perf_counter: powerpc: set sample enable bit for marked instruction events
[linux-2.6/mini2440.git] / mm / mmap.c
blob1df63f614f97fc08d57abca4e9172e517c5b5661
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/ima.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_counter.h>
33 #include <asm/uaccess.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlb.h>
36 #include <asm/mmu_context.h>
38 #include "internal.h"
40 #ifndef arch_mmap_check
41 #define arch_mmap_check(addr, len, flags) (0)
42 #endif
44 #ifndef arch_rebalance_pgtables
45 #define arch_rebalance_pgtables(addr, len) (addr)
46 #endif
48 static void unmap_region(struct mm_struct *mm,
49 struct vm_area_struct *vma, struct vm_area_struct *prev,
50 unsigned long start, unsigned long end);
53 * WARNING: the debugging will use recursive algorithms so never enable this
54 * unless you know what you are doing.
56 #undef DEBUG_MM_RB
58 /* description of effects of mapping type and prot in current implementation.
59 * this is due to the limited x86 page protection hardware. The expected
60 * behavior is in parens:
62 * map_type prot
63 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
64 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
65 * w: (no) no w: (no) no w: (yes) yes w: (no) no
66 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
69 * w: (no) no w: (no) no w: (copy) copy w: (no) no
70 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 pgprot_t protection_map[16] = {
74 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
75 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 return __pgprot(pgprot_val(protection_map[vm_flags &
81 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
82 pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 EXPORT_SYMBOL(vm_get_page_prot);
86 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
87 int sysctl_overcommit_ratio = 50; /* default is 50% */
88 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
89 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
92 * Check that a process has enough memory to allocate a new virtual
93 * mapping. 0 means there is enough memory for the allocation to
94 * succeed and -ENOMEM implies there is not.
96 * We currently support three overcommit policies, which are set via the
97 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
99 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
100 * Additional code 2002 Jul 20 by Robert Love.
102 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
104 * Note this is a helper function intended to be used by LSMs which
105 * wish to use this logic.
107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
109 unsigned long free, allowed;
111 vm_acct_memory(pages);
114 * Sometimes we want to use more memory than we have
116 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
117 return 0;
119 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
120 unsigned long n;
122 free = global_page_state(NR_FILE_PAGES);
123 free += nr_swap_pages;
126 * Any slabs which are created with the
127 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
128 * which are reclaimable, under pressure. The dentry
129 * cache and most inode caches should fall into this
131 free += global_page_state(NR_SLAB_RECLAIMABLE);
134 * Leave the last 3% for root
136 if (!cap_sys_admin)
137 free -= free / 32;
139 if (free > pages)
140 return 0;
143 * nr_free_pages() is very expensive on large systems,
144 * only call if we're about to fail.
146 n = nr_free_pages();
149 * Leave reserved pages. The pages are not for anonymous pages.
151 if (n <= totalreserve_pages)
152 goto error;
153 else
154 n -= totalreserve_pages;
157 * Leave the last 3% for root
159 if (!cap_sys_admin)
160 n -= n / 32;
161 free += n;
163 if (free > pages)
164 return 0;
166 goto error;
169 allowed = (totalram_pages - hugetlb_total_pages())
170 * sysctl_overcommit_ratio / 100;
172 * Leave the last 3% for root
174 if (!cap_sys_admin)
175 allowed -= allowed / 32;
176 allowed += total_swap_pages;
178 /* Don't let a single process grow too big:
179 leave 3% of the size of this process for other processes */
180 if (mm)
181 allowed -= mm->total_vm / 32;
184 * cast `allowed' as a signed long because vm_committed_space
185 * sometimes has a negative value
187 if (atomic_long_read(&vm_committed_space) < (long)allowed)
188 return 0;
189 error:
190 vm_unacct_memory(pages);
192 return -ENOMEM;
196 * Requires inode->i_mapping->i_mmap_lock
198 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
199 struct file *file, struct address_space *mapping)
201 if (vma->vm_flags & VM_DENYWRITE)
202 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
203 if (vma->vm_flags & VM_SHARED)
204 mapping->i_mmap_writable--;
206 flush_dcache_mmap_lock(mapping);
207 if (unlikely(vma->vm_flags & VM_NONLINEAR))
208 list_del_init(&vma->shared.vm_set.list);
209 else
210 vma_prio_tree_remove(vma, &mapping->i_mmap);
211 flush_dcache_mmap_unlock(mapping);
215 * Unlink a file-based vm structure from its prio_tree, to hide
216 * vma from rmap and vmtruncate before freeing its page tables.
218 void unlink_file_vma(struct vm_area_struct *vma)
220 struct file *file = vma->vm_file;
222 if (file) {
223 struct address_space *mapping = file->f_mapping;
224 spin_lock(&mapping->i_mmap_lock);
225 __remove_shared_vm_struct(vma, file, mapping);
226 spin_unlock(&mapping->i_mmap_lock);
231 * Close a vm structure and free it, returning the next.
233 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
235 struct vm_area_struct *next = vma->vm_next;
237 might_sleep();
238 if (vma->vm_ops && vma->vm_ops->close)
239 vma->vm_ops->close(vma);
240 if (vma->vm_file) {
241 fput(vma->vm_file);
242 if (vma->vm_flags & VM_EXECUTABLE)
243 removed_exe_file_vma(vma->vm_mm);
245 mpol_put(vma_policy(vma));
246 kmem_cache_free(vm_area_cachep, vma);
247 return next;
250 SYSCALL_DEFINE1(brk, unsigned long, brk)
252 unsigned long rlim, retval;
253 unsigned long newbrk, oldbrk;
254 struct mm_struct *mm = current->mm;
255 unsigned long min_brk;
257 down_write(&mm->mmap_sem);
259 #ifdef CONFIG_COMPAT_BRK
260 min_brk = mm->end_code;
261 #else
262 min_brk = mm->start_brk;
263 #endif
264 if (brk < min_brk)
265 goto out;
268 * Check against rlimit here. If this check is done later after the test
269 * of oldbrk with newbrk then it can escape the test and let the data
270 * segment grow beyond its set limit the in case where the limit is
271 * not page aligned -Ram Gupta
273 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
274 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
275 (mm->end_data - mm->start_data) > rlim)
276 goto out;
278 newbrk = PAGE_ALIGN(brk);
279 oldbrk = PAGE_ALIGN(mm->brk);
280 if (oldbrk == newbrk)
281 goto set_brk;
283 /* Always allow shrinking brk. */
284 if (brk <= mm->brk) {
285 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
286 goto set_brk;
287 goto out;
290 /* Check against existing mmap mappings. */
291 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
292 goto out;
294 /* Ok, looks good - let it rip. */
295 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
296 goto out;
297 set_brk:
298 mm->brk = brk;
299 out:
300 retval = mm->brk;
301 up_write(&mm->mmap_sem);
302 return retval;
305 #ifdef DEBUG_MM_RB
306 static int browse_rb(struct rb_root *root)
308 int i = 0, j;
309 struct rb_node *nd, *pn = NULL;
310 unsigned long prev = 0, pend = 0;
312 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
313 struct vm_area_struct *vma;
314 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
315 if (vma->vm_start < prev)
316 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
317 if (vma->vm_start < pend)
318 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
319 if (vma->vm_start > vma->vm_end)
320 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
321 i++;
322 pn = nd;
323 prev = vma->vm_start;
324 pend = vma->vm_end;
326 j = 0;
327 for (nd = pn; nd; nd = rb_prev(nd)) {
328 j++;
330 if (i != j)
331 printk("backwards %d, forwards %d\n", j, i), i = 0;
332 return i;
335 void validate_mm(struct mm_struct *mm)
337 int bug = 0;
338 int i = 0;
339 struct vm_area_struct *tmp = mm->mmap;
340 while (tmp) {
341 tmp = tmp->vm_next;
342 i++;
344 if (i != mm->map_count)
345 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
346 i = browse_rb(&mm->mm_rb);
347 if (i != mm->map_count)
348 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
349 BUG_ON(bug);
351 #else
352 #define validate_mm(mm) do { } while (0)
353 #endif
355 static struct vm_area_struct *
356 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
357 struct vm_area_struct **pprev, struct rb_node ***rb_link,
358 struct rb_node ** rb_parent)
360 struct vm_area_struct * vma;
361 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
363 __rb_link = &mm->mm_rb.rb_node;
364 rb_prev = __rb_parent = NULL;
365 vma = NULL;
367 while (*__rb_link) {
368 struct vm_area_struct *vma_tmp;
370 __rb_parent = *__rb_link;
371 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
373 if (vma_tmp->vm_end > addr) {
374 vma = vma_tmp;
375 if (vma_tmp->vm_start <= addr)
376 break;
377 __rb_link = &__rb_parent->rb_left;
378 } else {
379 rb_prev = __rb_parent;
380 __rb_link = &__rb_parent->rb_right;
384 *pprev = NULL;
385 if (rb_prev)
386 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
387 *rb_link = __rb_link;
388 *rb_parent = __rb_parent;
389 return vma;
392 static inline void
393 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
394 struct vm_area_struct *prev, struct rb_node *rb_parent)
396 if (prev) {
397 vma->vm_next = prev->vm_next;
398 prev->vm_next = vma;
399 } else {
400 mm->mmap = vma;
401 if (rb_parent)
402 vma->vm_next = rb_entry(rb_parent,
403 struct vm_area_struct, vm_rb);
404 else
405 vma->vm_next = NULL;
409 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
410 struct rb_node **rb_link, struct rb_node *rb_parent)
412 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
413 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
416 static void __vma_link_file(struct vm_area_struct *vma)
418 struct file *file;
420 file = vma->vm_file;
421 if (file) {
422 struct address_space *mapping = file->f_mapping;
424 if (vma->vm_flags & VM_DENYWRITE)
425 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
426 if (vma->vm_flags & VM_SHARED)
427 mapping->i_mmap_writable++;
429 flush_dcache_mmap_lock(mapping);
430 if (unlikely(vma->vm_flags & VM_NONLINEAR))
431 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
432 else
433 vma_prio_tree_insert(vma, &mapping->i_mmap);
434 flush_dcache_mmap_unlock(mapping);
438 static void
439 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
440 struct vm_area_struct *prev, struct rb_node **rb_link,
441 struct rb_node *rb_parent)
443 __vma_link_list(mm, vma, prev, rb_parent);
444 __vma_link_rb(mm, vma, rb_link, rb_parent);
445 __anon_vma_link(vma);
448 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
449 struct vm_area_struct *prev, struct rb_node **rb_link,
450 struct rb_node *rb_parent)
452 struct address_space *mapping = NULL;
454 if (vma->vm_file)
455 mapping = vma->vm_file->f_mapping;
457 if (mapping) {
458 spin_lock(&mapping->i_mmap_lock);
459 vma->vm_truncate_count = mapping->truncate_count;
461 anon_vma_lock(vma);
463 __vma_link(mm, vma, prev, rb_link, rb_parent);
464 __vma_link_file(vma);
466 anon_vma_unlock(vma);
467 if (mapping)
468 spin_unlock(&mapping->i_mmap_lock);
470 mm->map_count++;
471 validate_mm(mm);
475 * Helper for vma_adjust in the split_vma insert case:
476 * insert vm structure into list and rbtree and anon_vma,
477 * but it has already been inserted into prio_tree earlier.
479 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
481 struct vm_area_struct *__vma, *prev;
482 struct rb_node **rb_link, *rb_parent;
484 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
485 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
486 __vma_link(mm, vma, prev, rb_link, rb_parent);
487 mm->map_count++;
490 static inline void
491 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
492 struct vm_area_struct *prev)
494 prev->vm_next = vma->vm_next;
495 rb_erase(&vma->vm_rb, &mm->mm_rb);
496 if (mm->mmap_cache == vma)
497 mm->mmap_cache = prev;
501 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
502 * is already present in an i_mmap tree without adjusting the tree.
503 * The following helper function should be used when such adjustments
504 * are necessary. The "insert" vma (if any) is to be inserted
505 * before we drop the necessary locks.
507 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
508 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
510 struct mm_struct *mm = vma->vm_mm;
511 struct vm_area_struct *next = vma->vm_next;
512 struct vm_area_struct *importer = NULL;
513 struct address_space *mapping = NULL;
514 struct prio_tree_root *root = NULL;
515 struct file *file = vma->vm_file;
516 struct anon_vma *anon_vma = NULL;
517 long adjust_next = 0;
518 int remove_next = 0;
520 if (next && !insert) {
521 if (end >= next->vm_end) {
523 * vma expands, overlapping all the next, and
524 * perhaps the one after too (mprotect case 6).
526 again: remove_next = 1 + (end > next->vm_end);
527 end = next->vm_end;
528 anon_vma = next->anon_vma;
529 importer = vma;
530 } else if (end > next->vm_start) {
532 * vma expands, overlapping part of the next:
533 * mprotect case 5 shifting the boundary up.
535 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
536 anon_vma = next->anon_vma;
537 importer = vma;
538 } else if (end < vma->vm_end) {
540 * vma shrinks, and !insert tells it's not
541 * split_vma inserting another: so it must be
542 * mprotect case 4 shifting the boundary down.
544 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
545 anon_vma = next->anon_vma;
546 importer = next;
550 if (file) {
551 mapping = file->f_mapping;
552 if (!(vma->vm_flags & VM_NONLINEAR))
553 root = &mapping->i_mmap;
554 spin_lock(&mapping->i_mmap_lock);
555 if (importer &&
556 vma->vm_truncate_count != next->vm_truncate_count) {
558 * unmap_mapping_range might be in progress:
559 * ensure that the expanding vma is rescanned.
561 importer->vm_truncate_count = 0;
563 if (insert) {
564 insert->vm_truncate_count = vma->vm_truncate_count;
566 * Put into prio_tree now, so instantiated pages
567 * are visible to arm/parisc __flush_dcache_page
568 * throughout; but we cannot insert into address
569 * space until vma start or end is updated.
571 __vma_link_file(insert);
576 * When changing only vma->vm_end, we don't really need
577 * anon_vma lock: but is that case worth optimizing out?
579 if (vma->anon_vma)
580 anon_vma = vma->anon_vma;
581 if (anon_vma) {
582 spin_lock(&anon_vma->lock);
584 * Easily overlooked: when mprotect shifts the boundary,
585 * make sure the expanding vma has anon_vma set if the
586 * shrinking vma had, to cover any anon pages imported.
588 if (importer && !importer->anon_vma) {
589 importer->anon_vma = anon_vma;
590 __anon_vma_link(importer);
594 if (root) {
595 flush_dcache_mmap_lock(mapping);
596 vma_prio_tree_remove(vma, root);
597 if (adjust_next)
598 vma_prio_tree_remove(next, root);
601 vma->vm_start = start;
602 vma->vm_end = end;
603 vma->vm_pgoff = pgoff;
604 if (adjust_next) {
605 next->vm_start += adjust_next << PAGE_SHIFT;
606 next->vm_pgoff += adjust_next;
609 if (root) {
610 if (adjust_next)
611 vma_prio_tree_insert(next, root);
612 vma_prio_tree_insert(vma, root);
613 flush_dcache_mmap_unlock(mapping);
616 if (remove_next) {
618 * vma_merge has merged next into vma, and needs
619 * us to remove next before dropping the locks.
621 __vma_unlink(mm, next, vma);
622 if (file)
623 __remove_shared_vm_struct(next, file, mapping);
624 if (next->anon_vma)
625 __anon_vma_merge(vma, next);
626 } else if (insert) {
628 * split_vma has split insert from vma, and needs
629 * us to insert it before dropping the locks
630 * (it may either follow vma or precede it).
632 __insert_vm_struct(mm, insert);
635 if (anon_vma)
636 spin_unlock(&anon_vma->lock);
637 if (mapping)
638 spin_unlock(&mapping->i_mmap_lock);
640 if (remove_next) {
641 if (file) {
642 fput(file);
643 if (next->vm_flags & VM_EXECUTABLE)
644 removed_exe_file_vma(mm);
646 mm->map_count--;
647 mpol_put(vma_policy(next));
648 kmem_cache_free(vm_area_cachep, next);
650 * In mprotect's case 6 (see comments on vma_merge),
651 * we must remove another next too. It would clutter
652 * up the code too much to do both in one go.
654 if (remove_next == 2) {
655 next = vma->vm_next;
656 goto again;
660 validate_mm(mm);
663 /* Flags that can be inherited from an existing mapping when merging */
664 #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR)
667 * If the vma has a ->close operation then the driver probably needs to release
668 * per-vma resources, so we don't attempt to merge those.
670 static inline int is_mergeable_vma(struct vm_area_struct *vma,
671 struct file *file, unsigned long vm_flags)
673 if ((vma->vm_flags ^ vm_flags) & ~VM_MERGEABLE_FLAGS)
674 return 0;
675 if (vma->vm_file != file)
676 return 0;
677 if (vma->vm_ops && vma->vm_ops->close)
678 return 0;
679 return 1;
682 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
683 struct anon_vma *anon_vma2)
685 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
689 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
690 * in front of (at a lower virtual address and file offset than) the vma.
692 * We cannot merge two vmas if they have differently assigned (non-NULL)
693 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
695 * We don't check here for the merged mmap wrapping around the end of pagecache
696 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
697 * wrap, nor mmaps which cover the final page at index -1UL.
699 static int
700 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
701 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
703 if (is_mergeable_vma(vma, file, vm_flags) &&
704 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
705 if (vma->vm_pgoff == vm_pgoff)
706 return 1;
708 return 0;
712 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
713 * beyond (at a higher virtual address and file offset than) the vma.
715 * We cannot merge two vmas if they have differently assigned (non-NULL)
716 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
718 static int
719 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
720 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
722 if (is_mergeable_vma(vma, file, vm_flags) &&
723 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
724 pgoff_t vm_pglen;
725 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
726 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
727 return 1;
729 return 0;
733 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
734 * whether that can be merged with its predecessor or its successor.
735 * Or both (it neatly fills a hole).
737 * In most cases - when called for mmap, brk or mremap - [addr,end) is
738 * certain not to be mapped by the time vma_merge is called; but when
739 * called for mprotect, it is certain to be already mapped (either at
740 * an offset within prev, or at the start of next), and the flags of
741 * this area are about to be changed to vm_flags - and the no-change
742 * case has already been eliminated.
744 * The following mprotect cases have to be considered, where AAAA is
745 * the area passed down from mprotect_fixup, never extending beyond one
746 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
748 * AAAA AAAA AAAA AAAA
749 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
750 * cannot merge might become might become might become
751 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
752 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
753 * mremap move: PPPPNNNNNNNN 8
754 * AAAA
755 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
756 * might become case 1 below case 2 below case 3 below
758 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
759 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
761 struct vm_area_struct *vma_merge(struct mm_struct *mm,
762 struct vm_area_struct *prev, unsigned long addr,
763 unsigned long end, unsigned long vm_flags,
764 struct anon_vma *anon_vma, struct file *file,
765 pgoff_t pgoff, struct mempolicy *policy)
767 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
768 struct vm_area_struct *area, *next;
771 * We later require that vma->vm_flags == vm_flags,
772 * so this tests vma->vm_flags & VM_SPECIAL, too.
774 if (vm_flags & VM_SPECIAL)
775 return NULL;
777 if (prev)
778 next = prev->vm_next;
779 else
780 next = mm->mmap;
781 area = next;
782 if (next && next->vm_end == end) /* cases 6, 7, 8 */
783 next = next->vm_next;
786 * Can it merge with the predecessor?
788 if (prev && prev->vm_end == addr &&
789 mpol_equal(vma_policy(prev), policy) &&
790 can_vma_merge_after(prev, vm_flags,
791 anon_vma, file, pgoff)) {
793 * OK, it can. Can we now merge in the successor as well?
795 if (next && end == next->vm_start &&
796 mpol_equal(policy, vma_policy(next)) &&
797 can_vma_merge_before(next, vm_flags,
798 anon_vma, file, pgoff+pglen) &&
799 is_mergeable_anon_vma(prev->anon_vma,
800 next->anon_vma)) {
801 /* cases 1, 6 */
802 vma_adjust(prev, prev->vm_start,
803 next->vm_end, prev->vm_pgoff, NULL);
804 } else /* cases 2, 5, 7 */
805 vma_adjust(prev, prev->vm_start,
806 end, prev->vm_pgoff, NULL);
807 return prev;
811 * Can this new request be merged in front of next?
813 if (next && end == next->vm_start &&
814 mpol_equal(policy, vma_policy(next)) &&
815 can_vma_merge_before(next, vm_flags,
816 anon_vma, file, pgoff+pglen)) {
817 if (prev && addr < prev->vm_end) /* case 4 */
818 vma_adjust(prev, prev->vm_start,
819 addr, prev->vm_pgoff, NULL);
820 else /* cases 3, 8 */
821 vma_adjust(area, addr, next->vm_end,
822 next->vm_pgoff - pglen, NULL);
823 return area;
826 return NULL;
830 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
831 * neighbouring vmas for a suitable anon_vma, before it goes off
832 * to allocate a new anon_vma. It checks because a repetitive
833 * sequence of mprotects and faults may otherwise lead to distinct
834 * anon_vmas being allocated, preventing vma merge in subsequent
835 * mprotect.
837 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
839 struct vm_area_struct *near;
840 unsigned long vm_flags;
842 near = vma->vm_next;
843 if (!near)
844 goto try_prev;
847 * Since only mprotect tries to remerge vmas, match flags
848 * which might be mprotected into each other later on.
849 * Neither mlock nor madvise tries to remerge at present,
850 * so leave their flags as obstructing a merge.
852 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
853 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
855 if (near->anon_vma && vma->vm_end == near->vm_start &&
856 mpol_equal(vma_policy(vma), vma_policy(near)) &&
857 can_vma_merge_before(near, vm_flags,
858 NULL, vma->vm_file, vma->vm_pgoff +
859 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
860 return near->anon_vma;
861 try_prev:
863 * It is potentially slow to have to call find_vma_prev here.
864 * But it's only on the first write fault on the vma, not
865 * every time, and we could devise a way to avoid it later
866 * (e.g. stash info in next's anon_vma_node when assigning
867 * an anon_vma, or when trying vma_merge). Another time.
869 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
870 if (!near)
871 goto none;
873 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
874 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
876 if (near->anon_vma && near->vm_end == vma->vm_start &&
877 mpol_equal(vma_policy(near), vma_policy(vma)) &&
878 can_vma_merge_after(near, vm_flags,
879 NULL, vma->vm_file, vma->vm_pgoff))
880 return near->anon_vma;
881 none:
883 * There's no absolute need to look only at touching neighbours:
884 * we could search further afield for "compatible" anon_vmas.
885 * But it would probably just be a waste of time searching,
886 * or lead to too many vmas hanging off the same anon_vma.
887 * We're trying to allow mprotect remerging later on,
888 * not trying to minimize memory used for anon_vmas.
890 return NULL;
893 #ifdef CONFIG_PROC_FS
894 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
895 struct file *file, long pages)
897 const unsigned long stack_flags
898 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
900 if (file) {
901 mm->shared_vm += pages;
902 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
903 mm->exec_vm += pages;
904 } else if (flags & stack_flags)
905 mm->stack_vm += pages;
906 if (flags & (VM_RESERVED|VM_IO))
907 mm->reserved_vm += pages;
909 #endif /* CONFIG_PROC_FS */
912 * The caller must hold down_write(current->mm->mmap_sem).
915 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
916 unsigned long len, unsigned long prot,
917 unsigned long flags, unsigned long pgoff)
919 struct mm_struct * mm = current->mm;
920 struct inode *inode;
921 unsigned int vm_flags;
922 int error;
923 unsigned long reqprot = prot;
926 * Does the application expect PROT_READ to imply PROT_EXEC?
928 * (the exception is when the underlying filesystem is noexec
929 * mounted, in which case we dont add PROT_EXEC.)
931 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
932 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
933 prot |= PROT_EXEC;
935 if (!len)
936 return -EINVAL;
938 if (!(flags & MAP_FIXED))
939 addr = round_hint_to_min(addr);
941 error = arch_mmap_check(addr, len, flags);
942 if (error)
943 return error;
945 /* Careful about overflows.. */
946 len = PAGE_ALIGN(len);
947 if (!len || len > TASK_SIZE)
948 return -ENOMEM;
950 /* offset overflow? */
951 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
952 return -EOVERFLOW;
954 /* Too many mappings? */
955 if (mm->map_count > sysctl_max_map_count)
956 return -ENOMEM;
958 /* Obtain the address to map to. we verify (or select) it and ensure
959 * that it represents a valid section of the address space.
961 addr = get_unmapped_area(file, addr, len, pgoff, flags);
962 if (addr & ~PAGE_MASK)
963 return addr;
965 /* Do simple checking here so the lower-level routines won't have
966 * to. we assume access permissions have been handled by the open
967 * of the memory object, so we don't do any here.
969 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
970 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
972 if (flags & MAP_LOCKED) {
973 if (!can_do_mlock())
974 return -EPERM;
975 vm_flags |= VM_LOCKED;
978 /* mlock MCL_FUTURE? */
979 if (vm_flags & VM_LOCKED) {
980 unsigned long locked, lock_limit;
981 locked = len >> PAGE_SHIFT;
982 locked += mm->locked_vm;
983 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
984 lock_limit >>= PAGE_SHIFT;
985 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
986 return -EAGAIN;
989 inode = file ? file->f_path.dentry->d_inode : NULL;
991 if (file) {
992 switch (flags & MAP_TYPE) {
993 case MAP_SHARED:
994 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
995 return -EACCES;
998 * Make sure we don't allow writing to an append-only
999 * file..
1001 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1002 return -EACCES;
1005 * Make sure there are no mandatory locks on the file.
1007 if (locks_verify_locked(inode))
1008 return -EAGAIN;
1010 vm_flags |= VM_SHARED | VM_MAYSHARE;
1011 if (!(file->f_mode & FMODE_WRITE))
1012 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1014 /* fall through */
1015 case MAP_PRIVATE:
1016 if (!(file->f_mode & FMODE_READ))
1017 return -EACCES;
1018 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1019 if (vm_flags & VM_EXEC)
1020 return -EPERM;
1021 vm_flags &= ~VM_MAYEXEC;
1024 if (!file->f_op || !file->f_op->mmap)
1025 return -ENODEV;
1026 break;
1028 default:
1029 return -EINVAL;
1031 } else {
1032 switch (flags & MAP_TYPE) {
1033 case MAP_SHARED:
1035 * Ignore pgoff.
1037 pgoff = 0;
1038 vm_flags |= VM_SHARED | VM_MAYSHARE;
1039 break;
1040 case MAP_PRIVATE:
1042 * Set pgoff according to addr for anon_vma.
1044 pgoff = addr >> PAGE_SHIFT;
1045 break;
1046 default:
1047 return -EINVAL;
1051 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1052 if (error)
1053 return error;
1054 error = ima_file_mmap(file, prot);
1055 if (error)
1056 return error;
1058 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1060 EXPORT_SYMBOL(do_mmap_pgoff);
1063 * Some shared mappigns will want the pages marked read-only
1064 * to track write events. If so, we'll downgrade vm_page_prot
1065 * to the private version (using protection_map[] without the
1066 * VM_SHARED bit).
1068 int vma_wants_writenotify(struct vm_area_struct *vma)
1070 unsigned int vm_flags = vma->vm_flags;
1072 /* If it was private or non-writable, the write bit is already clear */
1073 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1074 return 0;
1076 /* The backer wishes to know when pages are first written to? */
1077 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1078 return 1;
1080 /* The open routine did something to the protections already? */
1081 if (pgprot_val(vma->vm_page_prot) !=
1082 pgprot_val(vm_get_page_prot(vm_flags)))
1083 return 0;
1085 /* Specialty mapping? */
1086 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1087 return 0;
1089 /* Can the mapping track the dirty pages? */
1090 return vma->vm_file && vma->vm_file->f_mapping &&
1091 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1095 * We account for memory if it's a private writeable mapping,
1096 * not hugepages and VM_NORESERVE wasn't set.
1098 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1101 * hugetlb has its own accounting separate from the core VM
1102 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1104 if (file && is_file_hugepages(file))
1105 return 0;
1107 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1110 unsigned long mmap_region(struct file *file, unsigned long addr,
1111 unsigned long len, unsigned long flags,
1112 unsigned int vm_flags, unsigned long pgoff)
1114 struct mm_struct *mm = current->mm;
1115 struct vm_area_struct *vma, *prev;
1116 int correct_wcount = 0;
1117 int error;
1118 struct rb_node **rb_link, *rb_parent;
1119 unsigned long charged = 0;
1120 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1122 /* Clear old maps */
1123 error = -ENOMEM;
1124 munmap_back:
1125 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1126 if (vma && vma->vm_start < addr + len) {
1127 if (do_munmap(mm, addr, len))
1128 return -ENOMEM;
1129 goto munmap_back;
1132 /* Check against address space limit. */
1133 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1134 return -ENOMEM;
1137 * Set 'VM_NORESERVE' if we should not account for the
1138 * memory use of this mapping.
1140 if ((flags & MAP_NORESERVE)) {
1141 /* We honor MAP_NORESERVE if allowed to overcommit */
1142 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1143 vm_flags |= VM_NORESERVE;
1145 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1146 if (file && is_file_hugepages(file))
1147 vm_flags |= VM_NORESERVE;
1151 * Private writable mapping: check memory availability
1153 if (accountable_mapping(file, vm_flags)) {
1154 charged = len >> PAGE_SHIFT;
1155 if (security_vm_enough_memory(charged))
1156 return -ENOMEM;
1157 vm_flags |= VM_ACCOUNT;
1161 * Can we just expand an old mapping?
1163 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1164 if (vma)
1165 goto out;
1168 * Determine the object being mapped and call the appropriate
1169 * specific mapper. the address has already been validated, but
1170 * not unmapped, but the maps are removed from the list.
1172 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1173 if (!vma) {
1174 error = -ENOMEM;
1175 goto unacct_error;
1178 vma->vm_mm = mm;
1179 vma->vm_start = addr;
1180 vma->vm_end = addr + len;
1181 vma->vm_flags = vm_flags;
1182 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1183 vma->vm_pgoff = pgoff;
1185 if (file) {
1186 error = -EINVAL;
1187 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1188 goto free_vma;
1189 if (vm_flags & VM_DENYWRITE) {
1190 error = deny_write_access(file);
1191 if (error)
1192 goto free_vma;
1193 correct_wcount = 1;
1195 vma->vm_file = file;
1196 get_file(file);
1197 error = file->f_op->mmap(file, vma);
1198 if (error)
1199 goto unmap_and_free_vma;
1200 if (vm_flags & VM_EXECUTABLE)
1201 added_exe_file_vma(mm);
1202 } else if (vm_flags & VM_SHARED) {
1203 error = shmem_zero_setup(vma);
1204 if (error)
1205 goto free_vma;
1208 /* Can addr have changed??
1210 * Answer: Yes, several device drivers can do it in their
1211 * f_op->mmap method. -DaveM
1213 addr = vma->vm_start;
1214 pgoff = vma->vm_pgoff;
1215 vm_flags = vma->vm_flags;
1217 if (vma_wants_writenotify(vma))
1218 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1220 vma_link(mm, vma, prev, rb_link, rb_parent);
1221 file = vma->vm_file;
1223 /* Once vma denies write, undo our temporary denial count */
1224 if (correct_wcount)
1225 atomic_inc(&inode->i_writecount);
1226 out:
1227 if (vm_flags & VM_EXEC)
1228 perf_counter_mmap(addr, len, pgoff, file);
1230 mm->total_vm += len >> PAGE_SHIFT;
1231 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1232 if (vm_flags & VM_LOCKED) {
1234 * makes pages present; downgrades, drops, reacquires mmap_sem
1236 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1237 if (nr_pages < 0)
1238 return nr_pages; /* vma gone! */
1239 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1240 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1241 make_pages_present(addr, addr + len);
1242 return addr;
1244 unmap_and_free_vma:
1245 if (correct_wcount)
1246 atomic_inc(&inode->i_writecount);
1247 vma->vm_file = NULL;
1248 fput(file);
1250 /* Undo any partial mapping done by a device driver. */
1251 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1252 charged = 0;
1253 free_vma:
1254 kmem_cache_free(vm_area_cachep, vma);
1255 unacct_error:
1256 if (charged)
1257 vm_unacct_memory(charged);
1258 return error;
1261 /* Get an address range which is currently unmapped.
1262 * For shmat() with addr=0.
1264 * Ugly calling convention alert:
1265 * Return value with the low bits set means error value,
1266 * ie
1267 * if (ret & ~PAGE_MASK)
1268 * error = ret;
1270 * This function "knows" that -ENOMEM has the bits set.
1272 #ifndef HAVE_ARCH_UNMAPPED_AREA
1273 unsigned long
1274 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1275 unsigned long len, unsigned long pgoff, unsigned long flags)
1277 struct mm_struct *mm = current->mm;
1278 struct vm_area_struct *vma;
1279 unsigned long start_addr;
1281 if (len > TASK_SIZE)
1282 return -ENOMEM;
1284 if (flags & MAP_FIXED)
1285 return addr;
1287 if (addr) {
1288 addr = PAGE_ALIGN(addr);
1289 vma = find_vma(mm, addr);
1290 if (TASK_SIZE - len >= addr &&
1291 (!vma || addr + len <= vma->vm_start))
1292 return addr;
1294 if (len > mm->cached_hole_size) {
1295 start_addr = addr = mm->free_area_cache;
1296 } else {
1297 start_addr = addr = TASK_UNMAPPED_BASE;
1298 mm->cached_hole_size = 0;
1301 full_search:
1302 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1303 /* At this point: (!vma || addr < vma->vm_end). */
1304 if (TASK_SIZE - len < addr) {
1306 * Start a new search - just in case we missed
1307 * some holes.
1309 if (start_addr != TASK_UNMAPPED_BASE) {
1310 addr = TASK_UNMAPPED_BASE;
1311 start_addr = addr;
1312 mm->cached_hole_size = 0;
1313 goto full_search;
1315 return -ENOMEM;
1317 if (!vma || addr + len <= vma->vm_start) {
1319 * Remember the place where we stopped the search:
1321 mm->free_area_cache = addr + len;
1322 return addr;
1324 if (addr + mm->cached_hole_size < vma->vm_start)
1325 mm->cached_hole_size = vma->vm_start - addr;
1326 addr = vma->vm_end;
1329 #endif
1331 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1334 * Is this a new hole at the lowest possible address?
1336 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1337 mm->free_area_cache = addr;
1338 mm->cached_hole_size = ~0UL;
1343 * This mmap-allocator allocates new areas top-down from below the
1344 * stack's low limit (the base):
1346 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1347 unsigned long
1348 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1349 const unsigned long len, const unsigned long pgoff,
1350 const unsigned long flags)
1352 struct vm_area_struct *vma;
1353 struct mm_struct *mm = current->mm;
1354 unsigned long addr = addr0;
1356 /* requested length too big for entire address space */
1357 if (len > TASK_SIZE)
1358 return -ENOMEM;
1360 if (flags & MAP_FIXED)
1361 return addr;
1363 /* requesting a specific address */
1364 if (addr) {
1365 addr = PAGE_ALIGN(addr);
1366 vma = find_vma(mm, addr);
1367 if (TASK_SIZE - len >= addr &&
1368 (!vma || addr + len <= vma->vm_start))
1369 return addr;
1372 /* check if free_area_cache is useful for us */
1373 if (len <= mm->cached_hole_size) {
1374 mm->cached_hole_size = 0;
1375 mm->free_area_cache = mm->mmap_base;
1378 /* either no address requested or can't fit in requested address hole */
1379 addr = mm->free_area_cache;
1381 /* make sure it can fit in the remaining address space */
1382 if (addr > len) {
1383 vma = find_vma(mm, addr-len);
1384 if (!vma || addr <= vma->vm_start)
1385 /* remember the address as a hint for next time */
1386 return (mm->free_area_cache = addr-len);
1389 if (mm->mmap_base < len)
1390 goto bottomup;
1392 addr = mm->mmap_base-len;
1394 do {
1396 * Lookup failure means no vma is above this address,
1397 * else if new region fits below vma->vm_start,
1398 * return with success:
1400 vma = find_vma(mm, addr);
1401 if (!vma || addr+len <= vma->vm_start)
1402 /* remember the address as a hint for next time */
1403 return (mm->free_area_cache = addr);
1405 /* remember the largest hole we saw so far */
1406 if (addr + mm->cached_hole_size < vma->vm_start)
1407 mm->cached_hole_size = vma->vm_start - addr;
1409 /* try just below the current vma->vm_start */
1410 addr = vma->vm_start-len;
1411 } while (len < vma->vm_start);
1413 bottomup:
1415 * A failed mmap() very likely causes application failure,
1416 * so fall back to the bottom-up function here. This scenario
1417 * can happen with large stack limits and large mmap()
1418 * allocations.
1420 mm->cached_hole_size = ~0UL;
1421 mm->free_area_cache = TASK_UNMAPPED_BASE;
1422 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1424 * Restore the topdown base:
1426 mm->free_area_cache = mm->mmap_base;
1427 mm->cached_hole_size = ~0UL;
1429 return addr;
1431 #endif
1433 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1436 * Is this a new hole at the highest possible address?
1438 if (addr > mm->free_area_cache)
1439 mm->free_area_cache = addr;
1441 /* dont allow allocations above current base */
1442 if (mm->free_area_cache > mm->mmap_base)
1443 mm->free_area_cache = mm->mmap_base;
1446 unsigned long
1447 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1448 unsigned long pgoff, unsigned long flags)
1450 unsigned long (*get_area)(struct file *, unsigned long,
1451 unsigned long, unsigned long, unsigned long);
1453 get_area = current->mm->get_unmapped_area;
1454 if (file && file->f_op && file->f_op->get_unmapped_area)
1455 get_area = file->f_op->get_unmapped_area;
1456 addr = get_area(file, addr, len, pgoff, flags);
1457 if (IS_ERR_VALUE(addr))
1458 return addr;
1460 if (addr > TASK_SIZE - len)
1461 return -ENOMEM;
1462 if (addr & ~PAGE_MASK)
1463 return -EINVAL;
1465 return arch_rebalance_pgtables(addr, len);
1468 EXPORT_SYMBOL(get_unmapped_area);
1470 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1471 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1473 struct vm_area_struct *vma = NULL;
1475 if (mm) {
1476 /* Check the cache first. */
1477 /* (Cache hit rate is typically around 35%.) */
1478 vma = mm->mmap_cache;
1479 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1480 struct rb_node * rb_node;
1482 rb_node = mm->mm_rb.rb_node;
1483 vma = NULL;
1485 while (rb_node) {
1486 struct vm_area_struct * vma_tmp;
1488 vma_tmp = rb_entry(rb_node,
1489 struct vm_area_struct, vm_rb);
1491 if (vma_tmp->vm_end > addr) {
1492 vma = vma_tmp;
1493 if (vma_tmp->vm_start <= addr)
1494 break;
1495 rb_node = rb_node->rb_left;
1496 } else
1497 rb_node = rb_node->rb_right;
1499 if (vma)
1500 mm->mmap_cache = vma;
1503 return vma;
1506 EXPORT_SYMBOL(find_vma);
1508 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1509 struct vm_area_struct *
1510 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1511 struct vm_area_struct **pprev)
1513 struct vm_area_struct *vma = NULL, *prev = NULL;
1514 struct rb_node *rb_node;
1515 if (!mm)
1516 goto out;
1518 /* Guard against addr being lower than the first VMA */
1519 vma = mm->mmap;
1521 /* Go through the RB tree quickly. */
1522 rb_node = mm->mm_rb.rb_node;
1524 while (rb_node) {
1525 struct vm_area_struct *vma_tmp;
1526 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1528 if (addr < vma_tmp->vm_end) {
1529 rb_node = rb_node->rb_left;
1530 } else {
1531 prev = vma_tmp;
1532 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1533 break;
1534 rb_node = rb_node->rb_right;
1538 out:
1539 *pprev = prev;
1540 return prev ? prev->vm_next : vma;
1544 * Verify that the stack growth is acceptable and
1545 * update accounting. This is shared with both the
1546 * grow-up and grow-down cases.
1548 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1550 struct mm_struct *mm = vma->vm_mm;
1551 struct rlimit *rlim = current->signal->rlim;
1552 unsigned long new_start;
1554 /* address space limit tests */
1555 if (!may_expand_vm(mm, grow))
1556 return -ENOMEM;
1558 /* Stack limit test */
1559 if (size > rlim[RLIMIT_STACK].rlim_cur)
1560 return -ENOMEM;
1562 /* mlock limit tests */
1563 if (vma->vm_flags & VM_LOCKED) {
1564 unsigned long locked;
1565 unsigned long limit;
1566 locked = mm->locked_vm + grow;
1567 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1568 if (locked > limit && !capable(CAP_IPC_LOCK))
1569 return -ENOMEM;
1572 /* Check to ensure the stack will not grow into a hugetlb-only region */
1573 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1574 vma->vm_end - size;
1575 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1576 return -EFAULT;
1579 * Overcommit.. This must be the final test, as it will
1580 * update security statistics.
1582 if (security_vm_enough_memory(grow))
1583 return -ENOMEM;
1585 /* Ok, everything looks good - let it rip */
1586 mm->total_vm += grow;
1587 if (vma->vm_flags & VM_LOCKED)
1588 mm->locked_vm += grow;
1589 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1590 return 0;
1593 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1595 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1596 * vma is the last one with address > vma->vm_end. Have to extend vma.
1598 #ifndef CONFIG_IA64
1599 static
1600 #endif
1601 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1603 int error;
1605 if (!(vma->vm_flags & VM_GROWSUP))
1606 return -EFAULT;
1609 * We must make sure the anon_vma is allocated
1610 * so that the anon_vma locking is not a noop.
1612 if (unlikely(anon_vma_prepare(vma)))
1613 return -ENOMEM;
1614 anon_vma_lock(vma);
1617 * vma->vm_start/vm_end cannot change under us because the caller
1618 * is required to hold the mmap_sem in read mode. We need the
1619 * anon_vma lock to serialize against concurrent expand_stacks.
1620 * Also guard against wrapping around to address 0.
1622 if (address < PAGE_ALIGN(address+4))
1623 address = PAGE_ALIGN(address+4);
1624 else {
1625 anon_vma_unlock(vma);
1626 return -ENOMEM;
1628 error = 0;
1630 /* Somebody else might have raced and expanded it already */
1631 if (address > vma->vm_end) {
1632 unsigned long size, grow;
1634 size = address - vma->vm_start;
1635 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1637 error = acct_stack_growth(vma, size, grow);
1638 if (!error)
1639 vma->vm_end = address;
1641 anon_vma_unlock(vma);
1642 return error;
1644 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1647 * vma is the first one with address < vma->vm_start. Have to extend vma.
1649 static int expand_downwards(struct vm_area_struct *vma,
1650 unsigned long address)
1652 int error;
1655 * We must make sure the anon_vma is allocated
1656 * so that the anon_vma locking is not a noop.
1658 if (unlikely(anon_vma_prepare(vma)))
1659 return -ENOMEM;
1661 address &= PAGE_MASK;
1662 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1663 if (error)
1664 return error;
1666 anon_vma_lock(vma);
1669 * vma->vm_start/vm_end cannot change under us because the caller
1670 * is required to hold the mmap_sem in read mode. We need the
1671 * anon_vma lock to serialize against concurrent expand_stacks.
1674 /* Somebody else might have raced and expanded it already */
1675 if (address < vma->vm_start) {
1676 unsigned long size, grow;
1678 size = vma->vm_end - address;
1679 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1681 error = acct_stack_growth(vma, size, grow);
1682 if (!error) {
1683 vma->vm_start = address;
1684 vma->vm_pgoff -= grow;
1687 anon_vma_unlock(vma);
1688 return error;
1691 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1693 return expand_downwards(vma, address);
1696 #ifdef CONFIG_STACK_GROWSUP
1697 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1699 return expand_upwards(vma, address);
1702 struct vm_area_struct *
1703 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1705 struct vm_area_struct *vma, *prev;
1707 addr &= PAGE_MASK;
1708 vma = find_vma_prev(mm, addr, &prev);
1709 if (vma && (vma->vm_start <= addr))
1710 return vma;
1711 if (!prev || expand_stack(prev, addr))
1712 return NULL;
1713 if (prev->vm_flags & VM_LOCKED) {
1714 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1715 return NULL; /* vma gone! */
1717 return prev;
1719 #else
1720 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1722 return expand_downwards(vma, address);
1725 struct vm_area_struct *
1726 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1728 struct vm_area_struct * vma;
1729 unsigned long start;
1731 addr &= PAGE_MASK;
1732 vma = find_vma(mm,addr);
1733 if (!vma)
1734 return NULL;
1735 if (vma->vm_start <= addr)
1736 return vma;
1737 if (!(vma->vm_flags & VM_GROWSDOWN))
1738 return NULL;
1739 start = vma->vm_start;
1740 if (expand_stack(vma, addr))
1741 return NULL;
1742 if (vma->vm_flags & VM_LOCKED) {
1743 if (mlock_vma_pages_range(vma, addr, start) < 0)
1744 return NULL; /* vma gone! */
1746 return vma;
1748 #endif
1751 * Ok - we have the memory areas we should free on the vma list,
1752 * so release them, and do the vma updates.
1754 * Called with the mm semaphore held.
1756 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1758 /* Update high watermark before we lower total_vm */
1759 update_hiwater_vm(mm);
1760 do {
1761 long nrpages = vma_pages(vma);
1763 if (vma->vm_flags & VM_EXEC) {
1764 perf_counter_munmap(vma->vm_start,
1765 nrpages << PAGE_SHIFT,
1766 vma->vm_pgoff, vma->vm_file);
1769 mm->total_vm -= nrpages;
1770 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1771 vma = remove_vma(vma);
1772 } while (vma);
1773 validate_mm(mm);
1777 * Get rid of page table information in the indicated region.
1779 * Called with the mm semaphore held.
1781 static void unmap_region(struct mm_struct *mm,
1782 struct vm_area_struct *vma, struct vm_area_struct *prev,
1783 unsigned long start, unsigned long end)
1785 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1786 struct mmu_gather *tlb;
1787 unsigned long nr_accounted = 0;
1789 lru_add_drain();
1790 tlb = tlb_gather_mmu(mm, 0);
1791 update_hiwater_rss(mm);
1792 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1793 vm_unacct_memory(nr_accounted);
1794 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1795 next? next->vm_start: 0);
1796 tlb_finish_mmu(tlb, start, end);
1800 * Create a list of vma's touched by the unmap, removing them from the mm's
1801 * vma list as we go..
1803 static void
1804 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1805 struct vm_area_struct *prev, unsigned long end)
1807 struct vm_area_struct **insertion_point;
1808 struct vm_area_struct *tail_vma = NULL;
1809 unsigned long addr;
1811 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1812 do {
1813 rb_erase(&vma->vm_rb, &mm->mm_rb);
1814 mm->map_count--;
1815 tail_vma = vma;
1816 vma = vma->vm_next;
1817 } while (vma && vma->vm_start < end);
1818 *insertion_point = vma;
1819 tail_vma->vm_next = NULL;
1820 if (mm->unmap_area == arch_unmap_area)
1821 addr = prev ? prev->vm_end : mm->mmap_base;
1822 else
1823 addr = vma ? vma->vm_start : mm->mmap_base;
1824 mm->unmap_area(mm, addr);
1825 mm->mmap_cache = NULL; /* Kill the cache. */
1829 * Split a vma into two pieces at address 'addr', a new vma is allocated
1830 * either for the first part or the tail.
1832 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1833 unsigned long addr, int new_below)
1835 struct mempolicy *pol;
1836 struct vm_area_struct *new;
1838 if (is_vm_hugetlb_page(vma) && (addr &
1839 ~(huge_page_mask(hstate_vma(vma)))))
1840 return -EINVAL;
1842 if (mm->map_count >= sysctl_max_map_count)
1843 return -ENOMEM;
1845 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1846 if (!new)
1847 return -ENOMEM;
1849 /* most fields are the same, copy all, and then fixup */
1850 *new = *vma;
1852 if (new_below)
1853 new->vm_end = addr;
1854 else {
1855 new->vm_start = addr;
1856 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1859 pol = mpol_dup(vma_policy(vma));
1860 if (IS_ERR(pol)) {
1861 kmem_cache_free(vm_area_cachep, new);
1862 return PTR_ERR(pol);
1864 vma_set_policy(new, pol);
1866 if (new->vm_file) {
1867 get_file(new->vm_file);
1868 if (vma->vm_flags & VM_EXECUTABLE)
1869 added_exe_file_vma(mm);
1872 if (new->vm_ops && new->vm_ops->open)
1873 new->vm_ops->open(new);
1875 if (new_below)
1876 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1877 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1878 else
1879 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1881 return 0;
1884 /* Munmap is split into 2 main parts -- this part which finds
1885 * what needs doing, and the areas themselves, which do the
1886 * work. This now handles partial unmappings.
1887 * Jeremy Fitzhardinge <jeremy@goop.org>
1889 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1891 unsigned long end;
1892 struct vm_area_struct *vma, *prev, *last;
1894 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1895 return -EINVAL;
1897 if ((len = PAGE_ALIGN(len)) == 0)
1898 return -EINVAL;
1900 /* Find the first overlapping VMA */
1901 vma = find_vma_prev(mm, start, &prev);
1902 if (!vma)
1903 return 0;
1904 /* we have start < vma->vm_end */
1906 /* if it doesn't overlap, we have nothing.. */
1907 end = start + len;
1908 if (vma->vm_start >= end)
1909 return 0;
1912 * If we need to split any vma, do it now to save pain later.
1914 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1915 * unmapped vm_area_struct will remain in use: so lower split_vma
1916 * places tmp vma above, and higher split_vma places tmp vma below.
1918 if (start > vma->vm_start) {
1919 int error = split_vma(mm, vma, start, 0);
1920 if (error)
1921 return error;
1922 prev = vma;
1925 /* Does it split the last one? */
1926 last = find_vma(mm, end);
1927 if (last && end > last->vm_start) {
1928 int error = split_vma(mm, last, end, 1);
1929 if (error)
1930 return error;
1932 vma = prev? prev->vm_next: mm->mmap;
1935 * unlock any mlock()ed ranges before detaching vmas
1937 if (mm->locked_vm) {
1938 struct vm_area_struct *tmp = vma;
1939 while (tmp && tmp->vm_start < end) {
1940 if (tmp->vm_flags & VM_LOCKED) {
1941 mm->locked_vm -= vma_pages(tmp);
1942 munlock_vma_pages_all(tmp);
1944 tmp = tmp->vm_next;
1949 * Remove the vma's, and unmap the actual pages
1951 detach_vmas_to_be_unmapped(mm, vma, prev, end);
1952 unmap_region(mm, vma, prev, start, end);
1954 /* Fix up all other VM information */
1955 remove_vma_list(mm, vma);
1957 return 0;
1960 EXPORT_SYMBOL(do_munmap);
1962 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1964 int ret;
1965 struct mm_struct *mm = current->mm;
1967 profile_munmap(addr);
1969 down_write(&mm->mmap_sem);
1970 ret = do_munmap(mm, addr, len);
1971 up_write(&mm->mmap_sem);
1972 return ret;
1975 static inline void verify_mm_writelocked(struct mm_struct *mm)
1977 #ifdef CONFIG_DEBUG_VM
1978 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1979 WARN_ON(1);
1980 up_read(&mm->mmap_sem);
1982 #endif
1986 * this is really a simplified "do_mmap". it only handles
1987 * anonymous maps. eventually we may be able to do some
1988 * brk-specific accounting here.
1990 unsigned long do_brk(unsigned long addr, unsigned long len)
1992 struct mm_struct * mm = current->mm;
1993 struct vm_area_struct * vma, * prev;
1994 unsigned long flags;
1995 struct rb_node ** rb_link, * rb_parent;
1996 pgoff_t pgoff = addr >> PAGE_SHIFT;
1997 int error;
1999 len = PAGE_ALIGN(len);
2000 if (!len)
2001 return addr;
2003 if ((addr + len) > TASK_SIZE || (addr + len) < addr)
2004 return -EINVAL;
2006 if (is_hugepage_only_range(mm, addr, len))
2007 return -EINVAL;
2009 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2010 if (error)
2011 return error;
2013 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2015 error = arch_mmap_check(addr, len, flags);
2016 if (error)
2017 return error;
2020 * mlock MCL_FUTURE?
2022 if (mm->def_flags & VM_LOCKED) {
2023 unsigned long locked, lock_limit;
2024 locked = len >> PAGE_SHIFT;
2025 locked += mm->locked_vm;
2026 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2027 lock_limit >>= PAGE_SHIFT;
2028 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2029 return -EAGAIN;
2033 * mm->mmap_sem is required to protect against another thread
2034 * changing the mappings in case we sleep.
2036 verify_mm_writelocked(mm);
2039 * Clear old maps. this also does some error checking for us
2041 munmap_back:
2042 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2043 if (vma && vma->vm_start < addr + len) {
2044 if (do_munmap(mm, addr, len))
2045 return -ENOMEM;
2046 goto munmap_back;
2049 /* Check against address space limits *after* clearing old maps... */
2050 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2051 return -ENOMEM;
2053 if (mm->map_count > sysctl_max_map_count)
2054 return -ENOMEM;
2056 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2057 return -ENOMEM;
2059 /* Can we just expand an old private anonymous mapping? */
2060 vma = vma_merge(mm, prev, addr, addr + len, flags,
2061 NULL, NULL, pgoff, NULL);
2062 if (vma)
2063 goto out;
2066 * create a vma struct for an anonymous mapping
2068 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2069 if (!vma) {
2070 vm_unacct_memory(len >> PAGE_SHIFT);
2071 return -ENOMEM;
2074 vma->vm_mm = mm;
2075 vma->vm_start = addr;
2076 vma->vm_end = addr + len;
2077 vma->vm_pgoff = pgoff;
2078 vma->vm_flags = flags;
2079 vma->vm_page_prot = vm_get_page_prot(flags);
2080 vma_link(mm, vma, prev, rb_link, rb_parent);
2081 out:
2082 mm->total_vm += len >> PAGE_SHIFT;
2083 if (flags & VM_LOCKED) {
2084 if (!mlock_vma_pages_range(vma, addr, addr + len))
2085 mm->locked_vm += (len >> PAGE_SHIFT);
2087 return addr;
2090 EXPORT_SYMBOL(do_brk);
2092 /* Release all mmaps. */
2093 void exit_mmap(struct mm_struct *mm)
2095 struct mmu_gather *tlb;
2096 struct vm_area_struct *vma;
2097 unsigned long nr_accounted = 0;
2098 unsigned long end;
2100 /* mm's last user has gone, and its about to be pulled down */
2101 mmu_notifier_release(mm);
2103 if (mm->locked_vm) {
2104 vma = mm->mmap;
2105 while (vma) {
2106 if (vma->vm_flags & VM_LOCKED)
2107 munlock_vma_pages_all(vma);
2108 vma = vma->vm_next;
2112 arch_exit_mmap(mm);
2114 vma = mm->mmap;
2115 if (!vma) /* Can happen if dup_mmap() received an OOM */
2116 return;
2118 lru_add_drain();
2119 flush_cache_mm(mm);
2120 tlb = tlb_gather_mmu(mm, 1);
2121 /* update_hiwater_rss(mm) here? but nobody should be looking */
2122 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2123 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2124 vm_unacct_memory(nr_accounted);
2125 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2126 tlb_finish_mmu(tlb, 0, end);
2129 * Walk the list again, actually closing and freeing it,
2130 * with preemption enabled, without holding any MM locks.
2132 while (vma)
2133 vma = remove_vma(vma);
2135 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2138 /* Insert vm structure into process list sorted by address
2139 * and into the inode's i_mmap tree. If vm_file is non-NULL
2140 * then i_mmap_lock is taken here.
2142 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2144 struct vm_area_struct * __vma, * prev;
2145 struct rb_node ** rb_link, * rb_parent;
2148 * The vm_pgoff of a purely anonymous vma should be irrelevant
2149 * until its first write fault, when page's anon_vma and index
2150 * are set. But now set the vm_pgoff it will almost certainly
2151 * end up with (unless mremap moves it elsewhere before that
2152 * first wfault), so /proc/pid/maps tells a consistent story.
2154 * By setting it to reflect the virtual start address of the
2155 * vma, merges and splits can happen in a seamless way, just
2156 * using the existing file pgoff checks and manipulations.
2157 * Similarly in do_mmap_pgoff and in do_brk.
2159 if (!vma->vm_file) {
2160 BUG_ON(vma->anon_vma);
2161 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2163 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2164 if (__vma && __vma->vm_start < vma->vm_end)
2165 return -ENOMEM;
2166 if ((vma->vm_flags & VM_ACCOUNT) &&
2167 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2168 return -ENOMEM;
2169 vma_link(mm, vma, prev, rb_link, rb_parent);
2170 return 0;
2174 * Copy the vma structure to a new location in the same mm,
2175 * prior to moving page table entries, to effect an mremap move.
2177 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2178 unsigned long addr, unsigned long len, pgoff_t pgoff)
2180 struct vm_area_struct *vma = *vmap;
2181 unsigned long vma_start = vma->vm_start;
2182 struct mm_struct *mm = vma->vm_mm;
2183 struct vm_area_struct *new_vma, *prev;
2184 struct rb_node **rb_link, *rb_parent;
2185 struct mempolicy *pol;
2188 * If anonymous vma has not yet been faulted, update new pgoff
2189 * to match new location, to increase its chance of merging.
2191 if (!vma->vm_file && !vma->anon_vma)
2192 pgoff = addr >> PAGE_SHIFT;
2194 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2195 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2196 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2197 if (new_vma) {
2199 * Source vma may have been merged into new_vma
2201 if (vma_start >= new_vma->vm_start &&
2202 vma_start < new_vma->vm_end)
2203 *vmap = new_vma;
2204 } else {
2205 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2206 if (new_vma) {
2207 *new_vma = *vma;
2208 pol = mpol_dup(vma_policy(vma));
2209 if (IS_ERR(pol)) {
2210 kmem_cache_free(vm_area_cachep, new_vma);
2211 return NULL;
2213 vma_set_policy(new_vma, pol);
2214 new_vma->vm_start = addr;
2215 new_vma->vm_end = addr + len;
2216 new_vma->vm_pgoff = pgoff;
2217 if (new_vma->vm_file) {
2218 get_file(new_vma->vm_file);
2219 if (vma->vm_flags & VM_EXECUTABLE)
2220 added_exe_file_vma(mm);
2222 if (new_vma->vm_ops && new_vma->vm_ops->open)
2223 new_vma->vm_ops->open(new_vma);
2224 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2227 return new_vma;
2231 * Return true if the calling process may expand its vm space by the passed
2232 * number of pages
2234 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2236 unsigned long cur = mm->total_vm; /* pages */
2237 unsigned long lim;
2239 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2241 if (cur + npages > lim)
2242 return 0;
2243 return 1;
2247 static int special_mapping_fault(struct vm_area_struct *vma,
2248 struct vm_fault *vmf)
2250 pgoff_t pgoff;
2251 struct page **pages;
2254 * special mappings have no vm_file, and in that case, the mm
2255 * uses vm_pgoff internally. So we have to subtract it from here.
2256 * We are allowed to do this because we are the mm; do not copy
2257 * this code into drivers!
2259 pgoff = vmf->pgoff - vma->vm_pgoff;
2261 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2262 pgoff--;
2264 if (*pages) {
2265 struct page *page = *pages;
2266 get_page(page);
2267 vmf->page = page;
2268 return 0;
2271 return VM_FAULT_SIGBUS;
2275 * Having a close hook prevents vma merging regardless of flags.
2277 static void special_mapping_close(struct vm_area_struct *vma)
2281 static struct vm_operations_struct special_mapping_vmops = {
2282 .close = special_mapping_close,
2283 .fault = special_mapping_fault,
2287 * Called with mm->mmap_sem held for writing.
2288 * Insert a new vma covering the given region, with the given flags.
2289 * Its pages are supplied by the given array of struct page *.
2290 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2291 * The region past the last page supplied will always produce SIGBUS.
2292 * The array pointer and the pages it points to are assumed to stay alive
2293 * for as long as this mapping might exist.
2295 int install_special_mapping(struct mm_struct *mm,
2296 unsigned long addr, unsigned long len,
2297 unsigned long vm_flags, struct page **pages)
2299 struct vm_area_struct *vma;
2301 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2302 if (unlikely(vma == NULL))
2303 return -ENOMEM;
2305 vma->vm_mm = mm;
2306 vma->vm_start = addr;
2307 vma->vm_end = addr + len;
2309 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2310 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2312 vma->vm_ops = &special_mapping_vmops;
2313 vma->vm_private_data = pages;
2315 if (unlikely(insert_vm_struct(mm, vma))) {
2316 kmem_cache_free(vm_area_cachep, vma);
2317 return -ENOMEM;
2320 mm->total_vm += len >> PAGE_SHIFT;
2322 return 0;
2325 static DEFINE_MUTEX(mm_all_locks_mutex);
2327 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2329 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2331 * The LSB of head.next can't change from under us
2332 * because we hold the mm_all_locks_mutex.
2334 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2336 * We can safely modify head.next after taking the
2337 * anon_vma->lock. If some other vma in this mm shares
2338 * the same anon_vma we won't take it again.
2340 * No need of atomic instructions here, head.next
2341 * can't change from under us thanks to the
2342 * anon_vma->lock.
2344 if (__test_and_set_bit(0, (unsigned long *)
2345 &anon_vma->head.next))
2346 BUG();
2350 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2352 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2354 * AS_MM_ALL_LOCKS can't change from under us because
2355 * we hold the mm_all_locks_mutex.
2357 * Operations on ->flags have to be atomic because
2358 * even if AS_MM_ALL_LOCKS is stable thanks to the
2359 * mm_all_locks_mutex, there may be other cpus
2360 * changing other bitflags in parallel to us.
2362 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2363 BUG();
2364 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2369 * This operation locks against the VM for all pte/vma/mm related
2370 * operations that could ever happen on a certain mm. This includes
2371 * vmtruncate, try_to_unmap, and all page faults.
2373 * The caller must take the mmap_sem in write mode before calling
2374 * mm_take_all_locks(). The caller isn't allowed to release the
2375 * mmap_sem until mm_drop_all_locks() returns.
2377 * mmap_sem in write mode is required in order to block all operations
2378 * that could modify pagetables and free pages without need of
2379 * altering the vma layout (for example populate_range() with
2380 * nonlinear vmas). It's also needed in write mode to avoid new
2381 * anon_vmas to be associated with existing vmas.
2383 * A single task can't take more than one mm_take_all_locks() in a row
2384 * or it would deadlock.
2386 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2387 * mapping->flags avoid to take the same lock twice, if more than one
2388 * vma in this mm is backed by the same anon_vma or address_space.
2390 * We can take all the locks in random order because the VM code
2391 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2392 * takes more than one of them in a row. Secondly we're protected
2393 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2395 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2396 * that may have to take thousand of locks.
2398 * mm_take_all_locks() can fail if it's interrupted by signals.
2400 int mm_take_all_locks(struct mm_struct *mm)
2402 struct vm_area_struct *vma;
2403 int ret = -EINTR;
2405 BUG_ON(down_read_trylock(&mm->mmap_sem));
2407 mutex_lock(&mm_all_locks_mutex);
2409 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2410 if (signal_pending(current))
2411 goto out_unlock;
2412 if (vma->vm_file && vma->vm_file->f_mapping)
2413 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2416 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2417 if (signal_pending(current))
2418 goto out_unlock;
2419 if (vma->anon_vma)
2420 vm_lock_anon_vma(mm, vma->anon_vma);
2423 ret = 0;
2425 out_unlock:
2426 if (ret)
2427 mm_drop_all_locks(mm);
2429 return ret;
2432 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2434 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2436 * The LSB of head.next can't change to 0 from under
2437 * us because we hold the mm_all_locks_mutex.
2439 * We must however clear the bitflag before unlocking
2440 * the vma so the users using the anon_vma->head will
2441 * never see our bitflag.
2443 * No need of atomic instructions here, head.next
2444 * can't change from under us until we release the
2445 * anon_vma->lock.
2447 if (!__test_and_clear_bit(0, (unsigned long *)
2448 &anon_vma->head.next))
2449 BUG();
2450 spin_unlock(&anon_vma->lock);
2454 static void vm_unlock_mapping(struct address_space *mapping)
2456 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2458 * AS_MM_ALL_LOCKS can't change to 0 from under us
2459 * because we hold the mm_all_locks_mutex.
2461 spin_unlock(&mapping->i_mmap_lock);
2462 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2463 &mapping->flags))
2464 BUG();
2469 * The mmap_sem cannot be released by the caller until
2470 * mm_drop_all_locks() returns.
2472 void mm_drop_all_locks(struct mm_struct *mm)
2474 struct vm_area_struct *vma;
2476 BUG_ON(down_read_trylock(&mm->mmap_sem));
2477 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2479 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2480 if (vma->anon_vma)
2481 vm_unlock_anon_vma(vma->anon_vma);
2482 if (vma->vm_file && vma->vm_file->f_mapping)
2483 vm_unlock_mapping(vma->vm_file->f_mapping);
2486 mutex_unlock(&mm_all_locks_mutex);
2490 * initialise the VMA slab
2492 void __init mmap_init(void)