ALSA: Turtle Beach Multisound Classic/Pinnacle driver
[linux-2.6/mini2440.git] / fs / jbd / journal.c
blob9e4fa52d7dc8df62527eb1fb9b141f7db3b37d10
1 /*
2 * linux/fs/jbd/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
40 #include <asm/uaccess.h>
41 #include <asm/page.h>
43 EXPORT_SYMBOL(journal_start);
44 EXPORT_SYMBOL(journal_restart);
45 EXPORT_SYMBOL(journal_extend);
46 EXPORT_SYMBOL(journal_stop);
47 EXPORT_SYMBOL(journal_lock_updates);
48 EXPORT_SYMBOL(journal_unlock_updates);
49 EXPORT_SYMBOL(journal_get_write_access);
50 EXPORT_SYMBOL(journal_get_create_access);
51 EXPORT_SYMBOL(journal_get_undo_access);
52 EXPORT_SYMBOL(journal_dirty_data);
53 EXPORT_SYMBOL(journal_dirty_metadata);
54 EXPORT_SYMBOL(journal_release_buffer);
55 EXPORT_SYMBOL(journal_forget);
56 #if 0
57 EXPORT_SYMBOL(journal_sync_buffer);
58 #endif
59 EXPORT_SYMBOL(journal_flush);
60 EXPORT_SYMBOL(journal_revoke);
62 EXPORT_SYMBOL(journal_init_dev);
63 EXPORT_SYMBOL(journal_init_inode);
64 EXPORT_SYMBOL(journal_update_format);
65 EXPORT_SYMBOL(journal_check_used_features);
66 EXPORT_SYMBOL(journal_check_available_features);
67 EXPORT_SYMBOL(journal_set_features);
68 EXPORT_SYMBOL(journal_create);
69 EXPORT_SYMBOL(journal_load);
70 EXPORT_SYMBOL(journal_destroy);
71 EXPORT_SYMBOL(journal_abort);
72 EXPORT_SYMBOL(journal_errno);
73 EXPORT_SYMBOL(journal_ack_err);
74 EXPORT_SYMBOL(journal_clear_err);
75 EXPORT_SYMBOL(log_wait_commit);
76 EXPORT_SYMBOL(journal_start_commit);
77 EXPORT_SYMBOL(journal_force_commit_nested);
78 EXPORT_SYMBOL(journal_wipe);
79 EXPORT_SYMBOL(journal_blocks_per_page);
80 EXPORT_SYMBOL(journal_invalidatepage);
81 EXPORT_SYMBOL(journal_try_to_free_buffers);
82 EXPORT_SYMBOL(journal_force_commit);
84 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
85 static void __journal_abort_soft (journal_t *journal, int errno);
88 * Helper function used to manage commit timeouts
91 static void commit_timeout(unsigned long __data)
93 struct task_struct * p = (struct task_struct *) __data;
95 wake_up_process(p);
99 * kjournald: The main thread function used to manage a logging device
100 * journal.
102 * This kernel thread is responsible for two things:
104 * 1) COMMIT: Every so often we need to commit the current state of the
105 * filesystem to disk. The journal thread is responsible for writing
106 * all of the metadata buffers to disk.
108 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
109 * of the data in that part of the log has been rewritten elsewhere on
110 * the disk. Flushing these old buffers to reclaim space in the log is
111 * known as checkpointing, and this thread is responsible for that job.
114 static int kjournald(void *arg)
116 journal_t *journal = arg;
117 transaction_t *transaction;
120 * Set up an interval timer which can be used to trigger a commit wakeup
121 * after the commit interval expires
123 setup_timer(&journal->j_commit_timer, commit_timeout,
124 (unsigned long)current);
126 /* Record that the journal thread is running */
127 journal->j_task = current;
128 wake_up(&journal->j_wait_done_commit);
130 printk(KERN_INFO "kjournald starting. Commit interval %ld seconds\n",
131 journal->j_commit_interval / HZ);
134 * And now, wait forever for commit wakeup events.
136 spin_lock(&journal->j_state_lock);
138 loop:
139 if (journal->j_flags & JFS_UNMOUNT)
140 goto end_loop;
142 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
143 journal->j_commit_sequence, journal->j_commit_request);
145 if (journal->j_commit_sequence != journal->j_commit_request) {
146 jbd_debug(1, "OK, requests differ\n");
147 spin_unlock(&journal->j_state_lock);
148 del_timer_sync(&journal->j_commit_timer);
149 journal_commit_transaction(journal);
150 spin_lock(&journal->j_state_lock);
151 goto loop;
154 wake_up(&journal->j_wait_done_commit);
155 if (freezing(current)) {
157 * The simpler the better. Flushing journal isn't a
158 * good idea, because that depends on threads that may
159 * be already stopped.
161 jbd_debug(1, "Now suspending kjournald\n");
162 spin_unlock(&journal->j_state_lock);
163 refrigerator();
164 spin_lock(&journal->j_state_lock);
165 } else {
167 * We assume on resume that commits are already there,
168 * so we don't sleep
170 DEFINE_WAIT(wait);
171 int should_sleep = 1;
173 prepare_to_wait(&journal->j_wait_commit, &wait,
174 TASK_INTERRUPTIBLE);
175 if (journal->j_commit_sequence != journal->j_commit_request)
176 should_sleep = 0;
177 transaction = journal->j_running_transaction;
178 if (transaction && time_after_eq(jiffies,
179 transaction->t_expires))
180 should_sleep = 0;
181 if (journal->j_flags & JFS_UNMOUNT)
182 should_sleep = 0;
183 if (should_sleep) {
184 spin_unlock(&journal->j_state_lock);
185 schedule();
186 spin_lock(&journal->j_state_lock);
188 finish_wait(&journal->j_wait_commit, &wait);
191 jbd_debug(1, "kjournald wakes\n");
194 * Were we woken up by a commit wakeup event?
196 transaction = journal->j_running_transaction;
197 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
198 journal->j_commit_request = transaction->t_tid;
199 jbd_debug(1, "woke because of timeout\n");
201 goto loop;
203 end_loop:
204 spin_unlock(&journal->j_state_lock);
205 del_timer_sync(&journal->j_commit_timer);
206 journal->j_task = NULL;
207 wake_up(&journal->j_wait_done_commit);
208 jbd_debug(1, "Journal thread exiting.\n");
209 return 0;
212 static int journal_start_thread(journal_t *journal)
214 struct task_struct *t;
216 t = kthread_run(kjournald, journal, "kjournald");
217 if (IS_ERR(t))
218 return PTR_ERR(t);
220 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
221 return 0;
224 static void journal_kill_thread(journal_t *journal)
226 spin_lock(&journal->j_state_lock);
227 journal->j_flags |= JFS_UNMOUNT;
229 while (journal->j_task) {
230 wake_up(&journal->j_wait_commit);
231 spin_unlock(&journal->j_state_lock);
232 wait_event(journal->j_wait_done_commit,
233 journal->j_task == NULL);
234 spin_lock(&journal->j_state_lock);
236 spin_unlock(&journal->j_state_lock);
240 * journal_write_metadata_buffer: write a metadata buffer to the journal.
242 * Writes a metadata buffer to a given disk block. The actual IO is not
243 * performed but a new buffer_head is constructed which labels the data
244 * to be written with the correct destination disk block.
246 * Any magic-number escaping which needs to be done will cause a
247 * copy-out here. If the buffer happens to start with the
248 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
249 * magic number is only written to the log for descripter blocks. In
250 * this case, we copy the data and replace the first word with 0, and we
251 * return a result code which indicates that this buffer needs to be
252 * marked as an escaped buffer in the corresponding log descriptor
253 * block. The missing word can then be restored when the block is read
254 * during recovery.
256 * If the source buffer has already been modified by a new transaction
257 * since we took the last commit snapshot, we use the frozen copy of
258 * that data for IO. If we end up using the existing buffer_head's data
259 * for the write, then we *have* to lock the buffer to prevent anyone
260 * else from using and possibly modifying it while the IO is in
261 * progress.
263 * The function returns a pointer to the buffer_heads to be used for IO.
265 * We assume that the journal has already been locked in this function.
267 * Return value:
268 * <0: Error
269 * >=0: Finished OK
271 * On success:
272 * Bit 0 set == escape performed on the data
273 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
276 int journal_write_metadata_buffer(transaction_t *transaction,
277 struct journal_head *jh_in,
278 struct journal_head **jh_out,
279 unsigned long blocknr)
281 int need_copy_out = 0;
282 int done_copy_out = 0;
283 int do_escape = 0;
284 char *mapped_data;
285 struct buffer_head *new_bh;
286 struct journal_head *new_jh;
287 struct page *new_page;
288 unsigned int new_offset;
289 struct buffer_head *bh_in = jh2bh(jh_in);
292 * The buffer really shouldn't be locked: only the current committing
293 * transaction is allowed to write it, so nobody else is allowed
294 * to do any IO.
296 * akpm: except if we're journalling data, and write() output is
297 * also part of a shared mapping, and another thread has
298 * decided to launch a writepage() against this buffer.
300 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
302 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
305 * If a new transaction has already done a buffer copy-out, then
306 * we use that version of the data for the commit.
308 jbd_lock_bh_state(bh_in);
309 repeat:
310 if (jh_in->b_frozen_data) {
311 done_copy_out = 1;
312 new_page = virt_to_page(jh_in->b_frozen_data);
313 new_offset = offset_in_page(jh_in->b_frozen_data);
314 } else {
315 new_page = jh2bh(jh_in)->b_page;
316 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
319 mapped_data = kmap_atomic(new_page, KM_USER0);
321 * Check for escaping
323 if (*((__be32 *)(mapped_data + new_offset)) ==
324 cpu_to_be32(JFS_MAGIC_NUMBER)) {
325 need_copy_out = 1;
326 do_escape = 1;
328 kunmap_atomic(mapped_data, KM_USER0);
331 * Do we need to do a data copy?
333 if (need_copy_out && !done_copy_out) {
334 char *tmp;
336 jbd_unlock_bh_state(bh_in);
337 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
338 jbd_lock_bh_state(bh_in);
339 if (jh_in->b_frozen_data) {
340 jbd_free(tmp, bh_in->b_size);
341 goto repeat;
344 jh_in->b_frozen_data = tmp;
345 mapped_data = kmap_atomic(new_page, KM_USER0);
346 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
347 kunmap_atomic(mapped_data, KM_USER0);
349 new_page = virt_to_page(tmp);
350 new_offset = offset_in_page(tmp);
351 done_copy_out = 1;
355 * Did we need to do an escaping? Now we've done all the
356 * copying, we can finally do so.
358 if (do_escape) {
359 mapped_data = kmap_atomic(new_page, KM_USER0);
360 *((unsigned int *)(mapped_data + new_offset)) = 0;
361 kunmap_atomic(mapped_data, KM_USER0);
364 /* keep subsequent assertions sane */
365 new_bh->b_state = 0;
366 init_buffer(new_bh, NULL, NULL);
367 atomic_set(&new_bh->b_count, 1);
368 jbd_unlock_bh_state(bh_in);
370 new_jh = journal_add_journal_head(new_bh); /* This sleeps */
372 set_bh_page(new_bh, new_page, new_offset);
373 new_jh->b_transaction = NULL;
374 new_bh->b_size = jh2bh(jh_in)->b_size;
375 new_bh->b_bdev = transaction->t_journal->j_dev;
376 new_bh->b_blocknr = blocknr;
377 set_buffer_mapped(new_bh);
378 set_buffer_dirty(new_bh);
380 *jh_out = new_jh;
383 * The to-be-written buffer needs to get moved to the io queue,
384 * and the original buffer whose contents we are shadowing or
385 * copying is moved to the transaction's shadow queue.
387 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
388 journal_file_buffer(jh_in, transaction, BJ_Shadow);
389 JBUFFER_TRACE(new_jh, "file as BJ_IO");
390 journal_file_buffer(new_jh, transaction, BJ_IO);
392 return do_escape | (done_copy_out << 1);
396 * Allocation code for the journal file. Manage the space left in the
397 * journal, so that we can begin checkpointing when appropriate.
401 * __log_space_left: Return the number of free blocks left in the journal.
403 * Called with the journal already locked.
405 * Called under j_state_lock
408 int __log_space_left(journal_t *journal)
410 int left = journal->j_free;
412 assert_spin_locked(&journal->j_state_lock);
415 * Be pessimistic here about the number of those free blocks which
416 * might be required for log descriptor control blocks.
419 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
421 left -= MIN_LOG_RESERVED_BLOCKS;
423 if (left <= 0)
424 return 0;
425 left -= (left >> 3);
426 return left;
430 * Called under j_state_lock. Returns true if a transaction was started.
432 int __log_start_commit(journal_t *journal, tid_t target)
435 * Are we already doing a recent enough commit?
437 if (!tid_geq(journal->j_commit_request, target)) {
439 * We want a new commit: OK, mark the request and wakup the
440 * commit thread. We do _not_ do the commit ourselves.
443 journal->j_commit_request = target;
444 jbd_debug(1, "JBD: requesting commit %d/%d\n",
445 journal->j_commit_request,
446 journal->j_commit_sequence);
447 wake_up(&journal->j_wait_commit);
448 return 1;
450 return 0;
453 int log_start_commit(journal_t *journal, tid_t tid)
455 int ret;
457 spin_lock(&journal->j_state_lock);
458 ret = __log_start_commit(journal, tid);
459 spin_unlock(&journal->j_state_lock);
460 return ret;
464 * Force and wait upon a commit if the calling process is not within
465 * transaction. This is used for forcing out undo-protected data which contains
466 * bitmaps, when the fs is running out of space.
468 * We can only force the running transaction if we don't have an active handle;
469 * otherwise, we will deadlock.
471 * Returns true if a transaction was started.
473 int journal_force_commit_nested(journal_t *journal)
475 transaction_t *transaction = NULL;
476 tid_t tid;
478 spin_lock(&journal->j_state_lock);
479 if (journal->j_running_transaction && !current->journal_info) {
480 transaction = journal->j_running_transaction;
481 __log_start_commit(journal, transaction->t_tid);
482 } else if (journal->j_committing_transaction)
483 transaction = journal->j_committing_transaction;
485 if (!transaction) {
486 spin_unlock(&journal->j_state_lock);
487 return 0; /* Nothing to retry */
490 tid = transaction->t_tid;
491 spin_unlock(&journal->j_state_lock);
492 log_wait_commit(journal, tid);
493 return 1;
497 * Start a commit of the current running transaction (if any). Returns true
498 * if a transaction was started, and fills its tid in at *ptid
500 int journal_start_commit(journal_t *journal, tid_t *ptid)
502 int ret = 0;
504 spin_lock(&journal->j_state_lock);
505 if (journal->j_running_transaction) {
506 tid_t tid = journal->j_running_transaction->t_tid;
508 ret = __log_start_commit(journal, tid);
509 if (ret && ptid)
510 *ptid = tid;
511 } else if (journal->j_committing_transaction && ptid) {
513 * If ext3_write_super() recently started a commit, then we
514 * have to wait for completion of that transaction
516 *ptid = journal->j_committing_transaction->t_tid;
517 ret = 1;
519 spin_unlock(&journal->j_state_lock);
520 return ret;
524 * Wait for a specified commit to complete.
525 * The caller may not hold the journal lock.
527 int log_wait_commit(journal_t *journal, tid_t tid)
529 int err = 0;
531 #ifdef CONFIG_JBD_DEBUG
532 spin_lock(&journal->j_state_lock);
533 if (!tid_geq(journal->j_commit_request, tid)) {
534 printk(KERN_EMERG
535 "%s: error: j_commit_request=%d, tid=%d\n",
536 __func__, journal->j_commit_request, tid);
538 spin_unlock(&journal->j_state_lock);
539 #endif
540 spin_lock(&journal->j_state_lock);
541 while (tid_gt(tid, journal->j_commit_sequence)) {
542 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
543 tid, journal->j_commit_sequence);
544 wake_up(&journal->j_wait_commit);
545 spin_unlock(&journal->j_state_lock);
546 wait_event(journal->j_wait_done_commit,
547 !tid_gt(tid, journal->j_commit_sequence));
548 spin_lock(&journal->j_state_lock);
550 spin_unlock(&journal->j_state_lock);
552 if (unlikely(is_journal_aborted(journal))) {
553 printk(KERN_EMERG "journal commit I/O error\n");
554 err = -EIO;
556 return err;
560 * Log buffer allocation routines:
563 int journal_next_log_block(journal_t *journal, unsigned long *retp)
565 unsigned long blocknr;
567 spin_lock(&journal->j_state_lock);
568 J_ASSERT(journal->j_free > 1);
570 blocknr = journal->j_head;
571 journal->j_head++;
572 journal->j_free--;
573 if (journal->j_head == journal->j_last)
574 journal->j_head = journal->j_first;
575 spin_unlock(&journal->j_state_lock);
576 return journal_bmap(journal, blocknr, retp);
580 * Conversion of logical to physical block numbers for the journal
582 * On external journals the journal blocks are identity-mapped, so
583 * this is a no-op. If needed, we can use j_blk_offset - everything is
584 * ready.
586 int journal_bmap(journal_t *journal, unsigned long blocknr,
587 unsigned long *retp)
589 int err = 0;
590 unsigned long ret;
592 if (journal->j_inode) {
593 ret = bmap(journal->j_inode, blocknr);
594 if (ret)
595 *retp = ret;
596 else {
597 char b[BDEVNAME_SIZE];
599 printk(KERN_ALERT "%s: journal block not found "
600 "at offset %lu on %s\n",
601 __func__,
602 blocknr,
603 bdevname(journal->j_dev, b));
604 err = -EIO;
605 __journal_abort_soft(journal, err);
607 } else {
608 *retp = blocknr; /* +journal->j_blk_offset */
610 return err;
614 * We play buffer_head aliasing tricks to write data/metadata blocks to
615 * the journal without copying their contents, but for journal
616 * descriptor blocks we do need to generate bona fide buffers.
618 * After the caller of journal_get_descriptor_buffer() has finished modifying
619 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
620 * But we don't bother doing that, so there will be coherency problems with
621 * mmaps of blockdevs which hold live JBD-controlled filesystems.
623 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
625 struct buffer_head *bh;
626 unsigned long blocknr;
627 int err;
629 err = journal_next_log_block(journal, &blocknr);
631 if (err)
632 return NULL;
634 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
635 lock_buffer(bh);
636 memset(bh->b_data, 0, journal->j_blocksize);
637 set_buffer_uptodate(bh);
638 unlock_buffer(bh);
639 BUFFER_TRACE(bh, "return this buffer");
640 return journal_add_journal_head(bh);
644 * Management for journal control blocks: functions to create and
645 * destroy journal_t structures, and to initialise and read existing
646 * journal blocks from disk. */
648 /* First: create and setup a journal_t object in memory. We initialise
649 * very few fields yet: that has to wait until we have created the
650 * journal structures from from scratch, or loaded them from disk. */
652 static journal_t * journal_init_common (void)
654 journal_t *journal;
655 int err;
657 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
658 if (!journal)
659 goto fail;
661 init_waitqueue_head(&journal->j_wait_transaction_locked);
662 init_waitqueue_head(&journal->j_wait_logspace);
663 init_waitqueue_head(&journal->j_wait_done_commit);
664 init_waitqueue_head(&journal->j_wait_checkpoint);
665 init_waitqueue_head(&journal->j_wait_commit);
666 init_waitqueue_head(&journal->j_wait_updates);
667 mutex_init(&journal->j_barrier);
668 mutex_init(&journal->j_checkpoint_mutex);
669 spin_lock_init(&journal->j_revoke_lock);
670 spin_lock_init(&journal->j_list_lock);
671 spin_lock_init(&journal->j_state_lock);
673 journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
675 /* The journal is marked for error until we succeed with recovery! */
676 journal->j_flags = JFS_ABORT;
678 /* Set up a default-sized revoke table for the new mount. */
679 err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
680 if (err) {
681 kfree(journal);
682 goto fail;
684 return journal;
685 fail:
686 return NULL;
689 /* journal_init_dev and journal_init_inode:
691 * Create a journal structure assigned some fixed set of disk blocks to
692 * the journal. We don't actually touch those disk blocks yet, but we
693 * need to set up all of the mapping information to tell the journaling
694 * system where the journal blocks are.
699 * journal_t * journal_init_dev() - creates and initialises a journal structure
700 * @bdev: Block device on which to create the journal
701 * @fs_dev: Device which hold journalled filesystem for this journal.
702 * @start: Block nr Start of journal.
703 * @len: Length of the journal in blocks.
704 * @blocksize: blocksize of journalling device
706 * Returns: a newly created journal_t *
708 * journal_init_dev creates a journal which maps a fixed contiguous
709 * range of blocks on an arbitrary block device.
712 journal_t * journal_init_dev(struct block_device *bdev,
713 struct block_device *fs_dev,
714 int start, int len, int blocksize)
716 journal_t *journal = journal_init_common();
717 struct buffer_head *bh;
718 int n;
720 if (!journal)
721 return NULL;
723 /* journal descriptor can store up to n blocks -bzzz */
724 journal->j_blocksize = blocksize;
725 n = journal->j_blocksize / sizeof(journal_block_tag_t);
726 journal->j_wbufsize = n;
727 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
728 if (!journal->j_wbuf) {
729 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
730 __func__);
731 kfree(journal);
732 journal = NULL;
733 goto out;
735 journal->j_dev = bdev;
736 journal->j_fs_dev = fs_dev;
737 journal->j_blk_offset = start;
738 journal->j_maxlen = len;
740 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
741 J_ASSERT(bh != NULL);
742 journal->j_sb_buffer = bh;
743 journal->j_superblock = (journal_superblock_t *)bh->b_data;
744 out:
745 return journal;
749 * journal_t * journal_init_inode () - creates a journal which maps to a inode.
750 * @inode: An inode to create the journal in
752 * journal_init_inode creates a journal which maps an on-disk inode as
753 * the journal. The inode must exist already, must support bmap() and
754 * must have all data blocks preallocated.
756 journal_t * journal_init_inode (struct inode *inode)
758 struct buffer_head *bh;
759 journal_t *journal = journal_init_common();
760 int err;
761 int n;
762 unsigned long blocknr;
764 if (!journal)
765 return NULL;
767 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
768 journal->j_inode = inode;
769 jbd_debug(1,
770 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
771 journal, inode->i_sb->s_id, inode->i_ino,
772 (long long) inode->i_size,
773 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
775 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
776 journal->j_blocksize = inode->i_sb->s_blocksize;
778 /* journal descriptor can store up to n blocks -bzzz */
779 n = journal->j_blocksize / sizeof(journal_block_tag_t);
780 journal->j_wbufsize = n;
781 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
782 if (!journal->j_wbuf) {
783 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
784 __func__);
785 kfree(journal);
786 return NULL;
789 err = journal_bmap(journal, 0, &blocknr);
790 /* If that failed, give up */
791 if (err) {
792 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
793 __func__);
794 kfree(journal);
795 return NULL;
798 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
799 J_ASSERT(bh != NULL);
800 journal->j_sb_buffer = bh;
801 journal->j_superblock = (journal_superblock_t *)bh->b_data;
803 return journal;
807 * If the journal init or create aborts, we need to mark the journal
808 * superblock as being NULL to prevent the journal destroy from writing
809 * back a bogus superblock.
811 static void journal_fail_superblock (journal_t *journal)
813 struct buffer_head *bh = journal->j_sb_buffer;
814 brelse(bh);
815 journal->j_sb_buffer = NULL;
819 * Given a journal_t structure, initialise the various fields for
820 * startup of a new journaling session. We use this both when creating
821 * a journal, and after recovering an old journal to reset it for
822 * subsequent use.
825 static int journal_reset(journal_t *journal)
827 journal_superblock_t *sb = journal->j_superblock;
828 unsigned long first, last;
830 first = be32_to_cpu(sb->s_first);
831 last = be32_to_cpu(sb->s_maxlen);
833 journal->j_first = first;
834 journal->j_last = last;
836 journal->j_head = first;
837 journal->j_tail = first;
838 journal->j_free = last - first;
840 journal->j_tail_sequence = journal->j_transaction_sequence;
841 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
842 journal->j_commit_request = journal->j_commit_sequence;
844 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
846 /* Add the dynamic fields and write it to disk. */
847 journal_update_superblock(journal, 1);
848 return journal_start_thread(journal);
852 * int journal_create() - Initialise the new journal file
853 * @journal: Journal to create. This structure must have been initialised
855 * Given a journal_t structure which tells us which disk blocks we can
856 * use, create a new journal superblock and initialise all of the
857 * journal fields from scratch.
859 int journal_create(journal_t *journal)
861 unsigned long blocknr;
862 struct buffer_head *bh;
863 journal_superblock_t *sb;
864 int i, err;
866 if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
867 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
868 journal->j_maxlen);
869 journal_fail_superblock(journal);
870 return -EINVAL;
873 if (journal->j_inode == NULL) {
875 * We don't know what block to start at!
877 printk(KERN_EMERG
878 "%s: creation of journal on external device!\n",
879 __func__);
880 BUG();
883 /* Zero out the entire journal on disk. We cannot afford to
884 have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
885 jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
886 for (i = 0; i < journal->j_maxlen; i++) {
887 err = journal_bmap(journal, i, &blocknr);
888 if (err)
889 return err;
890 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
891 lock_buffer(bh);
892 memset (bh->b_data, 0, journal->j_blocksize);
893 BUFFER_TRACE(bh, "marking dirty");
894 mark_buffer_dirty(bh);
895 BUFFER_TRACE(bh, "marking uptodate");
896 set_buffer_uptodate(bh);
897 unlock_buffer(bh);
898 __brelse(bh);
901 sync_blockdev(journal->j_dev);
902 jbd_debug(1, "JBD: journal cleared.\n");
904 /* OK, fill in the initial static fields in the new superblock */
905 sb = journal->j_superblock;
907 sb->s_header.h_magic = cpu_to_be32(JFS_MAGIC_NUMBER);
908 sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
910 sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
911 sb->s_maxlen = cpu_to_be32(journal->j_maxlen);
912 sb->s_first = cpu_to_be32(1);
914 journal->j_transaction_sequence = 1;
916 journal->j_flags &= ~JFS_ABORT;
917 journal->j_format_version = 2;
919 return journal_reset(journal);
923 * void journal_update_superblock() - Update journal sb on disk.
924 * @journal: The journal to update.
925 * @wait: Set to '0' if you don't want to wait for IO completion.
927 * Update a journal's dynamic superblock fields and write it to disk,
928 * optionally waiting for the IO to complete.
930 void journal_update_superblock(journal_t *journal, int wait)
932 journal_superblock_t *sb = journal->j_superblock;
933 struct buffer_head *bh = journal->j_sb_buffer;
936 * As a special case, if the on-disk copy is already marked as needing
937 * no recovery (s_start == 0) and there are no outstanding transactions
938 * in the filesystem, then we can safely defer the superblock update
939 * until the next commit by setting JFS_FLUSHED. This avoids
940 * attempting a write to a potential-readonly device.
942 if (sb->s_start == 0 && journal->j_tail_sequence ==
943 journal->j_transaction_sequence) {
944 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
945 "(start %ld, seq %d, errno %d)\n",
946 journal->j_tail, journal->j_tail_sequence,
947 journal->j_errno);
948 goto out;
951 spin_lock(&journal->j_state_lock);
952 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
953 journal->j_tail, journal->j_tail_sequence, journal->j_errno);
955 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
956 sb->s_start = cpu_to_be32(journal->j_tail);
957 sb->s_errno = cpu_to_be32(journal->j_errno);
958 spin_unlock(&journal->j_state_lock);
960 BUFFER_TRACE(bh, "marking dirty");
961 mark_buffer_dirty(bh);
962 if (wait)
963 sync_dirty_buffer(bh);
964 else
965 ll_rw_block(SWRITE, 1, &bh);
967 out:
968 /* If we have just flushed the log (by marking s_start==0), then
969 * any future commit will have to be careful to update the
970 * superblock again to re-record the true start of the log. */
972 spin_lock(&journal->j_state_lock);
973 if (sb->s_start)
974 journal->j_flags &= ~JFS_FLUSHED;
975 else
976 journal->j_flags |= JFS_FLUSHED;
977 spin_unlock(&journal->j_state_lock);
981 * Read the superblock for a given journal, performing initial
982 * validation of the format.
985 static int journal_get_superblock(journal_t *journal)
987 struct buffer_head *bh;
988 journal_superblock_t *sb;
989 int err = -EIO;
991 bh = journal->j_sb_buffer;
993 J_ASSERT(bh != NULL);
994 if (!buffer_uptodate(bh)) {
995 ll_rw_block(READ, 1, &bh);
996 wait_on_buffer(bh);
997 if (!buffer_uptodate(bh)) {
998 printk (KERN_ERR
999 "JBD: IO error reading journal superblock\n");
1000 goto out;
1004 sb = journal->j_superblock;
1006 err = -EINVAL;
1008 if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1009 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1010 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1011 goto out;
1014 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1015 case JFS_SUPERBLOCK_V1:
1016 journal->j_format_version = 1;
1017 break;
1018 case JFS_SUPERBLOCK_V2:
1019 journal->j_format_version = 2;
1020 break;
1021 default:
1022 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1023 goto out;
1026 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1027 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1028 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1029 printk (KERN_WARNING "JBD: journal file too short\n");
1030 goto out;
1033 return 0;
1035 out:
1036 journal_fail_superblock(journal);
1037 return err;
1041 * Load the on-disk journal superblock and read the key fields into the
1042 * journal_t.
1045 static int load_superblock(journal_t *journal)
1047 int err;
1048 journal_superblock_t *sb;
1050 err = journal_get_superblock(journal);
1051 if (err)
1052 return err;
1054 sb = journal->j_superblock;
1056 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1057 journal->j_tail = be32_to_cpu(sb->s_start);
1058 journal->j_first = be32_to_cpu(sb->s_first);
1059 journal->j_last = be32_to_cpu(sb->s_maxlen);
1060 journal->j_errno = be32_to_cpu(sb->s_errno);
1062 return 0;
1067 * int journal_load() - Read journal from disk.
1068 * @journal: Journal to act on.
1070 * Given a journal_t structure which tells us which disk blocks contain
1071 * a journal, read the journal from disk to initialise the in-memory
1072 * structures.
1074 int journal_load(journal_t *journal)
1076 int err;
1077 journal_superblock_t *sb;
1079 err = load_superblock(journal);
1080 if (err)
1081 return err;
1083 sb = journal->j_superblock;
1084 /* If this is a V2 superblock, then we have to check the
1085 * features flags on it. */
1087 if (journal->j_format_version >= 2) {
1088 if ((sb->s_feature_ro_compat &
1089 ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1090 (sb->s_feature_incompat &
1091 ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1092 printk (KERN_WARNING
1093 "JBD: Unrecognised features on journal\n");
1094 return -EINVAL;
1098 /* Let the recovery code check whether it needs to recover any
1099 * data from the journal. */
1100 if (journal_recover(journal))
1101 goto recovery_error;
1103 /* OK, we've finished with the dynamic journal bits:
1104 * reinitialise the dynamic contents of the superblock in memory
1105 * and reset them on disk. */
1106 if (journal_reset(journal))
1107 goto recovery_error;
1109 journal->j_flags &= ~JFS_ABORT;
1110 journal->j_flags |= JFS_LOADED;
1111 return 0;
1113 recovery_error:
1114 printk (KERN_WARNING "JBD: recovery failed\n");
1115 return -EIO;
1119 * void journal_destroy() - Release a journal_t structure.
1120 * @journal: Journal to act on.
1122 * Release a journal_t structure once it is no longer in use by the
1123 * journaled object.
1124 * Return <0 if we couldn't clean up the journal.
1126 int journal_destroy(journal_t *journal)
1128 int err = 0;
1130 /* Wait for the commit thread to wake up and die. */
1131 journal_kill_thread(journal);
1133 /* Force a final log commit */
1134 if (journal->j_running_transaction)
1135 journal_commit_transaction(journal);
1137 /* Force any old transactions to disk */
1139 /* Totally anal locking here... */
1140 spin_lock(&journal->j_list_lock);
1141 while (journal->j_checkpoint_transactions != NULL) {
1142 spin_unlock(&journal->j_list_lock);
1143 log_do_checkpoint(journal);
1144 spin_lock(&journal->j_list_lock);
1147 J_ASSERT(journal->j_running_transaction == NULL);
1148 J_ASSERT(journal->j_committing_transaction == NULL);
1149 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1150 spin_unlock(&journal->j_list_lock);
1152 if (journal->j_sb_buffer) {
1153 if (!is_journal_aborted(journal)) {
1154 /* We can now mark the journal as empty. */
1155 journal->j_tail = 0;
1156 journal->j_tail_sequence =
1157 ++journal->j_transaction_sequence;
1158 journal_update_superblock(journal, 1);
1159 } else {
1160 err = -EIO;
1162 brelse(journal->j_sb_buffer);
1165 if (journal->j_inode)
1166 iput(journal->j_inode);
1167 if (journal->j_revoke)
1168 journal_destroy_revoke(journal);
1169 kfree(journal->j_wbuf);
1170 kfree(journal);
1172 return err;
1177 *int journal_check_used_features () - Check if features specified are used.
1178 * @journal: Journal to check.
1179 * @compat: bitmask of compatible features
1180 * @ro: bitmask of features that force read-only mount
1181 * @incompat: bitmask of incompatible features
1183 * Check whether the journal uses all of a given set of
1184 * features. Return true (non-zero) if it does.
1187 int journal_check_used_features (journal_t *journal, unsigned long compat,
1188 unsigned long ro, unsigned long incompat)
1190 journal_superblock_t *sb;
1192 if (!compat && !ro && !incompat)
1193 return 1;
1194 if (journal->j_format_version == 1)
1195 return 0;
1197 sb = journal->j_superblock;
1199 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1200 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1201 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1202 return 1;
1204 return 0;
1208 * int journal_check_available_features() - Check feature set in journalling layer
1209 * @journal: Journal to check.
1210 * @compat: bitmask of compatible features
1211 * @ro: bitmask of features that force read-only mount
1212 * @incompat: bitmask of incompatible features
1214 * Check whether the journaling code supports the use of
1215 * all of a given set of features on this journal. Return true
1216 * (non-zero) if it can. */
1218 int journal_check_available_features (journal_t *journal, unsigned long compat,
1219 unsigned long ro, unsigned long incompat)
1221 journal_superblock_t *sb;
1223 if (!compat && !ro && !incompat)
1224 return 1;
1226 sb = journal->j_superblock;
1228 /* We can support any known requested features iff the
1229 * superblock is in version 2. Otherwise we fail to support any
1230 * extended sb features. */
1232 if (journal->j_format_version != 2)
1233 return 0;
1235 if ((compat & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1236 (ro & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1237 (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1238 return 1;
1240 return 0;
1244 * int journal_set_features () - Mark a given journal feature in the superblock
1245 * @journal: Journal to act on.
1246 * @compat: bitmask of compatible features
1247 * @ro: bitmask of features that force read-only mount
1248 * @incompat: bitmask of incompatible features
1250 * Mark a given journal feature as present on the
1251 * superblock. Returns true if the requested features could be set.
1255 int journal_set_features (journal_t *journal, unsigned long compat,
1256 unsigned long ro, unsigned long incompat)
1258 journal_superblock_t *sb;
1260 if (journal_check_used_features(journal, compat, ro, incompat))
1261 return 1;
1263 if (!journal_check_available_features(journal, compat, ro, incompat))
1264 return 0;
1266 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1267 compat, ro, incompat);
1269 sb = journal->j_superblock;
1271 sb->s_feature_compat |= cpu_to_be32(compat);
1272 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1273 sb->s_feature_incompat |= cpu_to_be32(incompat);
1275 return 1;
1280 * int journal_update_format () - Update on-disk journal structure.
1281 * @journal: Journal to act on.
1283 * Given an initialised but unloaded journal struct, poke about in the
1284 * on-disk structure to update it to the most recent supported version.
1286 int journal_update_format (journal_t *journal)
1288 journal_superblock_t *sb;
1289 int err;
1291 err = journal_get_superblock(journal);
1292 if (err)
1293 return err;
1295 sb = journal->j_superblock;
1297 switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1298 case JFS_SUPERBLOCK_V2:
1299 return 0;
1300 case JFS_SUPERBLOCK_V1:
1301 return journal_convert_superblock_v1(journal, sb);
1302 default:
1303 break;
1305 return -EINVAL;
1308 static int journal_convert_superblock_v1(journal_t *journal,
1309 journal_superblock_t *sb)
1311 int offset, blocksize;
1312 struct buffer_head *bh;
1314 printk(KERN_WARNING
1315 "JBD: Converting superblock from version 1 to 2.\n");
1317 /* Pre-initialise new fields to zero */
1318 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1319 blocksize = be32_to_cpu(sb->s_blocksize);
1320 memset(&sb->s_feature_compat, 0, blocksize-offset);
1322 sb->s_nr_users = cpu_to_be32(1);
1323 sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1324 journal->j_format_version = 2;
1326 bh = journal->j_sb_buffer;
1327 BUFFER_TRACE(bh, "marking dirty");
1328 mark_buffer_dirty(bh);
1329 sync_dirty_buffer(bh);
1330 return 0;
1335 * int journal_flush () - Flush journal
1336 * @journal: Journal to act on.
1338 * Flush all data for a given journal to disk and empty the journal.
1339 * Filesystems can use this when remounting readonly to ensure that
1340 * recovery does not need to happen on remount.
1343 int journal_flush(journal_t *journal)
1345 int err = 0;
1346 transaction_t *transaction = NULL;
1347 unsigned long old_tail;
1349 spin_lock(&journal->j_state_lock);
1351 /* Force everything buffered to the log... */
1352 if (journal->j_running_transaction) {
1353 transaction = journal->j_running_transaction;
1354 __log_start_commit(journal, transaction->t_tid);
1355 } else if (journal->j_committing_transaction)
1356 transaction = journal->j_committing_transaction;
1358 /* Wait for the log commit to complete... */
1359 if (transaction) {
1360 tid_t tid = transaction->t_tid;
1362 spin_unlock(&journal->j_state_lock);
1363 log_wait_commit(journal, tid);
1364 } else {
1365 spin_unlock(&journal->j_state_lock);
1368 /* ...and flush everything in the log out to disk. */
1369 spin_lock(&journal->j_list_lock);
1370 while (!err && journal->j_checkpoint_transactions != NULL) {
1371 spin_unlock(&journal->j_list_lock);
1372 mutex_lock(&journal->j_checkpoint_mutex);
1373 err = log_do_checkpoint(journal);
1374 mutex_unlock(&journal->j_checkpoint_mutex);
1375 spin_lock(&journal->j_list_lock);
1377 spin_unlock(&journal->j_list_lock);
1379 if (is_journal_aborted(journal))
1380 return -EIO;
1382 cleanup_journal_tail(journal);
1384 /* Finally, mark the journal as really needing no recovery.
1385 * This sets s_start==0 in the underlying superblock, which is
1386 * the magic code for a fully-recovered superblock. Any future
1387 * commits of data to the journal will restore the current
1388 * s_start value. */
1389 spin_lock(&journal->j_state_lock);
1390 old_tail = journal->j_tail;
1391 journal->j_tail = 0;
1392 spin_unlock(&journal->j_state_lock);
1393 journal_update_superblock(journal, 1);
1394 spin_lock(&journal->j_state_lock);
1395 journal->j_tail = old_tail;
1397 J_ASSERT(!journal->j_running_transaction);
1398 J_ASSERT(!journal->j_committing_transaction);
1399 J_ASSERT(!journal->j_checkpoint_transactions);
1400 J_ASSERT(journal->j_head == journal->j_tail);
1401 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1402 spin_unlock(&journal->j_state_lock);
1403 return 0;
1407 * int journal_wipe() - Wipe journal contents
1408 * @journal: Journal to act on.
1409 * @write: flag (see below)
1411 * Wipe out all of the contents of a journal, safely. This will produce
1412 * a warning if the journal contains any valid recovery information.
1413 * Must be called between journal_init_*() and journal_load().
1415 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1416 * we merely suppress recovery.
1419 int journal_wipe(journal_t *journal, int write)
1421 journal_superblock_t *sb;
1422 int err = 0;
1424 J_ASSERT (!(journal->j_flags & JFS_LOADED));
1426 err = load_superblock(journal);
1427 if (err)
1428 return err;
1430 sb = journal->j_superblock;
1432 if (!journal->j_tail)
1433 goto no_recovery;
1435 printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1436 write ? "Clearing" : "Ignoring");
1438 err = journal_skip_recovery(journal);
1439 if (write)
1440 journal_update_superblock(journal, 1);
1442 no_recovery:
1443 return err;
1447 * journal_dev_name: format a character string to describe on what
1448 * device this journal is present.
1451 static const char *journal_dev_name(journal_t *journal, char *buffer)
1453 struct block_device *bdev;
1455 if (journal->j_inode)
1456 bdev = journal->j_inode->i_sb->s_bdev;
1457 else
1458 bdev = journal->j_dev;
1460 return bdevname(bdev, buffer);
1464 * Journal abort has very specific semantics, which we describe
1465 * for journal abort.
1467 * Two internal function, which provide abort to te jbd layer
1468 * itself are here.
1472 * Quick version for internal journal use (doesn't lock the journal).
1473 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1474 * and don't attempt to make any other journal updates.
1476 static void __journal_abort_hard(journal_t *journal)
1478 transaction_t *transaction;
1479 char b[BDEVNAME_SIZE];
1481 if (journal->j_flags & JFS_ABORT)
1482 return;
1484 printk(KERN_ERR "Aborting journal on device %s.\n",
1485 journal_dev_name(journal, b));
1487 spin_lock(&journal->j_state_lock);
1488 journal->j_flags |= JFS_ABORT;
1489 transaction = journal->j_running_transaction;
1490 if (transaction)
1491 __log_start_commit(journal, transaction->t_tid);
1492 spin_unlock(&journal->j_state_lock);
1495 /* Soft abort: record the abort error status in the journal superblock,
1496 * but don't do any other IO. */
1497 static void __journal_abort_soft (journal_t *journal, int errno)
1499 if (journal->j_flags & JFS_ABORT)
1500 return;
1502 if (!journal->j_errno)
1503 journal->j_errno = errno;
1505 __journal_abort_hard(journal);
1507 if (errno)
1508 journal_update_superblock(journal, 1);
1512 * void journal_abort () - Shutdown the journal immediately.
1513 * @journal: the journal to shutdown.
1514 * @errno: an error number to record in the journal indicating
1515 * the reason for the shutdown.
1517 * Perform a complete, immediate shutdown of the ENTIRE
1518 * journal (not of a single transaction). This operation cannot be
1519 * undone without closing and reopening the journal.
1521 * The journal_abort function is intended to support higher level error
1522 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1523 * mode.
1525 * Journal abort has very specific semantics. Any existing dirty,
1526 * unjournaled buffers in the main filesystem will still be written to
1527 * disk by bdflush, but the journaling mechanism will be suspended
1528 * immediately and no further transaction commits will be honoured.
1530 * Any dirty, journaled buffers will be written back to disk without
1531 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1532 * filesystem, but we _do_ attempt to leave as much data as possible
1533 * behind for fsck to use for cleanup.
1535 * Any attempt to get a new transaction handle on a journal which is in
1536 * ABORT state will just result in an -EROFS error return. A
1537 * journal_stop on an existing handle will return -EIO if we have
1538 * entered abort state during the update.
1540 * Recursive transactions are not disturbed by journal abort until the
1541 * final journal_stop, which will receive the -EIO error.
1543 * Finally, the journal_abort call allows the caller to supply an errno
1544 * which will be recorded (if possible) in the journal superblock. This
1545 * allows a client to record failure conditions in the middle of a
1546 * transaction without having to complete the transaction to record the
1547 * failure to disk. ext3_error, for example, now uses this
1548 * functionality.
1550 * Errors which originate from within the journaling layer will NOT
1551 * supply an errno; a null errno implies that absolutely no further
1552 * writes are done to the journal (unless there are any already in
1553 * progress).
1557 void journal_abort(journal_t *journal, int errno)
1559 __journal_abort_soft(journal, errno);
1563 * int journal_errno () - returns the journal's error state.
1564 * @journal: journal to examine.
1566 * This is the errno numbet set with journal_abort(), the last
1567 * time the journal was mounted - if the journal was stopped
1568 * without calling abort this will be 0.
1570 * If the journal has been aborted on this mount time -EROFS will
1571 * be returned.
1573 int journal_errno(journal_t *journal)
1575 int err;
1577 spin_lock(&journal->j_state_lock);
1578 if (journal->j_flags & JFS_ABORT)
1579 err = -EROFS;
1580 else
1581 err = journal->j_errno;
1582 spin_unlock(&journal->j_state_lock);
1583 return err;
1587 * int journal_clear_err () - clears the journal's error state
1588 * @journal: journal to act on.
1590 * An error must be cleared or Acked to take a FS out of readonly
1591 * mode.
1593 int journal_clear_err(journal_t *journal)
1595 int err = 0;
1597 spin_lock(&journal->j_state_lock);
1598 if (journal->j_flags & JFS_ABORT)
1599 err = -EROFS;
1600 else
1601 journal->j_errno = 0;
1602 spin_unlock(&journal->j_state_lock);
1603 return err;
1607 * void journal_ack_err() - Ack journal err.
1608 * @journal: journal to act on.
1610 * An error must be cleared or Acked to take a FS out of readonly
1611 * mode.
1613 void journal_ack_err(journal_t *journal)
1615 spin_lock(&journal->j_state_lock);
1616 if (journal->j_errno)
1617 journal->j_flags |= JFS_ACK_ERR;
1618 spin_unlock(&journal->j_state_lock);
1621 int journal_blocks_per_page(struct inode *inode)
1623 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1627 * Journal_head storage management
1629 static struct kmem_cache *journal_head_cache;
1630 #ifdef CONFIG_JBD_DEBUG
1631 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1632 #endif
1634 static int journal_init_journal_head_cache(void)
1636 int retval;
1638 J_ASSERT(journal_head_cache == NULL);
1639 journal_head_cache = kmem_cache_create("journal_head",
1640 sizeof(struct journal_head),
1641 0, /* offset */
1642 SLAB_TEMPORARY, /* flags */
1643 NULL); /* ctor */
1644 retval = 0;
1645 if (!journal_head_cache) {
1646 retval = -ENOMEM;
1647 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1649 return retval;
1652 static void journal_destroy_journal_head_cache(void)
1654 if (journal_head_cache) {
1655 kmem_cache_destroy(journal_head_cache);
1656 journal_head_cache = NULL;
1661 * journal_head splicing and dicing
1663 static struct journal_head *journal_alloc_journal_head(void)
1665 struct journal_head *ret;
1666 static unsigned long last_warning;
1668 #ifdef CONFIG_JBD_DEBUG
1669 atomic_inc(&nr_journal_heads);
1670 #endif
1671 ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1672 if (ret == NULL) {
1673 jbd_debug(1, "out of memory for journal_head\n");
1674 if (time_after(jiffies, last_warning + 5*HZ)) {
1675 printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1676 __func__);
1677 last_warning = jiffies;
1679 while (ret == NULL) {
1680 yield();
1681 ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1684 return ret;
1687 static void journal_free_journal_head(struct journal_head *jh)
1689 #ifdef CONFIG_JBD_DEBUG
1690 atomic_dec(&nr_journal_heads);
1691 memset(jh, JBD_POISON_FREE, sizeof(*jh));
1692 #endif
1693 kmem_cache_free(journal_head_cache, jh);
1697 * A journal_head is attached to a buffer_head whenever JBD has an
1698 * interest in the buffer.
1700 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1701 * is set. This bit is tested in core kernel code where we need to take
1702 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
1703 * there.
1705 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1707 * When a buffer has its BH_JBD bit set it is immune from being released by
1708 * core kernel code, mainly via ->b_count.
1710 * A journal_head may be detached from its buffer_head when the journal_head's
1711 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1712 * Various places in JBD call journal_remove_journal_head() to indicate that the
1713 * journal_head can be dropped if needed.
1715 * Various places in the kernel want to attach a journal_head to a buffer_head
1716 * _before_ attaching the journal_head to a transaction. To protect the
1717 * journal_head in this situation, journal_add_journal_head elevates the
1718 * journal_head's b_jcount refcount by one. The caller must call
1719 * journal_put_journal_head() to undo this.
1721 * So the typical usage would be:
1723 * (Attach a journal_head if needed. Increments b_jcount)
1724 * struct journal_head *jh = journal_add_journal_head(bh);
1725 * ...
1726 * jh->b_transaction = xxx;
1727 * journal_put_journal_head(jh);
1729 * Now, the journal_head's b_jcount is zero, but it is safe from being released
1730 * because it has a non-zero b_transaction.
1734 * Give a buffer_head a journal_head.
1736 * Doesn't need the journal lock.
1737 * May sleep.
1739 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1741 struct journal_head *jh;
1742 struct journal_head *new_jh = NULL;
1744 repeat:
1745 if (!buffer_jbd(bh)) {
1746 new_jh = journal_alloc_journal_head();
1747 memset(new_jh, 0, sizeof(*new_jh));
1750 jbd_lock_bh_journal_head(bh);
1751 if (buffer_jbd(bh)) {
1752 jh = bh2jh(bh);
1753 } else {
1754 J_ASSERT_BH(bh,
1755 (atomic_read(&bh->b_count) > 0) ||
1756 (bh->b_page && bh->b_page->mapping));
1758 if (!new_jh) {
1759 jbd_unlock_bh_journal_head(bh);
1760 goto repeat;
1763 jh = new_jh;
1764 new_jh = NULL; /* We consumed it */
1765 set_buffer_jbd(bh);
1766 bh->b_private = jh;
1767 jh->b_bh = bh;
1768 get_bh(bh);
1769 BUFFER_TRACE(bh, "added journal_head");
1771 jh->b_jcount++;
1772 jbd_unlock_bh_journal_head(bh);
1773 if (new_jh)
1774 journal_free_journal_head(new_jh);
1775 return bh->b_private;
1779 * Grab a ref against this buffer_head's journal_head. If it ended up not
1780 * having a journal_head, return NULL
1782 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1784 struct journal_head *jh = NULL;
1786 jbd_lock_bh_journal_head(bh);
1787 if (buffer_jbd(bh)) {
1788 jh = bh2jh(bh);
1789 jh->b_jcount++;
1791 jbd_unlock_bh_journal_head(bh);
1792 return jh;
1795 static void __journal_remove_journal_head(struct buffer_head *bh)
1797 struct journal_head *jh = bh2jh(bh);
1799 J_ASSERT_JH(jh, jh->b_jcount >= 0);
1801 get_bh(bh);
1802 if (jh->b_jcount == 0) {
1803 if (jh->b_transaction == NULL &&
1804 jh->b_next_transaction == NULL &&
1805 jh->b_cp_transaction == NULL) {
1806 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1807 J_ASSERT_BH(bh, buffer_jbd(bh));
1808 J_ASSERT_BH(bh, jh2bh(jh) == bh);
1809 BUFFER_TRACE(bh, "remove journal_head");
1810 if (jh->b_frozen_data) {
1811 printk(KERN_WARNING "%s: freeing "
1812 "b_frozen_data\n",
1813 __func__);
1814 jbd_free(jh->b_frozen_data, bh->b_size);
1816 if (jh->b_committed_data) {
1817 printk(KERN_WARNING "%s: freeing "
1818 "b_committed_data\n",
1819 __func__);
1820 jbd_free(jh->b_committed_data, bh->b_size);
1822 bh->b_private = NULL;
1823 jh->b_bh = NULL; /* debug, really */
1824 clear_buffer_jbd(bh);
1825 __brelse(bh);
1826 journal_free_journal_head(jh);
1827 } else {
1828 BUFFER_TRACE(bh, "journal_head was locked");
1834 * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1835 * and has a zero b_jcount then remove and release its journal_head. If we did
1836 * see that the buffer is not used by any transaction we also "logically"
1837 * decrement ->b_count.
1839 * We in fact take an additional increment on ->b_count as a convenience,
1840 * because the caller usually wants to do additional things with the bh
1841 * after calling here.
1842 * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1843 * time. Once the caller has run __brelse(), the buffer is eligible for
1844 * reaping by try_to_free_buffers().
1846 void journal_remove_journal_head(struct buffer_head *bh)
1848 jbd_lock_bh_journal_head(bh);
1849 __journal_remove_journal_head(bh);
1850 jbd_unlock_bh_journal_head(bh);
1854 * Drop a reference on the passed journal_head. If it fell to zero then try to
1855 * release the journal_head from the buffer_head.
1857 void journal_put_journal_head(struct journal_head *jh)
1859 struct buffer_head *bh = jh2bh(jh);
1861 jbd_lock_bh_journal_head(bh);
1862 J_ASSERT_JH(jh, jh->b_jcount > 0);
1863 --jh->b_jcount;
1864 if (!jh->b_jcount && !jh->b_transaction) {
1865 __journal_remove_journal_head(bh);
1866 __brelse(bh);
1868 jbd_unlock_bh_journal_head(bh);
1872 * debugfs tunables
1874 #ifdef CONFIG_JBD_DEBUG
1876 u8 journal_enable_debug __read_mostly;
1877 EXPORT_SYMBOL(journal_enable_debug);
1879 static struct dentry *jbd_debugfs_dir;
1880 static struct dentry *jbd_debug;
1882 static void __init jbd_create_debugfs_entry(void)
1884 jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
1885 if (jbd_debugfs_dir)
1886 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO,
1887 jbd_debugfs_dir,
1888 &journal_enable_debug);
1891 static void __exit jbd_remove_debugfs_entry(void)
1893 debugfs_remove(jbd_debug);
1894 debugfs_remove(jbd_debugfs_dir);
1897 #else
1899 static inline void jbd_create_debugfs_entry(void)
1903 static inline void jbd_remove_debugfs_entry(void)
1907 #endif
1909 struct kmem_cache *jbd_handle_cache;
1911 static int __init journal_init_handle_cache(void)
1913 jbd_handle_cache = kmem_cache_create("journal_handle",
1914 sizeof(handle_t),
1915 0, /* offset */
1916 SLAB_TEMPORARY, /* flags */
1917 NULL); /* ctor */
1918 if (jbd_handle_cache == NULL) {
1919 printk(KERN_EMERG "JBD: failed to create handle cache\n");
1920 return -ENOMEM;
1922 return 0;
1925 static void journal_destroy_handle_cache(void)
1927 if (jbd_handle_cache)
1928 kmem_cache_destroy(jbd_handle_cache);
1932 * Module startup and shutdown
1935 static int __init journal_init_caches(void)
1937 int ret;
1939 ret = journal_init_revoke_caches();
1940 if (ret == 0)
1941 ret = journal_init_journal_head_cache();
1942 if (ret == 0)
1943 ret = journal_init_handle_cache();
1944 return ret;
1947 static void journal_destroy_caches(void)
1949 journal_destroy_revoke_caches();
1950 journal_destroy_journal_head_cache();
1951 journal_destroy_handle_cache();
1954 static int __init journal_init(void)
1956 int ret;
1958 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
1960 ret = journal_init_caches();
1961 if (ret != 0)
1962 journal_destroy_caches();
1963 jbd_create_debugfs_entry();
1964 return ret;
1967 static void __exit journal_exit(void)
1969 #ifdef CONFIG_JBD_DEBUG
1970 int n = atomic_read(&nr_journal_heads);
1971 if (n)
1972 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
1973 #endif
1974 jbd_remove_debugfs_entry();
1975 journal_destroy_caches();
1978 MODULE_LICENSE("GPL");
1979 module_init(journal_init);
1980 module_exit(journal_exit);