERS
7812 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7813 #endif
7815 #ifdef CONFIG_SMP
7816 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7817 #endif
7819 #ifdef CONFIG_RT_MUTEXES
7820 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7821 #endif
7824 * The boot idle thread does lazy MMU switching as well:
7826 atomic_inc(&init_mm.mm_count);
7827 enter_lazy_tlb(&init_mm, current);
7830 * Make us the idle thread. Technically, schedule() should not be
7831 * called from this thread, however somewhere below it might be,
7832 * but because we are the idle thread, we just pick up running again
7833 * when this runqueue becomes "idle".
7835 init_idle(current, smp_processor_id());
7837 * During early bootup we pretend to be a normal task:
7839 current->sched_class = &fair_sched_class;
7841 scheduler_running = 1;
7844 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7845 void __might_sleep(char *file, int line)
7847 #ifdef in_atomic
7848 static unsigned long prev_jiffy; /* ratelimiting */
7850 if ((in_atomic() || irqs_disabled()) &&
7851 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7852 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7853 return;
7854 prev_jiffy = jiffies;
7855 printk(KERN_ERR "BUG: sleeping function called from invalid"
7856 " context at %s:%d\n", file, line);
7857 printk("in_atomic():%d, irqs_disabled():%d\n",
7858 in_atomic(), irqs_disabled());
7859 debug_show_held_locks(current);
7860 if (irqs_disabled())
7861 print_irqtrace_events(current);
7862 dump_stack();
7864 #endif
7866 EXPORT_SYMBOL(__might_sleep);
7867 #endif
7869 #ifdef CONFIG_MAGIC_SYSRQ
7870 static void normalize_task(struct rq *rq, struct task_struct *p)
7872 int on_rq;
7874 update_rq_clock(rq);
7875 on_rq = p->se.on_rq;
7876 if (on_rq)
7877 deactivate_task(rq, p, 0);
7878 __setscheduler(rq, p, SCHED_NORMAL, 0);
7879 if (on_rq) {
7880 activate_task(rq, p, 0);
7881 resched_task(rq->curr);
7885 void normalize_rt_tasks(void)
7887 struct task_struct *g, *p;
7888 unsigned long flags;
7889 struct rq *rq;
7891 read_lock_irqsave(&tasklist_lock, flags);
7892 do_each_thread(g, p) {
7894 * Only normalize user tasks:
7896 if (!p->mm)
7897 continue;
7899 p->se.exec_start = 0;
7900 #ifdef CONFIG_SCHEDSTATS
7901 p->se.wait_start = 0;
7902 p->se.sleep_start = 0;
7903 p->se.block_start = 0;
7904 #endif
7906 if (!rt_task(p)) {
7908 * Renice negative nice level userspace
7909 * tasks back to 0:
7911 if (TASK_NICE(p) < 0 && p->mm)
7912 set_user_nice(p, 0);
7913 continue;
7916 spin_lock(&p->pi_lock);
7917 rq = __task_rq_lock(p);
7919 normalize_task(rq, p);
7921 __task_rq_unlock(rq);
7922 spin_unlock(&p->pi_lock);
7923 } while_each_thread(g, p);
7925 read_unlock_irqrestore(&tasklist_lock, flags);
7928 #endif /* CONFIG_MAGIC_SYSRQ */
7930 #ifdef CONFIG_IA64
7932 * These functions are only useful for the IA64 MCA handling.
7934 * They can only be called when the whole system has been
7935 * stopped - every CPU needs to be quiescent, and no scheduling
7936 * activity can take place. Using them for anything else would
7937 * be a serious bug, and as a result, they aren't even visible
7938 * under any other configuration.
7942 * curr_task - return the current task for a given cpu.
7943 * @cpu: the processor in question.
7945 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7947 struct task_struct *curr_task(int cpu)
7949 return cpu_curr(cpu);
7953 * set_curr_task - set the current task for a given cpu.
7954 * @cpu: the processor in question.
7955 * @p: the task pointer to set.
7957 * Description: This function must only be used when non-maskable interrupts
7958 * are serviced on a separate stack. It allows the architecture to switch the
7959 * notion of the current task on a cpu in a non-blocking manner. This function
7960 * must be called with all CPU's synchronized, and interrupts disabled, the
7961 * and caller must save the original value of the current task (see
7962 * curr_task() above) and restore that value before reenabling interrupts and
7963 * re-starting the system.
7965 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7967 void set_curr_task(int cpu, struct task_struct *p)
7969 cpu_curr(cpu) = p;
7972 #endif
7974 #ifdef CONFIG_FAIR_GROUP_SCHED
7975 static void free_fair_sched_group(struct task_group *tg)
7977 int i;
7979 for_each_possible_cpu(i) {
7980 if (tg->cfs_rq)
7981 kfree(tg->cfs_rq[i]);
7982 if (tg->se)
7983 kfree(tg->se[i]);
7986 kfree(tg->cfs_rq);
7987 kfree(tg->se);
7990 static
7991 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7993 struct cfs_rq *cfs_rq;
7994 struct sched_entity *se, *parent_se;
7995 struct rq *rq;
7996 int i;
7998 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7999 if (!tg->cfs_rq)
8000 goto err;
8001 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8002 if (!tg->se)
8003 goto err;
8005 tg->shares = NICE_0_LOAD;
8007 for_each_possible_cpu(i) {
8008 rq = cpu_rq(i);
8010 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8011 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8012 if (!cfs_rq)
8013 goto err;
8015 se = kmalloc_node(sizeof(struct sched_entity),
8016 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8017 if (!se)
8018 goto err;
8020 parent_se = parent ? parent->se[i] : NULL;
8021 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8024 return 1;
8026 err:
8027 return 0;
8030 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8032 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8033 &cpu_rq(cpu)->leaf_cfs_rq_list);
8036 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8038 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8040 #else
8041 static inline void free_fair_sched_group(struct task_group *tg)
8045 static inline
8046 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8048 return 1;
8051 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8055 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8058 #endif
8060 #ifdef CONFIG_RT_GROUP_SCHED
8061 static void free_rt_sched_group(struct task_group *tg)
8063 int i;
8065 destroy_rt_bandwidth(&tg->rt_bandwidth);
8067 for_each_possible_cpu(i) {
8068 if (tg->rt_rq)
8069 kfree(tg->rt_rq[i]);
8070 if (tg->rt_se)
8071 kfree(tg->rt_se[i]);
8074 kfree(tg->rt_rq);
8075 kfree(tg->rt_se);
8078 static
8079 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8081 struct rt_rq *rt_rq;
8082 struct sched_rt_entity *rt_se, *parent_se;
8083 struct rq *rq;
8084 int i;
8086 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8087 if (!tg->rt_rq)
8088 goto err;
8089 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8090 if (!tg->rt_se)
8091 goto err;
8093 init_rt_bandwidth(&tg->rt_bandwidth,
8094 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8096 for_each_possible_cpu(i) {
8097 rq = cpu_rq(i);
8099 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8100 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8101 if (!rt_rq)
8102 goto err;
8104 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8105 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8106 if (!rt_se)
8107 goto err;
8109 parent_se = parent ? parent->rt_se[i] : NULL;
8110 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8113 return 1;
8115 err:
8116 return 0;
8119 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8121 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8122 &cpu_rq(cpu)->leaf_rt_rq_list);
8125 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8127 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8129 #else
8130 static inline void free_rt_sched_group(struct task_group *tg)
8134 static inline
8135 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8137 return 1;
8140 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8144 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8147 #endif
8149 #ifdef CONFIG_GROUP_SCHED
8150 static void free_sched_group(struct task_group *tg)
8152 free_fair_sched_group(tg);
8153 free_rt_sched_group(tg);
8154 kfree(tg);
8157 /* allocate runqueue etc for a new task group */
8158 struct task_group *sched_create_group(struct task_group *parent)
8160 struct task_group *tg;
8161 unsigned long flags;
8162 int i;
8164 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8165 if (!tg)
8166 return ERR_PTR(-ENOMEM);
8168 if (!alloc_fair_sched_group(tg, parent))
8169 goto err;
8171 if (!alloc_rt_sched_group(tg, parent))
8172 goto err;
8174 spin_lock_irqsave(&task_group_lock, flags);
8175 for_each_possible_cpu(i) {
8176 register_fair_sched_group(tg, i);
8177 register_rt_sched_group(tg, i);
8179 list_add_rcu(&tg->list, &task_groups);
8181 WARN_ON(!parent); /* root should already exist */
8183 tg->parent = parent;
8184 list_add_rcu(&tg->siblings, &parent->children);
8185 INIT_LIST_HEAD(&tg->children);
8186 spin_unlock_irqrestore(&task_group_lock, flags);
8188 return tg;
8190 err:
8191 free_sched_group(tg);
8192 return ERR_PTR(-ENOMEM);
8195 /* rcu callback to free various structures associated with a task group */
8196 static void free_sched_group_rcu(struct rcu_head *rhp)
8198 /* now it should be safe to free those cfs_rqs */
8199 free_sched_group(container_of(rhp, struct task_group, rcu));
8202 /* Destroy runqueue etc associated with a task group */
8203 void sched_destroy_group(struct task_group *tg)
8205 unsigned long flags;
8206 int i;
8208 spin_lock_irqsave(&task_group_lock, flags);
8209 for_each_possible_cpu(i) {
8210 unregister_fair_sched_group(tg, i);
8211 unregister_rt_sched_group(tg, i);
8213 list_del_rcu(&tg->list);
8214 list_del_rcu(&tg->siblings);
8215 spin_unlock_irqrestore(&task_group_lock, flags);
8217 /* wait for possible concurrent references to cfs_rqs complete */
8218 call_rcu(&tg->rcu, free_sched_group_rcu);
8221 /* change task's runqueue when it moves between groups.
8222 * The caller of this function should have put the task in its new group
8223 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8224 * reflect its new group.
8226 void sched_move_task(struct task_struct *tsk)
8228 int on_rq, running;
8229 unsigned long flags;
8230 struct rq *rq;
8232 rq = task_rq_lock(tsk, &flags);
8234 update_rq_clock(rq);
8236 running = task_current(rq, tsk);
8237 on_rq = tsk->se.on_rq;
8239 if (on_rq)
8240 dequeue_task(rq, tsk, 0);
8241 if (unlikely(running))
8242 tsk->sched_class->put_prev_task(rq, tsk);
8244 set_task_rq(tsk, task_cpu(tsk));
8246 #ifdef CONFIG_FAIR_GROUP_SCHED
8247 if (tsk->sched_class->moved_group)
8248 tsk->sched_class->moved_group(tsk);
8249 #endif
8251 if (unlikely(running))
8252 tsk->sched_class->set_curr_task(rq);
8253 if (on_rq)
8254 enqueue_task(rq, tsk, 0);
8256 task_rq_unlock(rq, &flags);
8258 #endif
8260 #ifdef CONFIG_FAIR_GROUP_SCHED
8261 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8263 struct cfs_rq *cfs_rq = se->cfs_rq;
8264 struct rq *rq = cfs_rq->rq;
8265 int on_rq;
8267 spin_lock_irq(&rq->lock);
8269 on_rq = se->on_rq;
8270 if (on_rq)
8271 dequeue_entity(cfs_rq, se, 0);
8273 se->load.weight = shares;
8274 se->load.inv_weight = 0;
8276 if (on_rq)
8277 enqueue_entity(cfs_rq, se, 0);
8279 spin_unlock_irq(&rq->lock);
8282 static DEFINE_MUTEX(shares_mutex);
8284 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8286 int i;
8287 unsigned long flags;
8290 * We can't change the weight of the root cgroup.
8292 if (!tg->se[0])
8293 return -EINVAL;
8295 if (shares < MIN_SHARES)
8296 shares = MIN_SHARES;
8297 else if (shares > MAX_SHARES)
8298 shares = MAX_SHARES;
8300 mutex_lock(&shares_mutex);
8301 if (tg->shares == shares)
8302 goto done;
8304 spin_lock_irqsave(&task_group_lock, flags);
8305 for_each_possible_cpu(i)
8306 unregister_fair_sched_group(tg, i);
8307 list_del_rcu(&tg->siblings);
8308 spin_unlock_irqrestore(&task_group_lock, flags);
8310 /* wait for any ongoing reference to this group to finish */
8311 synchronize_sched();
8314 * Now we are free to modify the group's share on each cpu
8315 * w/o tripping rebalance_share or load_balance_fair.
8317 tg->shares = shares;
8318 for_each_possible_cpu(i)
8319 set_se_shares(tg->se[i], shares);
8322 * Enable load balance activity on this group, by inserting it back on
8323 * each cpu's rq->leaf_cfs_rq_list.
8325 spin_lock_irqsave(&task_group_lock, flags);
8326 for_each_possible_cpu(i)
8327 register_fair_sched_group(tg, i);
8328 list_add_rcu(&tg->siblings, &tg->parent->children);
8329 spin_unlock_irqrestore(&task_group_lock, flags);
8330 done:
8331 mutex_unlock(&shares_mutex);
8332 return 0;
8335 unsigned long sched_group_shares(struct task_group *tg)
8337 return tg->shares;
8339 #endif
8341 #ifdef CONFIG_RT_GROUP_SCHED
8343 * Ensure that the real time constraints are schedulable.
8345 static DEFINE_MUTEX(rt_constraints_mutex);
8347 static unsigned long to_ratio(u64 period, u64 runtime)
8349 if (runtime == RUNTIME_INF)
8350 return 1ULL << 16;
8352 return div64_u64(runtime << 16, period);
8355 #ifdef CONFIG_CGROUP_SCHED
8356 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8358 struct task_group *tgi, *parent = tg->parent;
8359 unsigned long total = 0;
8361 if (!parent) {
8362 if (global_rt_period() < period)
8363 return 0;
8365 return to_ratio(period, runtime) <
8366 to_ratio(global_rt_period(), global_rt_runtime());
8369 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8370 return 0;
8372 rcu_read_lock();
8373 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8374 if (tgi == tg)
8375 continue;
8377 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8378 tgi->rt_bandwidth.rt_runtime);
8380 rcu_read_unlock();
8382 return total + to_ratio(period, runtime) <
8383 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8384 parent->rt_bandwidth.rt_runtime);
8386 #elif defined CONFIG_USER_SCHED
8387 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8389 struct task_group *tgi;
8390 unsigned long total = 0;
8391 unsigned long global_ratio =
8392 to_ratio(global_rt_period(), global_rt_runtime());
8394 rcu_read_lock();
8395 list_for_each_entry_rcu(tgi, &task_groups, list) {
8396 if (tgi == tg)
8397 continue;
8399 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8400 tgi->rt_bandwidth.rt_runtime);
8402 rcu_read_unlock();
8404 return total + to_ratio(period, runtime) < global_ratio;
8406 #endif
8408 /* Must be called with tasklist_lock held */
8409 static inline int tg_has_rt_tasks(struct task_group *tg)
8411 struct task_struct *g, *p;
8412 do_each_thread(g, p) {
8413 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8414 return 1;
8415 } while_each_thread(g, p);
8416 return 0;
8419 static int tg_set_bandwidth(struct task_group *tg,
8420 u64 rt_period, u64 rt_runtime)
8422 int i, err = 0;
8424 mutex_lock(&rt_constraints_mutex);
8425 read_lock(&tasklist_lock);
8426 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8427 err = -EBUSY;
8428 goto unlock;
8430 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8431 err = -EINVAL;
8432 goto unlock;
8435 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8436 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8437 tg->rt_bandwidth.rt_runtime = rt_runtime;
8439 for_each_possible_cpu(i) {
8440 struct rt_rq *rt_rq = tg->rt_rq[i];
8442 spin_lock(&rt_rq->rt_runtime_lock);
8443 rt_rq->rt_runtime = rt_runtime;
8444 spin_unlock(&rt_rq->rt_runtime_lock);
8446 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8447 unlock:
8448 read_unlock(&tasklist_lock);
8449 mutex_unlock(&rt_constraints_mutex);
8451 return err;
8454 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8456 u64 rt_runtime, rt_period;
8458 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8459 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8460 if (rt_runtime_us < 0)
8461 rt_runtime = RUNTIME_INF;
8463 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8466 long sched_group_rt_runtime(struct task_group *tg)
8468 u64 rt_runtime_us;
8470 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8471 return -1;
8473 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8474 do_div(rt_runtime_us, NSEC_PER_USEC);
8475 return rt_runtime_us;
8478 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8480 u64 rt_runtime, rt_period;
8482 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8483 rt_runtime = tg->rt_bandwidth.rt_runtime;
8485 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8488 long sched_group_rt_period(struct task_group *tg)
8490 u64 rt_period_us;
8492 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8493 do_div(rt_period_us, NSEC_PER_USEC);
8494 return rt_period_us;
8497 static int sched_rt_global_constraints(void)
8499 int ret = 0;
8501 mutex_lock(&rt_constraints_mutex);
8502 if (!__rt_schedulable(NULL, 1, 0))
8503 ret = -EINVAL;
8504 mutex_unlock(&rt_constraints_mutex);
8506 return ret;
8508 #else
8509 static int sched_rt_global_constraints(void)
8511 unsigned long flags;
8512 int i;
8514 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8515 for_each_possible_cpu(i) {
8516 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8518 spin_lock(&rt_rq->rt_runtime_lock);
8519 rt_rq->rt_runtime = global_rt_runtime();
8520 spin_unlock(&rt_rq->rt_runtime_lock);
8522 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8524 return 0;
8526 #endif
8528 int sched_rt_handler(struct ctl_table *table, int write,
8529 struct file *filp, void __user *buffer, size_t *lenp,
8530 loff_t *ppos)
8532 int ret;
8533 int old_period, old_runtime;
8534 static DEFINE_MUTEX(mutex);
8536 mutex_lock(&mutex);
8537 old_period = sysctl_sched_rt_period;
8538 old_runtime = sysctl_sched_rt_runtime;
8540 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8542 if (!ret && write) {
8543 ret = sched_rt_global_constraints();
8544 if (ret) {
8545 sysctl_sched_rt_period = old_period;
8546 sysctl_sched_rt_runtime = old_runtime;
8547 } else {
8548 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8549 def_rt_bandwidth.rt_period =
8550 ns_to_ktime(global_rt_period());
8553 mutex_unlock(&mutex);
8555 return ret;
8558 #ifdef CONFIG_CGROUP_SCHED
8560 /* return corresponding task_group object of a cgroup */
8561 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8563 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8564 struct task_group, css);
8567 static struct cgroup_subsys_state *
8568 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8570 struct task_group *tg, *parent;
8572 if (!cgrp->parent) {
8573 /* This is early initialization for the top cgroup */
8574 init_task_group.css.cgroup = cgrp;
8575 return &init_task_group.css;
8578 parent = cgroup_tg(cgrp->parent);
8579 tg = sched_create_group(parent);
8580 if (IS_ERR(tg))
8581 return ERR_PTR(-ENOMEM);
8583 /* Bind the cgroup to task_group object we just created */
8584 tg->css.cgroup = cgrp;
8586 return &tg->css;
8589 static void
8590 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8592 struct task_group *tg = cgroup_tg(cgrp);
8594 sched_destroy_group(tg);
8597 static int
8598 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8599 struct task_struct *tsk)
8601 #ifdef CONFIG_RT_GROUP_SCHED
8602 /* Don't accept realtime tasks when there is no way for them to run */
8603 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8604 return -EINVAL;
8605 #else
8606 /* We don't support RT-tasks being in separate groups */
8607 if (tsk->sched_class != &fair_sched_class)
8608 return -EINVAL;
8609 #endif
8611 return 0;
8614 static void
8615 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8616 struct cgroup *old_cont, struct task_struct *tsk)
8618 sched_move_task(tsk);
8621 #ifdef CONFIG_FAIR_GROUP_SCHED
8622 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8623 u64 shareval)
8625 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8628 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8630 struct task_group *tg = cgroup_tg(cgrp);
8632 return (u64) tg->shares;
8634 #endif
8636 #ifdef CONFIG_RT_GROUP_SCHED
8637 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8638 s64 val)
8640 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8643 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8645 return sched_group_rt_runtime(cgroup_tg(cgrp));
8648 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8649 u64 rt_period_us)
8651 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8654 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8656 return sched_group_rt_period(cgroup_tg(cgrp));
8658 #endif
8660 static struct cftype cpu_files[] = {
8661 #ifdef CONFIG_FAIR_GROUP_SCHED
8663 .name = "shares",
8664 .read_u64 = cpu_shares_read_u64,
8665 .write_u64 = cpu_shares_write_u64,
8667 #endif
8668 #ifdef CONFIG_RT_GROUP_SCHED
8670 .name = "rt_runtime_us",
8671 .read_s64 = cpu_rt_runtime_read,
8672 .write_s64 = cpu_rt_runtime_write,
8675 .name = "rt_period_us",
8676 .read_u64 = cpu_rt_period_read_uint,
8677 .write_u64 = cpu_rt_period_write_uint,
8679 #endif
8682 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8684 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8687 struct cgroup_subsys cpu_cgroup_subsys = {
8688 .name = "cpu",
8689 .create = cpu_cgroup_create,
8690 .destroy = cpu_cgroup_destroy,
8691 .can_attach = cpu_cgroup_can_attach,
8692 .attach = cpu_cgroup_attach,
8693 .populate = cpu_cgroup_populate,
8694 .subsys_id = cpu_cgroup_subsys_id,
8695 .early_init = 1,
8698 #endif /* CONFIG_CGROUP_SCHED */
8700 #ifdef CONFIG_CGROUP_CPUACCT
8703 * CPU accounting code for task groups.
8705 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8706 * (balbir@in.ibm.com).
8709 /* track cpu usage of a group of tasks */
8710 struct cpuacct {
8711 struct cgroup_subsys_state css;
8712 /* cpuusage holds pointer to a u64-type object on every cpu */
8713 u64 *cpuusage;
8716 struct cgroup_subsys cpuacct_subsys;
8718 /* return cpu accounting group corresponding to this container */
8719 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8721 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8722 struct cpuacct, css);
8725 /* return cpu accounting group to which this task belongs */
8726 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8728 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8729 struct cpuacct, css);
8732 /* create a new cpu accounting group */
8733 static struct cgroup_subsys_state *cpuacct_create(
8734 struct cgroup_subsys *ss, struct cgroup *cgrp)
8736 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8738 if (!ca)
8739 return ERR_PTR(-ENOMEM);
8741 ca->cpuusage = alloc_percpu(u64);
8742 if (!ca->cpuusage) {
8743 kfree(ca);
8744 return ERR_PTR(-ENOMEM);
8747 return &ca->css;
8750 /* destroy an existing cpu accounting group */
8751 static void
8752 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8754 struct cpuacct *ca = cgroup_ca(cgrp);
8756 free_percpu(ca->cpuusage);
8757 kfree(ca);
8760 /* return total cpu usage (in nanoseconds) of a group */
8761 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8763 struct cpuacct *ca = cgroup_ca(cgrp);
8764 u64 totalcpuusage = 0;
8765 int i;
8767 for_each_possible_cpu(i) {
8768 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8771 * Take rq->lock to make 64-bit addition safe on 32-bit
8772 * platforms.
8774 spin_lock_irq(&cpu_rq(i)->lock);
8775 totalcpuusage += *cpuusage;
8776 spin_unlock_irq(&cpu_rq(i)->lock);
8779 return totalcpuusage;
8782 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8783 u64 reset)
8785 struct cpuacct *ca = cgroup_ca(cgrp);
8786 int err = 0;
8787 int i;
8789 if (reset) {
8790 err = -EINVAL;
8791 goto out;
8794 for_each_possible_cpu(i) {
8795 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8797 spin_lock_irq(&cpu_rq(i)->lock);
8798 *cpuusage = 0;
8799 spin_unlock_irq(&cpu_rq(i)->lock);
8801 out:
8802 return err;
8805 static struct cftype files[] = {
8807 .name = "usage",
8808 .read_u64 = cpuusage_read,
8809 .write_u64 = cpuusage_write,
8813 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8815 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8819 * charge this task's execution time to its accounting group.
8821 * called with rq->lock held.
8823 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8825 struct cpuacct *ca;
8827 if (!cpuacct_subsys.active)
8828 return;
8830 ca = task_ca(tsk);
8831 if (ca) {
8832 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8834 *cpuusage += cputime;
8838 struct cgroup_subsys cpuacct_subsys = {
8839 .name = "cpuacct",
8840 .create = cpuacct_create,
8841 .destroy = cpuacct_destroy,
8842 .populate = cpuacct_populate,
8843 .subsys_id = cpuacct_subsys_id,
8845 #endif /* CONFIG_CGROUP_CPUACCT */