1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name
[] = "e1000";
33 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
37 #define DRIVERNAPI "-NAPI"
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 const char e1000_driver_version
[] = DRV_VERSION
;
41 static const char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
43 /* e1000_pci_tbl - PCI Device ID Table
45 * Last entry must be all 0s
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
50 static struct pci_device_id e1000_pci_tbl
[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x1049),
77 INTEL_E1000_ETHERNET_DEVICE(0x104A),
78 INTEL_E1000_ETHERNET_DEVICE(0x104B),
79 INTEL_E1000_ETHERNET_DEVICE(0x104C),
80 INTEL_E1000_ETHERNET_DEVICE(0x104D),
81 INTEL_E1000_ETHERNET_DEVICE(0x105E),
82 INTEL_E1000_ETHERNET_DEVICE(0x105F),
83 INTEL_E1000_ETHERNET_DEVICE(0x1060),
84 INTEL_E1000_ETHERNET_DEVICE(0x1075),
85 INTEL_E1000_ETHERNET_DEVICE(0x1076),
86 INTEL_E1000_ETHERNET_DEVICE(0x1077),
87 INTEL_E1000_ETHERNET_DEVICE(0x1078),
88 INTEL_E1000_ETHERNET_DEVICE(0x1079),
89 INTEL_E1000_ETHERNET_DEVICE(0x107A),
90 INTEL_E1000_ETHERNET_DEVICE(0x107B),
91 INTEL_E1000_ETHERNET_DEVICE(0x107C),
92 INTEL_E1000_ETHERNET_DEVICE(0x107D),
93 INTEL_E1000_ETHERNET_DEVICE(0x107E),
94 INTEL_E1000_ETHERNET_DEVICE(0x107F),
95 INTEL_E1000_ETHERNET_DEVICE(0x108A),
96 INTEL_E1000_ETHERNET_DEVICE(0x108B),
97 INTEL_E1000_ETHERNET_DEVICE(0x108C),
98 INTEL_E1000_ETHERNET_DEVICE(0x1096),
99 INTEL_E1000_ETHERNET_DEVICE(0x1098),
100 INTEL_E1000_ETHERNET_DEVICE(0x1099),
101 INTEL_E1000_ETHERNET_DEVICE(0x109A),
102 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103 INTEL_E1000_ETHERNET_DEVICE(0x10A5),
104 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
105 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
106 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
107 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
108 INTEL_E1000_ETHERNET_DEVICE(0x10BC),
109 INTEL_E1000_ETHERNET_DEVICE(0x10C4),
110 INTEL_E1000_ETHERNET_DEVICE(0x10C5),
111 INTEL_E1000_ETHERNET_DEVICE(0x10D5),
112 INTEL_E1000_ETHERNET_DEVICE(0x10D9),
113 INTEL_E1000_ETHERNET_DEVICE(0x10DA),
114 /* required last entry */
118 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
120 int e1000_up(struct e1000_adapter
*adapter
);
121 void e1000_down(struct e1000_adapter
*adapter
);
122 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
123 void e1000_reset(struct e1000_adapter
*adapter
);
124 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
);
125 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
126 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
127 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
128 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
129 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
130 struct e1000_tx_ring
*txdr
);
131 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
132 struct e1000_rx_ring
*rxdr
);
133 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
134 struct e1000_tx_ring
*tx_ring
);
135 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
136 struct e1000_rx_ring
*rx_ring
);
137 void e1000_update_stats(struct e1000_adapter
*adapter
);
139 static int e1000_init_module(void);
140 static void e1000_exit_module(void);
141 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
142 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
143 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
144 static int e1000_sw_init(struct e1000_adapter
*adapter
);
145 static int e1000_open(struct net_device
*netdev
);
146 static int e1000_close(struct net_device
*netdev
);
147 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
148 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
149 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
150 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
151 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
152 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
153 struct e1000_tx_ring
*tx_ring
);
154 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
155 struct e1000_rx_ring
*rx_ring
);
156 static void e1000_set_multi(struct net_device
*netdev
);
157 static void e1000_update_phy_info(unsigned long data
);
158 static void e1000_watchdog(unsigned long data
);
159 static void e1000_82547_tx_fifo_stall(unsigned long data
);
160 static int e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
);
161 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
162 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
163 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
164 static irqreturn_t
e1000_intr(int irq
, void *data
);
165 static irqreturn_t
e1000_intr_msi(int irq
, void *data
);
166 static boolean_t
e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
167 struct e1000_tx_ring
*tx_ring
);
168 #ifdef CONFIG_E1000_NAPI
169 static int e1000_clean(struct napi_struct
*napi
, int budget
);
170 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
171 struct e1000_rx_ring
*rx_ring
,
172 int *work_done
, int work_to_do
);
173 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
174 struct e1000_rx_ring
*rx_ring
,
175 int *work_done
, int work_to_do
);
177 static boolean_t
e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
178 struct e1000_rx_ring
*rx_ring
);
179 static boolean_t
e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
180 struct e1000_rx_ring
*rx_ring
);
182 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
183 struct e1000_rx_ring
*rx_ring
,
185 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
186 struct e1000_rx_ring
*rx_ring
,
188 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
189 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
191 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
192 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
193 static void e1000_tx_timeout(struct net_device
*dev
);
194 static void e1000_reset_task(struct work_struct
*work
);
195 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
196 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
197 struct sk_buff
*skb
);
199 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
200 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
);
201 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
);
202 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
204 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
206 static int e1000_resume(struct pci_dev
*pdev
);
208 static void e1000_shutdown(struct pci_dev
*pdev
);
210 #ifdef CONFIG_NET_POLL_CONTROLLER
211 /* for netdump / net console */
212 static void e1000_netpoll (struct net_device
*netdev
);
215 #define COPYBREAK_DEFAULT 256
216 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
217 module_param(copybreak
, uint
, 0644);
218 MODULE_PARM_DESC(copybreak
,
219 "Maximum size of packet that is copied to a new buffer on receive");
221 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
222 pci_channel_state_t state
);
223 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
224 static void e1000_io_resume(struct pci_dev
*pdev
);
226 static struct pci_error_handlers e1000_err_handler
= {
227 .error_detected
= e1000_io_error_detected
,
228 .slot_reset
= e1000_io_slot_reset
,
229 .resume
= e1000_io_resume
,
232 static struct pci_driver e1000_driver
= {
233 .name
= e1000_driver_name
,
234 .id_table
= e1000_pci_tbl
,
235 .probe
= e1000_probe
,
236 .remove
= __devexit_p(e1000_remove
),
238 /* Power Managment Hooks */
239 .suspend
= e1000_suspend
,
240 .resume
= e1000_resume
,
242 .shutdown
= e1000_shutdown
,
243 .err_handler
= &e1000_err_handler
246 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
247 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
248 MODULE_LICENSE("GPL");
249 MODULE_VERSION(DRV_VERSION
);
251 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
252 module_param(debug
, int, 0);
253 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
256 * e1000_init_module - Driver Registration Routine
258 * e1000_init_module is the first routine called when the driver is
259 * loaded. All it does is register with the PCI subsystem.
263 e1000_init_module(void)
266 printk(KERN_INFO
"%s - version %s\n",
267 e1000_driver_string
, e1000_driver_version
);
269 printk(KERN_INFO
"%s\n", e1000_copyright
);
271 ret
= pci_register_driver(&e1000_driver
);
272 if (copybreak
!= COPYBREAK_DEFAULT
) {
274 printk(KERN_INFO
"e1000: copybreak disabled\n");
276 printk(KERN_INFO
"e1000: copybreak enabled for "
277 "packets <= %u bytes\n", copybreak
);
282 module_init(e1000_init_module
);
285 * e1000_exit_module - Driver Exit Cleanup Routine
287 * e1000_exit_module is called just before the driver is removed
292 e1000_exit_module(void)
294 pci_unregister_driver(&e1000_driver
);
297 module_exit(e1000_exit_module
);
299 static int e1000_request_irq(struct e1000_adapter
*adapter
)
301 struct net_device
*netdev
= adapter
->netdev
;
302 void (*handler
) = &e1000_intr
;
303 int irq_flags
= IRQF_SHARED
;
306 if (adapter
->hw
.mac_type
>= e1000_82571
) {
307 adapter
->have_msi
= !pci_enable_msi(adapter
->pdev
);
308 if (adapter
->have_msi
) {
309 handler
= &e1000_intr_msi
;
314 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
317 if (adapter
->have_msi
)
318 pci_disable_msi(adapter
->pdev
);
320 "Unable to allocate interrupt Error: %d\n", err
);
326 static void e1000_free_irq(struct e1000_adapter
*adapter
)
328 struct net_device
*netdev
= adapter
->netdev
;
330 free_irq(adapter
->pdev
->irq
, netdev
);
332 if (adapter
->have_msi
)
333 pci_disable_msi(adapter
->pdev
);
337 * e1000_irq_disable - Mask off interrupt generation on the NIC
338 * @adapter: board private structure
342 e1000_irq_disable(struct e1000_adapter
*adapter
)
344 atomic_inc(&adapter
->irq_sem
);
345 E1000_WRITE_REG(&adapter
->hw
, IMC
, ~0);
346 E1000_WRITE_FLUSH(&adapter
->hw
);
347 synchronize_irq(adapter
->pdev
->irq
);
351 * e1000_irq_enable - Enable default interrupt generation settings
352 * @adapter: board private structure
356 e1000_irq_enable(struct e1000_adapter
*adapter
)
358 if (likely(atomic_dec_and_test(&adapter
->irq_sem
))) {
359 E1000_WRITE_REG(&adapter
->hw
, IMS
, IMS_ENABLE_MASK
);
360 E1000_WRITE_FLUSH(&adapter
->hw
);
365 e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
367 struct net_device
*netdev
= adapter
->netdev
;
368 uint16_t vid
= adapter
->hw
.mng_cookie
.vlan_id
;
369 uint16_t old_vid
= adapter
->mng_vlan_id
;
370 if (adapter
->vlgrp
) {
371 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
372 if (adapter
->hw
.mng_cookie
.status
&
373 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
374 e1000_vlan_rx_add_vid(netdev
, vid
);
375 adapter
->mng_vlan_id
= vid
;
377 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
379 if ((old_vid
!= (uint16_t)E1000_MNG_VLAN_NONE
) &&
381 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
382 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
384 adapter
->mng_vlan_id
= vid
;
389 * e1000_release_hw_control - release control of the h/w to f/w
390 * @adapter: address of board private structure
392 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
393 * For ASF and Pass Through versions of f/w this means that the
394 * driver is no longer loaded. For AMT version (only with 82573) i
395 * of the f/w this means that the network i/f is closed.
400 e1000_release_hw_control(struct e1000_adapter
*adapter
)
405 /* Let firmware taken over control of h/w */
406 switch (adapter
->hw
.mac_type
) {
408 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
409 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
410 swsm
& ~E1000_SWSM_DRV_LOAD
);
414 case e1000_80003es2lan
:
416 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
417 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
418 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
426 * e1000_get_hw_control - get control of the h/w from f/w
427 * @adapter: address of board private structure
429 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
430 * For ASF and Pass Through versions of f/w this means that
431 * the driver is loaded. For AMT version (only with 82573)
432 * of the f/w this means that the network i/f is open.
437 e1000_get_hw_control(struct e1000_adapter
*adapter
)
442 /* Let firmware know the driver has taken over */
443 switch (adapter
->hw
.mac_type
) {
445 swsm
= E1000_READ_REG(&adapter
->hw
, SWSM
);
446 E1000_WRITE_REG(&adapter
->hw
, SWSM
,
447 swsm
| E1000_SWSM_DRV_LOAD
);
451 case e1000_80003es2lan
:
453 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
454 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
,
455 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
463 e1000_init_manageability(struct e1000_adapter
*adapter
)
465 if (adapter
->en_mng_pt
) {
466 uint32_t manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
468 /* disable hardware interception of ARP */
469 manc
&= ~(E1000_MANC_ARP_EN
);
471 /* enable receiving management packets to the host */
472 /* this will probably generate destination unreachable messages
473 * from the host OS, but the packets will be handled on SMBUS */
474 if (adapter
->hw
.has_manc2h
) {
475 uint32_t manc2h
= E1000_READ_REG(&adapter
->hw
, MANC2H
);
477 manc
|= E1000_MANC_EN_MNG2HOST
;
478 #define E1000_MNG2HOST_PORT_623 (1 << 5)
479 #define E1000_MNG2HOST_PORT_664 (1 << 6)
480 manc2h
|= E1000_MNG2HOST_PORT_623
;
481 manc2h
|= E1000_MNG2HOST_PORT_664
;
482 E1000_WRITE_REG(&adapter
->hw
, MANC2H
, manc2h
);
485 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
490 e1000_release_manageability(struct e1000_adapter
*adapter
)
492 if (adapter
->en_mng_pt
) {
493 uint32_t manc
= E1000_READ_REG(&adapter
->hw
, MANC
);
495 /* re-enable hardware interception of ARP */
496 manc
|= E1000_MANC_ARP_EN
;
498 if (adapter
->hw
.has_manc2h
)
499 manc
&= ~E1000_MANC_EN_MNG2HOST
;
501 /* don't explicitly have to mess with MANC2H since
502 * MANC has an enable disable that gates MANC2H */
504 E1000_WRITE_REG(&adapter
->hw
, MANC
, manc
);
509 * e1000_configure - configure the hardware for RX and TX
510 * @adapter = private board structure
512 static void e1000_configure(struct e1000_adapter
*adapter
)
514 struct net_device
*netdev
= adapter
->netdev
;
517 e1000_set_multi(netdev
);
519 e1000_restore_vlan(adapter
);
520 e1000_init_manageability(adapter
);
522 e1000_configure_tx(adapter
);
523 e1000_setup_rctl(adapter
);
524 e1000_configure_rx(adapter
);
525 /* call E1000_DESC_UNUSED which always leaves
526 * at least 1 descriptor unused to make sure
527 * next_to_use != next_to_clean */
528 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
529 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
530 adapter
->alloc_rx_buf(adapter
, ring
,
531 E1000_DESC_UNUSED(ring
));
534 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
537 int e1000_up(struct e1000_adapter
*adapter
)
539 /* hardware has been reset, we need to reload some things */
540 e1000_configure(adapter
);
542 clear_bit(__E1000_DOWN
, &adapter
->flags
);
544 #ifdef CONFIG_E1000_NAPI
545 napi_enable(&adapter
->napi
);
547 e1000_irq_enable(adapter
);
549 /* fire a link change interrupt to start the watchdog */
550 E1000_WRITE_REG(&adapter
->hw
, ICS
, E1000_ICS_LSC
);
555 * e1000_power_up_phy - restore link in case the phy was powered down
556 * @adapter: address of board private structure
558 * The phy may be powered down to save power and turn off link when the
559 * driver is unloaded and wake on lan is not enabled (among others)
560 * *** this routine MUST be followed by a call to e1000_reset ***
564 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
566 uint16_t mii_reg
= 0;
568 /* Just clear the power down bit to wake the phy back up */
569 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
570 /* according to the manual, the phy will retain its
571 * settings across a power-down/up cycle */
572 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
573 mii_reg
&= ~MII_CR_POWER_DOWN
;
574 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, mii_reg
);
578 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
580 /* Power down the PHY so no link is implied when interface is down *
581 * The PHY cannot be powered down if any of the following is TRUE *
584 * (c) SoL/IDER session is active */
585 if (!adapter
->wol
&& adapter
->hw
.mac_type
>= e1000_82540
&&
586 adapter
->hw
.media_type
== e1000_media_type_copper
) {
587 uint16_t mii_reg
= 0;
589 switch (adapter
->hw
.mac_type
) {
592 case e1000_82545_rev_3
:
594 case e1000_82546_rev_3
:
596 case e1000_82541_rev_2
:
598 case e1000_82547_rev_2
:
599 if (E1000_READ_REG(&adapter
->hw
, MANC
) &
606 case e1000_80003es2lan
:
608 if (e1000_check_mng_mode(&adapter
->hw
) ||
609 e1000_check_phy_reset_block(&adapter
->hw
))
615 e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &mii_reg
);
616 mii_reg
|= MII_CR_POWER_DOWN
;
617 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, mii_reg
);
625 e1000_down(struct e1000_adapter
*adapter
)
627 struct net_device
*netdev
= adapter
->netdev
;
629 /* signal that we're down so the interrupt handler does not
630 * reschedule our watchdog timer */
631 set_bit(__E1000_DOWN
, &adapter
->flags
);
633 #ifdef CONFIG_E1000_NAPI
634 napi_disable(&adapter
->napi
);
636 e1000_irq_disable(adapter
);
638 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
639 del_timer_sync(&adapter
->watchdog_timer
);
640 del_timer_sync(&adapter
->phy_info_timer
);
642 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
643 adapter
->link_speed
= 0;
644 adapter
->link_duplex
= 0;
645 netif_carrier_off(netdev
);
646 netif_stop_queue(netdev
);
648 e1000_reset(adapter
);
649 e1000_clean_all_tx_rings(adapter
);
650 e1000_clean_all_rx_rings(adapter
);
654 e1000_reinit_locked(struct e1000_adapter
*adapter
)
656 WARN_ON(in_interrupt());
657 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
661 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
665 e1000_reset(struct e1000_adapter
*adapter
)
667 uint32_t pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
668 uint16_t fc_high_water_mark
= E1000_FC_HIGH_DIFF
;
669 boolean_t legacy_pba_adjust
= FALSE
;
671 /* Repartition Pba for greater than 9k mtu
672 * To take effect CTRL.RST is required.
675 switch (adapter
->hw
.mac_type
) {
676 case e1000_82542_rev2_0
:
677 case e1000_82542_rev2_1
:
682 case e1000_82541_rev_2
:
683 legacy_pba_adjust
= TRUE
;
687 case e1000_82545_rev_3
:
689 case e1000_82546_rev_3
:
693 case e1000_82547_rev_2
:
694 legacy_pba_adjust
= TRUE
;
699 case e1000_80003es2lan
:
707 case e1000_undefined
:
712 if (legacy_pba_adjust
== TRUE
) {
713 if (adapter
->netdev
->mtu
> E1000_RXBUFFER_8192
)
714 pba
-= 8; /* allocate more FIFO for Tx */
716 if (adapter
->hw
.mac_type
== e1000_82547
) {
717 adapter
->tx_fifo_head
= 0;
718 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
719 adapter
->tx_fifo_size
=
720 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
721 atomic_set(&adapter
->tx_fifo_stall
, 0);
723 } else if (adapter
->hw
.max_frame_size
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
724 /* adjust PBA for jumbo frames */
725 E1000_WRITE_REG(&adapter
->hw
, PBA
, pba
);
727 /* To maintain wire speed transmits, the Tx FIFO should be
728 * large enough to accomodate two full transmit packets,
729 * rounded up to the next 1KB and expressed in KB. Likewise,
730 * the Rx FIFO should be large enough to accomodate at least
731 * one full receive packet and is similarly rounded up and
732 * expressed in KB. */
733 pba
= E1000_READ_REG(&adapter
->hw
, PBA
);
734 /* upper 16 bits has Tx packet buffer allocation size in KB */
735 tx_space
= pba
>> 16;
736 /* lower 16 bits has Rx packet buffer allocation size in KB */
738 /* don't include ethernet FCS because hardware appends/strips */
739 min_rx_space
= adapter
->netdev
->mtu
+ ENET_HEADER_SIZE
+
741 min_tx_space
= min_rx_space
;
743 min_tx_space
= ALIGN(min_tx_space
, 1024);
745 min_rx_space
= ALIGN(min_rx_space
, 1024);
748 /* If current Tx allocation is less than the min Tx FIFO size,
749 * and the min Tx FIFO size is less than the current Rx FIFO
750 * allocation, take space away from current Rx allocation */
751 if (tx_space
< min_tx_space
&&
752 ((min_tx_space
- tx_space
) < pba
)) {
753 pba
= pba
- (min_tx_space
- tx_space
);
755 /* PCI/PCIx hardware has PBA alignment constraints */
756 switch (adapter
->hw
.mac_type
) {
757 case e1000_82545
... e1000_82546_rev_3
:
758 pba
&= ~(E1000_PBA_8K
- 1);
764 /* if short on rx space, rx wins and must trump tx
765 * adjustment or use Early Receive if available */
766 if (pba
< min_rx_space
) {
767 switch (adapter
->hw
.mac_type
) {
769 /* ERT enabled in e1000_configure_rx */
779 E1000_WRITE_REG(&adapter
->hw
, PBA
, pba
);
781 /* flow control settings */
782 /* Set the FC high water mark to 90% of the FIFO size.
783 * Required to clear last 3 LSB */
784 fc_high_water_mark
= ((pba
* 9216)/10) & 0xFFF8;
785 /* We can't use 90% on small FIFOs because the remainder
786 * would be less than 1 full frame. In this case, we size
787 * it to allow at least a full frame above the high water
789 if (pba
< E1000_PBA_16K
)
790 fc_high_water_mark
= (pba
* 1024) - 1600;
792 adapter
->hw
.fc_high_water
= fc_high_water_mark
;
793 adapter
->hw
.fc_low_water
= fc_high_water_mark
- 8;
794 if (adapter
->hw
.mac_type
== e1000_80003es2lan
)
795 adapter
->hw
.fc_pause_time
= 0xFFFF;
797 adapter
->hw
.fc_pause_time
= E1000_FC_PAUSE_TIME
;
798 adapter
->hw
.fc_send_xon
= 1;
799 adapter
->hw
.fc
= adapter
->hw
.original_fc
;
801 /* Allow time for pending master requests to run */
802 e1000_reset_hw(&adapter
->hw
);
803 if (adapter
->hw
.mac_type
>= e1000_82544
)
804 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
806 if (e1000_init_hw(&adapter
->hw
))
807 DPRINTK(PROBE
, ERR
, "Hardware Error\n");
808 e1000_update_mng_vlan(adapter
);
810 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
811 if (adapter
->hw
.mac_type
>= e1000_82544
&&
812 adapter
->hw
.mac_type
<= e1000_82547_rev_2
&&
813 adapter
->hw
.autoneg
== 1 &&
814 adapter
->hw
.autoneg_advertised
== ADVERTISE_1000_FULL
) {
815 uint32_t ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
816 /* clear phy power management bit if we are in gig only mode,
817 * which if enabled will attempt negotiation to 100Mb, which
818 * can cause a loss of link at power off or driver unload */
819 ctrl
&= ~E1000_CTRL_SWDPIN3
;
820 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
823 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
824 E1000_WRITE_REG(&adapter
->hw
, VET
, ETHERNET_IEEE_VLAN_TYPE
);
826 e1000_reset_adaptive(&adapter
->hw
);
827 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
829 if (!adapter
->smart_power_down
&&
830 (adapter
->hw
.mac_type
== e1000_82571
||
831 adapter
->hw
.mac_type
== e1000_82572
)) {
832 uint16_t phy_data
= 0;
833 /* speed up time to link by disabling smart power down, ignore
834 * the return value of this function because there is nothing
835 * different we would do if it failed */
836 e1000_read_phy_reg(&adapter
->hw
, IGP02E1000_PHY_POWER_MGMT
,
838 phy_data
&= ~IGP02E1000_PM_SPD
;
839 e1000_write_phy_reg(&adapter
->hw
, IGP02E1000_PHY_POWER_MGMT
,
843 e1000_release_manageability(adapter
);
847 * e1000_probe - Device Initialization Routine
848 * @pdev: PCI device information struct
849 * @ent: entry in e1000_pci_tbl
851 * Returns 0 on success, negative on failure
853 * e1000_probe initializes an adapter identified by a pci_dev structure.
854 * The OS initialization, configuring of the adapter private structure,
855 * and a hardware reset occur.
859 e1000_probe(struct pci_dev
*pdev
,
860 const struct pci_device_id
*ent
)
862 struct net_device
*netdev
;
863 struct e1000_adapter
*adapter
;
864 unsigned long mmio_start
, mmio_len
;
865 unsigned long flash_start
, flash_len
;
867 static int cards_found
= 0;
868 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
869 int i
, err
, pci_using_dac
;
870 uint16_t eeprom_data
= 0;
871 uint16_t eeprom_apme_mask
= E1000_EEPROM_APME
;
872 DECLARE_MAC_BUF(mac
);
874 if ((err
= pci_enable_device(pdev
)))
877 if (!(err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) &&
878 !(err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
))) {
881 if ((err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) &&
882 (err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
))) {
883 E1000_ERR("No usable DMA configuration, aborting\n");
889 if ((err
= pci_request_regions(pdev
, e1000_driver_name
)))
892 pci_set_master(pdev
);
895 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
897 goto err_alloc_etherdev
;
899 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
901 pci_set_drvdata(pdev
, netdev
);
902 adapter
= netdev_priv(netdev
);
903 adapter
->netdev
= netdev
;
904 adapter
->pdev
= pdev
;
905 adapter
->hw
.back
= adapter
;
906 adapter
->msg_enable
= (1 << debug
) - 1;
908 mmio_start
= pci_resource_start(pdev
, BAR_0
);
909 mmio_len
= pci_resource_len(pdev
, BAR_0
);
912 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
913 if (!adapter
->hw
.hw_addr
)
916 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
917 if (pci_resource_len(pdev
, i
) == 0)
919 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
920 adapter
->hw
.io_base
= pci_resource_start(pdev
, i
);
925 netdev
->open
= &e1000_open
;
926 netdev
->stop
= &e1000_close
;
927 netdev
->hard_start_xmit
= &e1000_xmit_frame
;
928 netdev
->get_stats
= &e1000_get_stats
;
929 netdev
->set_multicast_list
= &e1000_set_multi
;
930 netdev
->set_mac_address
= &e1000_set_mac
;
931 netdev
->change_mtu
= &e1000_change_mtu
;
932 netdev
->do_ioctl
= &e1000_ioctl
;
933 e1000_set_ethtool_ops(netdev
);
934 netdev
->tx_timeout
= &e1000_tx_timeout
;
935 netdev
->watchdog_timeo
= 5 * HZ
;
936 #ifdef CONFIG_E1000_NAPI
937 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
939 netdev
->vlan_rx_register
= e1000_vlan_rx_register
;
940 netdev
->vlan_rx_add_vid
= e1000_vlan_rx_add_vid
;
941 netdev
->vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
;
942 #ifdef CONFIG_NET_POLL_CONTROLLER
943 netdev
->poll_controller
= e1000_netpoll
;
945 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
947 netdev
->mem_start
= mmio_start
;
948 netdev
->mem_end
= mmio_start
+ mmio_len
;
949 netdev
->base_addr
= adapter
->hw
.io_base
;
951 adapter
->bd_number
= cards_found
;
953 /* setup the private structure */
955 if ((err
= e1000_sw_init(adapter
)))
959 /* Flash BAR mapping must happen after e1000_sw_init
960 * because it depends on mac_type */
961 if ((adapter
->hw
.mac_type
== e1000_ich8lan
) &&
962 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
963 flash_start
= pci_resource_start(pdev
, 1);
964 flash_len
= pci_resource_len(pdev
, 1);
965 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
966 if (!adapter
->hw
.flash_address
)
970 if (e1000_check_phy_reset_block(&adapter
->hw
))
971 DPRINTK(PROBE
, INFO
, "PHY reset is blocked due to SOL/IDER session.\n");
973 if (adapter
->hw
.mac_type
>= e1000_82543
) {
974 netdev
->features
= NETIF_F_SG
|
978 NETIF_F_HW_VLAN_FILTER
;
979 if (adapter
->hw
.mac_type
== e1000_ich8lan
)
980 netdev
->features
&= ~NETIF_F_HW_VLAN_FILTER
;
983 if ((adapter
->hw
.mac_type
>= e1000_82544
) &&
984 (adapter
->hw
.mac_type
!= e1000_82547
))
985 netdev
->features
|= NETIF_F_TSO
;
987 if (adapter
->hw
.mac_type
> e1000_82547_rev_2
)
988 netdev
->features
|= NETIF_F_TSO6
;
990 netdev
->features
|= NETIF_F_HIGHDMA
;
992 netdev
->features
|= NETIF_F_LLTX
;
994 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(&adapter
->hw
);
996 /* initialize eeprom parameters */
998 if (e1000_init_eeprom_params(&adapter
->hw
)) {
999 E1000_ERR("EEPROM initialization failed\n");
1003 /* before reading the EEPROM, reset the controller to
1004 * put the device in a known good starting state */
1006 e1000_reset_hw(&adapter
->hw
);
1008 /* make sure the EEPROM is good */
1010 if (e1000_validate_eeprom_checksum(&adapter
->hw
) < 0) {
1011 DPRINTK(PROBE
, ERR
, "The EEPROM Checksum Is Not Valid\n");
1015 /* copy the MAC address out of the EEPROM */
1017 if (e1000_read_mac_addr(&adapter
->hw
))
1018 DPRINTK(PROBE
, ERR
, "EEPROM Read Error\n");
1019 memcpy(netdev
->dev_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
1020 memcpy(netdev
->perm_addr
, adapter
->hw
.mac_addr
, netdev
->addr_len
);
1022 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
1023 DPRINTK(PROBE
, ERR
, "Invalid MAC Address\n");
1027 e1000_get_bus_info(&adapter
->hw
);
1029 init_timer(&adapter
->tx_fifo_stall_timer
);
1030 adapter
->tx_fifo_stall_timer
.function
= &e1000_82547_tx_fifo_stall
;
1031 adapter
->tx_fifo_stall_timer
.data
= (unsigned long) adapter
;
1033 init_timer(&adapter
->watchdog_timer
);
1034 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
1035 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1037 init_timer(&adapter
->phy_info_timer
);
1038 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
1039 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
1041 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
1043 e1000_check_options(adapter
);
1045 /* Initial Wake on LAN setting
1046 * If APM wake is enabled in the EEPROM,
1047 * enable the ACPI Magic Packet filter
1050 switch (adapter
->hw
.mac_type
) {
1051 case e1000_82542_rev2_0
:
1052 case e1000_82542_rev2_1
:
1056 e1000_read_eeprom(&adapter
->hw
,
1057 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
1058 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
1061 e1000_read_eeprom(&adapter
->hw
,
1062 EEPROM_INIT_CONTROL1_REG
, 1, &eeprom_data
);
1063 eeprom_apme_mask
= E1000_EEPROM_ICH8_APME
;
1066 case e1000_82546_rev_3
:
1068 case e1000_80003es2lan
:
1069 if (E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_FUNC_1
){
1070 e1000_read_eeprom(&adapter
->hw
,
1071 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1076 e1000_read_eeprom(&adapter
->hw
,
1077 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1080 if (eeprom_data
& eeprom_apme_mask
)
1081 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1083 /* now that we have the eeprom settings, apply the special cases
1084 * where the eeprom may be wrong or the board simply won't support
1085 * wake on lan on a particular port */
1086 switch (pdev
->device
) {
1087 case E1000_DEV_ID_82546GB_PCIE
:
1088 adapter
->eeprom_wol
= 0;
1090 case E1000_DEV_ID_82546EB_FIBER
:
1091 case E1000_DEV_ID_82546GB_FIBER
:
1092 case E1000_DEV_ID_82571EB_FIBER
:
1093 /* Wake events only supported on port A for dual fiber
1094 * regardless of eeprom setting */
1095 if (E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_FUNC_1
)
1096 adapter
->eeprom_wol
= 0;
1098 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1099 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
1100 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
1101 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE
:
1102 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
1103 /* if quad port adapter, disable WoL on all but port A */
1104 if (global_quad_port_a
!= 0)
1105 adapter
->eeprom_wol
= 0;
1107 adapter
->quad_port_a
= 1;
1108 /* Reset for multiple quad port adapters */
1109 if (++global_quad_port_a
== 4)
1110 global_quad_port_a
= 0;
1114 /* initialize the wol settings based on the eeprom settings */
1115 adapter
->wol
= adapter
->eeprom_wol
;
1117 /* print bus type/speed/width info */
1119 struct e1000_hw
*hw
= &adapter
->hw
;
1120 DPRINTK(PROBE
, INFO
, "(PCI%s:%s:%s) ",
1121 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" :
1122 (hw
->bus_type
== e1000_bus_type_pci_express
? " Express":"")),
1123 ((hw
->bus_speed
== e1000_bus_speed_2500
) ? "2.5Gb/s" :
1124 (hw
->bus_speed
== e1000_bus_speed_133
) ? "133MHz" :
1125 (hw
->bus_speed
== e1000_bus_speed_120
) ? "120MHz" :
1126 (hw
->bus_speed
== e1000_bus_speed_100
) ? "100MHz" :
1127 (hw
->bus_speed
== e1000_bus_speed_66
) ? "66MHz" : "33MHz"),
1128 ((hw
->bus_width
== e1000_bus_width_64
) ? "64-bit" :
1129 (hw
->bus_width
== e1000_bus_width_pciex_4
) ? "Width x4" :
1130 (hw
->bus_width
== e1000_bus_width_pciex_1
) ? "Width x1" :
1134 printk("%s\n", print_mac(mac
, netdev
->dev_addr
));
1136 /* reset the hardware with the new settings */
1137 e1000_reset(adapter
);
1139 /* If the controller is 82573 and f/w is AMT, do not set
1140 * DRV_LOAD until the interface is up. For all other cases,
1141 * let the f/w know that the h/w is now under the control
1143 if (adapter
->hw
.mac_type
!= e1000_82573
||
1144 !e1000_check_mng_mode(&adapter
->hw
))
1145 e1000_get_hw_control(adapter
);
1147 /* tell the stack to leave us alone until e1000_open() is called */
1148 netif_carrier_off(netdev
);
1149 netif_stop_queue(netdev
);
1151 strcpy(netdev
->name
, "eth%d");
1152 if ((err
= register_netdev(netdev
)))
1155 DPRINTK(PROBE
, INFO
, "Intel(R) PRO/1000 Network Connection\n");
1161 e1000_release_hw_control(adapter
);
1163 if (!e1000_check_phy_reset_block(&adapter
->hw
))
1164 e1000_phy_hw_reset(&adapter
->hw
);
1166 if (adapter
->hw
.flash_address
)
1167 iounmap(adapter
->hw
.flash_address
);
1169 #ifdef CONFIG_E1000_NAPI
1170 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1171 dev_put(&adapter
->polling_netdev
[i
]);
1174 kfree(adapter
->tx_ring
);
1175 kfree(adapter
->rx_ring
);
1176 #ifdef CONFIG_E1000_NAPI
1177 kfree(adapter
->polling_netdev
);
1180 iounmap(adapter
->hw
.hw_addr
);
1182 free_netdev(netdev
);
1184 pci_release_regions(pdev
);
1187 pci_disable_device(pdev
);
1192 * e1000_remove - Device Removal Routine
1193 * @pdev: PCI device information struct
1195 * e1000_remove is called by the PCI subsystem to alert the driver
1196 * that it should release a PCI device. The could be caused by a
1197 * Hot-Plug event, or because the driver is going to be removed from
1201 static void __devexit
1202 e1000_remove(struct pci_dev
*pdev
)
1204 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1205 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1206 #ifdef CONFIG_E1000_NAPI
1210 cancel_work_sync(&adapter
->reset_task
);
1212 e1000_release_manageability(adapter
);
1214 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1215 * would have already happened in close and is redundant. */
1216 e1000_release_hw_control(adapter
);
1218 #ifdef CONFIG_E1000_NAPI
1219 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1220 dev_put(&adapter
->polling_netdev
[i
]);
1223 unregister_netdev(netdev
);
1225 if (!e1000_check_phy_reset_block(&adapter
->hw
))
1226 e1000_phy_hw_reset(&adapter
->hw
);
1228 kfree(adapter
->tx_ring
);
1229 kfree(adapter
->rx_ring
);
1230 #ifdef CONFIG_E1000_NAPI
1231 kfree(adapter
->polling_netdev
);
1234 iounmap(adapter
->hw
.hw_addr
);
1235 if (adapter
->hw
.flash_address
)
1236 iounmap(adapter
->hw
.flash_address
);
1237 pci_release_regions(pdev
);
1239 free_netdev(netdev
);
1241 pci_disable_device(pdev
);
1245 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1246 * @adapter: board private structure to initialize
1248 * e1000_sw_init initializes the Adapter private data structure.
1249 * Fields are initialized based on PCI device information and
1250 * OS network device settings (MTU size).
1253 static int __devinit
1254 e1000_sw_init(struct e1000_adapter
*adapter
)
1256 struct e1000_hw
*hw
= &adapter
->hw
;
1257 struct net_device
*netdev
= adapter
->netdev
;
1258 struct pci_dev
*pdev
= adapter
->pdev
;
1259 #ifdef CONFIG_E1000_NAPI
1263 /* PCI config space info */
1265 hw
->vendor_id
= pdev
->vendor
;
1266 hw
->device_id
= pdev
->device
;
1267 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1268 hw
->subsystem_id
= pdev
->subsystem_device
;
1269 hw
->revision_id
= pdev
->revision
;
1271 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
1273 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1274 adapter
->rx_ps_bsize0
= E1000_RXBUFFER_128
;
1275 hw
->max_frame_size
= netdev
->mtu
+
1276 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
1277 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
1279 /* identify the MAC */
1281 if (e1000_set_mac_type(hw
)) {
1282 DPRINTK(PROBE
, ERR
, "Unknown MAC Type\n");
1286 switch (hw
->mac_type
) {
1291 case e1000_82541_rev_2
:
1292 case e1000_82547_rev_2
:
1293 hw
->phy_init_script
= 1;
1297 e1000_set_media_type(hw
);
1299 hw
->wait_autoneg_complete
= FALSE
;
1300 hw
->tbi_compatibility_en
= TRUE
;
1301 hw
->adaptive_ifs
= TRUE
;
1303 /* Copper options */
1305 if (hw
->media_type
== e1000_media_type_copper
) {
1306 hw
->mdix
= AUTO_ALL_MODES
;
1307 hw
->disable_polarity_correction
= FALSE
;
1308 hw
->master_slave
= E1000_MASTER_SLAVE
;
1311 adapter
->num_tx_queues
= 1;
1312 adapter
->num_rx_queues
= 1;
1314 if (e1000_alloc_queues(adapter
)) {
1315 DPRINTK(PROBE
, ERR
, "Unable to allocate memory for queues\n");
1319 #ifdef CONFIG_E1000_NAPI
1320 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1321 adapter
->polling_netdev
[i
].priv
= adapter
;
1322 dev_hold(&adapter
->polling_netdev
[i
]);
1323 set_bit(__LINK_STATE_START
, &adapter
->polling_netdev
[i
].state
);
1325 spin_lock_init(&adapter
->tx_queue_lock
);
1328 /* Explicitly disable IRQ since the NIC can be in any state. */
1329 atomic_set(&adapter
->irq_sem
, 0);
1330 e1000_irq_disable(adapter
);
1332 spin_lock_init(&adapter
->stats_lock
);
1334 set_bit(__E1000_DOWN
, &adapter
->flags
);
1340 * e1000_alloc_queues - Allocate memory for all rings
1341 * @adapter: board private structure to initialize
1343 * We allocate one ring per queue at run-time since we don't know the
1344 * number of queues at compile-time. The polling_netdev array is
1345 * intended for Multiqueue, but should work fine with a single queue.
1348 static int __devinit
1349 e1000_alloc_queues(struct e1000_adapter
*adapter
)
1351 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1352 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1353 if (!adapter
->tx_ring
)
1356 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1357 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1358 if (!adapter
->rx_ring
) {
1359 kfree(adapter
->tx_ring
);
1363 #ifdef CONFIG_E1000_NAPI
1364 adapter
->polling_netdev
= kcalloc(adapter
->num_rx_queues
,
1365 sizeof(struct net_device
),
1367 if (!adapter
->polling_netdev
) {
1368 kfree(adapter
->tx_ring
);
1369 kfree(adapter
->rx_ring
);
1374 return E1000_SUCCESS
;
1378 * e1000_open - Called when a network interface is made active
1379 * @netdev: network interface device structure
1381 * Returns 0 on success, negative value on failure
1383 * The open entry point is called when a network interface is made
1384 * active by the system (IFF_UP). At this point all resources needed
1385 * for transmit and receive operations are allocated, the interrupt
1386 * handler is registered with the OS, the watchdog timer is started,
1387 * and the stack is notified that the interface is ready.
1391 e1000_open(struct net_device
*netdev
)
1393 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1396 /* disallow open during test */
1397 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1400 /* allocate transmit descriptors */
1401 err
= e1000_setup_all_tx_resources(adapter
);
1405 /* allocate receive descriptors */
1406 err
= e1000_setup_all_rx_resources(adapter
);
1410 e1000_power_up_phy(adapter
);
1412 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1413 if ((adapter
->hw
.mng_cookie
.status
&
1414 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1415 e1000_update_mng_vlan(adapter
);
1418 /* If AMT is enabled, let the firmware know that the network
1419 * interface is now open */
1420 if (adapter
->hw
.mac_type
== e1000_82573
&&
1421 e1000_check_mng_mode(&adapter
->hw
))
1422 e1000_get_hw_control(adapter
);
1424 /* before we allocate an interrupt, we must be ready to handle it.
1425 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1426 * as soon as we call pci_request_irq, so we have to setup our
1427 * clean_rx handler before we do so. */
1428 e1000_configure(adapter
);
1430 err
= e1000_request_irq(adapter
);
1434 /* From here on the code is the same as e1000_up() */
1435 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1437 #ifdef CONFIG_E1000_NAPI
1438 napi_enable(&adapter
->napi
);
1441 e1000_irq_enable(adapter
);
1443 /* fire a link status change interrupt to start the watchdog */
1444 E1000_WRITE_REG(&adapter
->hw
, ICS
, E1000_ICS_LSC
);
1446 return E1000_SUCCESS
;
1449 e1000_release_hw_control(adapter
);
1450 e1000_power_down_phy(adapter
);
1451 e1000_free_all_rx_resources(adapter
);
1453 e1000_free_all_tx_resources(adapter
);
1455 e1000_reset(adapter
);
1461 * e1000_close - Disables a network interface
1462 * @netdev: network interface device structure
1464 * Returns 0, this is not allowed to fail
1466 * The close entry point is called when an interface is de-activated
1467 * by the OS. The hardware is still under the drivers control, but
1468 * needs to be disabled. A global MAC reset is issued to stop the
1469 * hardware, and all transmit and receive resources are freed.
1473 e1000_close(struct net_device
*netdev
)
1475 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1477 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1478 e1000_down(adapter
);
1479 e1000_power_down_phy(adapter
);
1480 e1000_free_irq(adapter
);
1482 e1000_free_all_tx_resources(adapter
);
1483 e1000_free_all_rx_resources(adapter
);
1485 /* kill manageability vlan ID if supported, but not if a vlan with
1486 * the same ID is registered on the host OS (let 8021q kill it) */
1487 if ((adapter
->hw
.mng_cookie
.status
&
1488 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1490 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
))) {
1491 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1494 /* If AMT is enabled, let the firmware know that the network
1495 * interface is now closed */
1496 if (adapter
->hw
.mac_type
== e1000_82573
&&
1497 e1000_check_mng_mode(&adapter
->hw
))
1498 e1000_release_hw_control(adapter
);
1504 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1505 * @adapter: address of board private structure
1506 * @start: address of beginning of memory
1507 * @len: length of memory
1510 e1000_check_64k_bound(struct e1000_adapter
*adapter
,
1511 void *start
, unsigned long len
)
1513 unsigned long begin
= (unsigned long) start
;
1514 unsigned long end
= begin
+ len
;
1516 /* First rev 82545 and 82546 need to not allow any memory
1517 * write location to cross 64k boundary due to errata 23 */
1518 if (adapter
->hw
.mac_type
== e1000_82545
||
1519 adapter
->hw
.mac_type
== e1000_82546
) {
1520 return ((begin
^ (end
- 1)) >> 16) != 0 ? FALSE
: TRUE
;
1527 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1528 * @adapter: board private structure
1529 * @txdr: tx descriptor ring (for a specific queue) to setup
1531 * Return 0 on success, negative on failure
1535 e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1536 struct e1000_tx_ring
*txdr
)
1538 struct pci_dev
*pdev
= adapter
->pdev
;
1541 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1542 txdr
->buffer_info
= vmalloc(size
);
1543 if (!txdr
->buffer_info
) {
1545 "Unable to allocate memory for the transmit descriptor ring\n");
1548 memset(txdr
->buffer_info
, 0, size
);
1550 /* round up to nearest 4K */
1552 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1553 txdr
->size
= ALIGN(txdr
->size
, 4096);
1555 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1558 vfree(txdr
->buffer_info
);
1560 "Unable to allocate memory for the transmit descriptor ring\n");
1564 /* Fix for errata 23, can't cross 64kB boundary */
1565 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1566 void *olddesc
= txdr
->desc
;
1567 dma_addr_t olddma
= txdr
->dma
;
1568 DPRINTK(TX_ERR
, ERR
, "txdr align check failed: %u bytes "
1569 "at %p\n", txdr
->size
, txdr
->desc
);
1570 /* Try again, without freeing the previous */
1571 txdr
->desc
= pci_alloc_consistent(pdev
, txdr
->size
, &txdr
->dma
);
1572 /* Failed allocation, critical failure */
1574 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1575 goto setup_tx_desc_die
;
1578 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1580 pci_free_consistent(pdev
, txdr
->size
, txdr
->desc
,
1582 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1584 "Unable to allocate aligned memory "
1585 "for the transmit descriptor ring\n");
1586 vfree(txdr
->buffer_info
);
1589 /* Free old allocation, new allocation was successful */
1590 pci_free_consistent(pdev
, txdr
->size
, olddesc
, olddma
);
1593 memset(txdr
->desc
, 0, txdr
->size
);
1595 txdr
->next_to_use
= 0;
1596 txdr
->next_to_clean
= 0;
1597 spin_lock_init(&txdr
->tx_lock
);
1603 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1604 * (Descriptors) for all queues
1605 * @adapter: board private structure
1607 * Return 0 on success, negative on failure
1611 e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1615 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1616 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1619 "Allocation for Tx Queue %u failed\n", i
);
1620 for (i
-- ; i
>= 0; i
--)
1621 e1000_free_tx_resources(adapter
,
1622 &adapter
->tx_ring
[i
]);
1631 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1632 * @adapter: board private structure
1634 * Configure the Tx unit of the MAC after a reset.
1638 e1000_configure_tx(struct e1000_adapter
*adapter
)
1641 struct e1000_hw
*hw
= &adapter
->hw
;
1642 uint32_t tdlen
, tctl
, tipg
, tarc
;
1643 uint32_t ipgr1
, ipgr2
;
1645 /* Setup the HW Tx Head and Tail descriptor pointers */
1647 switch (adapter
->num_tx_queues
) {
1650 tdba
= adapter
->tx_ring
[0].dma
;
1651 tdlen
= adapter
->tx_ring
[0].count
*
1652 sizeof(struct e1000_tx_desc
);
1653 E1000_WRITE_REG(hw
, TDLEN
, tdlen
);
1654 E1000_WRITE_REG(hw
, TDBAH
, (tdba
>> 32));
1655 E1000_WRITE_REG(hw
, TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1656 E1000_WRITE_REG(hw
, TDT
, 0);
1657 E1000_WRITE_REG(hw
, TDH
, 0);
1658 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1659 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1663 /* Set the default values for the Tx Inter Packet Gap timer */
1664 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
&&
1665 (hw
->media_type
== e1000_media_type_fiber
||
1666 hw
->media_type
== e1000_media_type_internal_serdes
))
1667 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1669 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1671 switch (hw
->mac_type
) {
1672 case e1000_82542_rev2_0
:
1673 case e1000_82542_rev2_1
:
1674 tipg
= DEFAULT_82542_TIPG_IPGT
;
1675 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1676 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1678 case e1000_80003es2lan
:
1679 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1680 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
;
1683 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1684 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1687 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1688 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1689 E1000_WRITE_REG(hw
, TIPG
, tipg
);
1691 /* Set the Tx Interrupt Delay register */
1693 E1000_WRITE_REG(hw
, TIDV
, adapter
->tx_int_delay
);
1694 if (hw
->mac_type
>= e1000_82540
)
1695 E1000_WRITE_REG(hw
, TADV
, adapter
->tx_abs_int_delay
);
1697 /* Program the Transmit Control Register */
1699 tctl
= E1000_READ_REG(hw
, TCTL
);
1700 tctl
&= ~E1000_TCTL_CT
;
1701 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1702 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1704 if (hw
->mac_type
== e1000_82571
|| hw
->mac_type
== e1000_82572
) {
1705 tarc
= E1000_READ_REG(hw
, TARC0
);
1706 /* set the speed mode bit, we'll clear it if we're not at
1707 * gigabit link later */
1709 E1000_WRITE_REG(hw
, TARC0
, tarc
);
1710 } else if (hw
->mac_type
== e1000_80003es2lan
) {
1711 tarc
= E1000_READ_REG(hw
, TARC0
);
1713 E1000_WRITE_REG(hw
, TARC0
, tarc
);
1714 tarc
= E1000_READ_REG(hw
, TARC1
);
1716 E1000_WRITE_REG(hw
, TARC1
, tarc
);
1719 e1000_config_collision_dist(hw
);
1721 /* Setup Transmit Descriptor Settings for eop descriptor */
1722 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1724 /* only set IDE if we are delaying interrupts using the timers */
1725 if (adapter
->tx_int_delay
)
1726 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1728 if (hw
->mac_type
< e1000_82543
)
1729 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1731 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1733 /* Cache if we're 82544 running in PCI-X because we'll
1734 * need this to apply a workaround later in the send path. */
1735 if (hw
->mac_type
== e1000_82544
&&
1736 hw
->bus_type
== e1000_bus_type_pcix
)
1737 adapter
->pcix_82544
= 1;
1739 E1000_WRITE_REG(hw
, TCTL
, tctl
);
1744 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1745 * @adapter: board private structure
1746 * @rxdr: rx descriptor ring (for a specific queue) to setup
1748 * Returns 0 on success, negative on failure
1752 e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1753 struct e1000_rx_ring
*rxdr
)
1755 struct pci_dev
*pdev
= adapter
->pdev
;
1758 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1759 rxdr
->buffer_info
= vmalloc(size
);
1760 if (!rxdr
->buffer_info
) {
1762 "Unable to allocate memory for the receive descriptor ring\n");
1765 memset(rxdr
->buffer_info
, 0, size
);
1767 rxdr
->ps_page
= kcalloc(rxdr
->count
, sizeof(struct e1000_ps_page
),
1769 if (!rxdr
->ps_page
) {
1770 vfree(rxdr
->buffer_info
);
1772 "Unable to allocate memory for the receive descriptor ring\n");
1776 rxdr
->ps_page_dma
= kcalloc(rxdr
->count
,
1777 sizeof(struct e1000_ps_page_dma
),
1779 if (!rxdr
->ps_page_dma
) {
1780 vfree(rxdr
->buffer_info
);
1781 kfree(rxdr
->ps_page
);
1783 "Unable to allocate memory for the receive descriptor ring\n");
1787 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
)
1788 desc_len
= sizeof(struct e1000_rx_desc
);
1790 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1792 /* Round up to nearest 4K */
1794 rxdr
->size
= rxdr
->count
* desc_len
;
1795 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1797 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1801 "Unable to allocate memory for the receive descriptor ring\n");
1803 vfree(rxdr
->buffer_info
);
1804 kfree(rxdr
->ps_page
);
1805 kfree(rxdr
->ps_page_dma
);
1809 /* Fix for errata 23, can't cross 64kB boundary */
1810 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1811 void *olddesc
= rxdr
->desc
;
1812 dma_addr_t olddma
= rxdr
->dma
;
1813 DPRINTK(RX_ERR
, ERR
, "rxdr align check failed: %u bytes "
1814 "at %p\n", rxdr
->size
, rxdr
->desc
);
1815 /* Try again, without freeing the previous */
1816 rxdr
->desc
= pci_alloc_consistent(pdev
, rxdr
->size
, &rxdr
->dma
);
1817 /* Failed allocation, critical failure */
1819 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1821 "Unable to allocate memory "
1822 "for the receive descriptor ring\n");
1823 goto setup_rx_desc_die
;
1826 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1828 pci_free_consistent(pdev
, rxdr
->size
, rxdr
->desc
,
1830 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1832 "Unable to allocate aligned memory "
1833 "for the receive descriptor ring\n");
1834 goto setup_rx_desc_die
;
1836 /* Free old allocation, new allocation was successful */
1837 pci_free_consistent(pdev
, rxdr
->size
, olddesc
, olddma
);
1840 memset(rxdr
->desc
, 0, rxdr
->size
);
1842 rxdr
->next_to_clean
= 0;
1843 rxdr
->next_to_use
= 0;
1849 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1850 * (Descriptors) for all queues
1851 * @adapter: board private structure
1853 * Return 0 on success, negative on failure
1857 e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1861 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1862 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1865 "Allocation for Rx Queue %u failed\n", i
);
1866 for (i
-- ; i
>= 0; i
--)
1867 e1000_free_rx_resources(adapter
,
1868 &adapter
->rx_ring
[i
]);
1877 * e1000_setup_rctl - configure the receive control registers
1878 * @adapter: Board private structure
1880 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1881 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1883 e1000_setup_rctl(struct e1000_adapter
*adapter
)
1885 uint32_t rctl
, rfctl
;
1886 uint32_t psrctl
= 0;
1887 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1891 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
1893 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1895 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1896 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1897 (adapter
->hw
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1899 if (adapter
->hw
.tbi_compatibility_on
== 1)
1900 rctl
|= E1000_RCTL_SBP
;
1902 rctl
&= ~E1000_RCTL_SBP
;
1904 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1905 rctl
&= ~E1000_RCTL_LPE
;
1907 rctl
|= E1000_RCTL_LPE
;
1909 /* Setup buffer sizes */
1910 rctl
&= ~E1000_RCTL_SZ_4096
;
1911 rctl
|= E1000_RCTL_BSEX
;
1912 switch (adapter
->rx_buffer_len
) {
1913 case E1000_RXBUFFER_256
:
1914 rctl
|= E1000_RCTL_SZ_256
;
1915 rctl
&= ~E1000_RCTL_BSEX
;
1917 case E1000_RXBUFFER_512
:
1918 rctl
|= E1000_RCTL_SZ_512
;
1919 rctl
&= ~E1000_RCTL_BSEX
;
1921 case E1000_RXBUFFER_1024
:
1922 rctl
|= E1000_RCTL_SZ_1024
;
1923 rctl
&= ~E1000_RCTL_BSEX
;
1925 case E1000_RXBUFFER_2048
:
1927 rctl
|= E1000_RCTL_SZ_2048
;
1928 rctl
&= ~E1000_RCTL_BSEX
;
1930 case E1000_RXBUFFER_4096
:
1931 rctl
|= E1000_RCTL_SZ_4096
;
1933 case E1000_RXBUFFER_8192
:
1934 rctl
|= E1000_RCTL_SZ_8192
;
1936 case E1000_RXBUFFER_16384
:
1937 rctl
|= E1000_RCTL_SZ_16384
;
1941 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1942 /* 82571 and greater support packet-split where the protocol
1943 * header is placed in skb->data and the packet data is
1944 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1945 * In the case of a non-split, skb->data is linearly filled,
1946 * followed by the page buffers. Therefore, skb->data is
1947 * sized to hold the largest protocol header.
1949 /* allocations using alloc_page take too long for regular MTU
1950 * so only enable packet split for jumbo frames */
1951 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
1952 if ((adapter
->hw
.mac_type
>= e1000_82571
) && (pages
<= 3) &&
1953 PAGE_SIZE
<= 16384 && (rctl
& E1000_RCTL_LPE
))
1954 adapter
->rx_ps_pages
= pages
;
1956 adapter
->rx_ps_pages
= 0;
1958 if (adapter
->rx_ps_pages
) {
1959 /* Configure extra packet-split registers */
1960 rfctl
= E1000_READ_REG(&adapter
->hw
, RFCTL
);
1961 rfctl
|= E1000_RFCTL_EXTEN
;
1962 /* disable packet split support for IPv6 extension headers,
1963 * because some malformed IPv6 headers can hang the RX */
1964 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
1965 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
1967 E1000_WRITE_REG(&adapter
->hw
, RFCTL
, rfctl
);
1969 rctl
|= E1000_RCTL_DTYP_PS
;
1971 psrctl
|= adapter
->rx_ps_bsize0
>>
1972 E1000_PSRCTL_BSIZE0_SHIFT
;
1974 switch (adapter
->rx_ps_pages
) {
1976 psrctl
|= PAGE_SIZE
<<
1977 E1000_PSRCTL_BSIZE3_SHIFT
;
1979 psrctl
|= PAGE_SIZE
<<
1980 E1000_PSRCTL_BSIZE2_SHIFT
;
1982 psrctl
|= PAGE_SIZE
>>
1983 E1000_PSRCTL_BSIZE1_SHIFT
;
1987 E1000_WRITE_REG(&adapter
->hw
, PSRCTL
, psrctl
);
1990 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
1994 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1995 * @adapter: board private structure
1997 * Configure the Rx unit of the MAC after a reset.
2001 e1000_configure_rx(struct e1000_adapter
*adapter
)
2004 struct e1000_hw
*hw
= &adapter
->hw
;
2005 uint32_t rdlen
, rctl
, rxcsum
, ctrl_ext
;
2007 if (adapter
->rx_ps_pages
) {
2008 /* this is a 32 byte descriptor */
2009 rdlen
= adapter
->rx_ring
[0].count
*
2010 sizeof(union e1000_rx_desc_packet_split
);
2011 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
2012 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
2014 rdlen
= adapter
->rx_ring
[0].count
*
2015 sizeof(struct e1000_rx_desc
);
2016 adapter
->clean_rx
= e1000_clean_rx_irq
;
2017 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
2020 /* disable receives while setting up the descriptors */
2021 rctl
= E1000_READ_REG(hw
, RCTL
);
2022 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
2024 /* set the Receive Delay Timer Register */
2025 E1000_WRITE_REG(hw
, RDTR
, adapter
->rx_int_delay
);
2027 if (hw
->mac_type
>= e1000_82540
) {
2028 E1000_WRITE_REG(hw
, RADV
, adapter
->rx_abs_int_delay
);
2029 if (adapter
->itr_setting
!= 0)
2030 E1000_WRITE_REG(hw
, ITR
,
2031 1000000000 / (adapter
->itr
* 256));
2034 if (hw
->mac_type
>= e1000_82571
) {
2035 ctrl_ext
= E1000_READ_REG(hw
, CTRL_EXT
);
2036 /* Reset delay timers after every interrupt */
2037 ctrl_ext
|= E1000_CTRL_EXT_INT_TIMER_CLR
;
2038 #ifdef CONFIG_E1000_NAPI
2039 /* Auto-Mask interrupts upon ICR access */
2040 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2041 E1000_WRITE_REG(hw
, IAM
, 0xffffffff);
2043 E1000_WRITE_REG(hw
, CTRL_EXT
, ctrl_ext
);
2044 E1000_WRITE_FLUSH(hw
);
2047 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2048 * the Base and Length of the Rx Descriptor Ring */
2049 switch (adapter
->num_rx_queues
) {
2052 rdba
= adapter
->rx_ring
[0].dma
;
2053 E1000_WRITE_REG(hw
, RDLEN
, rdlen
);
2054 E1000_WRITE_REG(hw
, RDBAH
, (rdba
>> 32));
2055 E1000_WRITE_REG(hw
, RDBAL
, (rdba
& 0x00000000ffffffffULL
));
2056 E1000_WRITE_REG(hw
, RDT
, 0);
2057 E1000_WRITE_REG(hw
, RDH
, 0);
2058 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
2059 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
2063 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2064 if (hw
->mac_type
>= e1000_82543
) {
2065 rxcsum
= E1000_READ_REG(hw
, RXCSUM
);
2066 if (adapter
->rx_csum
== TRUE
) {
2067 rxcsum
|= E1000_RXCSUM_TUOFL
;
2069 /* Enable 82571 IPv4 payload checksum for UDP fragments
2070 * Must be used in conjunction with packet-split. */
2071 if ((hw
->mac_type
>= e1000_82571
) &&
2072 (adapter
->rx_ps_pages
)) {
2073 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2076 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2077 /* don't need to clear IPPCSE as it defaults to 0 */
2079 E1000_WRITE_REG(hw
, RXCSUM
, rxcsum
);
2082 /* enable early receives on 82573, only takes effect if using > 2048
2083 * byte total frame size. for example only for jumbo frames */
2084 #define E1000_ERT_2048 0x100
2085 if (hw
->mac_type
== e1000_82573
)
2086 E1000_WRITE_REG(hw
, ERT
, E1000_ERT_2048
);
2088 /* Enable Receives */
2089 E1000_WRITE_REG(hw
, RCTL
, rctl
);
2093 * e1000_free_tx_resources - Free Tx Resources per Queue
2094 * @adapter: board private structure
2095 * @tx_ring: Tx descriptor ring for a specific queue
2097 * Free all transmit software resources
2101 e1000_free_tx_resources(struct e1000_adapter
*adapter
,
2102 struct e1000_tx_ring
*tx_ring
)
2104 struct pci_dev
*pdev
= adapter
->pdev
;
2106 e1000_clean_tx_ring(adapter
, tx_ring
);
2108 vfree(tx_ring
->buffer_info
);
2109 tx_ring
->buffer_info
= NULL
;
2111 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
2113 tx_ring
->desc
= NULL
;
2117 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2118 * @adapter: board private structure
2120 * Free all transmit software resources
2124 e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
2128 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2129 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
2133 e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
2134 struct e1000_buffer
*buffer_info
)
2136 if (buffer_info
->dma
) {
2137 pci_unmap_page(adapter
->pdev
,
2139 buffer_info
->length
,
2141 buffer_info
->dma
= 0;
2143 if (buffer_info
->skb
) {
2144 dev_kfree_skb_any(buffer_info
->skb
);
2145 buffer_info
->skb
= NULL
;
2147 /* buffer_info must be completely set up in the transmit path */
2151 * e1000_clean_tx_ring - Free Tx Buffers
2152 * @adapter: board private structure
2153 * @tx_ring: ring to be cleaned
2157 e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
2158 struct e1000_tx_ring
*tx_ring
)
2160 struct e1000_buffer
*buffer_info
;
2164 /* Free all the Tx ring sk_buffs */
2166 for (i
= 0; i
< tx_ring
->count
; i
++) {
2167 buffer_info
= &tx_ring
->buffer_info
[i
];
2168 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2171 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2172 memset(tx_ring
->buffer_info
, 0, size
);
2174 /* Zero out the descriptor ring */
2176 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2178 tx_ring
->next_to_use
= 0;
2179 tx_ring
->next_to_clean
= 0;
2180 tx_ring
->last_tx_tso
= 0;
2182 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdh
);
2183 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
2187 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2188 * @adapter: board private structure
2192 e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
2196 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2197 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
2201 * e1000_free_rx_resources - Free Rx Resources
2202 * @adapter: board private structure
2203 * @rx_ring: ring to clean the resources from
2205 * Free all receive software resources
2209 e1000_free_rx_resources(struct e1000_adapter
*adapter
,
2210 struct e1000_rx_ring
*rx_ring
)
2212 struct pci_dev
*pdev
= adapter
->pdev
;
2214 e1000_clean_rx_ring(adapter
, rx_ring
);
2216 vfree(rx_ring
->buffer_info
);
2217 rx_ring
->buffer_info
= NULL
;
2218 kfree(rx_ring
->ps_page
);
2219 rx_ring
->ps_page
= NULL
;
2220 kfree(rx_ring
->ps_page_dma
);
2221 rx_ring
->ps_page_dma
= NULL
;
2223 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
2225 rx_ring
->desc
= NULL
;
2229 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2230 * @adapter: board private structure
2232 * Free all receive software resources
2236 e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
2240 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2241 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2245 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2246 * @adapter: board private structure
2247 * @rx_ring: ring to free buffers from
2251 e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
2252 struct e1000_rx_ring
*rx_ring
)
2254 struct e1000_buffer
*buffer_info
;
2255 struct e1000_ps_page
*ps_page
;
2256 struct e1000_ps_page_dma
*ps_page_dma
;
2257 struct pci_dev
*pdev
= adapter
->pdev
;
2261 /* Free all the Rx ring sk_buffs */
2262 for (i
= 0; i
< rx_ring
->count
; i
++) {
2263 buffer_info
= &rx_ring
->buffer_info
[i
];
2264 if (buffer_info
->skb
) {
2265 pci_unmap_single(pdev
,
2267 buffer_info
->length
,
2268 PCI_DMA_FROMDEVICE
);
2270 dev_kfree_skb(buffer_info
->skb
);
2271 buffer_info
->skb
= NULL
;
2273 ps_page
= &rx_ring
->ps_page
[i
];
2274 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
2275 for (j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
2276 if (!ps_page
->ps_page
[j
]) break;
2277 pci_unmap_page(pdev
,
2278 ps_page_dma
->ps_page_dma
[j
],
2279 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2280 ps_page_dma
->ps_page_dma
[j
] = 0;
2281 put_page(ps_page
->ps_page
[j
]);
2282 ps_page
->ps_page
[j
] = NULL
;
2286 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2287 memset(rx_ring
->buffer_info
, 0, size
);
2288 size
= sizeof(struct e1000_ps_page
) * rx_ring
->count
;
2289 memset(rx_ring
->ps_page
, 0, size
);
2290 size
= sizeof(struct e1000_ps_page_dma
) * rx_ring
->count
;
2291 memset(rx_ring
->ps_page_dma
, 0, size
);
2293 /* Zero out the descriptor ring */
2295 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2297 rx_ring
->next_to_clean
= 0;
2298 rx_ring
->next_to_use
= 0;
2300 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdh
);
2301 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
2305 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2306 * @adapter: board private structure
2310 e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2314 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2315 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2318 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2319 * and memory write and invalidate disabled for certain operations
2322 e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2324 struct net_device
*netdev
= adapter
->netdev
;
2327 e1000_pci_clear_mwi(&adapter
->hw
);
2329 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
2330 rctl
|= E1000_RCTL_RST
;
2331 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2332 E1000_WRITE_FLUSH(&adapter
->hw
);
2335 if (netif_running(netdev
))
2336 e1000_clean_all_rx_rings(adapter
);
2340 e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2342 struct net_device
*netdev
= adapter
->netdev
;
2345 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
2346 rctl
&= ~E1000_RCTL_RST
;
2347 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
2348 E1000_WRITE_FLUSH(&adapter
->hw
);
2351 if (adapter
->hw
.pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2352 e1000_pci_set_mwi(&adapter
->hw
);
2354 if (netif_running(netdev
)) {
2355 /* No need to loop, because 82542 supports only 1 queue */
2356 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2357 e1000_configure_rx(adapter
);
2358 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2363 * e1000_set_mac - Change the Ethernet Address of the NIC
2364 * @netdev: network interface device structure
2365 * @p: pointer to an address structure
2367 * Returns 0 on success, negative on failure
2371 e1000_set_mac(struct net_device
*netdev
, void *p
)
2373 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2374 struct sockaddr
*addr
= p
;
2376 if (!is_valid_ether_addr(addr
->sa_data
))
2377 return -EADDRNOTAVAIL
;
2379 /* 82542 2.0 needs to be in reset to write receive address registers */
2381 if (adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2382 e1000_enter_82542_rst(adapter
);
2384 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2385 memcpy(adapter
->hw
.mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2387 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2389 /* With 82571 controllers, LAA may be overwritten (with the default)
2390 * due to controller reset from the other port. */
2391 if (adapter
->hw
.mac_type
== e1000_82571
) {
2392 /* activate the work around */
2393 adapter
->hw
.laa_is_present
= 1;
2395 /* Hold a copy of the LAA in RAR[14] This is done so that
2396 * between the time RAR[0] gets clobbered and the time it
2397 * gets fixed (in e1000_watchdog), the actual LAA is in one
2398 * of the RARs and no incoming packets directed to this port
2399 * are dropped. Eventaully the LAA will be in RAR[0] and
2401 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
,
2402 E1000_RAR_ENTRIES
- 1);
2405 if (adapter
->hw
.mac_type
== e1000_82542_rev2_0
)
2406 e1000_leave_82542_rst(adapter
);
2412 * e1000_set_multi - Multicast and Promiscuous mode set
2413 * @netdev: network interface device structure
2415 * The set_multi entry point is called whenever the multicast address
2416 * list or the network interface flags are updated. This routine is
2417 * responsible for configuring the hardware for proper multicast,
2418 * promiscuous mode, and all-multi behavior.
2422 e1000_set_multi(struct net_device
*netdev
)
2424 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2425 struct e1000_hw
*hw
= &adapter
->hw
;
2426 struct dev_mc_list
*mc_ptr
;
2428 uint32_t hash_value
;
2429 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2430 int mta_reg_count
= (hw
->mac_type
== e1000_ich8lan
) ?
2431 E1000_NUM_MTA_REGISTERS_ICH8LAN
:
2432 E1000_NUM_MTA_REGISTERS
;
2434 if (adapter
->hw
.mac_type
== e1000_ich8lan
)
2435 rar_entries
= E1000_RAR_ENTRIES_ICH8LAN
;
2437 /* reserve RAR[14] for LAA over-write work-around */
2438 if (adapter
->hw
.mac_type
== e1000_82571
)
2441 /* Check for Promiscuous and All Multicast modes */
2443 rctl
= E1000_READ_REG(hw
, RCTL
);
2445 if (netdev
->flags
& IFF_PROMISC
) {
2446 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2447 } else if (netdev
->flags
& IFF_ALLMULTI
) {
2448 rctl
|= E1000_RCTL_MPE
;
2449 rctl
&= ~E1000_RCTL_UPE
;
2451 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2454 E1000_WRITE_REG(hw
, RCTL
, rctl
);
2456 /* 82542 2.0 needs to be in reset to write receive address registers */
2458 if (hw
->mac_type
== e1000_82542_rev2_0
)
2459 e1000_enter_82542_rst(adapter
);
2461 /* load the first 14 multicast address into the exact filters 1-14
2462 * RAR 0 is used for the station MAC adddress
2463 * if there are not 14 addresses, go ahead and clear the filters
2464 * -- with 82571 controllers only 0-13 entries are filled here
2466 mc_ptr
= netdev
->mc_list
;
2468 for (i
= 1; i
< rar_entries
; i
++) {
2470 e1000_rar_set(hw
, mc_ptr
->dmi_addr
, i
);
2471 mc_ptr
= mc_ptr
->next
;
2473 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2474 E1000_WRITE_FLUSH(hw
);
2475 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2476 E1000_WRITE_FLUSH(hw
);
2480 /* clear the old settings from the multicast hash table */
2482 for (i
= 0; i
< mta_reg_count
; i
++) {
2483 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, 0);
2484 E1000_WRITE_FLUSH(hw
);
2487 /* load any remaining addresses into the hash table */
2489 for (; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
2490 hash_value
= e1000_hash_mc_addr(hw
, mc_ptr
->dmi_addr
);
2491 e1000_mta_set(hw
, hash_value
);
2494 if (hw
->mac_type
== e1000_82542_rev2_0
)
2495 e1000_leave_82542_rst(adapter
);
2498 /* Need to wait a few seconds after link up to get diagnostic information from
2502 e1000_update_phy_info(unsigned long data
)
2504 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2505 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
2509 * e1000_82547_tx_fifo_stall - Timer Call-back
2510 * @data: pointer to adapter cast into an unsigned long
2514 e1000_82547_tx_fifo_stall(unsigned long data
)
2516 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2517 struct net_device
*netdev
= adapter
->netdev
;
2520 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2521 if ((E1000_READ_REG(&adapter
->hw
, TDT
) ==
2522 E1000_READ_REG(&adapter
->hw
, TDH
)) &&
2523 (E1000_READ_REG(&adapter
->hw
, TDFT
) ==
2524 E1000_READ_REG(&adapter
->hw
, TDFH
)) &&
2525 (E1000_READ_REG(&adapter
->hw
, TDFTS
) ==
2526 E1000_READ_REG(&adapter
->hw
, TDFHS
))) {
2527 tctl
= E1000_READ_REG(&adapter
->hw
, TCTL
);
2528 E1000_WRITE_REG(&adapter
->hw
, TCTL
,
2529 tctl
& ~E1000_TCTL_EN
);
2530 E1000_WRITE_REG(&adapter
->hw
, TDFT
,
2531 adapter
->tx_head_addr
);
2532 E1000_WRITE_REG(&adapter
->hw
, TDFH
,
2533 adapter
->tx_head_addr
);
2534 E1000_WRITE_REG(&adapter
->hw
, TDFTS
,
2535 adapter
->tx_head_addr
);
2536 E1000_WRITE_REG(&adapter
->hw
, TDFHS
,
2537 adapter
->tx_head_addr
);
2538 E1000_WRITE_REG(&adapter
->hw
, TCTL
, tctl
);
2539 E1000_WRITE_FLUSH(&adapter
->hw
);
2541 adapter
->tx_fifo_head
= 0;
2542 atomic_set(&adapter
->tx_fifo_stall
, 0);
2543 netif_wake_queue(netdev
);
2545 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2551 * e1000_watchdog - Timer Call-back
2552 * @data: pointer to adapter cast into an unsigned long
2555 e1000_watchdog(unsigned long data
)
2557 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
2558 struct net_device
*netdev
= adapter
->netdev
;
2559 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2560 uint32_t link
, tctl
;
2563 ret_val
= e1000_check_for_link(&adapter
->hw
);
2564 if ((ret_val
== E1000_ERR_PHY
) &&
2565 (adapter
->hw
.phy_type
== e1000_phy_igp_3
) &&
2566 (E1000_READ_REG(&adapter
->hw
, CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
2567 /* See e1000_kumeran_lock_loss_workaround() */
2569 "Gigabit has been disabled, downgrading speed\n");
2572 if (adapter
->hw
.mac_type
== e1000_82573
) {
2573 e1000_enable_tx_pkt_filtering(&adapter
->hw
);
2574 if (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
)
2575 e1000_update_mng_vlan(adapter
);
2578 if ((adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) &&
2579 !(E1000_READ_REG(&adapter
->hw
, TXCW
) & E1000_TXCW_ANE
))
2580 link
= !adapter
->hw
.serdes_link_down
;
2582 link
= E1000_READ_REG(&adapter
->hw
, STATUS
) & E1000_STATUS_LU
;
2585 if (!netif_carrier_ok(netdev
)) {
2587 boolean_t txb2b
= 1;
2588 e1000_get_speed_and_duplex(&adapter
->hw
,
2589 &adapter
->link_speed
,
2590 &adapter
->link_duplex
);
2592 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
2593 DPRINTK(LINK
, INFO
, "NIC Link is Up %d Mbps %s, "
2594 "Flow Control: %s\n",
2595 adapter
->link_speed
,
2596 adapter
->link_duplex
== FULL_DUPLEX
?
2597 "Full Duplex" : "Half Duplex",
2598 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2599 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2600 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2601 E1000_CTRL_TFCE
) ? "TX" : "None" )));
2603 /* tweak tx_queue_len according to speed/duplex
2604 * and adjust the timeout factor */
2605 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2606 adapter
->tx_timeout_factor
= 1;
2607 switch (adapter
->link_speed
) {
2610 netdev
->tx_queue_len
= 10;
2611 adapter
->tx_timeout_factor
= 8;
2615 netdev
->tx_queue_len
= 100;
2616 /* maybe add some timeout factor ? */
2620 if ((adapter
->hw
.mac_type
== e1000_82571
||
2621 adapter
->hw
.mac_type
== e1000_82572
) &&
2624 tarc0
= E1000_READ_REG(&adapter
->hw
, TARC0
);
2625 tarc0
&= ~(1 << 21);
2626 E1000_WRITE_REG(&adapter
->hw
, TARC0
, tarc0
);
2629 /* disable TSO for pcie and 10/100 speeds, to avoid
2630 * some hardware issues */
2631 if (!adapter
->tso_force
&&
2632 adapter
->hw
.bus_type
== e1000_bus_type_pci_express
){
2633 switch (adapter
->link_speed
) {
2637 "10/100 speed: disabling TSO\n");
2638 netdev
->features
&= ~NETIF_F_TSO
;
2639 netdev
->features
&= ~NETIF_F_TSO6
;
2642 netdev
->features
|= NETIF_F_TSO
;
2643 netdev
->features
|= NETIF_F_TSO6
;
2651 /* enable transmits in the hardware, need to do this
2652 * after setting TARC0 */
2653 tctl
= E1000_READ_REG(&adapter
->hw
, TCTL
);
2654 tctl
|= E1000_TCTL_EN
;
2655 E1000_WRITE_REG(&adapter
->hw
, TCTL
, tctl
);
2657 netif_carrier_on(netdev
);
2658 netif_wake_queue(netdev
);
2659 mod_timer(&adapter
->phy_info_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2660 adapter
->smartspeed
= 0;
2662 /* make sure the receive unit is started */
2663 if (adapter
->hw
.rx_needs_kicking
) {
2664 struct e1000_hw
*hw
= &adapter
->hw
;
2665 uint32_t rctl
= E1000_READ_REG(hw
, RCTL
);
2666 E1000_WRITE_REG(hw
, RCTL
, rctl
| E1000_RCTL_EN
);
2670 if (netif_carrier_ok(netdev
)) {
2671 adapter
->link_speed
= 0;
2672 adapter
->link_duplex
= 0;
2673 DPRINTK(LINK
, INFO
, "NIC Link is Down\n");
2674 netif_carrier_off(netdev
);
2675 netif_stop_queue(netdev
);
2676 mod_timer(&adapter
->phy_info_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2678 /* 80003ES2LAN workaround--
2679 * For packet buffer work-around on link down event;
2680 * disable receives in the ISR and
2681 * reset device here in the watchdog
2683 if (adapter
->hw
.mac_type
== e1000_80003es2lan
)
2685 schedule_work(&adapter
->reset_task
);
2688 e1000_smartspeed(adapter
);
2691 e1000_update_stats(adapter
);
2693 adapter
->hw
.tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2694 adapter
->tpt_old
= adapter
->stats
.tpt
;
2695 adapter
->hw
.collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2696 adapter
->colc_old
= adapter
->stats
.colc
;
2698 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2699 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2700 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2701 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2703 e1000_update_adaptive(&adapter
->hw
);
2705 if (!netif_carrier_ok(netdev
)) {
2706 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2707 /* We've lost link, so the controller stops DMA,
2708 * but we've got queued Tx work that's never going
2709 * to get done, so reset controller to flush Tx.
2710 * (Do the reset outside of interrupt context). */
2711 adapter
->tx_timeout_count
++;
2712 schedule_work(&adapter
->reset_task
);
2716 /* Cause software interrupt to ensure rx ring is cleaned */
2717 E1000_WRITE_REG(&adapter
->hw
, ICS
, E1000_ICS_RXDMT0
);
2719 /* Force detection of hung controller every watchdog period */
2720 adapter
->detect_tx_hung
= TRUE
;
2722 /* With 82571 controllers, LAA may be overwritten due to controller
2723 * reset from the other port. Set the appropriate LAA in RAR[0] */
2724 if (adapter
->hw
.mac_type
== e1000_82571
&& adapter
->hw
.laa_is_present
)
2725 e1000_rar_set(&adapter
->hw
, adapter
->hw
.mac_addr
, 0);
2727 /* Reset the timer */
2728 mod_timer(&adapter
->watchdog_timer
, round_jiffies(jiffies
+ 2 * HZ
));
2731 enum latency_range
{
2735 latency_invalid
= 255
2739 * e1000_update_itr - update the dynamic ITR value based on statistics
2740 * Stores a new ITR value based on packets and byte
2741 * counts during the last interrupt. The advantage of per interrupt
2742 * computation is faster updates and more accurate ITR for the current
2743 * traffic pattern. Constants in this function were computed
2744 * based on theoretical maximum wire speed and thresholds were set based
2745 * on testing data as well as attempting to minimize response time
2746 * while increasing bulk throughput.
2747 * this functionality is controlled by the InterruptThrottleRate module
2748 * parameter (see e1000_param.c)
2749 * @adapter: pointer to adapter
2750 * @itr_setting: current adapter->itr
2751 * @packets: the number of packets during this measurement interval
2752 * @bytes: the number of bytes during this measurement interval
2754 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2755 uint16_t itr_setting
,
2759 unsigned int retval
= itr_setting
;
2760 struct e1000_hw
*hw
= &adapter
->hw
;
2762 if (unlikely(hw
->mac_type
< e1000_82540
))
2763 goto update_itr_done
;
2766 goto update_itr_done
;
2768 switch (itr_setting
) {
2769 case lowest_latency
:
2770 /* jumbo frames get bulk treatment*/
2771 if (bytes
/packets
> 8000)
2772 retval
= bulk_latency
;
2773 else if ((packets
< 5) && (bytes
> 512))
2774 retval
= low_latency
;
2776 case low_latency
: /* 50 usec aka 20000 ints/s */
2777 if (bytes
> 10000) {
2778 /* jumbo frames need bulk latency setting */
2779 if (bytes
/packets
> 8000)
2780 retval
= bulk_latency
;
2781 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2782 retval
= bulk_latency
;
2783 else if ((packets
> 35))
2784 retval
= lowest_latency
;
2785 } else if (bytes
/packets
> 2000)
2786 retval
= bulk_latency
;
2787 else if (packets
<= 2 && bytes
< 512)
2788 retval
= lowest_latency
;
2790 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2791 if (bytes
> 25000) {
2793 retval
= low_latency
;
2794 } else if (bytes
< 6000) {
2795 retval
= low_latency
;
2804 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2806 struct e1000_hw
*hw
= &adapter
->hw
;
2807 uint16_t current_itr
;
2808 uint32_t new_itr
= adapter
->itr
;
2810 if (unlikely(hw
->mac_type
< e1000_82540
))
2813 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2814 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2820 adapter
->tx_itr
= e1000_update_itr(adapter
,
2822 adapter
->total_tx_packets
,
2823 adapter
->total_tx_bytes
);
2824 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2825 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2826 adapter
->tx_itr
= low_latency
;
2828 adapter
->rx_itr
= e1000_update_itr(adapter
,
2830 adapter
->total_rx_packets
,
2831 adapter
->total_rx_bytes
);
2832 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2833 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2834 adapter
->rx_itr
= low_latency
;
2836 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2838 switch (current_itr
) {
2839 /* counts and packets in update_itr are dependent on these numbers */
2840 case lowest_latency
:
2844 new_itr
= 20000; /* aka hwitr = ~200 */
2854 if (new_itr
!= adapter
->itr
) {
2855 /* this attempts to bias the interrupt rate towards Bulk
2856 * by adding intermediate steps when interrupt rate is
2858 new_itr
= new_itr
> adapter
->itr
?
2859 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2861 adapter
->itr
= new_itr
;
2862 E1000_WRITE_REG(hw
, ITR
, 1000000000 / (new_itr
* 256));
2868 #define E1000_TX_FLAGS_CSUM 0x00000001
2869 #define E1000_TX_FLAGS_VLAN 0x00000002
2870 #define E1000_TX_FLAGS_TSO 0x00000004
2871 #define E1000_TX_FLAGS_IPV4 0x00000008
2872 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2873 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2876 e1000_tso(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2877 struct sk_buff
*skb
)
2879 struct e1000_context_desc
*context_desc
;
2880 struct e1000_buffer
*buffer_info
;
2882 uint32_t cmd_length
= 0;
2883 uint16_t ipcse
= 0, tucse
, mss
;
2884 uint8_t ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2887 if (skb_is_gso(skb
)) {
2888 if (skb_header_cloned(skb
)) {
2889 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2894 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2895 mss
= skb_shinfo(skb
)->gso_size
;
2896 if (skb
->protocol
== htons(ETH_P_IP
)) {
2897 struct iphdr
*iph
= ip_hdr(skb
);
2900 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2904 cmd_length
= E1000_TXD_CMD_IP
;
2905 ipcse
= skb_transport_offset(skb
) - 1;
2906 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2907 ipv6_hdr(skb
)->payload_len
= 0;
2908 tcp_hdr(skb
)->check
=
2909 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2910 &ipv6_hdr(skb
)->daddr
,
2914 ipcss
= skb_network_offset(skb
);
2915 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2916 tucss
= skb_transport_offset(skb
);
2917 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2920 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2921 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2923 i
= tx_ring
->next_to_use
;
2924 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2925 buffer_info
= &tx_ring
->buffer_info
[i
];
2927 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2928 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2929 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2930 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2931 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2932 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2933 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2934 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2935 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2937 buffer_info
->time_stamp
= jiffies
;
2938 buffer_info
->next_to_watch
= i
;
2940 if (++i
== tx_ring
->count
) i
= 0;
2941 tx_ring
->next_to_use
= i
;
2949 e1000_tx_csum(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2950 struct sk_buff
*skb
)
2952 struct e1000_context_desc
*context_desc
;
2953 struct e1000_buffer
*buffer_info
;
2957 if (likely(skb
->ip_summed
== CHECKSUM_PARTIAL
)) {
2958 css
= skb_transport_offset(skb
);
2960 i
= tx_ring
->next_to_use
;
2961 buffer_info
= &tx_ring
->buffer_info
[i
];
2962 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2964 context_desc
->lower_setup
.ip_config
= 0;
2965 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2966 context_desc
->upper_setup
.tcp_fields
.tucso
=
2967 css
+ skb
->csum_offset
;
2968 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2969 context_desc
->tcp_seg_setup
.data
= 0;
2970 context_desc
->cmd_and_length
= cpu_to_le32(E1000_TXD_CMD_DEXT
);
2972 buffer_info
->time_stamp
= jiffies
;
2973 buffer_info
->next_to_watch
= i
;
2975 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2976 tx_ring
->next_to_use
= i
;
2984 #define E1000_MAX_TXD_PWR 12
2985 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2988 e1000_tx_map(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
2989 struct sk_buff
*skb
, unsigned int first
, unsigned int max_per_txd
,
2990 unsigned int nr_frags
, unsigned int mss
)
2992 struct e1000_buffer
*buffer_info
;
2993 unsigned int len
= skb
->len
;
2994 unsigned int offset
= 0, size
, count
= 0, i
;
2996 len
-= skb
->data_len
;
2998 i
= tx_ring
->next_to_use
;
3001 buffer_info
= &tx_ring
->buffer_info
[i
];
3002 size
= min(len
, max_per_txd
);
3003 /* Workaround for Controller erratum --
3004 * descriptor for non-tso packet in a linear SKB that follows a
3005 * tso gets written back prematurely before the data is fully
3006 * DMA'd to the controller */
3007 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
3009 tx_ring
->last_tx_tso
= 0;
3013 /* Workaround for premature desc write-backs
3014 * in TSO mode. Append 4-byte sentinel desc */
3015 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
3017 /* work-around for errata 10 and it applies
3018 * to all controllers in PCI-X mode
3019 * The fix is to make sure that the first descriptor of a
3020 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3022 if (unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
3023 (size
> 2015) && count
== 0))
3026 /* Workaround for potential 82544 hang in PCI-X. Avoid
3027 * terminating buffers within evenly-aligned dwords. */
3028 if (unlikely(adapter
->pcix_82544
&&
3029 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
3033 buffer_info
->length
= size
;
3035 pci_map_single(adapter
->pdev
,
3039 buffer_info
->time_stamp
= jiffies
;
3040 buffer_info
->next_to_watch
= i
;
3045 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3048 for (f
= 0; f
< nr_frags
; f
++) {
3049 struct skb_frag_struct
*frag
;
3051 frag
= &skb_shinfo(skb
)->frags
[f
];
3053 offset
= frag
->page_offset
;
3056 buffer_info
= &tx_ring
->buffer_info
[i
];
3057 size
= min(len
, max_per_txd
);
3058 /* Workaround for premature desc write-backs
3059 * in TSO mode. Append 4-byte sentinel desc */
3060 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
3062 /* Workaround for potential 82544 hang in PCI-X.
3063 * Avoid terminating buffers within evenly-aligned
3065 if (unlikely(adapter
->pcix_82544
&&
3066 !((unsigned long)(frag
->page
+offset
+size
-1) & 4) &&
3070 buffer_info
->length
= size
;
3072 pci_map_page(adapter
->pdev
,
3077 buffer_info
->time_stamp
= jiffies
;
3078 buffer_info
->next_to_watch
= i
;
3083 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3087 i
= (i
== 0) ? tx_ring
->count
- 1 : i
- 1;
3088 tx_ring
->buffer_info
[i
].skb
= skb
;
3089 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3095 e1000_tx_queue(struct e1000_adapter
*adapter
, struct e1000_tx_ring
*tx_ring
,
3096 int tx_flags
, int count
)
3098 struct e1000_tx_desc
*tx_desc
= NULL
;
3099 struct e1000_buffer
*buffer_info
;
3100 uint32_t txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
3103 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
3104 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
3106 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3108 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
3109 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3112 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
3113 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3114 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3117 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
3118 txd_lower
|= E1000_TXD_CMD_VLE
;
3119 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3122 i
= tx_ring
->next_to_use
;
3125 buffer_info
= &tx_ring
->buffer_info
[i
];
3126 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3127 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3128 tx_desc
->lower
.data
=
3129 cpu_to_le32(txd_lower
| buffer_info
->length
);
3130 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3131 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3134 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3136 /* Force memory writes to complete before letting h/w
3137 * know there are new descriptors to fetch. (Only
3138 * applicable for weak-ordered memory model archs,
3139 * such as IA-64). */
3142 tx_ring
->next_to_use
= i
;
3143 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tdt
);
3144 /* we need this if more than one processor can write to our tail
3145 * at a time, it syncronizes IO on IA64/Altix systems */
3150 * 82547 workaround to avoid controller hang in half-duplex environment.
3151 * The workaround is to avoid queuing a large packet that would span
3152 * the internal Tx FIFO ring boundary by notifying the stack to resend
3153 * the packet at a later time. This gives the Tx FIFO an opportunity to
3154 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3155 * to the beginning of the Tx FIFO.
3158 #define E1000_FIFO_HDR 0x10
3159 #define E1000_82547_PAD_LEN 0x3E0
3162 e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
3164 uint32_t fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
3165 uint32_t skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
3167 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
3169 if (adapter
->link_duplex
!= HALF_DUPLEX
)
3170 goto no_fifo_stall_required
;
3172 if (atomic_read(&adapter
->tx_fifo_stall
))
3175 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
3176 atomic_set(&adapter
->tx_fifo_stall
, 1);
3180 no_fifo_stall_required
:
3181 adapter
->tx_fifo_head
+= skb_fifo_len
;
3182 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
3183 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
3187 #define MINIMUM_DHCP_PACKET_SIZE 282
3189 e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
3191 struct e1000_hw
*hw
= &adapter
->hw
;
3192 uint16_t length
, offset
;
3193 if (vlan_tx_tag_present(skb
)) {
3194 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
3195 ( adapter
->hw
.mng_cookie
.status
&
3196 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) )
3199 if (skb
->len
> MINIMUM_DHCP_PACKET_SIZE
) {
3200 struct ethhdr
*eth
= (struct ethhdr
*) skb
->data
;
3201 if ((htons(ETH_P_IP
) == eth
->h_proto
)) {
3202 const struct iphdr
*ip
=
3203 (struct iphdr
*)((uint8_t *)skb
->data
+14);
3204 if (IPPROTO_UDP
== ip
->protocol
) {
3205 struct udphdr
*udp
=
3206 (struct udphdr
*)((uint8_t *)ip
+
3208 if (ntohs(udp
->dest
) == 67) {
3209 offset
= (uint8_t *)udp
+ 8 - skb
->data
;
3210 length
= skb
->len
- offset
;
3212 return e1000_mng_write_dhcp_info(hw
,
3222 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3224 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3225 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
3227 netif_stop_queue(netdev
);
3228 /* Herbert's original patch had:
3229 * smp_mb__after_netif_stop_queue();
3230 * but since that doesn't exist yet, just open code it. */
3233 /* We need to check again in a case another CPU has just
3234 * made room available. */
3235 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
3239 netif_start_queue(netdev
);
3240 ++adapter
->restart_queue
;
3244 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
3245 struct e1000_tx_ring
*tx_ring
, int size
)
3247 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
3249 return __e1000_maybe_stop_tx(netdev
, size
);
3252 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3254 e1000_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
3256 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3257 struct e1000_tx_ring
*tx_ring
;
3258 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
3259 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3260 unsigned int tx_flags
= 0;
3261 unsigned int len
= skb
->len
- skb
->data_len
;
3262 unsigned long flags
;
3263 unsigned int nr_frags
;
3269 /* This goes back to the question of how to logically map a tx queue
3270 * to a flow. Right now, performance is impacted slightly negatively
3271 * if using multiple tx queues. If the stack breaks away from a
3272 * single qdisc implementation, we can look at this again. */
3273 tx_ring
= adapter
->tx_ring
;
3275 if (unlikely(skb
->len
<= 0)) {
3276 dev_kfree_skb_any(skb
);
3277 return NETDEV_TX_OK
;
3280 /* 82571 and newer doesn't need the workaround that limited descriptor
3282 if (adapter
->hw
.mac_type
>= e1000_82571
)
3285 mss
= skb_shinfo(skb
)->gso_size
;
3286 /* The controller does a simple calculation to
3287 * make sure there is enough room in the FIFO before
3288 * initiating the DMA for each buffer. The calc is:
3289 * 4 = ceil(buffer len/mss). To make sure we don't
3290 * overrun the FIFO, adjust the max buffer len if mss
3294 max_per_txd
= min(mss
<< 2, max_per_txd
);
3295 max_txd_pwr
= fls(max_per_txd
) - 1;
3297 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3298 * points to just header, pull a few bytes of payload from
3299 * frags into skb->data */
3300 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3301 if (skb
->data_len
&& hdr_len
== len
) {
3302 switch (adapter
->hw
.mac_type
) {
3303 unsigned int pull_size
;
3305 /* Make sure we have room to chop off 4 bytes,
3306 * and that the end alignment will work out to
3307 * this hardware's requirements
3308 * NOTE: this is a TSO only workaround
3309 * if end byte alignment not correct move us
3310 * into the next dword */
3311 if ((unsigned long)(skb_tail_pointer(skb
) - 1) & 4)
3318 pull_size
= min((unsigned int)4, skb
->data_len
);
3319 if (!__pskb_pull_tail(skb
, pull_size
)) {
3321 "__pskb_pull_tail failed.\n");
3322 dev_kfree_skb_any(skb
);
3323 return NETDEV_TX_OK
;
3325 len
= skb
->len
- skb
->data_len
;
3334 /* reserve a descriptor for the offload context */
3335 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3339 /* Controller Erratum workaround */
3340 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3343 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3345 if (adapter
->pcix_82544
)
3348 /* work-around for errata 10 and it applies to all controllers
3349 * in PCI-X mode, so add one more descriptor to the count
3351 if (unlikely((adapter
->hw
.bus_type
== e1000_bus_type_pcix
) &&
3355 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3356 for (f
= 0; f
< nr_frags
; f
++)
3357 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3359 if (adapter
->pcix_82544
)
3363 if (adapter
->hw
.tx_pkt_filtering
&&
3364 (adapter
->hw
.mac_type
== e1000_82573
))
3365 e1000_transfer_dhcp_info(adapter
, skb
);
3367 if (!spin_trylock_irqsave(&tx_ring
->tx_lock
, flags
))
3368 /* Collision - tell upper layer to requeue */
3369 return NETDEV_TX_LOCKED
;
3371 /* need: count + 2 desc gap to keep tail from touching
3372 * head, otherwise try next time */
3373 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2))) {
3374 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3375 return NETDEV_TX_BUSY
;
3378 if (unlikely(adapter
->hw
.mac_type
== e1000_82547
)) {
3379 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
3380 netif_stop_queue(netdev
);
3381 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
3382 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3383 return NETDEV_TX_BUSY
;
3387 if (unlikely(adapter
->vlgrp
&& vlan_tx_tag_present(skb
))) {
3388 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3389 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3392 first
= tx_ring
->next_to_use
;
3394 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3396 dev_kfree_skb_any(skb
);
3397 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3398 return NETDEV_TX_OK
;
3402 tx_ring
->last_tx_tso
= 1;
3403 tx_flags
|= E1000_TX_FLAGS_TSO
;
3404 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3405 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3407 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3408 * 82571 hardware supports TSO capabilities for IPv6 as well...
3409 * no longer assume, we must. */
3410 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3411 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3413 e1000_tx_queue(adapter
, tx_ring
, tx_flags
,
3414 e1000_tx_map(adapter
, tx_ring
, skb
, first
,
3415 max_per_txd
, nr_frags
, mss
));
3417 netdev
->trans_start
= jiffies
;
3419 /* Make sure there is space in the ring for the next send. */
3420 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3422 spin_unlock_irqrestore(&tx_ring
->tx_lock
, flags
);
3423 return NETDEV_TX_OK
;
3427 * e1000_tx_timeout - Respond to a Tx Hang
3428 * @netdev: network interface device structure
3432 e1000_tx_timeout(struct net_device
*netdev
)
3434 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3436 /* Do the reset outside of interrupt context */
3437 adapter
->tx_timeout_count
++;
3438 schedule_work(&adapter
->reset_task
);
3442 e1000_reset_task(struct work_struct
*work
)
3444 struct e1000_adapter
*adapter
=
3445 container_of(work
, struct e1000_adapter
, reset_task
);
3447 e1000_reinit_locked(adapter
);
3451 * e1000_get_stats - Get System Network Statistics
3452 * @netdev: network interface device structure
3454 * Returns the address of the device statistics structure.
3455 * The statistics are actually updated from the timer callback.
3458 static struct net_device_stats
*
3459 e1000_get_stats(struct net_device
*netdev
)
3461 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3463 /* only return the current stats */
3464 return &adapter
->net_stats
;
3468 * e1000_change_mtu - Change the Maximum Transfer Unit
3469 * @netdev: network interface device structure
3470 * @new_mtu: new value for maximum frame size
3472 * Returns 0 on success, negative on failure
3476 e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3478 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3479 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3480 uint16_t eeprom_data
= 0;
3482 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3483 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3484 DPRINTK(PROBE
, ERR
, "Invalid MTU setting\n");
3488 /* Adapter-specific max frame size limits. */
3489 switch (adapter
->hw
.mac_type
) {
3490 case e1000_undefined
... e1000_82542_rev2_1
:
3492 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3493 DPRINTK(PROBE
, ERR
, "Jumbo Frames not supported.\n");
3498 /* Jumbo Frames not supported if:
3499 * - this is not an 82573L device
3500 * - ASPM is enabled in any way (0x1A bits 3:2) */
3501 e1000_read_eeprom(&adapter
->hw
, EEPROM_INIT_3GIO_3
, 1,
3503 if ((adapter
->hw
.device_id
!= E1000_DEV_ID_82573L
) ||
3504 (eeprom_data
& EEPROM_WORD1A_ASPM_MASK
)) {
3505 if (max_frame
> MAXIMUM_ETHERNET_FRAME_SIZE
) {
3507 "Jumbo Frames not supported.\n");
3512 /* ERT will be enabled later to enable wire speed receives */
3514 /* fall through to get support */
3517 case e1000_80003es2lan
:
3518 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3519 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3520 DPRINTK(PROBE
, ERR
, "MTU > 9216 not supported.\n");
3525 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3529 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3530 * means we reserve 2 more, this pushes us to allocate from the next
3532 * i.e. RXBUFFER_2048 --> size-4096 slab */
3534 if (max_frame
<= E1000_RXBUFFER_256
)
3535 adapter
->rx_buffer_len
= E1000_RXBUFFER_256
;
3536 else if (max_frame
<= E1000_RXBUFFER_512
)
3537 adapter
->rx_buffer_len
= E1000_RXBUFFER_512
;
3538 else if (max_frame
<= E1000_RXBUFFER_1024
)
3539 adapter
->rx_buffer_len
= E1000_RXBUFFER_1024
;
3540 else if (max_frame
<= E1000_RXBUFFER_2048
)
3541 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3542 else if (max_frame
<= E1000_RXBUFFER_4096
)
3543 adapter
->rx_buffer_len
= E1000_RXBUFFER_4096
;
3544 else if (max_frame
<= E1000_RXBUFFER_8192
)
3545 adapter
->rx_buffer_len
= E1000_RXBUFFER_8192
;
3546 else if (max_frame
<= E1000_RXBUFFER_16384
)
3547 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3549 /* adjust allocation if LPE protects us, and we aren't using SBP */
3550 if (!adapter
->hw
.tbi_compatibility_on
&&
3551 ((max_frame
== MAXIMUM_ETHERNET_FRAME_SIZE
) ||
3552 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3553 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3555 netdev
->mtu
= new_mtu
;
3556 adapter
->hw
.max_frame_size
= max_frame
;
3558 if (netif_running(netdev
))
3559 e1000_reinit_locked(adapter
);
3565 * e1000_update_stats - Update the board statistics counters
3566 * @adapter: board private structure
3570 e1000_update_stats(struct e1000_adapter
*adapter
)
3572 struct e1000_hw
*hw
= &adapter
->hw
;
3573 struct pci_dev
*pdev
= adapter
->pdev
;
3574 unsigned long flags
;
3577 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3580 * Prevent stats update while adapter is being reset, or if the pci
3581 * connection is down.
3583 if (adapter
->link_speed
== 0)
3585 if (pci_channel_offline(pdev
))
3588 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3590 /* these counters are modified from e1000_tbi_adjust_stats,
3591 * called from the interrupt context, so they must only
3592 * be written while holding adapter->stats_lock
3595 adapter
->stats
.crcerrs
+= E1000_READ_REG(hw
, CRCERRS
);
3596 adapter
->stats
.gprc
+= E1000_READ_REG(hw
, GPRC
);
3597 adapter
->stats
.gorcl
+= E1000_READ_REG(hw
, GORCL
);
3598 adapter
->stats
.gorch
+= E1000_READ_REG(hw
, GORCH
);
3599 adapter
->stats
.bprc
+= E1000_READ_REG(hw
, BPRC
);
3600 adapter
->stats
.mprc
+= E1000_READ_REG(hw
, MPRC
);
3601 adapter
->stats
.roc
+= E1000_READ_REG(hw
, ROC
);
3603 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3604 adapter
->stats
.prc64
+= E1000_READ_REG(hw
, PRC64
);
3605 adapter
->stats
.prc127
+= E1000_READ_REG(hw
, PRC127
);
3606 adapter
->stats
.prc255
+= E1000_READ_REG(hw
, PRC255
);
3607 adapter
->stats
.prc511
+= E1000_READ_REG(hw
, PRC511
);
3608 adapter
->stats
.prc1023
+= E1000_READ_REG(hw
, PRC1023
);
3609 adapter
->stats
.prc1522
+= E1000_READ_REG(hw
, PRC1522
);
3612 adapter
->stats
.symerrs
+= E1000_READ_REG(hw
, SYMERRS
);
3613 adapter
->stats
.mpc
+= E1000_READ_REG(hw
, MPC
);
3614 adapter
->stats
.scc
+= E1000_READ_REG(hw
, SCC
);
3615 adapter
->stats
.ecol
+= E1000_READ_REG(hw
, ECOL
);
3616 adapter
->stats
.mcc
+= E1000_READ_REG(hw
, MCC
);
3617 adapter
->stats
.latecol
+= E1000_READ_REG(hw
, LATECOL
);
3618 adapter
->stats
.dc
+= E1000_READ_REG(hw
, DC
);
3619 adapter
->stats
.sec
+= E1000_READ_REG(hw
, SEC
);
3620 adapter
->stats
.rlec
+= E1000_READ_REG(hw
, RLEC
);
3621 adapter
->stats
.xonrxc
+= E1000_READ_REG(hw
, XONRXC
);
3622 adapter
->stats
.xontxc
+= E1000_READ_REG(hw
, XONTXC
);
3623 adapter
->stats
.xoffrxc
+= E1000_READ_REG(hw
, XOFFRXC
);
3624 adapter
->stats
.xofftxc
+= E1000_READ_REG(hw
, XOFFTXC
);
3625 adapter
->stats
.fcruc
+= E1000_READ_REG(hw
, FCRUC
);
3626 adapter
->stats
.gptc
+= E1000_READ_REG(hw
, GPTC
);
3627 adapter
->stats
.gotcl
+= E1000_READ_REG(hw
, GOTCL
);
3628 adapter
->stats
.gotch
+= E1000_READ_REG(hw
, GOTCH
);
3629 adapter
->stats
.rnbc
+= E1000_READ_REG(hw
, RNBC
);
3630 adapter
->stats
.ruc
+= E1000_READ_REG(hw
, RUC
);
3631 adapter
->stats
.rfc
+= E1000_READ_REG(hw
, RFC
);
3632 adapter
->stats
.rjc
+= E1000_READ_REG(hw
, RJC
);
3633 adapter
->stats
.torl
+= E1000_READ_REG(hw
, TORL
);
3634 adapter
->stats
.torh
+= E1000_READ_REG(hw
, TORH
);
3635 adapter
->stats
.totl
+= E1000_READ_REG(hw
, TOTL
);
3636 adapter
->stats
.toth
+= E1000_READ_REG(hw
, TOTH
);
3637 adapter
->stats
.tpr
+= E1000_READ_REG(hw
, TPR
);
3639 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3640 adapter
->stats
.ptc64
+= E1000_READ_REG(hw
, PTC64
);
3641 adapter
->stats
.ptc127
+= E1000_READ_REG(hw
, PTC127
);
3642 adapter
->stats
.ptc255
+= E1000_READ_REG(hw
, PTC255
);
3643 adapter
->stats
.ptc511
+= E1000_READ_REG(hw
, PTC511
);
3644 adapter
->stats
.ptc1023
+= E1000_READ_REG(hw
, PTC1023
);
3645 adapter
->stats
.ptc1522
+= E1000_READ_REG(hw
, PTC1522
);
3648 adapter
->stats
.mptc
+= E1000_READ_REG(hw
, MPTC
);
3649 adapter
->stats
.bptc
+= E1000_READ_REG(hw
, BPTC
);
3651 /* used for adaptive IFS */
3653 hw
->tx_packet_delta
= E1000_READ_REG(hw
, TPT
);
3654 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3655 hw
->collision_delta
= E1000_READ_REG(hw
, COLC
);
3656 adapter
->stats
.colc
+= hw
->collision_delta
;
3658 if (hw
->mac_type
>= e1000_82543
) {
3659 adapter
->stats
.algnerrc
+= E1000_READ_REG(hw
, ALGNERRC
);
3660 adapter
->stats
.rxerrc
+= E1000_READ_REG(hw
, RXERRC
);
3661 adapter
->stats
.tncrs
+= E1000_READ_REG(hw
, TNCRS
);
3662 adapter
->stats
.cexterr
+= E1000_READ_REG(hw
, CEXTERR
);
3663 adapter
->stats
.tsctc
+= E1000_READ_REG(hw
, TSCTC
);
3664 adapter
->stats
.tsctfc
+= E1000_READ_REG(hw
, TSCTFC
);
3666 if (hw
->mac_type
> e1000_82547_rev_2
) {
3667 adapter
->stats
.iac
+= E1000_READ_REG(hw
, IAC
);
3668 adapter
->stats
.icrxoc
+= E1000_READ_REG(hw
, ICRXOC
);
3670 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
3671 adapter
->stats
.icrxptc
+= E1000_READ_REG(hw
, ICRXPTC
);
3672 adapter
->stats
.icrxatc
+= E1000_READ_REG(hw
, ICRXATC
);
3673 adapter
->stats
.ictxptc
+= E1000_READ_REG(hw
, ICTXPTC
);
3674 adapter
->stats
.ictxatc
+= E1000_READ_REG(hw
, ICTXATC
);
3675 adapter
->stats
.ictxqec
+= E1000_READ_REG(hw
, ICTXQEC
);
3676 adapter
->stats
.ictxqmtc
+= E1000_READ_REG(hw
, ICTXQMTC
);
3677 adapter
->stats
.icrxdmtc
+= E1000_READ_REG(hw
, ICRXDMTC
);
3681 /* Fill out the OS statistics structure */
3682 adapter
->net_stats
.rx_packets
= adapter
->stats
.gprc
;
3683 adapter
->net_stats
.tx_packets
= adapter
->stats
.gptc
;
3684 adapter
->net_stats
.rx_bytes
= adapter
->stats
.gorcl
;
3685 adapter
->net_stats
.tx_bytes
= adapter
->stats
.gotcl
;
3686 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3687 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3691 /* RLEC on some newer hardware can be incorrect so build
3692 * our own version based on RUC and ROC */
3693 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3694 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3695 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3696 adapter
->stats
.cexterr
;
3697 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3698 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3699 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3700 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3701 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3704 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3705 adapter
->net_stats
.tx_errors
= adapter
->stats
.txerrc
;
3706 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3707 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3708 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3709 if (adapter
->hw
.bad_tx_carr_stats_fd
&&
3710 adapter
->link_duplex
== FULL_DUPLEX
) {
3711 adapter
->net_stats
.tx_carrier_errors
= 0;
3712 adapter
->stats
.tncrs
= 0;
3715 /* Tx Dropped needs to be maintained elsewhere */
3718 if (hw
->media_type
== e1000_media_type_copper
) {
3719 if ((adapter
->link_speed
== SPEED_1000
) &&
3720 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3721 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3722 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3725 if ((hw
->mac_type
<= e1000_82546
) &&
3726 (hw
->phy_type
== e1000_phy_m88
) &&
3727 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3728 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3731 /* Management Stats */
3732 if (adapter
->hw
.has_smbus
) {
3733 adapter
->stats
.mgptc
+= E1000_READ_REG(hw
, MGTPTC
);
3734 adapter
->stats
.mgprc
+= E1000_READ_REG(hw
, MGTPRC
);
3735 adapter
->stats
.mgpdc
+= E1000_READ_REG(hw
, MGTPDC
);
3738 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3742 * e1000_intr_msi - Interrupt Handler
3743 * @irq: interrupt number
3744 * @data: pointer to a network interface device structure
3748 e1000_intr_msi(int irq
, void *data
)
3750 struct net_device
*netdev
= data
;
3751 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3752 struct e1000_hw
*hw
= &adapter
->hw
;
3753 #ifndef CONFIG_E1000_NAPI
3756 uint32_t icr
= E1000_READ_REG(hw
, ICR
);
3758 #ifdef CONFIG_E1000_NAPI
3759 /* read ICR disables interrupts using IAM, so keep up with our
3760 * enable/disable accounting */
3761 atomic_inc(&adapter
->irq_sem
);
3763 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3764 hw
->get_link_status
= 1;
3765 /* 80003ES2LAN workaround-- For packet buffer work-around on
3766 * link down event; disable receives here in the ISR and reset
3767 * adapter in watchdog */
3768 if (netif_carrier_ok(netdev
) &&
3769 (adapter
->hw
.mac_type
== e1000_80003es2lan
)) {
3770 /* disable receives */
3771 uint32_t rctl
= E1000_READ_REG(hw
, RCTL
);
3772 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
3774 /* guard against interrupt when we're going down */
3775 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3776 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3779 #ifdef CONFIG_E1000_NAPI
3780 if (likely(netif_rx_schedule_prep(netdev
, &adapter
->napi
))) {
3781 adapter
->total_tx_bytes
= 0;
3782 adapter
->total_tx_packets
= 0;
3783 adapter
->total_rx_bytes
= 0;
3784 adapter
->total_rx_packets
= 0;
3785 __netif_rx_schedule(netdev
, &adapter
->napi
);
3787 e1000_irq_enable(adapter
);
3789 adapter
->total_tx_bytes
= 0;
3790 adapter
->total_rx_bytes
= 0;
3791 adapter
->total_tx_packets
= 0;
3792 adapter
->total_rx_packets
= 0;
3794 for (i
= 0; i
< E1000_MAX_INTR
; i
++)
3795 if (unlikely(!adapter
->clean_rx(adapter
, adapter
->rx_ring
) &
3796 !e1000_clean_tx_irq(adapter
, adapter
->tx_ring
)))
3799 if (likely(adapter
->itr_setting
& 3))
3800 e1000_set_itr(adapter
);
3807 * e1000_intr - Interrupt Handler
3808 * @irq: interrupt number
3809 * @data: pointer to a network interface device structure
3813 e1000_intr(int irq
, void *data
)
3815 struct net_device
*netdev
= data
;
3816 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3817 struct e1000_hw
*hw
= &adapter
->hw
;
3818 uint32_t rctl
, icr
= E1000_READ_REG(hw
, ICR
);
3819 #ifndef CONFIG_E1000_NAPI
3823 return IRQ_NONE
; /* Not our interrupt */
3825 #ifdef CONFIG_E1000_NAPI
3826 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3827 * not set, then the adapter didn't send an interrupt */
3828 if (unlikely(hw
->mac_type
>= e1000_82571
&&
3829 !(icr
& E1000_ICR_INT_ASSERTED
)))
3832 /* Interrupt Auto-Mask...upon reading ICR,
3833 * interrupts are masked. No need for the
3834 * IMC write, but it does mean we should
3835 * account for it ASAP. */
3836 if (likely(hw
->mac_type
>= e1000_82571
))
3837 atomic_inc(&adapter
->irq_sem
);
3840 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3841 hw
->get_link_status
= 1;
3842 /* 80003ES2LAN workaround--
3843 * For packet buffer work-around on link down event;
3844 * disable receives here in the ISR and
3845 * reset adapter in watchdog
3847 if (netif_carrier_ok(netdev
) &&
3848 (adapter
->hw
.mac_type
== e1000_80003es2lan
)) {
3849 /* disable receives */
3850 rctl
= E1000_READ_REG(hw
, RCTL
);
3851 E1000_WRITE_REG(hw
, RCTL
, rctl
& ~E1000_RCTL_EN
);
3853 /* guard against interrupt when we're going down */
3854 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3855 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3858 #ifdef CONFIG_E1000_NAPI
3859 if (unlikely(hw
->mac_type
< e1000_82571
)) {
3860 /* disable interrupts, without the synchronize_irq bit */
3861 atomic_inc(&adapter
->irq_sem
);
3862 E1000_WRITE_REG(hw
, IMC
, ~0);
3863 E1000_WRITE_FLUSH(hw
);
3865 if (likely(netif_rx_schedule_prep(netdev
, &adapter
->napi
))) {
3866 adapter
->total_tx_bytes
= 0;
3867 adapter
->total_tx_packets
= 0;
3868 adapter
->total_rx_bytes
= 0;
3869 adapter
->total_rx_packets
= 0;
3870 __netif_rx_schedule(netdev
, &adapter
->napi
);
3872 /* this really should not happen! if it does it is basically a
3873 * bug, but not a hard error, so enable ints and continue */
3874 e1000_irq_enable(adapter
);
3876 /* Writing IMC and IMS is needed for 82547.
3877 * Due to Hub Link bus being occupied, an interrupt
3878 * de-assertion message is not able to be sent.
3879 * When an interrupt assertion message is generated later,
3880 * two messages are re-ordered and sent out.
3881 * That causes APIC to think 82547 is in de-assertion
3882 * state, while 82547 is in assertion state, resulting
3883 * in dead lock. Writing IMC forces 82547 into
3884 * de-assertion state.
3886 if (hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
) {
3887 atomic_inc(&adapter
->irq_sem
);
3888 E1000_WRITE_REG(hw
, IMC
, ~0);
3891 adapter
->total_tx_bytes
= 0;
3892 adapter
->total_rx_bytes
= 0;
3893 adapter
->total_tx_packets
= 0;
3894 adapter
->total_rx_packets
= 0;
3896 for (i
= 0; i
< E1000_MAX_INTR
; i
++)
3897 if (unlikely(!adapter
->clean_rx(adapter
, adapter
->rx_ring
) &
3898 !e1000_clean_tx_irq(adapter
, adapter
->tx_ring
)))
3901 if (likely(adapter
->itr_setting
& 3))
3902 e1000_set_itr(adapter
);
3904 if (hw
->mac_type
== e1000_82547
|| hw
->mac_type
== e1000_82547_rev_2
)
3905 e1000_irq_enable(adapter
);
3911 #ifdef CONFIG_E1000_NAPI
3913 * e1000_clean - NAPI Rx polling callback
3914 * @adapter: board private structure
3918 e1000_clean(struct napi_struct
*napi
, int budget
)
3920 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
3921 struct net_device
*poll_dev
= adapter
->netdev
;
3922 int tx_cleaned
= 0, work_done
= 0;
3924 /* Must NOT use netdev_priv macro here. */
3925 adapter
= poll_dev
->priv
;
3927 /* Keep link state information with original netdev */
3928 if (!netif_carrier_ok(poll_dev
))
3931 /* e1000_clean is called per-cpu. This lock protects
3932 * tx_ring[0] from being cleaned by multiple cpus
3933 * simultaneously. A failure obtaining the lock means
3934 * tx_ring[0] is currently being cleaned anyway. */
3935 if (spin_trylock(&adapter
->tx_queue_lock
)) {
3936 tx_cleaned
= e1000_clean_tx_irq(adapter
,
3937 &adapter
->tx_ring
[0]);
3938 spin_unlock(&adapter
->tx_queue_lock
);
3941 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0],
3942 &work_done
, budget
);
3944 /* If no Tx and not enough Rx work done, exit the polling mode */
3945 if ((!tx_cleaned
&& (work_done
== 0)) ||
3946 !netif_running(poll_dev
)) {
3948 if (likely(adapter
->itr_setting
& 3))
3949 e1000_set_itr(adapter
);
3950 netif_rx_complete(poll_dev
, napi
);
3951 e1000_irq_enable(adapter
);
3959 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3960 * @adapter: board private structure
3964 e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3965 struct e1000_tx_ring
*tx_ring
)
3967 struct net_device
*netdev
= adapter
->netdev
;
3968 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3969 struct e1000_buffer
*buffer_info
;
3970 unsigned int i
, eop
;
3971 #ifdef CONFIG_E1000_NAPI
3972 unsigned int count
= 0;
3974 boolean_t cleaned
= FALSE
;
3975 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3977 i
= tx_ring
->next_to_clean
;
3978 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3979 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3981 while (eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) {
3982 for (cleaned
= FALSE
; !cleaned
; ) {
3983 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3984 buffer_info
= &tx_ring
->buffer_info
[i
];
3985 cleaned
= (i
== eop
);
3988 struct sk_buff
*skb
= buffer_info
->skb
;
3989 unsigned int segs
, bytecount
;
3990 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3991 /* multiply data chunks by size of headers */
3992 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3994 total_tx_packets
+= segs
;
3995 total_tx_bytes
+= bytecount
;
3997 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3998 tx_desc
->upper
.data
= 0;
4000 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
4003 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
4004 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
4005 #ifdef CONFIG_E1000_NAPI
4006 #define E1000_TX_WEIGHT 64
4007 /* weight of a sort for tx, to avoid endless transmit cleanup */
4008 if (count
++ == E1000_TX_WEIGHT
) break;
4012 tx_ring
->next_to_clean
= i
;
4014 #define TX_WAKE_THRESHOLD 32
4015 if (unlikely(cleaned
&& netif_carrier_ok(netdev
) &&
4016 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
4017 /* Make sure that anybody stopping the queue after this
4018 * sees the new next_to_clean.
4021 if (netif_queue_stopped(netdev
)) {
4022 netif_wake_queue(netdev
);
4023 ++adapter
->restart_queue
;
4027 if (adapter
->detect_tx_hung
) {
4028 /* Detect a transmit hang in hardware, this serializes the
4029 * check with the clearing of time_stamp and movement of i */
4030 adapter
->detect_tx_hung
= FALSE
;
4031 if (tx_ring
->buffer_info
[eop
].dma
&&
4032 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
4033 (adapter
->tx_timeout_factor
* HZ
))
4034 && !(E1000_READ_REG(&adapter
->hw
, STATUS
) &
4035 E1000_STATUS_TXOFF
)) {
4037 /* detected Tx unit hang */
4038 DPRINTK(DRV
, ERR
, "Detected Tx Unit Hang\n"
4042 " next_to_use <%x>\n"
4043 " next_to_clean <%x>\n"
4044 "buffer_info[next_to_clean]\n"
4045 " time_stamp <%lx>\n"
4046 " next_to_watch <%x>\n"
4048 " next_to_watch.status <%x>\n",
4049 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
4050 sizeof(struct e1000_tx_ring
)),
4051 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdh
),
4052 readl(adapter
->hw
.hw_addr
+ tx_ring
->tdt
),
4053 tx_ring
->next_to_use
,
4054 tx_ring
->next_to_clean
,
4055 tx_ring
->buffer_info
[eop
].time_stamp
,
4058 eop_desc
->upper
.fields
.status
);
4059 netif_stop_queue(netdev
);
4062 adapter
->total_tx_bytes
+= total_tx_bytes
;
4063 adapter
->total_tx_packets
+= total_tx_packets
;
4068 * e1000_rx_checksum - Receive Checksum Offload for 82543
4069 * @adapter: board private structure
4070 * @status_err: receive descriptor status and error fields
4071 * @csum: receive descriptor csum field
4072 * @sk_buff: socket buffer with received data
4076 e1000_rx_checksum(struct e1000_adapter
*adapter
,
4077 uint32_t status_err
, uint32_t csum
,
4078 struct sk_buff
*skb
)
4080 uint16_t status
= (uint16_t)status_err
;
4081 uint8_t errors
= (uint8_t)(status_err
>> 24);
4082 skb
->ip_summed
= CHECKSUM_NONE
;
4084 /* 82543 or newer only */
4085 if (unlikely(adapter
->hw
.mac_type
< e1000_82543
)) return;
4086 /* Ignore Checksum bit is set */
4087 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
4088 /* TCP/UDP checksum error bit is set */
4089 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
4090 /* let the stack verify checksum errors */
4091 adapter
->hw_csum_err
++;
4094 /* TCP/UDP Checksum has not been calculated */
4095 if (adapter
->hw
.mac_type
<= e1000_82547_rev_2
) {
4096 if (!(status
& E1000_RXD_STAT_TCPCS
))
4099 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
4102 /* It must be a TCP or UDP packet with a valid checksum */
4103 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
4104 /* TCP checksum is good */
4105 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
4106 } else if (adapter
->hw
.mac_type
> e1000_82547_rev_2
) {
4107 /* IP fragment with UDP payload */
4108 /* Hardware complements the payload checksum, so we undo it
4109 * and then put the value in host order for further stack use.
4111 csum
= ntohl(csum
^ 0xFFFF);
4113 skb
->ip_summed
= CHECKSUM_COMPLETE
;
4115 adapter
->hw_csum_good
++;
4119 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4120 * @adapter: board private structure
4124 #ifdef CONFIG_E1000_NAPI
4125 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
4126 struct e1000_rx_ring
*rx_ring
,
4127 int *work_done
, int work_to_do
)
4129 e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
4130 struct e1000_rx_ring
*rx_ring
)
4133 struct net_device
*netdev
= adapter
->netdev
;
4134 struct pci_dev
*pdev
= adapter
->pdev
;
4135 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
4136 struct e1000_buffer
*buffer_info
, *next_buffer
;
4137 unsigned long flags
;
4141 int cleaned_count
= 0;
4142 boolean_t cleaned
= FALSE
;
4143 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
4145 i
= rx_ring
->next_to_clean
;
4146 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4147 buffer_info
= &rx_ring
->buffer_info
[i
];
4149 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
4150 struct sk_buff
*skb
;
4153 #ifdef CONFIG_E1000_NAPI
4154 if (*work_done
>= work_to_do
)
4158 status
= rx_desc
->status
;
4159 skb
= buffer_info
->skb
;
4160 buffer_info
->skb
= NULL
;
4162 prefetch(skb
->data
- NET_IP_ALIGN
);
4164 if (++i
== rx_ring
->count
) i
= 0;
4165 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
4168 next_buffer
= &rx_ring
->buffer_info
[i
];
4172 pci_unmap_single(pdev
,
4174 buffer_info
->length
,
4175 PCI_DMA_FROMDEVICE
);
4177 length
= le16_to_cpu(rx_desc
->length
);
4179 if (unlikely(!(status
& E1000_RXD_STAT_EOP
))) {
4180 /* All receives must fit into a single buffer */
4181 E1000_DBG("%s: Receive packet consumed multiple"
4182 " buffers\n", netdev
->name
);
4184 buffer_info
->skb
= skb
;
4188 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
4189 last_byte
= *(skb
->data
+ length
- 1);
4190 if (TBI_ACCEPT(&adapter
->hw
, status
,
4191 rx_desc
->errors
, length
, last_byte
)) {
4192 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4193 e1000_tbi_adjust_stats(&adapter
->hw
,
4196 spin_unlock_irqrestore(&adapter
->stats_lock
,
4201 buffer_info
->skb
= skb
;
4206 /* adjust length to remove Ethernet CRC, this must be
4207 * done after the TBI_ACCEPT workaround above */
4210 /* probably a little skewed due to removing CRC */
4211 total_rx_bytes
+= length
;
4214 /* code added for copybreak, this should improve
4215 * performance for small packets with large amounts
4216 * of reassembly being done in the stack */
4217 if (length
< copybreak
) {
4218 struct sk_buff
*new_skb
=
4219 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
4221 skb_reserve(new_skb
, NET_IP_ALIGN
);
4222 skb_copy_to_linear_data_offset(new_skb
,
4228 /* save the skb in buffer_info as good */
4229 buffer_info
->skb
= skb
;
4232 /* else just continue with the old one */
4234 /* end copybreak code */
4235 skb_put(skb
, length
);
4237 /* Receive Checksum Offload */
4238 e1000_rx_checksum(adapter
,
4239 (uint32_t)(status
) |
4240 ((uint32_t)(rx_desc
->errors
) << 24),
4241 le16_to_cpu(rx_desc
->csum
), skb
);
4243 skb
->protocol
= eth_type_trans(skb
, netdev
);
4244 #ifdef CONFIG_E1000_NAPI
4245 if (unlikely(adapter
->vlgrp
&&
4246 (status
& E1000_RXD_STAT_VP
))) {
4247 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
4248 le16_to_cpu(rx_desc
->special
) &
4249 E1000_RXD_SPC_VLAN_MASK
);
4251 netif_receive_skb(skb
);
4253 #else /* CONFIG_E1000_NAPI */
4254 if (unlikely(adapter
->vlgrp
&&
4255 (status
& E1000_RXD_STAT_VP
))) {
4256 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
4257 le16_to_cpu(rx_desc
->special
) &
4258 E1000_RXD_SPC_VLAN_MASK
);
4262 #endif /* CONFIG_E1000_NAPI */
4263 netdev
->last_rx
= jiffies
;
4266 rx_desc
->status
= 0;
4268 /* return some buffers to hardware, one at a time is too slow */
4269 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4270 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4274 /* use prefetched values */
4276 buffer_info
= next_buffer
;
4278 rx_ring
->next_to_clean
= i
;
4280 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4282 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4284 adapter
->total_rx_packets
+= total_rx_packets
;
4285 adapter
->total_rx_bytes
+= total_rx_bytes
;
4290 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4291 * @adapter: board private structure
4295 #ifdef CONFIG_E1000_NAPI
4296 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
4297 struct e1000_rx_ring
*rx_ring
,
4298 int *work_done
, int work_to_do
)
4300 e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
4301 struct e1000_rx_ring
*rx_ring
)
4304 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
4305 struct net_device
*netdev
= adapter
->netdev
;
4306 struct pci_dev
*pdev
= adapter
->pdev
;
4307 struct e1000_buffer
*buffer_info
, *next_buffer
;
4308 struct e1000_ps_page
*ps_page
;
4309 struct e1000_ps_page_dma
*ps_page_dma
;
4310 struct sk_buff
*skb
;
4312 uint32_t length
, staterr
;
4313 int cleaned_count
= 0;
4314 boolean_t cleaned
= FALSE
;
4315 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
4317 i
= rx_ring
->next_to_clean
;
4318 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
4319 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
4320 buffer_info
= &rx_ring
->buffer_info
[i
];
4322 while (staterr
& E1000_RXD_STAT_DD
) {
4323 ps_page
= &rx_ring
->ps_page
[i
];
4324 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4325 #ifdef CONFIG_E1000_NAPI
4326 if (unlikely(*work_done
>= work_to_do
))
4330 skb
= buffer_info
->skb
;
4332 /* in the packet split case this is header only */
4333 prefetch(skb
->data
- NET_IP_ALIGN
);
4335 if (++i
== rx_ring
->count
) i
= 0;
4336 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
4339 next_buffer
= &rx_ring
->buffer_info
[i
];
4343 pci_unmap_single(pdev
, buffer_info
->dma
,
4344 buffer_info
->length
,
4345 PCI_DMA_FROMDEVICE
);
4347 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
))) {
4348 E1000_DBG("%s: Packet Split buffers didn't pick up"
4349 " the full packet\n", netdev
->name
);
4350 dev_kfree_skb_irq(skb
);
4354 if (unlikely(staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
)) {
4355 dev_kfree_skb_irq(skb
);
4359 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
4361 if (unlikely(!length
)) {
4362 E1000_DBG("%s: Last part of the packet spanning"
4363 " multiple descriptors\n", netdev
->name
);
4364 dev_kfree_skb_irq(skb
);
4369 skb_put(skb
, length
);
4372 /* this looks ugly, but it seems compiler issues make it
4373 more efficient than reusing j */
4374 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
4376 /* page alloc/put takes too long and effects small packet
4377 * throughput, so unsplit small packets and save the alloc/put*/
4378 if (l1
&& (l1
<= copybreak
) && ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
4380 /* there is no documentation about how to call
4381 * kmap_atomic, so we can't hold the mapping
4383 pci_dma_sync_single_for_cpu(pdev
,
4384 ps_page_dma
->ps_page_dma
[0],
4386 PCI_DMA_FROMDEVICE
);
4387 vaddr
= kmap_atomic(ps_page
->ps_page
[0],
4388 KM_SKB_DATA_SOFTIRQ
);
4389 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
4390 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
4391 pci_dma_sync_single_for_device(pdev
,
4392 ps_page_dma
->ps_page_dma
[0],
4393 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
4394 /* remove the CRC */
4401 for (j
= 0; j
< adapter
->rx_ps_pages
; j
++) {
4402 if (!(length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
])))
4404 pci_unmap_page(pdev
, ps_page_dma
->ps_page_dma
[j
],
4405 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
4406 ps_page_dma
->ps_page_dma
[j
] = 0;
4407 skb_fill_page_desc(skb
, j
, ps_page
->ps_page
[j
], 0,
4409 ps_page
->ps_page
[j
] = NULL
;
4411 skb
->data_len
+= length
;
4412 skb
->truesize
+= length
;
4415 /* strip the ethernet crc, problem is we're using pages now so
4416 * this whole operation can get a little cpu intensive */
4417 pskb_trim(skb
, skb
->len
- 4);
4420 total_rx_bytes
+= skb
->len
;
4423 e1000_rx_checksum(adapter
, staterr
,
4424 le16_to_cpu(rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
4425 skb
->protocol
= eth_type_trans(skb
, netdev
);
4427 if (likely(rx_desc
->wb
.upper
.header_status
&
4428 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
)))
4429 adapter
->rx_hdr_split
++;
4430 #ifdef CONFIG_E1000_NAPI
4431 if (unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
4432 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
4433 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
4434 E1000_RXD_SPC_VLAN_MASK
);
4436 netif_receive_skb(skb
);
4438 #else /* CONFIG_E1000_NAPI */
4439 if (unlikely(adapter
->vlgrp
&& (staterr
& E1000_RXD_STAT_VP
))) {
4440 vlan_hwaccel_rx(skb
, adapter
->vlgrp
,
4441 le16_to_cpu(rx_desc
->wb
.middle
.vlan
) &
4442 E1000_RXD_SPC_VLAN_MASK
);
4446 #endif /* CONFIG_E1000_NAPI */
4447 netdev
->last_rx
= jiffies
;
4450 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
4451 buffer_info
->skb
= NULL
;
4453 /* return some buffers to hardware, one at a time is too slow */
4454 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4455 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4459 /* use prefetched values */
4461 buffer_info
= next_buffer
;
4463 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
4465 rx_ring
->next_to_clean
= i
;
4467 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4469 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4471 adapter
->total_rx_packets
+= total_rx_packets
;
4472 adapter
->total_rx_bytes
+= total_rx_bytes
;
4477 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4478 * @adapter: address of board private structure
4482 e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4483 struct e1000_rx_ring
*rx_ring
,
4486 struct net_device
*netdev
= adapter
->netdev
;
4487 struct pci_dev
*pdev
= adapter
->pdev
;
4488 struct e1000_rx_desc
*rx_desc
;
4489 struct e1000_buffer
*buffer_info
;
4490 struct sk_buff
*skb
;
4492 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
4494 i
= rx_ring
->next_to_use
;
4495 buffer_info
= &rx_ring
->buffer_info
[i
];
4497 while (cleaned_count
--) {
4498 skb
= buffer_info
->skb
;
4504 skb
= netdev_alloc_skb(netdev
, bufsz
);
4505 if (unlikely(!skb
)) {
4506 /* Better luck next round */
4507 adapter
->alloc_rx_buff_failed
++;
4511 /* Fix for errata 23, can't cross 64kB boundary */
4512 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4513 struct sk_buff
*oldskb
= skb
;
4514 DPRINTK(RX_ERR
, ERR
, "skb align check failed: %u bytes "
4515 "at %p\n", bufsz
, skb
->data
);
4516 /* Try again, without freeing the previous */
4517 skb
= netdev_alloc_skb(netdev
, bufsz
);
4518 /* Failed allocation, critical failure */
4520 dev_kfree_skb(oldskb
);
4524 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4527 dev_kfree_skb(oldskb
);
4528 break; /* while !buffer_info->skb */
4531 /* Use new allocation */
4532 dev_kfree_skb(oldskb
);
4534 /* Make buffer alignment 2 beyond a 16 byte boundary
4535 * this will result in a 16 byte aligned IP header after
4536 * the 14 byte MAC header is removed
4538 skb_reserve(skb
, NET_IP_ALIGN
);
4540 buffer_info
->skb
= skb
;
4541 buffer_info
->length
= adapter
->rx_buffer_len
;
4543 buffer_info
->dma
= pci_map_single(pdev
,
4545 adapter
->rx_buffer_len
,
4546 PCI_DMA_FROMDEVICE
);
4548 /* Fix for errata 23, can't cross 64kB boundary */
4549 if (!e1000_check_64k_bound(adapter
,
4550 (void *)(unsigned long)buffer_info
->dma
,
4551 adapter
->rx_buffer_len
)) {
4552 DPRINTK(RX_ERR
, ERR
,
4553 "dma align check failed: %u bytes at %p\n",
4554 adapter
->rx_buffer_len
,
4555 (void *)(unsigned long)buffer_info
->dma
);
4557 buffer_info
->skb
= NULL
;
4559 pci_unmap_single(pdev
, buffer_info
->dma
,
4560 adapter
->rx_buffer_len
,
4561 PCI_DMA_FROMDEVICE
);
4563 break; /* while !buffer_info->skb */
4565 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4566 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4568 if (unlikely(++i
== rx_ring
->count
))
4570 buffer_info
= &rx_ring
->buffer_info
[i
];
4573 if (likely(rx_ring
->next_to_use
!= i
)) {
4574 rx_ring
->next_to_use
= i
;
4575 if (unlikely(i
-- == 0))
4576 i
= (rx_ring
->count
- 1);
4578 /* Force memory writes to complete before letting h/w
4579 * know there are new descriptors to fetch. (Only
4580 * applicable for weak-ordered memory model archs,
4581 * such as IA-64). */
4583 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4588 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4589 * @adapter: address of board private structure
4593 e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
4594 struct e1000_rx_ring
*rx_ring
,
4597 struct net_device
*netdev
= adapter
->netdev
;
4598 struct pci_dev
*pdev
= adapter
->pdev
;
4599 union e1000_rx_desc_packet_split
*rx_desc
;
4600 struct e1000_buffer
*buffer_info
;
4601 struct e1000_ps_page
*ps_page
;
4602 struct e1000_ps_page_dma
*ps_page_dma
;
4603 struct sk_buff
*skb
;
4606 i
= rx_ring
->next_to_use
;
4607 buffer_info
= &rx_ring
->buffer_info
[i
];
4608 ps_page
= &rx_ring
->ps_page
[i
];
4609 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4611 while (cleaned_count
--) {
4612 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
4614 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
4615 if (j
< adapter
->rx_ps_pages
) {
4616 if (likely(!ps_page
->ps_page
[j
])) {
4617 ps_page
->ps_page
[j
] =
4618 alloc_page(GFP_ATOMIC
);
4619 if (unlikely(!ps_page
->ps_page
[j
])) {
4620 adapter
->alloc_rx_buff_failed
++;
4623 ps_page_dma
->ps_page_dma
[j
] =
4625 ps_page
->ps_page
[j
],
4627 PCI_DMA_FROMDEVICE
);
4629 /* Refresh the desc even if buffer_addrs didn't
4630 * change because each write-back erases
4633 rx_desc
->read
.buffer_addr
[j
+1] =
4634 cpu_to_le64(ps_page_dma
->ps_page_dma
[j
]);
4636 rx_desc
->read
.buffer_addr
[j
+1] = ~0;
4639 skb
= netdev_alloc_skb(netdev
,
4640 adapter
->rx_ps_bsize0
+ NET_IP_ALIGN
);
4642 if (unlikely(!skb
)) {
4643 adapter
->alloc_rx_buff_failed
++;
4647 /* Make buffer alignment 2 beyond a 16 byte boundary
4648 * this will result in a 16 byte aligned IP header after
4649 * the 14 byte MAC header is removed
4651 skb_reserve(skb
, NET_IP_ALIGN
);
4653 buffer_info
->skb
= skb
;
4654 buffer_info
->length
= adapter
->rx_ps_bsize0
;
4655 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
4656 adapter
->rx_ps_bsize0
,
4657 PCI_DMA_FROMDEVICE
);
4659 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
4661 if (unlikely(++i
== rx_ring
->count
)) i
= 0;
4662 buffer_info
= &rx_ring
->buffer_info
[i
];
4663 ps_page
= &rx_ring
->ps_page
[i
];
4664 ps_page_dma
= &rx_ring
->ps_page_dma
[i
];
4668 if (likely(rx_ring
->next_to_use
!= i
)) {
4669 rx_ring
->next_to_use
= i
;
4670 if (unlikely(i
-- == 0)) i
= (rx_ring
->count
- 1);
4672 /* Force memory writes to complete before letting h/w
4673 * know there are new descriptors to fetch. (Only
4674 * applicable for weak-ordered memory model archs,
4675 * such as IA-64). */
4677 /* Hardware increments by 16 bytes, but packet split
4678 * descriptors are 32 bytes...so we increment tail
4681 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4686 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4691 e1000_smartspeed(struct e1000_adapter
*adapter
)
4693 uint16_t phy_status
;
4696 if ((adapter
->hw
.phy_type
!= e1000_phy_igp
) || !adapter
->hw
.autoneg
||
4697 !(adapter
->hw
.autoneg_advertised
& ADVERTISE_1000_FULL
))
4700 if (adapter
->smartspeed
== 0) {
4701 /* If Master/Slave config fault is asserted twice,
4702 * we assume back-to-back */
4703 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
4704 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4705 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_STATUS
, &phy_status
);
4706 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4707 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4708 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4709 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4710 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
,
4712 adapter
->smartspeed
++;
4713 if (!e1000_phy_setup_autoneg(&adapter
->hw
) &&
4714 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
,
4716 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4717 MII_CR_RESTART_AUTO_NEG
);
4718 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
,
4723 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4724 /* If still no link, perhaps using 2/3 pair cable */
4725 e1000_read_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4726 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4727 e1000_write_phy_reg(&adapter
->hw
, PHY_1000T_CTRL
, phy_ctrl
);
4728 if (!e1000_phy_setup_autoneg(&adapter
->hw
) &&
4729 !e1000_read_phy_reg(&adapter
->hw
, PHY_CTRL
, &phy_ctrl
)) {
4730 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4731 MII_CR_RESTART_AUTO_NEG
);
4732 e1000_write_phy_reg(&adapter
->hw
, PHY_CTRL
, phy_ctrl
);
4735 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4736 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4737 adapter
->smartspeed
= 0;
4748 e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4754 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4768 e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4770 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4771 struct mii_ioctl_data
*data
= if_mii(ifr
);
4775 unsigned long flags
;
4777 if (adapter
->hw
.media_type
!= e1000_media_type_copper
)
4782 data
->phy_id
= adapter
->hw
.phy_addr
;
4785 if (!capable(CAP_NET_ADMIN
))
4787 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4788 if (e1000_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
4790 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4793 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4796 if (!capable(CAP_NET_ADMIN
))
4798 if (data
->reg_num
& ~(0x1F))
4800 mii_reg
= data
->val_in
;
4801 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4802 if (e1000_write_phy_reg(&adapter
->hw
, data
->reg_num
,
4804 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4807 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4808 if (adapter
->hw
.media_type
== e1000_media_type_copper
) {
4809 switch (data
->reg_num
) {
4811 if (mii_reg
& MII_CR_POWER_DOWN
)
4813 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4814 adapter
->hw
.autoneg
= 1;
4815 adapter
->hw
.autoneg_advertised
= 0x2F;
4818 spddplx
= SPEED_1000
;
4819 else if (mii_reg
& 0x2000)
4820 spddplx
= SPEED_100
;
4823 spddplx
+= (mii_reg
& 0x100)
4826 retval
= e1000_set_spd_dplx(adapter
,
4831 if (netif_running(adapter
->netdev
))
4832 e1000_reinit_locked(adapter
);
4834 e1000_reset(adapter
);
4836 case M88E1000_PHY_SPEC_CTRL
:
4837 case M88E1000_EXT_PHY_SPEC_CTRL
:
4838 if (e1000_phy_reset(&adapter
->hw
))
4843 switch (data
->reg_num
) {
4845 if (mii_reg
& MII_CR_POWER_DOWN
)
4847 if (netif_running(adapter
->netdev
))
4848 e1000_reinit_locked(adapter
);
4850 e1000_reset(adapter
);
4858 return E1000_SUCCESS
;
4862 e1000_pci_set_mwi(struct e1000_hw
*hw
)
4864 struct e1000_adapter
*adapter
= hw
->back
;
4865 int ret_val
= pci_set_mwi(adapter
->pdev
);
4868 DPRINTK(PROBE
, ERR
, "Error in setting MWI\n");
4872 e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4874 struct e1000_adapter
*adapter
= hw
->back
;
4876 pci_clear_mwi(adapter
->pdev
);
4880 e1000_read_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4882 struct e1000_adapter
*adapter
= hw
->back
;
4884 pci_read_config_word(adapter
->pdev
, reg
, value
);
4888 e1000_write_pci_cfg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4890 struct e1000_adapter
*adapter
= hw
->back
;
4892 pci_write_config_word(adapter
->pdev
, reg
, *value
);
4896 e1000_pcix_get_mmrbc(struct e1000_hw
*hw
)
4898 struct e1000_adapter
*adapter
= hw
->back
;
4899 return pcix_get_mmrbc(adapter
->pdev
);
4903 e1000_pcix_set_mmrbc(struct e1000_hw
*hw
, int mmrbc
)
4905 struct e1000_adapter
*adapter
= hw
->back
;
4906 pcix_set_mmrbc(adapter
->pdev
, mmrbc
);
4910 e1000_read_pcie_cap_reg(struct e1000_hw
*hw
, uint32_t reg
, uint16_t *value
)
4912 struct e1000_adapter
*adapter
= hw
->back
;
4913 uint16_t cap_offset
;
4915 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
4917 return -E1000_ERR_CONFIG
;
4919 pci_read_config_word(adapter
->pdev
, cap_offset
+ reg
, value
);
4921 return E1000_SUCCESS
;
4925 e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, uint32_t value
)
4931 e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
)
4933 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4934 uint32_t ctrl
, rctl
;
4936 e1000_irq_disable(adapter
);
4937 adapter
->vlgrp
= grp
;
4940 /* enable VLAN tag insert/strip */
4941 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4942 ctrl
|= E1000_CTRL_VME
;
4943 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4945 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4946 /* enable VLAN receive filtering */
4947 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4948 rctl
|= E1000_RCTL_VFE
;
4949 rctl
&= ~E1000_RCTL_CFIEN
;
4950 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4951 e1000_update_mng_vlan(adapter
);
4954 /* disable VLAN tag insert/strip */
4955 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
4956 ctrl
&= ~E1000_CTRL_VME
;
4957 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
4959 if (adapter
->hw
.mac_type
!= e1000_ich8lan
) {
4960 /* disable VLAN filtering */
4961 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
4962 rctl
&= ~E1000_RCTL_VFE
;
4963 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
4964 if (adapter
->mng_vlan_id
!=
4965 (uint16_t)E1000_MNG_VLAN_NONE
) {
4966 e1000_vlan_rx_kill_vid(netdev
,
4967 adapter
->mng_vlan_id
);
4968 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4973 e1000_irq_enable(adapter
);
4977 e1000_vlan_rx_add_vid(struct net_device
*netdev
, uint16_t vid
)
4979 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4980 uint32_t vfta
, index
;
4982 if ((adapter
->hw
.mng_cookie
.status
&
4983 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4984 (vid
== adapter
->mng_vlan_id
))
4986 /* add VID to filter table */
4987 index
= (vid
>> 5) & 0x7F;
4988 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
4989 vfta
|= (1 << (vid
& 0x1F));
4990 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
4994 e1000_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
)
4996 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4997 uint32_t vfta
, index
;
4999 e1000_irq_disable(adapter
);
5000 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
5001 e1000_irq_enable(adapter
);
5003 if ((adapter
->hw
.mng_cookie
.status
&
5004 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
5005 (vid
== adapter
->mng_vlan_id
)) {
5006 /* release control to f/w */
5007 e1000_release_hw_control(adapter
);
5011 /* remove VID from filter table */
5012 index
= (vid
>> 5) & 0x7F;
5013 vfta
= E1000_READ_REG_ARRAY(&adapter
->hw
, VFTA
, index
);
5014 vfta
&= ~(1 << (vid
& 0x1F));
5015 e1000_write_vfta(&adapter
->hw
, index
, vfta
);
5019 e1000_restore_vlan(struct e1000_adapter
*adapter
)
5021 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
5023 if (adapter
->vlgrp
) {
5025 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
5026 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
5028 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
5034 e1000_set_spd_dplx(struct e1000_adapter
*adapter
, uint16_t spddplx
)
5036 adapter
->hw
.autoneg
= 0;
5038 /* Fiber NICs only allow 1000 gbps Full duplex */
5039 if ((adapter
->hw
.media_type
== e1000_media_type_fiber
) &&
5040 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
5041 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
5046 case SPEED_10
+ DUPLEX_HALF
:
5047 adapter
->hw
.forced_speed_duplex
= e1000_10_half
;
5049 case SPEED_10
+ DUPLEX_FULL
:
5050 adapter
->hw
.forced_speed_duplex
= e1000_10_full
;
5052 case SPEED_100
+ DUPLEX_HALF
:
5053 adapter
->hw
.forced_speed_duplex
= e1000_100_half
;
5055 case SPEED_100
+ DUPLEX_FULL
:
5056 adapter
->hw
.forced_speed_duplex
= e1000_100_full
;
5058 case SPEED_1000
+ DUPLEX_FULL
:
5059 adapter
->hw
.autoneg
= 1;
5060 adapter
->hw
.autoneg_advertised
= ADVERTISE_1000_FULL
;
5062 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
5064 DPRINTK(PROBE
, ERR
, "Unsupported Speed/Duplex configuration\n");
5071 e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5073 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5074 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5075 uint32_t ctrl
, ctrl_ext
, rctl
, status
;
5076 uint32_t wufc
= adapter
->wol
;
5081 netif_device_detach(netdev
);
5083 if (netif_running(netdev
)) {
5084 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
5085 e1000_down(adapter
);
5089 retval
= pci_save_state(pdev
);
5094 status
= E1000_READ_REG(&adapter
->hw
, STATUS
);
5095 if (status
& E1000_STATUS_LU
)
5096 wufc
&= ~E1000_WUFC_LNKC
;
5099 e1000_setup_rctl(adapter
);
5100 e1000_set_multi(netdev
);
5102 /* turn on all-multi mode if wake on multicast is enabled */
5103 if (wufc
& E1000_WUFC_MC
) {
5104 rctl
= E1000_READ_REG(&adapter
->hw
, RCTL
);
5105 rctl
|= E1000_RCTL_MPE
;
5106 E1000_WRITE_REG(&adapter
->hw
, RCTL
, rctl
);
5109 if (adapter
->hw
.mac_type
>= e1000_82540
) {
5110 ctrl
= E1000_READ_REG(&adapter
->hw
, CTRL
);
5111 /* advertise wake from D3Cold */
5112 #define E1000_CTRL_ADVD3WUC 0x00100000
5113 /* phy power management enable */
5114 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5115 ctrl
|= E1000_CTRL_ADVD3WUC
|
5116 E1000_CTRL_EN_PHY_PWR_MGMT
;
5117 E1000_WRITE_REG(&adapter
->hw
, CTRL
, ctrl
);
5120 if (adapter
->hw
.media_type
== e1000_media_type_fiber
||
5121 adapter
->hw
.media_type
== e1000_media_type_internal_serdes
) {
5122 /* keep the laser running in D3 */
5123 ctrl_ext
= E1000_READ_REG(&adapter
->hw
, CTRL_EXT
);
5124 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
5125 E1000_WRITE_REG(&adapter
->hw
, CTRL_EXT
, ctrl_ext
);
5128 /* Allow time for pending master requests to run */
5129 e1000_disable_pciex_master(&adapter
->hw
);
5131 E1000_WRITE_REG(&adapter
->hw
, WUC
, E1000_WUC_PME_EN
);
5132 E1000_WRITE_REG(&adapter
->hw
, WUFC
, wufc
);
5133 pci_enable_wake(pdev
, PCI_D3hot
, 1);
5134 pci_enable_wake(pdev
, PCI_D3cold
, 1);
5136 E1000_WRITE_REG(&adapter
->hw
, WUC
, 0);
5137 E1000_WRITE_REG(&adapter
->hw
, WUFC
, 0);
5138 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5139 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5142 e1000_release_manageability(adapter
);
5144 /* make sure adapter isn't asleep if manageability is enabled */
5145 if (adapter
->en_mng_pt
) {
5146 pci_enable_wake(pdev
, PCI_D3hot
, 1);
5147 pci_enable_wake(pdev
, PCI_D3cold
, 1);
5150 if (adapter
->hw
.phy_type
== e1000_phy_igp_3
)
5151 e1000_phy_powerdown_workaround(&adapter
->hw
);
5153 if (netif_running(netdev
))
5154 e1000_free_irq(adapter
);
5156 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5157 * would have already happened in close and is redundant. */
5158 e1000_release_hw_control(adapter
);
5160 pci_disable_device(pdev
);
5162 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
5169 e1000_resume(struct pci_dev
*pdev
)
5171 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5172 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5175 pci_set_power_state(pdev
, PCI_D0
);
5176 pci_restore_state(pdev
);
5177 if ((err
= pci_enable_device(pdev
))) {
5178 printk(KERN_ERR
"e1000: Cannot enable PCI device from suspend\n");
5181 pci_set_master(pdev
);
5183 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5184 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5186 if (netif_running(netdev
) && (err
= e1000_request_irq(adapter
)))
5189 e1000_power_up_phy(adapter
);
5190 e1000_reset(adapter
);
5191 E1000_WRITE_REG(&adapter
->hw
, WUS
, ~0);
5193 e1000_init_manageability(adapter
);
5195 if (netif_running(netdev
))
5198 netif_device_attach(netdev
);
5200 /* If the controller is 82573 and f/w is AMT, do not set
5201 * DRV_LOAD until the interface is up. For all other cases,
5202 * let the f/w know that the h/w is now under the control
5204 if (adapter
->hw
.mac_type
!= e1000_82573
||
5205 !e1000_check_mng_mode(&adapter
->hw
))
5206 e1000_get_hw_control(adapter
);
5212 static void e1000_shutdown(struct pci_dev
*pdev
)
5214 e1000_suspend(pdev
, PMSG_SUSPEND
);
5217 #ifdef CONFIG_NET_POLL_CONTROLLER
5219 * Polling 'interrupt' - used by things like netconsole to send skbs
5220 * without having to re-enable interrupts. It's not called while
5221 * the interrupt routine is executing.
5224 e1000_netpoll(struct net_device
*netdev
)
5226 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5228 disable_irq(adapter
->pdev
->irq
);
5229 e1000_intr(adapter
->pdev
->irq
, netdev
);
5230 e1000_clean_tx_irq(adapter
, adapter
->tx_ring
);
5231 #ifndef CONFIG_E1000_NAPI
5232 adapter
->clean_rx(adapter
, adapter
->rx_ring
);
5234 enable_irq(adapter
->pdev
->irq
);
5239 * e1000_io_error_detected - called when PCI error is detected
5240 * @pdev: Pointer to PCI device
5241 * @state: The current pci conneection state
5243 * This function is called after a PCI bus error affecting
5244 * this device has been detected.
5246 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
, pci_channel_state_t state
)
5248 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5249 struct e1000_adapter
*adapter
= netdev
->priv
;
5251 netif_device_detach(netdev
);
5253 if (netif_running(netdev
))
5254 e1000_down(adapter
);
5255 pci_disable_device(pdev
);
5257 /* Request a slot slot reset. */
5258 return PCI_ERS_RESULT_NEED_RESET
;
5262 * e1000_io_slot_reset - called after the pci bus has been reset.
5263 * @pdev: Pointer to PCI device
5265 * Restart the card from scratch, as if from a cold-boot. Implementation
5266 * resembles the first-half of the e1000_resume routine.
5268 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
5270 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5271 struct e1000_adapter
*adapter
= netdev
->priv
;
5273 if (pci_enable_device(pdev
)) {
5274 printk(KERN_ERR
"e1000: Cannot re-enable PCI device after reset.\n");
5275 return PCI_ERS_RESULT_DISCONNECT
;
5277 pci_set_master(pdev
);
5279 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5280 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5282 e1000_reset(adapter
);
5283 E1000_WRITE_REG(&adapter
->hw
, WUS
, ~0);
5285 return PCI_ERS_RESULT_RECOVERED
;
5289 * e1000_io_resume - called when traffic can start flowing again.
5290 * @pdev: Pointer to PCI device
5292 * This callback is called when the error recovery driver tells us that
5293 * its OK to resume normal operation. Implementation resembles the
5294 * second-half of the e1000_resume routine.
5296 static void e1000_io_resume(struct pci_dev
*pdev
)
5298 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5299 struct e1000_adapter
*adapter
= netdev
->priv
;
5301 e1000_init_manageability(adapter
);
5303 if (netif_running(netdev
)) {
5304 if (e1000_up(adapter
)) {
5305 printk("e1000: can't bring device back up after reset\n");
5310 netif_device_attach(netdev
);
5312 /* If the controller is 82573 and f/w is AMT, do not set
5313 * DRV_LOAD until the interface is up. For all other cases,
5314 * let the f/w know that the h/w is now under the control
5316 if (adapter
->hw
.mac_type
!= e1000_82573
||
5317 !e1000_check_mng_mode(&adapter
->hw
))
5318 e1000_get_hw_control(adapter
);