4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
46 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
47 static void invalidate_bh_lrus(void);
49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
52 init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
54 bh
->b_end_io
= handler
;
55 bh
->b_private
= private;
58 static int sync_buffer(void *word
)
60 struct block_device
*bd
;
61 struct buffer_head
*bh
62 = container_of(word
, struct buffer_head
, b_state
);
67 blk_run_address_space(bd
->bd_inode
->i_mapping
);
72 void fastcall
__lock_buffer(struct buffer_head
*bh
)
74 wait_on_bit_lock(&bh
->b_state
, BH_Lock
, sync_buffer
,
75 TASK_UNINTERRUPTIBLE
);
77 EXPORT_SYMBOL(__lock_buffer
);
79 void fastcall
unlock_buffer(struct buffer_head
*bh
)
81 clear_buffer_locked(bh
);
82 smp_mb__after_clear_bit();
83 wake_up_bit(&bh
->b_state
, BH_Lock
);
87 * Block until a buffer comes unlocked. This doesn't stop it
88 * from becoming locked again - you have to lock it yourself
89 * if you want to preserve its state.
91 void __wait_on_buffer(struct buffer_head
* bh
)
93 wait_on_bit(&bh
->b_state
, BH_Lock
, sync_buffer
, TASK_UNINTERRUPTIBLE
);
97 __clear_page_buffers(struct page
*page
)
99 ClearPagePrivate(page
);
100 set_page_private(page
, 0);
101 page_cache_release(page
);
104 static void buffer_io_error(struct buffer_head
*bh
)
106 char b
[BDEVNAME_SIZE
];
108 printk(KERN_ERR
"Buffer I/O error on device %s, logical block %Lu\n",
109 bdevname(bh
->b_bdev
, b
),
110 (unsigned long long)bh
->b_blocknr
);
114 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
115 * unlock the buffer. This is what ll_rw_block uses too.
117 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
120 set_buffer_uptodate(bh
);
122 /* This happens, due to failed READA attempts. */
123 clear_buffer_uptodate(bh
);
129 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
131 char b
[BDEVNAME_SIZE
];
134 set_buffer_uptodate(bh
);
136 if (!buffer_eopnotsupp(bh
) && printk_ratelimit()) {
138 printk(KERN_WARNING
"lost page write due to "
140 bdevname(bh
->b_bdev
, b
));
142 set_buffer_write_io_error(bh
);
143 clear_buffer_uptodate(bh
);
150 * Write out and wait upon all the dirty data associated with a block
151 * device via its mapping. Does not take the superblock lock.
153 int sync_blockdev(struct block_device
*bdev
)
158 ret
= filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
161 EXPORT_SYMBOL(sync_blockdev
);
163 static void __fsync_super(struct super_block
*sb
)
165 sync_inodes_sb(sb
, 0);
168 if (sb
->s_dirt
&& sb
->s_op
->write_super
)
169 sb
->s_op
->write_super(sb
);
171 if (sb
->s_op
->sync_fs
)
172 sb
->s_op
->sync_fs(sb
, 1);
173 sync_blockdev(sb
->s_bdev
);
174 sync_inodes_sb(sb
, 1);
178 * Write out and wait upon all dirty data associated with this
179 * superblock. Filesystem data as well as the underlying block
180 * device. Takes the superblock lock.
182 int fsync_super(struct super_block
*sb
)
185 return sync_blockdev(sb
->s_bdev
);
189 * Write out and wait upon all dirty data associated with this
190 * device. Filesystem data as well as the underlying block
191 * device. Takes the superblock lock.
193 int fsync_bdev(struct block_device
*bdev
)
195 struct super_block
*sb
= get_super(bdev
);
197 int res
= fsync_super(sb
);
201 return sync_blockdev(bdev
);
205 * freeze_bdev -- lock a filesystem and force it into a consistent state
206 * @bdev: blockdevice to lock
208 * This takes the block device bd_mount_mutex to make sure no new mounts
209 * happen on bdev until thaw_bdev() is called.
210 * If a superblock is found on this device, we take the s_umount semaphore
211 * on it to make sure nobody unmounts until the snapshot creation is done.
213 struct super_block
*freeze_bdev(struct block_device
*bdev
)
215 struct super_block
*sb
;
217 mutex_lock(&bdev
->bd_mount_mutex
);
218 sb
= get_super(bdev
);
219 if (sb
&& !(sb
->s_flags
& MS_RDONLY
)) {
220 sb
->s_frozen
= SB_FREEZE_WRITE
;
225 sb
->s_frozen
= SB_FREEZE_TRANS
;
228 sync_blockdev(sb
->s_bdev
);
230 if (sb
->s_op
->write_super_lockfs
)
231 sb
->s_op
->write_super_lockfs(sb
);
235 return sb
; /* thaw_bdev releases s->s_umount and bd_mount_sem */
237 EXPORT_SYMBOL(freeze_bdev
);
240 * thaw_bdev -- unlock filesystem
241 * @bdev: blockdevice to unlock
242 * @sb: associated superblock
244 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
246 void thaw_bdev(struct block_device
*bdev
, struct super_block
*sb
)
249 BUG_ON(sb
->s_bdev
!= bdev
);
251 if (sb
->s_op
->unlockfs
)
252 sb
->s_op
->unlockfs(sb
);
253 sb
->s_frozen
= SB_UNFROZEN
;
255 wake_up(&sb
->s_wait_unfrozen
);
259 mutex_unlock(&bdev
->bd_mount_mutex
);
261 EXPORT_SYMBOL(thaw_bdev
);
264 * sync everything. Start out by waking pdflush, because that writes back
265 * all queues in parallel.
267 static void do_sync(unsigned long wait
)
270 sync_inodes(0); /* All mappings, inodes and their blockdevs */
272 sync_supers(); /* Write the superblocks */
273 sync_filesystems(0); /* Start syncing the filesystems */
274 sync_filesystems(wait
); /* Waitingly sync the filesystems */
275 sync_inodes(wait
); /* Mappings, inodes and blockdevs, again. */
277 printk("Emergency Sync complete\n");
278 if (unlikely(laptop_mode
))
279 laptop_sync_completion();
282 asmlinkage
long sys_sync(void)
288 void emergency_sync(void)
290 pdflush_operation(do_sync
, 0);
294 * Generic function to fsync a file.
296 * filp may be NULL if called via the msync of a vma.
299 int file_fsync(struct file
*filp
, struct dentry
*dentry
, int datasync
)
301 struct inode
* inode
= dentry
->d_inode
;
302 struct super_block
* sb
;
305 /* sync the inode to buffers */
306 ret
= write_inode_now(inode
, 0);
308 /* sync the superblock to buffers */
311 if (sb
->s_op
->write_super
)
312 sb
->s_op
->write_super(sb
);
315 /* .. finally sync the buffers to disk */
316 err
= sync_blockdev(sb
->s_bdev
);
322 long do_fsync(struct file
*file
, int datasync
)
326 struct address_space
*mapping
= file
->f_mapping
;
328 if (!file
->f_op
|| !file
->f_op
->fsync
) {
329 /* Why? We can still call filemap_fdatawrite */
334 current
->flags
|= PF_SYNCWRITE
;
335 ret
= filemap_fdatawrite(mapping
);
338 * We need to protect against concurrent writers, which could cause
339 * livelocks in fsync_buffers_list().
341 mutex_lock(&mapping
->host
->i_mutex
);
342 err
= file
->f_op
->fsync(file
, file
->f_dentry
, datasync
);
345 mutex_unlock(&mapping
->host
->i_mutex
);
346 err
= filemap_fdatawait(mapping
);
349 current
->flags
&= ~PF_SYNCWRITE
;
354 static long __do_fsync(unsigned int fd
, int datasync
)
361 ret
= do_fsync(file
, datasync
);
367 asmlinkage
long sys_fsync(unsigned int fd
)
369 return __do_fsync(fd
, 0);
372 asmlinkage
long sys_fdatasync(unsigned int fd
)
374 return __do_fsync(fd
, 1);
378 * Various filesystems appear to want __find_get_block to be non-blocking.
379 * But it's the page lock which protects the buffers. To get around this,
380 * we get exclusion from try_to_free_buffers with the blockdev mapping's
383 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
384 * may be quite high. This code could TryLock the page, and if that
385 * succeeds, there is no need to take private_lock. (But if
386 * private_lock is contended then so is mapping->tree_lock).
388 static struct buffer_head
*
389 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
391 struct inode
*bd_inode
= bdev
->bd_inode
;
392 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
393 struct buffer_head
*ret
= NULL
;
395 struct buffer_head
*bh
;
396 struct buffer_head
*head
;
400 index
= block
>> (PAGE_CACHE_SHIFT
- bd_inode
->i_blkbits
);
401 page
= find_get_page(bd_mapping
, index
);
405 spin_lock(&bd_mapping
->private_lock
);
406 if (!page_has_buffers(page
))
408 head
= page_buffers(page
);
411 if (bh
->b_blocknr
== block
) {
416 if (!buffer_mapped(bh
))
418 bh
= bh
->b_this_page
;
419 } while (bh
!= head
);
421 /* we might be here because some of the buffers on this page are
422 * not mapped. This is due to various races between
423 * file io on the block device and getblk. It gets dealt with
424 * elsewhere, don't buffer_error if we had some unmapped buffers
427 printk("__find_get_block_slow() failed. "
428 "block=%llu, b_blocknr=%llu\n",
429 (unsigned long long)block
,
430 (unsigned long long)bh
->b_blocknr
);
431 printk("b_state=0x%08lx, b_size=%zu\n",
432 bh
->b_state
, bh
->b_size
);
433 printk("device blocksize: %d\n", 1 << bd_inode
->i_blkbits
);
436 spin_unlock(&bd_mapping
->private_lock
);
437 page_cache_release(page
);
442 /* If invalidate_buffers() will trash dirty buffers, it means some kind
443 of fs corruption is going on. Trashing dirty data always imply losing
444 information that was supposed to be just stored on the physical layer
447 Thus invalidate_buffers in general usage is not allwowed to trash
448 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
449 be preserved. These buffers are simply skipped.
451 We also skip buffers which are still in use. For example this can
452 happen if a userspace program is reading the block device.
454 NOTE: In the case where the user removed a removable-media-disk even if
455 there's still dirty data not synced on disk (due a bug in the device driver
456 or due an error of the user), by not destroying the dirty buffers we could
457 generate corruption also on the next media inserted, thus a parameter is
458 necessary to handle this case in the most safe way possible (trying
459 to not corrupt also the new disk inserted with the data belonging to
460 the old now corrupted disk). Also for the ramdisk the natural thing
461 to do in order to release the ramdisk memory is to destroy dirty buffers.
463 These are two special cases. Normal usage imply the device driver
464 to issue a sync on the device (without waiting I/O completion) and
465 then an invalidate_buffers call that doesn't trash dirty buffers.
467 For handling cache coherency with the blkdev pagecache the 'update' case
468 is been introduced. It is needed to re-read from disk any pinned
469 buffer. NOTE: re-reading from disk is destructive so we can do it only
470 when we assume nobody is changing the buffercache under our I/O and when
471 we think the disk contains more recent information than the buffercache.
472 The update == 1 pass marks the buffers we need to update, the update == 2
473 pass does the actual I/O. */
474 void invalidate_bdev(struct block_device
*bdev
, int destroy_dirty_buffers
)
476 invalidate_bh_lrus();
478 * FIXME: what about destroy_dirty_buffers?
479 * We really want to use invalidate_inode_pages2() for
480 * that, but not until that's cleaned up.
482 invalidate_inode_pages(bdev
->bd_inode
->i_mapping
);
486 * Kick pdflush then try to free up some ZONE_NORMAL memory.
488 static void free_more_memory(void)
493 wakeup_pdflush(1024);
496 for_each_online_pgdat(pgdat
) {
497 zones
= pgdat
->node_zonelists
[gfp_zone(GFP_NOFS
)].zones
;
499 try_to_free_pages(zones
, GFP_NOFS
);
504 * I/O completion handler for block_read_full_page() - pages
505 * which come unlocked at the end of I/O.
507 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
510 struct buffer_head
*first
;
511 struct buffer_head
*tmp
;
513 int page_uptodate
= 1;
515 BUG_ON(!buffer_async_read(bh
));
519 set_buffer_uptodate(bh
);
521 clear_buffer_uptodate(bh
);
522 if (printk_ratelimit())
528 * Be _very_ careful from here on. Bad things can happen if
529 * two buffer heads end IO at almost the same time and both
530 * decide that the page is now completely done.
532 first
= page_buffers(page
);
533 local_irq_save(flags
);
534 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
535 clear_buffer_async_read(bh
);
539 if (!buffer_uptodate(tmp
))
541 if (buffer_async_read(tmp
)) {
542 BUG_ON(!buffer_locked(tmp
));
545 tmp
= tmp
->b_this_page
;
547 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
548 local_irq_restore(flags
);
551 * If none of the buffers had errors and they are all
552 * uptodate then we can set the page uptodate.
554 if (page_uptodate
&& !PageError(page
))
555 SetPageUptodate(page
);
560 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
561 local_irq_restore(flags
);
566 * Completion handler for block_write_full_page() - pages which are unlocked
567 * during I/O, and which have PageWriteback cleared upon I/O completion.
569 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
571 char b
[BDEVNAME_SIZE
];
573 struct buffer_head
*first
;
574 struct buffer_head
*tmp
;
577 BUG_ON(!buffer_async_write(bh
));
581 set_buffer_uptodate(bh
);
583 if (printk_ratelimit()) {
585 printk(KERN_WARNING
"lost page write due to "
587 bdevname(bh
->b_bdev
, b
));
589 set_bit(AS_EIO
, &page
->mapping
->flags
);
590 clear_buffer_uptodate(bh
);
594 first
= page_buffers(page
);
595 local_irq_save(flags
);
596 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
598 clear_buffer_async_write(bh
);
600 tmp
= bh
->b_this_page
;
602 if (buffer_async_write(tmp
)) {
603 BUG_ON(!buffer_locked(tmp
));
606 tmp
= tmp
->b_this_page
;
608 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
609 local_irq_restore(flags
);
610 end_page_writeback(page
);
614 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
615 local_irq_restore(flags
);
620 * If a page's buffers are under async readin (end_buffer_async_read
621 * completion) then there is a possibility that another thread of
622 * control could lock one of the buffers after it has completed
623 * but while some of the other buffers have not completed. This
624 * locked buffer would confuse end_buffer_async_read() into not unlocking
625 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
626 * that this buffer is not under async I/O.
628 * The page comes unlocked when it has no locked buffer_async buffers
631 * PageLocked prevents anyone starting new async I/O reads any of
634 * PageWriteback is used to prevent simultaneous writeout of the same
637 * PageLocked prevents anyone from starting writeback of a page which is
638 * under read I/O (PageWriteback is only ever set against a locked page).
640 static void mark_buffer_async_read(struct buffer_head
*bh
)
642 bh
->b_end_io
= end_buffer_async_read
;
643 set_buffer_async_read(bh
);
646 void mark_buffer_async_write(struct buffer_head
*bh
)
648 bh
->b_end_io
= end_buffer_async_write
;
649 set_buffer_async_write(bh
);
651 EXPORT_SYMBOL(mark_buffer_async_write
);
655 * fs/buffer.c contains helper functions for buffer-backed address space's
656 * fsync functions. A common requirement for buffer-based filesystems is
657 * that certain data from the backing blockdev needs to be written out for
658 * a successful fsync(). For example, ext2 indirect blocks need to be
659 * written back and waited upon before fsync() returns.
661 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
662 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
663 * management of a list of dependent buffers at ->i_mapping->private_list.
665 * Locking is a little subtle: try_to_free_buffers() will remove buffers
666 * from their controlling inode's queue when they are being freed. But
667 * try_to_free_buffers() will be operating against the *blockdev* mapping
668 * at the time, not against the S_ISREG file which depends on those buffers.
669 * So the locking for private_list is via the private_lock in the address_space
670 * which backs the buffers. Which is different from the address_space
671 * against which the buffers are listed. So for a particular address_space,
672 * mapping->private_lock does *not* protect mapping->private_list! In fact,
673 * mapping->private_list will always be protected by the backing blockdev's
676 * Which introduces a requirement: all buffers on an address_space's
677 * ->private_list must be from the same address_space: the blockdev's.
679 * address_spaces which do not place buffers at ->private_list via these
680 * utility functions are free to use private_lock and private_list for
681 * whatever they want. The only requirement is that list_empty(private_list)
682 * be true at clear_inode() time.
684 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
685 * filesystems should do that. invalidate_inode_buffers() should just go
686 * BUG_ON(!list_empty).
688 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
689 * take an address_space, not an inode. And it should be called
690 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
693 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
694 * list if it is already on a list. Because if the buffer is on a list,
695 * it *must* already be on the right one. If not, the filesystem is being
696 * silly. This will save a ton of locking. But first we have to ensure
697 * that buffers are taken *off* the old inode's list when they are freed
698 * (presumably in truncate). That requires careful auditing of all
699 * filesystems (do it inside bforget()). It could also be done by bringing
704 * The buffer's backing address_space's private_lock must be held
706 static inline void __remove_assoc_queue(struct buffer_head
*bh
)
708 list_del_init(&bh
->b_assoc_buffers
);
711 int inode_has_buffers(struct inode
*inode
)
713 return !list_empty(&inode
->i_data
.private_list
);
717 * osync is designed to support O_SYNC io. It waits synchronously for
718 * all already-submitted IO to complete, but does not queue any new
719 * writes to the disk.
721 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
722 * you dirty the buffers, and then use osync_inode_buffers to wait for
723 * completion. Any other dirty buffers which are not yet queued for
724 * write will not be flushed to disk by the osync.
726 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
728 struct buffer_head
*bh
;
734 list_for_each_prev(p
, list
) {
736 if (buffer_locked(bh
)) {
740 if (!buffer_uptodate(bh
))
752 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
754 * @mapping: the mapping which wants those buffers written
756 * Starts I/O against the buffers at mapping->private_list, and waits upon
759 * Basically, this is a convenience function for fsync().
760 * @mapping is a file or directory which needs those buffers to be written for
761 * a successful fsync().
763 int sync_mapping_buffers(struct address_space
*mapping
)
765 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
767 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
770 return fsync_buffers_list(&buffer_mapping
->private_lock
,
771 &mapping
->private_list
);
773 EXPORT_SYMBOL(sync_mapping_buffers
);
776 * Called when we've recently written block `bblock', and it is known that
777 * `bblock' was for a buffer_boundary() buffer. This means that the block at
778 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
779 * dirty, schedule it for IO. So that indirects merge nicely with their data.
781 void write_boundary_block(struct block_device
*bdev
,
782 sector_t bblock
, unsigned blocksize
)
784 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
786 if (buffer_dirty(bh
))
787 ll_rw_block(WRITE
, 1, &bh
);
792 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
794 struct address_space
*mapping
= inode
->i_mapping
;
795 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
797 mark_buffer_dirty(bh
);
798 if (!mapping
->assoc_mapping
) {
799 mapping
->assoc_mapping
= buffer_mapping
;
801 BUG_ON(mapping
->assoc_mapping
!= buffer_mapping
);
803 if (list_empty(&bh
->b_assoc_buffers
)) {
804 spin_lock(&buffer_mapping
->private_lock
);
805 list_move_tail(&bh
->b_assoc_buffers
,
806 &mapping
->private_list
);
807 spin_unlock(&buffer_mapping
->private_lock
);
810 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
813 * Add a page to the dirty page list.
815 * It is a sad fact of life that this function is called from several places
816 * deeply under spinlocking. It may not sleep.
818 * If the page has buffers, the uptodate buffers are set dirty, to preserve
819 * dirty-state coherency between the page and the buffers. It the page does
820 * not have buffers then when they are later attached they will all be set
823 * The buffers are dirtied before the page is dirtied. There's a small race
824 * window in which a writepage caller may see the page cleanness but not the
825 * buffer dirtiness. That's fine. If this code were to set the page dirty
826 * before the buffers, a concurrent writepage caller could clear the page dirty
827 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
828 * page on the dirty page list.
830 * We use private_lock to lock against try_to_free_buffers while using the
831 * page's buffer list. Also use this to protect against clean buffers being
832 * added to the page after it was set dirty.
834 * FIXME: may need to call ->reservepage here as well. That's rather up to the
835 * address_space though.
837 int __set_page_dirty_buffers(struct page
*page
)
839 struct address_space
* const mapping
= page
->mapping
;
841 spin_lock(&mapping
->private_lock
);
842 if (page_has_buffers(page
)) {
843 struct buffer_head
*head
= page_buffers(page
);
844 struct buffer_head
*bh
= head
;
847 set_buffer_dirty(bh
);
848 bh
= bh
->b_this_page
;
849 } while (bh
!= head
);
851 spin_unlock(&mapping
->private_lock
);
853 if (!TestSetPageDirty(page
)) {
854 write_lock_irq(&mapping
->tree_lock
);
855 if (page
->mapping
) { /* Race with truncate? */
856 if (mapping_cap_account_dirty(mapping
))
857 inc_page_state(nr_dirty
);
858 radix_tree_tag_set(&mapping
->page_tree
,
860 PAGECACHE_TAG_DIRTY
);
862 write_unlock_irq(&mapping
->tree_lock
);
863 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
868 EXPORT_SYMBOL(__set_page_dirty_buffers
);
871 * Write out and wait upon a list of buffers.
873 * We have conflicting pressures: we want to make sure that all
874 * initially dirty buffers get waited on, but that any subsequently
875 * dirtied buffers don't. After all, we don't want fsync to last
876 * forever if somebody is actively writing to the file.
878 * Do this in two main stages: first we copy dirty buffers to a
879 * temporary inode list, queueing the writes as we go. Then we clean
880 * up, waiting for those writes to complete.
882 * During this second stage, any subsequent updates to the file may end
883 * up refiling the buffer on the original inode's dirty list again, so
884 * there is a chance we will end up with a buffer queued for write but
885 * not yet completed on that list. So, as a final cleanup we go through
886 * the osync code to catch these locked, dirty buffers without requeuing
887 * any newly dirty buffers for write.
889 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
891 struct buffer_head
*bh
;
892 struct list_head tmp
;
895 INIT_LIST_HEAD(&tmp
);
898 while (!list_empty(list
)) {
899 bh
= BH_ENTRY(list
->next
);
900 list_del_init(&bh
->b_assoc_buffers
);
901 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
902 list_add(&bh
->b_assoc_buffers
, &tmp
);
903 if (buffer_dirty(bh
)) {
907 * Ensure any pending I/O completes so that
908 * ll_rw_block() actually writes the current
909 * contents - it is a noop if I/O is still in
910 * flight on potentially older contents.
912 ll_rw_block(SWRITE
, 1, &bh
);
919 while (!list_empty(&tmp
)) {
920 bh
= BH_ENTRY(tmp
.prev
);
921 __remove_assoc_queue(bh
);
925 if (!buffer_uptodate(bh
))
932 err2
= osync_buffers_list(lock
, list
);
940 * Invalidate any and all dirty buffers on a given inode. We are
941 * probably unmounting the fs, but that doesn't mean we have already
942 * done a sync(). Just drop the buffers from the inode list.
944 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
945 * assumes that all the buffers are against the blockdev. Not true
948 void invalidate_inode_buffers(struct inode
*inode
)
950 if (inode_has_buffers(inode
)) {
951 struct address_space
*mapping
= &inode
->i_data
;
952 struct list_head
*list
= &mapping
->private_list
;
953 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
955 spin_lock(&buffer_mapping
->private_lock
);
956 while (!list_empty(list
))
957 __remove_assoc_queue(BH_ENTRY(list
->next
));
958 spin_unlock(&buffer_mapping
->private_lock
);
963 * Remove any clean buffers from the inode's buffer list. This is called
964 * when we're trying to free the inode itself. Those buffers can pin it.
966 * Returns true if all buffers were removed.
968 int remove_inode_buffers(struct inode
*inode
)
972 if (inode_has_buffers(inode
)) {
973 struct address_space
*mapping
= &inode
->i_data
;
974 struct list_head
*list
= &mapping
->private_list
;
975 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
977 spin_lock(&buffer_mapping
->private_lock
);
978 while (!list_empty(list
)) {
979 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
980 if (buffer_dirty(bh
)) {
984 __remove_assoc_queue(bh
);
986 spin_unlock(&buffer_mapping
->private_lock
);
992 * Create the appropriate buffers when given a page for data area and
993 * the size of each buffer.. Use the bh->b_this_page linked list to
994 * follow the buffers created. Return NULL if unable to create more
997 * The retry flag is used to differentiate async IO (paging, swapping)
998 * which may not fail from ordinary buffer allocations.
1000 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
1003 struct buffer_head
*bh
, *head
;
1009 while ((offset
-= size
) >= 0) {
1010 bh
= alloc_buffer_head(GFP_NOFS
);
1015 bh
->b_this_page
= head
;
1020 atomic_set(&bh
->b_count
, 0);
1021 bh
->b_private
= NULL
;
1024 /* Link the buffer to its page */
1025 set_bh_page(bh
, page
, offset
);
1027 init_buffer(bh
, NULL
, NULL
);
1031 * In case anything failed, we just free everything we got.
1037 head
= head
->b_this_page
;
1038 free_buffer_head(bh
);
1043 * Return failure for non-async IO requests. Async IO requests
1044 * are not allowed to fail, so we have to wait until buffer heads
1045 * become available. But we don't want tasks sleeping with
1046 * partially complete buffers, so all were released above.
1051 /* We're _really_ low on memory. Now we just
1052 * wait for old buffer heads to become free due to
1053 * finishing IO. Since this is an async request and
1054 * the reserve list is empty, we're sure there are
1055 * async buffer heads in use.
1060 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
1063 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
1065 struct buffer_head
*bh
, *tail
;
1070 bh
= bh
->b_this_page
;
1072 tail
->b_this_page
= head
;
1073 attach_page_buffers(page
, head
);
1077 * Initialise the state of a blockdev page's buffers.
1080 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
1081 sector_t block
, int size
)
1083 struct buffer_head
*head
= page_buffers(page
);
1084 struct buffer_head
*bh
= head
;
1085 int uptodate
= PageUptodate(page
);
1088 if (!buffer_mapped(bh
)) {
1089 init_buffer(bh
, NULL
, NULL
);
1091 bh
->b_blocknr
= block
;
1093 set_buffer_uptodate(bh
);
1094 set_buffer_mapped(bh
);
1097 bh
= bh
->b_this_page
;
1098 } while (bh
!= head
);
1102 * Create the page-cache page that contains the requested block.
1104 * This is user purely for blockdev mappings.
1106 static struct page
*
1107 grow_dev_page(struct block_device
*bdev
, sector_t block
,
1108 pgoff_t index
, int size
)
1110 struct inode
*inode
= bdev
->bd_inode
;
1112 struct buffer_head
*bh
;
1114 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
1118 BUG_ON(!PageLocked(page
));
1120 if (page_has_buffers(page
)) {
1121 bh
= page_buffers(page
);
1122 if (bh
->b_size
== size
) {
1123 init_page_buffers(page
, bdev
, block
, size
);
1126 if (!try_to_free_buffers(page
))
1131 * Allocate some buffers for this page
1133 bh
= alloc_page_buffers(page
, size
, 0);
1138 * Link the page to the buffers and initialise them. Take the
1139 * lock to be atomic wrt __find_get_block(), which does not
1140 * run under the page lock.
1142 spin_lock(&inode
->i_mapping
->private_lock
);
1143 link_dev_buffers(page
, bh
);
1144 init_page_buffers(page
, bdev
, block
, size
);
1145 spin_unlock(&inode
->i_mapping
->private_lock
);
1151 page_cache_release(page
);
1156 * Create buffers for the specified block device block's page. If
1157 * that page was dirty, the buffers are set dirty also.
1159 * Except that's a bug. Attaching dirty buffers to a dirty
1160 * blockdev's page can result in filesystem corruption, because
1161 * some of those buffers may be aliases of filesystem data.
1162 * grow_dev_page() will go BUG() if this happens.
1165 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
)
1174 } while ((size
<< sizebits
) < PAGE_SIZE
);
1176 index
= block
>> sizebits
;
1177 block
= index
<< sizebits
;
1179 /* Create a page with the proper size buffers.. */
1180 page
= grow_dev_page(bdev
, block
, index
, size
);
1184 page_cache_release(page
);
1188 static struct buffer_head
*
1189 __getblk_slow(struct block_device
*bdev
, sector_t block
, int size
)
1191 /* Size must be multiple of hard sectorsize */
1192 if (unlikely(size
& (bdev_hardsect_size(bdev
)-1) ||
1193 (size
< 512 || size
> PAGE_SIZE
))) {
1194 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1196 printk(KERN_ERR
"hardsect size: %d\n",
1197 bdev_hardsect_size(bdev
));
1204 struct buffer_head
* bh
;
1206 bh
= __find_get_block(bdev
, block
, size
);
1210 if (!grow_buffers(bdev
, block
, size
))
1216 * The relationship between dirty buffers and dirty pages:
1218 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1219 * the page is tagged dirty in its radix tree.
1221 * At all times, the dirtiness of the buffers represents the dirtiness of
1222 * subsections of the page. If the page has buffers, the page dirty bit is
1223 * merely a hint about the true dirty state.
1225 * When a page is set dirty in its entirety, all its buffers are marked dirty
1226 * (if the page has buffers).
1228 * When a buffer is marked dirty, its page is dirtied, but the page's other
1231 * Also. When blockdev buffers are explicitly read with bread(), they
1232 * individually become uptodate. But their backing page remains not
1233 * uptodate - even if all of its buffers are uptodate. A subsequent
1234 * block_read_full_page() against that page will discover all the uptodate
1235 * buffers, will set the page uptodate and will perform no I/O.
1239 * mark_buffer_dirty - mark a buffer_head as needing writeout
1240 * @bh: the buffer_head to mark dirty
1242 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1243 * backing page dirty, then tag the page as dirty in its address_space's radix
1244 * tree and then attach the address_space's inode to its superblock's dirty
1247 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1248 * mapping->tree_lock and the global inode_lock.
1250 void fastcall
mark_buffer_dirty(struct buffer_head
*bh
)
1252 if (!buffer_dirty(bh
) && !test_set_buffer_dirty(bh
))
1253 __set_page_dirty_nobuffers(bh
->b_page
);
1257 * Decrement a buffer_head's reference count. If all buffers against a page
1258 * have zero reference count, are clean and unlocked, and if the page is clean
1259 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1260 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1261 * a page but it ends up not being freed, and buffers may later be reattached).
1263 void __brelse(struct buffer_head
* buf
)
1265 if (atomic_read(&buf
->b_count
)) {
1269 printk(KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1274 * bforget() is like brelse(), except it discards any
1275 * potentially dirty data.
1277 void __bforget(struct buffer_head
*bh
)
1279 clear_buffer_dirty(bh
);
1280 if (!list_empty(&bh
->b_assoc_buffers
)) {
1281 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1283 spin_lock(&buffer_mapping
->private_lock
);
1284 list_del_init(&bh
->b_assoc_buffers
);
1285 spin_unlock(&buffer_mapping
->private_lock
);
1290 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1293 if (buffer_uptodate(bh
)) {
1298 bh
->b_end_io
= end_buffer_read_sync
;
1299 submit_bh(READ
, bh
);
1301 if (buffer_uptodate(bh
))
1309 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1310 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1311 * refcount elevated by one when they're in an LRU. A buffer can only appear
1312 * once in a particular CPU's LRU. A single buffer can be present in multiple
1313 * CPU's LRUs at the same time.
1315 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1316 * sb_find_get_block().
1318 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1319 * a local interrupt disable for that.
1322 #define BH_LRU_SIZE 8
1325 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1328 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1331 #define bh_lru_lock() local_irq_disable()
1332 #define bh_lru_unlock() local_irq_enable()
1334 #define bh_lru_lock() preempt_disable()
1335 #define bh_lru_unlock() preempt_enable()
1338 static inline void check_irqs_on(void)
1340 #ifdef irqs_disabled
1341 BUG_ON(irqs_disabled());
1346 * The LRU management algorithm is dopey-but-simple. Sorry.
1348 static void bh_lru_install(struct buffer_head
*bh
)
1350 struct buffer_head
*evictee
= NULL
;
1355 lru
= &__get_cpu_var(bh_lrus
);
1356 if (lru
->bhs
[0] != bh
) {
1357 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1363 for (in
= 0; in
< BH_LRU_SIZE
; in
++) {
1364 struct buffer_head
*bh2
= lru
->bhs
[in
];
1369 if (out
>= BH_LRU_SIZE
) {
1370 BUG_ON(evictee
!= NULL
);
1377 while (out
< BH_LRU_SIZE
)
1379 memcpy(lru
->bhs
, bhs
, sizeof(bhs
));
1388 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1390 static struct buffer_head
*
1391 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, int size
)
1393 struct buffer_head
*ret
= NULL
;
1399 lru
= &__get_cpu_var(bh_lrus
);
1400 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1401 struct buffer_head
*bh
= lru
->bhs
[i
];
1403 if (bh
&& bh
->b_bdev
== bdev
&&
1404 bh
->b_blocknr
== block
&& bh
->b_size
== size
) {
1407 lru
->bhs
[i
] = lru
->bhs
[i
- 1];
1422 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1423 * it in the LRU and mark it as accessed. If it is not present then return
1426 struct buffer_head
*
1427 __find_get_block(struct block_device
*bdev
, sector_t block
, int size
)
1429 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1432 bh
= __find_get_block_slow(bdev
, block
);
1440 EXPORT_SYMBOL(__find_get_block
);
1443 * __getblk will locate (and, if necessary, create) the buffer_head
1444 * which corresponds to the passed block_device, block and size. The
1445 * returned buffer has its reference count incremented.
1447 * __getblk() cannot fail - it just keeps trying. If you pass it an
1448 * illegal block number, __getblk() will happily return a buffer_head
1449 * which represents the non-existent block. Very weird.
1451 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1452 * attempt is failing. FIXME, perhaps?
1454 struct buffer_head
*
1455 __getblk(struct block_device
*bdev
, sector_t block
, int size
)
1457 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1461 bh
= __getblk_slow(bdev
, block
, size
);
1464 EXPORT_SYMBOL(__getblk
);
1467 * Do async read-ahead on a buffer..
1469 void __breadahead(struct block_device
*bdev
, sector_t block
, int size
)
1471 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1473 ll_rw_block(READA
, 1, &bh
);
1477 EXPORT_SYMBOL(__breadahead
);
1480 * __bread() - reads a specified block and returns the bh
1481 * @bdev: the block_device to read from
1482 * @block: number of block
1483 * @size: size (in bytes) to read
1485 * Reads a specified block, and returns buffer head that contains it.
1486 * It returns NULL if the block was unreadable.
1488 struct buffer_head
*
1489 __bread(struct block_device
*bdev
, sector_t block
, int size
)
1491 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1493 if (likely(bh
) && !buffer_uptodate(bh
))
1494 bh
= __bread_slow(bh
);
1497 EXPORT_SYMBOL(__bread
);
1500 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1501 * This doesn't race because it runs in each cpu either in irq
1502 * or with preempt disabled.
1504 static void invalidate_bh_lru(void *arg
)
1506 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1509 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1513 put_cpu_var(bh_lrus
);
1516 static void invalidate_bh_lrus(void)
1518 on_each_cpu(invalidate_bh_lru
, NULL
, 1, 1);
1521 void set_bh_page(struct buffer_head
*bh
,
1522 struct page
*page
, unsigned long offset
)
1525 BUG_ON(offset
>= PAGE_SIZE
);
1526 if (PageHighMem(page
))
1528 * This catches illegal uses and preserves the offset:
1530 bh
->b_data
= (char *)(0 + offset
);
1532 bh
->b_data
= page_address(page
) + offset
;
1534 EXPORT_SYMBOL(set_bh_page
);
1537 * Called when truncating a buffer on a page completely.
1539 static void discard_buffer(struct buffer_head
* bh
)
1542 clear_buffer_dirty(bh
);
1544 clear_buffer_mapped(bh
);
1545 clear_buffer_req(bh
);
1546 clear_buffer_new(bh
);
1547 clear_buffer_delay(bh
);
1552 * try_to_release_page() - release old fs-specific metadata on a page
1554 * @page: the page which the kernel is trying to free
1555 * @gfp_mask: memory allocation flags (and I/O mode)
1557 * The address_space is to try to release any data against the page
1558 * (presumably at page->private). If the release was successful, return `1'.
1559 * Otherwise return zero.
1561 * The @gfp_mask argument specifies whether I/O may be performed to release
1562 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1564 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1566 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
1568 struct address_space
* const mapping
= page
->mapping
;
1570 BUG_ON(!PageLocked(page
));
1571 if (PageWriteback(page
))
1574 if (mapping
&& mapping
->a_ops
->releasepage
)
1575 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
1576 return try_to_free_buffers(page
);
1578 EXPORT_SYMBOL(try_to_release_page
);
1581 * block_invalidatepage - invalidate part of all of a buffer-backed page
1583 * @page: the page which is affected
1584 * @offset: the index of the truncation point
1586 * block_invalidatepage() is called when all or part of the page has become
1587 * invalidatedby a truncate operation.
1589 * block_invalidatepage() does not have to release all buffers, but it must
1590 * ensure that no dirty buffer is left outside @offset and that no I/O
1591 * is underway against any of the blocks which are outside the truncation
1592 * point. Because the caller is about to free (and possibly reuse) those
1595 void block_invalidatepage(struct page
*page
, unsigned long offset
)
1597 struct buffer_head
*head
, *bh
, *next
;
1598 unsigned int curr_off
= 0;
1600 BUG_ON(!PageLocked(page
));
1601 if (!page_has_buffers(page
))
1604 head
= page_buffers(page
);
1607 unsigned int next_off
= curr_off
+ bh
->b_size
;
1608 next
= bh
->b_this_page
;
1611 * is this block fully invalidated?
1613 if (offset
<= curr_off
)
1615 curr_off
= next_off
;
1617 } while (bh
!= head
);
1620 * We release buffers only if the entire page is being invalidated.
1621 * The get_block cached value has been unconditionally invalidated,
1622 * so real IO is not possible anymore.
1625 try_to_release_page(page
, 0);
1629 EXPORT_SYMBOL(block_invalidatepage
);
1631 void do_invalidatepage(struct page
*page
, unsigned long offset
)
1633 void (*invalidatepage
)(struct page
*, unsigned long);
1634 invalidatepage
= page
->mapping
->a_ops
->invalidatepage
? :
1635 block_invalidatepage
;
1636 (*invalidatepage
)(page
, offset
);
1640 * We attach and possibly dirty the buffers atomically wrt
1641 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1642 * is already excluded via the page lock.
1644 void create_empty_buffers(struct page
*page
,
1645 unsigned long blocksize
, unsigned long b_state
)
1647 struct buffer_head
*bh
, *head
, *tail
;
1649 head
= alloc_page_buffers(page
, blocksize
, 1);
1652 bh
->b_state
|= b_state
;
1654 bh
= bh
->b_this_page
;
1656 tail
->b_this_page
= head
;
1658 spin_lock(&page
->mapping
->private_lock
);
1659 if (PageUptodate(page
) || PageDirty(page
)) {
1662 if (PageDirty(page
))
1663 set_buffer_dirty(bh
);
1664 if (PageUptodate(page
))
1665 set_buffer_uptodate(bh
);
1666 bh
= bh
->b_this_page
;
1667 } while (bh
!= head
);
1669 attach_page_buffers(page
, head
);
1670 spin_unlock(&page
->mapping
->private_lock
);
1672 EXPORT_SYMBOL(create_empty_buffers
);
1675 * We are taking a block for data and we don't want any output from any
1676 * buffer-cache aliases starting from return from that function and
1677 * until the moment when something will explicitly mark the buffer
1678 * dirty (hopefully that will not happen until we will free that block ;-)
1679 * We don't even need to mark it not-uptodate - nobody can expect
1680 * anything from a newly allocated buffer anyway. We used to used
1681 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1682 * don't want to mark the alias unmapped, for example - it would confuse
1683 * anyone who might pick it with bread() afterwards...
1685 * Also.. Note that bforget() doesn't lock the buffer. So there can
1686 * be writeout I/O going on against recently-freed buffers. We don't
1687 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1688 * only if we really need to. That happens here.
1690 void unmap_underlying_metadata(struct block_device
*bdev
, sector_t block
)
1692 struct buffer_head
*old_bh
;
1696 old_bh
= __find_get_block_slow(bdev
, block
);
1698 clear_buffer_dirty(old_bh
);
1699 wait_on_buffer(old_bh
);
1700 clear_buffer_req(old_bh
);
1704 EXPORT_SYMBOL(unmap_underlying_metadata
);
1707 * NOTE! All mapped/uptodate combinations are valid:
1709 * Mapped Uptodate Meaning
1711 * No No "unknown" - must do get_block()
1712 * No Yes "hole" - zero-filled
1713 * Yes No "allocated" - allocated on disk, not read in
1714 * Yes Yes "valid" - allocated and up-to-date in memory.
1716 * "Dirty" is valid only with the last case (mapped+uptodate).
1720 * While block_write_full_page is writing back the dirty buffers under
1721 * the page lock, whoever dirtied the buffers may decide to clean them
1722 * again at any time. We handle that by only looking at the buffer
1723 * state inside lock_buffer().
1725 * If block_write_full_page() is called for regular writeback
1726 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1727 * locked buffer. This only can happen if someone has written the buffer
1728 * directly, with submit_bh(). At the address_space level PageWriteback
1729 * prevents this contention from occurring.
1731 static int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1732 get_block_t
*get_block
, struct writeback_control
*wbc
)
1736 sector_t last_block
;
1737 struct buffer_head
*bh
, *head
;
1738 const unsigned blocksize
= 1 << inode
->i_blkbits
;
1739 int nr_underway
= 0;
1741 BUG_ON(!PageLocked(page
));
1743 last_block
= (i_size_read(inode
) - 1) >> inode
->i_blkbits
;
1745 if (!page_has_buffers(page
)) {
1746 create_empty_buffers(page
, blocksize
,
1747 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1751 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1752 * here, and the (potentially unmapped) buffers may become dirty at
1753 * any time. If a buffer becomes dirty here after we've inspected it
1754 * then we just miss that fact, and the page stays dirty.
1756 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1757 * handle that here by just cleaning them.
1760 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1761 head
= page_buffers(page
);
1765 * Get all the dirty buffers mapped to disk addresses and
1766 * handle any aliases from the underlying blockdev's mapping.
1769 if (block
> last_block
) {
1771 * mapped buffers outside i_size will occur, because
1772 * this page can be outside i_size when there is a
1773 * truncate in progress.
1776 * The buffer was zeroed by block_write_full_page()
1778 clear_buffer_dirty(bh
);
1779 set_buffer_uptodate(bh
);
1780 } else if (!buffer_mapped(bh
) && buffer_dirty(bh
)) {
1781 WARN_ON(bh
->b_size
!= blocksize
);
1782 err
= get_block(inode
, block
, bh
, 1);
1785 if (buffer_new(bh
)) {
1786 /* blockdev mappings never come here */
1787 clear_buffer_new(bh
);
1788 unmap_underlying_metadata(bh
->b_bdev
,
1792 bh
= bh
->b_this_page
;
1794 } while (bh
!= head
);
1797 if (!buffer_mapped(bh
))
1800 * If it's a fully non-blocking write attempt and we cannot
1801 * lock the buffer then redirty the page. Note that this can
1802 * potentially cause a busy-wait loop from pdflush and kswapd
1803 * activity, but those code paths have their own higher-level
1806 if (wbc
->sync_mode
!= WB_SYNC_NONE
|| !wbc
->nonblocking
) {
1808 } else if (test_set_buffer_locked(bh
)) {
1809 redirty_page_for_writepage(wbc
, page
);
1812 if (test_clear_buffer_dirty(bh
)) {
1813 mark_buffer_async_write(bh
);
1817 } while ((bh
= bh
->b_this_page
) != head
);
1820 * The page and its buffers are protected by PageWriteback(), so we can
1821 * drop the bh refcounts early.
1823 BUG_ON(PageWriteback(page
));
1824 set_page_writeback(page
);
1827 struct buffer_head
*next
= bh
->b_this_page
;
1828 if (buffer_async_write(bh
)) {
1829 submit_bh(WRITE
, bh
);
1833 } while (bh
!= head
);
1838 if (nr_underway
== 0) {
1840 * The page was marked dirty, but the buffers were
1841 * clean. Someone wrote them back by hand with
1842 * ll_rw_block/submit_bh. A rare case.
1846 if (!buffer_uptodate(bh
)) {
1850 bh
= bh
->b_this_page
;
1851 } while (bh
!= head
);
1853 SetPageUptodate(page
);
1854 end_page_writeback(page
);
1856 * The page and buffer_heads can be released at any time from
1859 wbc
->pages_skipped
++; /* We didn't write this page */
1865 * ENOSPC, or some other error. We may already have added some
1866 * blocks to the file, so we need to write these out to avoid
1867 * exposing stale data.
1868 * The page is currently locked and not marked for writeback
1871 /* Recovery: lock and submit the mapped buffers */
1873 if (buffer_mapped(bh
) && buffer_dirty(bh
)) {
1875 mark_buffer_async_write(bh
);
1878 * The buffer may have been set dirty during
1879 * attachment to a dirty page.
1881 clear_buffer_dirty(bh
);
1883 } while ((bh
= bh
->b_this_page
) != head
);
1885 BUG_ON(PageWriteback(page
));
1886 set_page_writeback(page
);
1889 struct buffer_head
*next
= bh
->b_this_page
;
1890 if (buffer_async_write(bh
)) {
1891 clear_buffer_dirty(bh
);
1892 submit_bh(WRITE
, bh
);
1896 } while (bh
!= head
);
1900 static int __block_prepare_write(struct inode
*inode
, struct page
*page
,
1901 unsigned from
, unsigned to
, get_block_t
*get_block
)
1903 unsigned block_start
, block_end
;
1906 unsigned blocksize
, bbits
;
1907 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1909 BUG_ON(!PageLocked(page
));
1910 BUG_ON(from
> PAGE_CACHE_SIZE
);
1911 BUG_ON(to
> PAGE_CACHE_SIZE
);
1914 blocksize
= 1 << inode
->i_blkbits
;
1915 if (!page_has_buffers(page
))
1916 create_empty_buffers(page
, blocksize
, 0);
1917 head
= page_buffers(page
);
1919 bbits
= inode
->i_blkbits
;
1920 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1922 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1923 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1924 block_end
= block_start
+ blocksize
;
1925 if (block_end
<= from
|| block_start
>= to
) {
1926 if (PageUptodate(page
)) {
1927 if (!buffer_uptodate(bh
))
1928 set_buffer_uptodate(bh
);
1933 clear_buffer_new(bh
);
1934 if (!buffer_mapped(bh
)) {
1935 WARN_ON(bh
->b_size
!= blocksize
);
1936 err
= get_block(inode
, block
, bh
, 1);
1939 if (buffer_new(bh
)) {
1940 unmap_underlying_metadata(bh
->b_bdev
,
1942 if (PageUptodate(page
)) {
1943 set_buffer_uptodate(bh
);
1946 if (block_end
> to
|| block_start
< from
) {
1949 kaddr
= kmap_atomic(page
, KM_USER0
);
1953 if (block_start
< from
)
1954 memset(kaddr
+block_start
,
1955 0, from
-block_start
);
1956 flush_dcache_page(page
);
1957 kunmap_atomic(kaddr
, KM_USER0
);
1962 if (PageUptodate(page
)) {
1963 if (!buffer_uptodate(bh
))
1964 set_buffer_uptodate(bh
);
1967 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1968 (block_start
< from
|| block_end
> to
)) {
1969 ll_rw_block(READ
, 1, &bh
);
1974 * If we issued read requests - let them complete.
1976 while(wait_bh
> wait
) {
1977 wait_on_buffer(*--wait_bh
);
1978 if (!buffer_uptodate(*wait_bh
))
1985 clear_buffer_new(bh
);
1986 } while ((bh
= bh
->b_this_page
) != head
);
1991 * Zero out any newly allocated blocks to avoid exposing stale
1992 * data. If BH_New is set, we know that the block was newly
1993 * allocated in the above loop.
1998 block_end
= block_start
+blocksize
;
1999 if (block_end
<= from
)
2001 if (block_start
>= to
)
2003 if (buffer_new(bh
)) {
2006 clear_buffer_new(bh
);
2007 kaddr
= kmap_atomic(page
, KM_USER0
);
2008 memset(kaddr
+block_start
, 0, bh
->b_size
);
2009 kunmap_atomic(kaddr
, KM_USER0
);
2010 set_buffer_uptodate(bh
);
2011 mark_buffer_dirty(bh
);
2014 block_start
= block_end
;
2015 bh
= bh
->b_this_page
;
2016 } while (bh
!= head
);
2020 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
2021 unsigned from
, unsigned to
)
2023 unsigned block_start
, block_end
;
2026 struct buffer_head
*bh
, *head
;
2028 blocksize
= 1 << inode
->i_blkbits
;
2030 for(bh
= head
= page_buffers(page
), block_start
= 0;
2031 bh
!= head
|| !block_start
;
2032 block_start
=block_end
, bh
= bh
->b_this_page
) {
2033 block_end
= block_start
+ blocksize
;
2034 if (block_end
<= from
|| block_start
>= to
) {
2035 if (!buffer_uptodate(bh
))
2038 set_buffer_uptodate(bh
);
2039 mark_buffer_dirty(bh
);
2044 * If this is a partial write which happened to make all buffers
2045 * uptodate then we can optimize away a bogus readpage() for
2046 * the next read(). Here we 'discover' whether the page went
2047 * uptodate as a result of this (potentially partial) write.
2050 SetPageUptodate(page
);
2055 * Generic "read page" function for block devices that have the normal
2056 * get_block functionality. This is most of the block device filesystems.
2057 * Reads the page asynchronously --- the unlock_buffer() and
2058 * set/clear_buffer_uptodate() functions propagate buffer state into the
2059 * page struct once IO has completed.
2061 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2063 struct inode
*inode
= page
->mapping
->host
;
2064 sector_t iblock
, lblock
;
2065 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2066 unsigned int blocksize
;
2068 int fully_mapped
= 1;
2070 BUG_ON(!PageLocked(page
));
2071 blocksize
= 1 << inode
->i_blkbits
;
2072 if (!page_has_buffers(page
))
2073 create_empty_buffers(page
, blocksize
, 0);
2074 head
= page_buffers(page
);
2076 iblock
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2077 lblock
= (i_size_read(inode
)+blocksize
-1) >> inode
->i_blkbits
;
2083 if (buffer_uptodate(bh
))
2086 if (!buffer_mapped(bh
)) {
2090 if (iblock
< lblock
) {
2091 WARN_ON(bh
->b_size
!= blocksize
);
2092 err
= get_block(inode
, iblock
, bh
, 0);
2096 if (!buffer_mapped(bh
)) {
2097 void *kaddr
= kmap_atomic(page
, KM_USER0
);
2098 memset(kaddr
+ i
* blocksize
, 0, blocksize
);
2099 flush_dcache_page(page
);
2100 kunmap_atomic(kaddr
, KM_USER0
);
2102 set_buffer_uptodate(bh
);
2106 * get_block() might have updated the buffer
2109 if (buffer_uptodate(bh
))
2113 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2116 SetPageMappedToDisk(page
);
2120 * All buffers are uptodate - we can set the page uptodate
2121 * as well. But not if get_block() returned an error.
2123 if (!PageError(page
))
2124 SetPageUptodate(page
);
2129 /* Stage two: lock the buffers */
2130 for (i
= 0; i
< nr
; i
++) {
2133 mark_buffer_async_read(bh
);
2137 * Stage 3: start the IO. Check for uptodateness
2138 * inside the buffer lock in case another process reading
2139 * the underlying blockdev brought it uptodate (the sct fix).
2141 for (i
= 0; i
< nr
; i
++) {
2143 if (buffer_uptodate(bh
))
2144 end_buffer_async_read(bh
, 1);
2146 submit_bh(READ
, bh
);
2151 /* utility function for filesystems that need to do work on expanding
2152 * truncates. Uses prepare/commit_write to allow the filesystem to
2153 * deal with the hole.
2155 static int __generic_cont_expand(struct inode
*inode
, loff_t size
,
2156 pgoff_t index
, unsigned int offset
)
2158 struct address_space
*mapping
= inode
->i_mapping
;
2160 unsigned long limit
;
2164 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
2165 if (limit
!= RLIM_INFINITY
&& size
> (loff_t
)limit
) {
2166 send_sig(SIGXFSZ
, current
, 0);
2169 if (size
> inode
->i_sb
->s_maxbytes
)
2173 page
= grab_cache_page(mapping
, index
);
2176 err
= mapping
->a_ops
->prepare_write(NULL
, page
, offset
, offset
);
2179 * ->prepare_write() may have instantiated a few blocks
2180 * outside i_size. Trim these off again.
2183 page_cache_release(page
);
2184 vmtruncate(inode
, inode
->i_size
);
2188 err
= mapping
->a_ops
->commit_write(NULL
, page
, offset
, offset
);
2191 page_cache_release(page
);
2198 int generic_cont_expand(struct inode
*inode
, loff_t size
)
2201 unsigned int offset
;
2203 offset
= (size
& (PAGE_CACHE_SIZE
- 1)); /* Within page */
2205 /* ugh. in prepare/commit_write, if from==to==start of block, we
2206 ** skip the prepare. make sure we never send an offset for the start
2209 if ((offset
& (inode
->i_sb
->s_blocksize
- 1)) == 0) {
2210 /* caller must handle this extra byte. */
2213 index
= size
>> PAGE_CACHE_SHIFT
;
2215 return __generic_cont_expand(inode
, size
, index
, offset
);
2218 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2220 loff_t pos
= size
- 1;
2221 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
2222 unsigned int offset
= (pos
& (PAGE_CACHE_SIZE
- 1)) + 1;
2224 /* prepare/commit_write can handle even if from==to==start of block. */
2225 return __generic_cont_expand(inode
, size
, index
, offset
);
2229 * For moronic filesystems that do not allow holes in file.
2230 * We may have to extend the file.
2233 int cont_prepare_write(struct page
*page
, unsigned offset
,
2234 unsigned to
, get_block_t
*get_block
, loff_t
*bytes
)
2236 struct address_space
*mapping
= page
->mapping
;
2237 struct inode
*inode
= mapping
->host
;
2238 struct page
*new_page
;
2242 unsigned blocksize
= 1 << inode
->i_blkbits
;
2245 while(page
->index
> (pgpos
= *bytes
>>PAGE_CACHE_SHIFT
)) {
2247 new_page
= grab_cache_page(mapping
, pgpos
);
2250 /* we might sleep */
2251 if (*bytes
>>PAGE_CACHE_SHIFT
!= pgpos
) {
2252 unlock_page(new_page
);
2253 page_cache_release(new_page
);
2256 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2257 if (zerofrom
& (blocksize
-1)) {
2258 *bytes
|= (blocksize
-1);
2261 status
= __block_prepare_write(inode
, new_page
, zerofrom
,
2262 PAGE_CACHE_SIZE
, get_block
);
2265 kaddr
= kmap_atomic(new_page
, KM_USER0
);
2266 memset(kaddr
+zerofrom
, 0, PAGE_CACHE_SIZE
-zerofrom
);
2267 flush_dcache_page(new_page
);
2268 kunmap_atomic(kaddr
, KM_USER0
);
2269 generic_commit_write(NULL
, new_page
, zerofrom
, PAGE_CACHE_SIZE
);
2270 unlock_page(new_page
);
2271 page_cache_release(new_page
);
2274 if (page
->index
< pgpos
) {
2275 /* completely inside the area */
2278 /* page covers the boundary, find the boundary offset */
2279 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2281 /* if we will expand the thing last block will be filled */
2282 if (to
> zerofrom
&& (zerofrom
& (blocksize
-1))) {
2283 *bytes
|= (blocksize
-1);
2287 /* starting below the boundary? Nothing to zero out */
2288 if (offset
<= zerofrom
)
2291 status
= __block_prepare_write(inode
, page
, zerofrom
, to
, get_block
);
2294 if (zerofrom
< offset
) {
2295 kaddr
= kmap_atomic(page
, KM_USER0
);
2296 memset(kaddr
+zerofrom
, 0, offset
-zerofrom
);
2297 flush_dcache_page(page
);
2298 kunmap_atomic(kaddr
, KM_USER0
);
2299 __block_commit_write(inode
, page
, zerofrom
, offset
);
2303 ClearPageUptodate(page
);
2307 ClearPageUptodate(new_page
);
2308 unlock_page(new_page
);
2309 page_cache_release(new_page
);
2314 int block_prepare_write(struct page
*page
, unsigned from
, unsigned to
,
2315 get_block_t
*get_block
)
2317 struct inode
*inode
= page
->mapping
->host
;
2318 int err
= __block_prepare_write(inode
, page
, from
, to
, get_block
);
2320 ClearPageUptodate(page
);
2324 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2326 struct inode
*inode
= page
->mapping
->host
;
2327 __block_commit_write(inode
,page
,from
,to
);
2331 int generic_commit_write(struct file
*file
, struct page
*page
,
2332 unsigned from
, unsigned to
)
2334 struct inode
*inode
= page
->mapping
->host
;
2335 loff_t pos
= ((loff_t
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
2336 __block_commit_write(inode
,page
,from
,to
);
2338 * No need to use i_size_read() here, the i_size
2339 * cannot change under us because we hold i_mutex.
2341 if (pos
> inode
->i_size
) {
2342 i_size_write(inode
, pos
);
2343 mark_inode_dirty(inode
);
2350 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2351 * immediately, while under the page lock. So it needs a special end_io
2352 * handler which does not touch the bh after unlocking it.
2354 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2355 * a race there is benign: unlock_buffer() only use the bh's address for
2356 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2359 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2362 set_buffer_uptodate(bh
);
2364 /* This happens, due to failed READA attempts. */
2365 clear_buffer_uptodate(bh
);
2371 * On entry, the page is fully not uptodate.
2372 * On exit the page is fully uptodate in the areas outside (from,to)
2374 int nobh_prepare_write(struct page
*page
, unsigned from
, unsigned to
,
2375 get_block_t
*get_block
)
2377 struct inode
*inode
= page
->mapping
->host
;
2378 const unsigned blkbits
= inode
->i_blkbits
;
2379 const unsigned blocksize
= 1 << blkbits
;
2380 struct buffer_head map_bh
;
2381 struct buffer_head
*read_bh
[MAX_BUF_PER_PAGE
];
2382 unsigned block_in_page
;
2383 unsigned block_start
;
2384 sector_t block_in_file
;
2389 int is_mapped_to_disk
= 1;
2392 if (PageMappedToDisk(page
))
2395 block_in_file
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- blkbits
);
2396 map_bh
.b_page
= page
;
2399 * We loop across all blocks in the page, whether or not they are
2400 * part of the affected region. This is so we can discover if the
2401 * page is fully mapped-to-disk.
2403 for (block_start
= 0, block_in_page
= 0;
2404 block_start
< PAGE_CACHE_SIZE
;
2405 block_in_page
++, block_start
+= blocksize
) {
2406 unsigned block_end
= block_start
+ blocksize
;
2411 if (block_start
>= to
)
2413 map_bh
.b_size
= blocksize
;
2414 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2418 if (!buffer_mapped(&map_bh
))
2419 is_mapped_to_disk
= 0;
2420 if (buffer_new(&map_bh
))
2421 unmap_underlying_metadata(map_bh
.b_bdev
,
2423 if (PageUptodate(page
))
2425 if (buffer_new(&map_bh
) || !buffer_mapped(&map_bh
)) {
2426 kaddr
= kmap_atomic(page
, KM_USER0
);
2427 if (block_start
< from
) {
2428 memset(kaddr
+block_start
, 0, from
-block_start
);
2431 if (block_end
> to
) {
2432 memset(kaddr
+ to
, 0, block_end
- to
);
2435 flush_dcache_page(page
);
2436 kunmap_atomic(kaddr
, KM_USER0
);
2439 if (buffer_uptodate(&map_bh
))
2440 continue; /* reiserfs does this */
2441 if (block_start
< from
|| block_end
> to
) {
2442 struct buffer_head
*bh
= alloc_buffer_head(GFP_NOFS
);
2448 bh
->b_state
= map_bh
.b_state
;
2449 atomic_set(&bh
->b_count
, 0);
2450 bh
->b_this_page
= NULL
;
2452 bh
->b_blocknr
= map_bh
.b_blocknr
;
2453 bh
->b_size
= blocksize
;
2454 bh
->b_data
= (char *)(long)block_start
;
2455 bh
->b_bdev
= map_bh
.b_bdev
;
2456 bh
->b_private
= NULL
;
2457 read_bh
[nr_reads
++] = bh
;
2462 struct buffer_head
*bh
;
2465 * The page is locked, so these buffers are protected from
2466 * any VM or truncate activity. Hence we don't need to care
2467 * for the buffer_head refcounts.
2469 for (i
= 0; i
< nr_reads
; i
++) {
2472 bh
->b_end_io
= end_buffer_read_nobh
;
2473 submit_bh(READ
, bh
);
2475 for (i
= 0; i
< nr_reads
; i
++) {
2478 if (!buffer_uptodate(bh
))
2480 free_buffer_head(bh
);
2487 if (is_mapped_to_disk
)
2488 SetPageMappedToDisk(page
);
2489 SetPageUptodate(page
);
2492 * Setting the page dirty here isn't necessary for the prepare_write
2493 * function - commit_write will do that. But if/when this function is
2494 * used within the pagefault handler to ensure that all mmapped pages
2495 * have backing space in the filesystem, we will need to dirty the page
2496 * if its contents were altered.
2499 set_page_dirty(page
);
2504 for (i
= 0; i
< nr_reads
; i
++) {
2506 free_buffer_head(read_bh
[i
]);
2510 * Error recovery is pretty slack. Clear the page and mark it dirty
2511 * so we'll later zero out any blocks which _were_ allocated.
2513 kaddr
= kmap_atomic(page
, KM_USER0
);
2514 memset(kaddr
, 0, PAGE_CACHE_SIZE
);
2515 kunmap_atomic(kaddr
, KM_USER0
);
2516 SetPageUptodate(page
);
2517 set_page_dirty(page
);
2520 EXPORT_SYMBOL(nobh_prepare_write
);
2522 int nobh_commit_write(struct file
*file
, struct page
*page
,
2523 unsigned from
, unsigned to
)
2525 struct inode
*inode
= page
->mapping
->host
;
2526 loff_t pos
= ((loff_t
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
2528 set_page_dirty(page
);
2529 if (pos
> inode
->i_size
) {
2530 i_size_write(inode
, pos
);
2531 mark_inode_dirty(inode
);
2535 EXPORT_SYMBOL(nobh_commit_write
);
2538 * nobh_writepage() - based on block_full_write_page() except
2539 * that it tries to operate without attaching bufferheads to
2542 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2543 struct writeback_control
*wbc
)
2545 struct inode
* const inode
= page
->mapping
->host
;
2546 loff_t i_size
= i_size_read(inode
);
2547 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2552 /* Is the page fully inside i_size? */
2553 if (page
->index
< end_index
)
2556 /* Is the page fully outside i_size? (truncate in progress) */
2557 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2558 if (page
->index
>= end_index
+1 || !offset
) {
2560 * The page may have dirty, unmapped buffers. For example,
2561 * they may have been added in ext3_writepage(). Make them
2562 * freeable here, so the page does not leak.
2565 /* Not really sure about this - do we need this ? */
2566 if (page
->mapping
->a_ops
->invalidatepage
)
2567 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2570 return 0; /* don't care */
2574 * The page straddles i_size. It must be zeroed out on each and every
2575 * writepage invocation because it may be mmapped. "A file is mapped
2576 * in multiples of the page size. For a file that is not a multiple of
2577 * the page size, the remaining memory is zeroed when mapped, and
2578 * writes to that region are not written out to the file."
2580 kaddr
= kmap_atomic(page
, KM_USER0
);
2581 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
2582 flush_dcache_page(page
);
2583 kunmap_atomic(kaddr
, KM_USER0
);
2585 ret
= mpage_writepage(page
, get_block
, wbc
);
2587 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
);
2590 EXPORT_SYMBOL(nobh_writepage
);
2593 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2595 int nobh_truncate_page(struct address_space
*mapping
, loff_t from
)
2597 struct inode
*inode
= mapping
->host
;
2598 unsigned blocksize
= 1 << inode
->i_blkbits
;
2599 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2600 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2603 struct address_space_operations
*a_ops
= mapping
->a_ops
;
2607 if ((offset
& (blocksize
- 1)) == 0)
2611 page
= grab_cache_page(mapping
, index
);
2615 to
= (offset
+ blocksize
) & ~(blocksize
- 1);
2616 ret
= a_ops
->prepare_write(NULL
, page
, offset
, to
);
2618 kaddr
= kmap_atomic(page
, KM_USER0
);
2619 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
2620 flush_dcache_page(page
);
2621 kunmap_atomic(kaddr
, KM_USER0
);
2622 set_page_dirty(page
);
2625 page_cache_release(page
);
2629 EXPORT_SYMBOL(nobh_truncate_page
);
2631 int block_truncate_page(struct address_space
*mapping
,
2632 loff_t from
, get_block_t
*get_block
)
2634 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2635 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2638 unsigned length
, pos
;
2639 struct inode
*inode
= mapping
->host
;
2641 struct buffer_head
*bh
;
2645 blocksize
= 1 << inode
->i_blkbits
;
2646 length
= offset
& (blocksize
- 1);
2648 /* Block boundary? Nothing to do */
2652 length
= blocksize
- length
;
2653 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2655 page
= grab_cache_page(mapping
, index
);
2660 if (!page_has_buffers(page
))
2661 create_empty_buffers(page
, blocksize
, 0);
2663 /* Find the buffer that contains "offset" */
2664 bh
= page_buffers(page
);
2666 while (offset
>= pos
) {
2667 bh
= bh
->b_this_page
;
2673 if (!buffer_mapped(bh
)) {
2674 WARN_ON(bh
->b_size
!= blocksize
);
2675 err
= get_block(inode
, iblock
, bh
, 0);
2678 /* unmapped? It's a hole - nothing to do */
2679 if (!buffer_mapped(bh
))
2683 /* Ok, it's mapped. Make sure it's up-to-date */
2684 if (PageUptodate(page
))
2685 set_buffer_uptodate(bh
);
2687 if (!buffer_uptodate(bh
) && !buffer_delay(bh
)) {
2689 ll_rw_block(READ
, 1, &bh
);
2691 /* Uhhuh. Read error. Complain and punt. */
2692 if (!buffer_uptodate(bh
))
2696 kaddr
= kmap_atomic(page
, KM_USER0
);
2697 memset(kaddr
+ offset
, 0, length
);
2698 flush_dcache_page(page
);
2699 kunmap_atomic(kaddr
, KM_USER0
);
2701 mark_buffer_dirty(bh
);
2706 page_cache_release(page
);
2712 * The generic ->writepage function for buffer-backed address_spaces
2714 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2715 struct writeback_control
*wbc
)
2717 struct inode
* const inode
= page
->mapping
->host
;
2718 loff_t i_size
= i_size_read(inode
);
2719 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2723 /* Is the page fully inside i_size? */
2724 if (page
->index
< end_index
)
2725 return __block_write_full_page(inode
, page
, get_block
, wbc
);
2727 /* Is the page fully outside i_size? (truncate in progress) */
2728 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2729 if (page
->index
>= end_index
+1 || !offset
) {
2731 * The page may have dirty, unmapped buffers. For example,
2732 * they may have been added in ext3_writepage(). Make them
2733 * freeable here, so the page does not leak.
2735 do_invalidatepage(page
, 0);
2737 return 0; /* don't care */
2741 * The page straddles i_size. It must be zeroed out on each and every
2742 * writepage invokation because it may be mmapped. "A file is mapped
2743 * in multiples of the page size. For a file that is not a multiple of
2744 * the page size, the remaining memory is zeroed when mapped, and
2745 * writes to that region are not written out to the file."
2747 kaddr
= kmap_atomic(page
, KM_USER0
);
2748 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
2749 flush_dcache_page(page
);
2750 kunmap_atomic(kaddr
, KM_USER0
);
2751 return __block_write_full_page(inode
, page
, get_block
, wbc
);
2754 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2755 get_block_t
*get_block
)
2757 struct buffer_head tmp
;
2758 struct inode
*inode
= mapping
->host
;
2761 tmp
.b_size
= 1 << inode
->i_blkbits
;
2762 get_block(inode
, block
, &tmp
, 0);
2763 return tmp
.b_blocknr
;
2766 static int end_bio_bh_io_sync(struct bio
*bio
, unsigned int bytes_done
, int err
)
2768 struct buffer_head
*bh
= bio
->bi_private
;
2773 if (err
== -EOPNOTSUPP
) {
2774 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
2775 set_bit(BH_Eopnotsupp
, &bh
->b_state
);
2778 bh
->b_end_io(bh
, test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
2783 int submit_bh(int rw
, struct buffer_head
* bh
)
2788 BUG_ON(!buffer_locked(bh
));
2789 BUG_ON(!buffer_mapped(bh
));
2790 BUG_ON(!bh
->b_end_io
);
2792 if (buffer_ordered(bh
) && (rw
== WRITE
))
2796 * Only clear out a write error when rewriting, should this
2797 * include WRITE_SYNC as well?
2799 if (test_set_buffer_req(bh
) && (rw
== WRITE
|| rw
== WRITE_BARRIER
))
2800 clear_buffer_write_io_error(bh
);
2803 * from here on down, it's all bio -- do the initial mapping,
2804 * submit_bio -> generic_make_request may further map this bio around
2806 bio
= bio_alloc(GFP_NOIO
, 1);
2808 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
2809 bio
->bi_bdev
= bh
->b_bdev
;
2810 bio
->bi_io_vec
[0].bv_page
= bh
->b_page
;
2811 bio
->bi_io_vec
[0].bv_len
= bh
->b_size
;
2812 bio
->bi_io_vec
[0].bv_offset
= bh_offset(bh
);
2816 bio
->bi_size
= bh
->b_size
;
2818 bio
->bi_end_io
= end_bio_bh_io_sync
;
2819 bio
->bi_private
= bh
;
2822 submit_bio(rw
, bio
);
2824 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
2832 * ll_rw_block: low-level access to block devices (DEPRECATED)
2833 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2834 * @nr: number of &struct buffer_heads in the array
2835 * @bhs: array of pointers to &struct buffer_head
2837 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2838 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2839 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2840 * are sent to disk. The fourth %READA option is described in the documentation
2841 * for generic_make_request() which ll_rw_block() calls.
2843 * This function drops any buffer that it cannot get a lock on (with the
2844 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2845 * clean when doing a write request, and any buffer that appears to be
2846 * up-to-date when doing read request. Further it marks as clean buffers that
2847 * are processed for writing (the buffer cache won't assume that they are
2848 * actually clean until the buffer gets unlocked).
2850 * ll_rw_block sets b_end_io to simple completion handler that marks
2851 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2854 * All of the buffers must be for the same device, and must also be a
2855 * multiple of the current approved size for the device.
2857 void ll_rw_block(int rw
, int nr
, struct buffer_head
*bhs
[])
2861 for (i
= 0; i
< nr
; i
++) {
2862 struct buffer_head
*bh
= bhs
[i
];
2866 else if (test_set_buffer_locked(bh
))
2869 if (rw
== WRITE
|| rw
== SWRITE
) {
2870 if (test_clear_buffer_dirty(bh
)) {
2871 bh
->b_end_io
= end_buffer_write_sync
;
2873 submit_bh(WRITE
, bh
);
2877 if (!buffer_uptodate(bh
)) {
2878 bh
->b_end_io
= end_buffer_read_sync
;
2889 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2890 * and then start new I/O and then wait upon it. The caller must have a ref on
2893 int sync_dirty_buffer(struct buffer_head
*bh
)
2897 WARN_ON(atomic_read(&bh
->b_count
) < 1);
2899 if (test_clear_buffer_dirty(bh
)) {
2901 bh
->b_end_io
= end_buffer_write_sync
;
2902 ret
= submit_bh(WRITE
, bh
);
2904 if (buffer_eopnotsupp(bh
)) {
2905 clear_buffer_eopnotsupp(bh
);
2908 if (!ret
&& !buffer_uptodate(bh
))
2917 * try_to_free_buffers() checks if all the buffers on this particular page
2918 * are unused, and releases them if so.
2920 * Exclusion against try_to_free_buffers may be obtained by either
2921 * locking the page or by holding its mapping's private_lock.
2923 * If the page is dirty but all the buffers are clean then we need to
2924 * be sure to mark the page clean as well. This is because the page
2925 * may be against a block device, and a later reattachment of buffers
2926 * to a dirty page will set *all* buffers dirty. Which would corrupt
2927 * filesystem data on the same device.
2929 * The same applies to regular filesystem pages: if all the buffers are
2930 * clean then we set the page clean and proceed. To do that, we require
2931 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2934 * try_to_free_buffers() is non-blocking.
2936 static inline int buffer_busy(struct buffer_head
*bh
)
2938 return atomic_read(&bh
->b_count
) |
2939 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
2943 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
2945 struct buffer_head
*head
= page_buffers(page
);
2946 struct buffer_head
*bh
;
2950 if (buffer_write_io_error(bh
) && page
->mapping
)
2951 set_bit(AS_EIO
, &page
->mapping
->flags
);
2952 if (buffer_busy(bh
))
2954 bh
= bh
->b_this_page
;
2955 } while (bh
!= head
);
2958 struct buffer_head
*next
= bh
->b_this_page
;
2960 if (!list_empty(&bh
->b_assoc_buffers
))
2961 __remove_assoc_queue(bh
);
2963 } while (bh
!= head
);
2964 *buffers_to_free
= head
;
2965 __clear_page_buffers(page
);
2971 int try_to_free_buffers(struct page
*page
)
2973 struct address_space
* const mapping
= page
->mapping
;
2974 struct buffer_head
*buffers_to_free
= NULL
;
2977 BUG_ON(!PageLocked(page
));
2978 if (PageWriteback(page
))
2981 if (mapping
== NULL
) { /* can this still happen? */
2982 ret
= drop_buffers(page
, &buffers_to_free
);
2986 spin_lock(&mapping
->private_lock
);
2987 ret
= drop_buffers(page
, &buffers_to_free
);
2990 * If the filesystem writes its buffers by hand (eg ext3)
2991 * then we can have clean buffers against a dirty page. We
2992 * clean the page here; otherwise later reattachment of buffers
2993 * could encounter a non-uptodate page, which is unresolvable.
2994 * This only applies in the rare case where try_to_free_buffers
2995 * succeeds but the page is not freed.
2997 clear_page_dirty(page
);
2999 spin_unlock(&mapping
->private_lock
);
3001 if (buffers_to_free
) {
3002 struct buffer_head
*bh
= buffers_to_free
;
3005 struct buffer_head
*next
= bh
->b_this_page
;
3006 free_buffer_head(bh
);
3008 } while (bh
!= buffers_to_free
);
3012 EXPORT_SYMBOL(try_to_free_buffers
);
3014 void block_sync_page(struct page
*page
)
3016 struct address_space
*mapping
;
3019 mapping
= page_mapping(page
);
3021 blk_run_backing_dev(mapping
->backing_dev_info
, page
);
3025 * There are no bdflush tunables left. But distributions are
3026 * still running obsolete flush daemons, so we terminate them here.
3028 * Use of bdflush() is deprecated and will be removed in a future kernel.
3029 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3031 asmlinkage
long sys_bdflush(int func
, long data
)
3033 static int msg_count
;
3035 if (!capable(CAP_SYS_ADMIN
))
3038 if (msg_count
< 5) {
3041 "warning: process `%s' used the obsolete bdflush"
3042 " system call\n", current
->comm
);
3043 printk(KERN_INFO
"Fix your initscripts?\n");
3052 * Buffer-head allocation
3054 static kmem_cache_t
*bh_cachep
;
3057 * Once the number of bh's in the machine exceeds this level, we start
3058 * stripping them in writeback.
3060 static int max_buffer_heads
;
3062 int buffer_heads_over_limit
;
3064 struct bh_accounting
{
3065 int nr
; /* Number of live bh's */
3066 int ratelimit
; /* Limit cacheline bouncing */
3069 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3071 static void recalc_bh_state(void)
3076 if (__get_cpu_var(bh_accounting
).ratelimit
++ < 4096)
3078 __get_cpu_var(bh_accounting
).ratelimit
= 0;
3079 for_each_online_cpu(i
)
3080 tot
+= per_cpu(bh_accounting
, i
).nr
;
3081 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3084 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3086 struct buffer_head
*ret
= kmem_cache_alloc(bh_cachep
, gfp_flags
);
3088 get_cpu_var(bh_accounting
).nr
++;
3090 put_cpu_var(bh_accounting
);
3094 EXPORT_SYMBOL(alloc_buffer_head
);
3096 void free_buffer_head(struct buffer_head
*bh
)
3098 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3099 kmem_cache_free(bh_cachep
, bh
);
3100 get_cpu_var(bh_accounting
).nr
--;
3102 put_cpu_var(bh_accounting
);
3104 EXPORT_SYMBOL(free_buffer_head
);
3107 init_buffer_head(void *data
, kmem_cache_t
*cachep
, unsigned long flags
)
3109 if ((flags
& (SLAB_CTOR_VERIFY
|SLAB_CTOR_CONSTRUCTOR
)) ==
3110 SLAB_CTOR_CONSTRUCTOR
) {
3111 struct buffer_head
* bh
= (struct buffer_head
*)data
;
3113 memset(bh
, 0, sizeof(*bh
));
3114 INIT_LIST_HEAD(&bh
->b_assoc_buffers
);
3118 #ifdef CONFIG_HOTPLUG_CPU
3119 static void buffer_exit_cpu(int cpu
)
3122 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3124 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3128 get_cpu_var(bh_accounting
).nr
+= per_cpu(bh_accounting
, cpu
).nr
;
3129 per_cpu(bh_accounting
, cpu
).nr
= 0;
3130 put_cpu_var(bh_accounting
);
3133 static int buffer_cpu_notify(struct notifier_block
*self
,
3134 unsigned long action
, void *hcpu
)
3136 if (action
== CPU_DEAD
)
3137 buffer_exit_cpu((unsigned long)hcpu
);
3140 #endif /* CONFIG_HOTPLUG_CPU */
3142 void __init
buffer_init(void)
3146 bh_cachep
= kmem_cache_create("buffer_head",
3147 sizeof(struct buffer_head
), 0,
3148 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3154 * Limit the bh occupancy to 10% of ZONE_NORMAL
3156 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3157 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3158 hotcpu_notifier(buffer_cpu_notify
, 0);
3161 EXPORT_SYMBOL(__bforget
);
3162 EXPORT_SYMBOL(__brelse
);
3163 EXPORT_SYMBOL(__wait_on_buffer
);
3164 EXPORT_SYMBOL(block_commit_write
);
3165 EXPORT_SYMBOL(block_prepare_write
);
3166 EXPORT_SYMBOL(block_read_full_page
);
3167 EXPORT_SYMBOL(block_sync_page
);
3168 EXPORT_SYMBOL(block_truncate_page
);
3169 EXPORT_SYMBOL(block_write_full_page
);
3170 EXPORT_SYMBOL(cont_prepare_write
);
3171 EXPORT_SYMBOL(end_buffer_async_write
);
3172 EXPORT_SYMBOL(end_buffer_read_sync
);
3173 EXPORT_SYMBOL(end_buffer_write_sync
);
3174 EXPORT_SYMBOL(file_fsync
);
3175 EXPORT_SYMBOL(fsync_bdev
);
3176 EXPORT_SYMBOL(generic_block_bmap
);
3177 EXPORT_SYMBOL(generic_commit_write
);
3178 EXPORT_SYMBOL(generic_cont_expand
);
3179 EXPORT_SYMBOL(generic_cont_expand_simple
);
3180 EXPORT_SYMBOL(init_buffer
);
3181 EXPORT_SYMBOL(invalidate_bdev
);
3182 EXPORT_SYMBOL(ll_rw_block
);
3183 EXPORT_SYMBOL(mark_buffer_dirty
);
3184 EXPORT_SYMBOL(submit_bh
);
3185 EXPORT_SYMBOL(sync_dirty_buffer
);
3186 EXPORT_SYMBOL(unlock_buffer
);