x86: kexec: Use one page table in x86_64 machine_kexec
[linux-2.6/mini2440.git] / drivers / acpi / toshiba_acpi.c
blob66aac06f2ac5abd47ec7e5ecf7267f2b3c6e30aa
1 /*
2 * toshiba_acpi.c - Toshiba Laptop ACPI Extras
5 * Copyright (C) 2002-2004 John Belmonte
6 * Copyright (C) 2008 Philip Langdale
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * The devolpment page for this driver is located at
24 * http://memebeam.org/toys/ToshibaAcpiDriver.
26 * Credits:
27 * Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse
28 * engineering the Windows drivers
29 * Yasushi Nagato - changes for linux kernel 2.4 -> 2.5
30 * Rob Miller - TV out and hotkeys help
33 * TODO
37 #define TOSHIBA_ACPI_VERSION "0.19"
38 #define PROC_INTERFACE_VERSION 1
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/init.h>
43 #include <linux/types.h>
44 #include <linux/proc_fs.h>
45 #include <linux/backlight.h>
46 #include <linux/platform_device.h>
47 #include <linux/rfkill.h>
48 #include <linux/input-polldev.h>
50 #include <asm/uaccess.h>
52 #include <acpi/acpi_drivers.h>
54 MODULE_AUTHOR("John Belmonte");
55 MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver");
56 MODULE_LICENSE("GPL");
58 #define MY_LOGPREFIX "toshiba_acpi: "
59 #define MY_ERR KERN_ERR MY_LOGPREFIX
60 #define MY_NOTICE KERN_NOTICE MY_LOGPREFIX
61 #define MY_INFO KERN_INFO MY_LOGPREFIX
63 /* Toshiba ACPI method paths */
64 #define METHOD_LCD_BRIGHTNESS "\\_SB_.PCI0.VGA_.LCD_._BCM"
65 #define METHOD_HCI_1 "\\_SB_.VALD.GHCI"
66 #define METHOD_HCI_2 "\\_SB_.VALZ.GHCI"
67 #define METHOD_VIDEO_OUT "\\_SB_.VALX.DSSX"
69 /* Toshiba HCI interface definitions
71 * HCI is Toshiba's "Hardware Control Interface" which is supposed to
72 * be uniform across all their models. Ideally we would just call
73 * dedicated ACPI methods instead of using this primitive interface.
74 * However the ACPI methods seem to be incomplete in some areas (for
75 * example they allow setting, but not reading, the LCD brightness value),
76 * so this is still useful.
79 #define HCI_WORDS 6
81 /* operations */
82 #define HCI_SET 0xff00
83 #define HCI_GET 0xfe00
85 /* return codes */
86 #define HCI_SUCCESS 0x0000
87 #define HCI_FAILURE 0x1000
88 #define HCI_NOT_SUPPORTED 0x8000
89 #define HCI_EMPTY 0x8c00
91 /* registers */
92 #define HCI_FAN 0x0004
93 #define HCI_SYSTEM_EVENT 0x0016
94 #define HCI_VIDEO_OUT 0x001c
95 #define HCI_HOTKEY_EVENT 0x001e
96 #define HCI_LCD_BRIGHTNESS 0x002a
97 #define HCI_WIRELESS 0x0056
99 /* field definitions */
100 #define HCI_LCD_BRIGHTNESS_BITS 3
101 #define HCI_LCD_BRIGHTNESS_SHIFT (16-HCI_LCD_BRIGHTNESS_BITS)
102 #define HCI_LCD_BRIGHTNESS_LEVELS (1 << HCI_LCD_BRIGHTNESS_BITS)
103 #define HCI_VIDEO_OUT_LCD 0x1
104 #define HCI_VIDEO_OUT_CRT 0x2
105 #define HCI_VIDEO_OUT_TV 0x4
106 #define HCI_WIRELESS_KILL_SWITCH 0x01
107 #define HCI_WIRELESS_BT_PRESENT 0x0f
108 #define HCI_WIRELESS_BT_ATTACH 0x40
109 #define HCI_WIRELESS_BT_POWER 0x80
111 static const struct acpi_device_id toshiba_device_ids[] = {
112 {"TOS6200", 0},
113 {"TOS6208", 0},
114 {"TOS1900", 0},
115 {"", 0},
117 MODULE_DEVICE_TABLE(acpi, toshiba_device_ids);
119 /* utility
122 static __inline__ void _set_bit(u32 * word, u32 mask, int value)
124 *word = (*word & ~mask) | (mask * value);
127 /* acpi interface wrappers
130 static int is_valid_acpi_path(const char *methodName)
132 acpi_handle handle;
133 acpi_status status;
135 status = acpi_get_handle(NULL, (char *)methodName, &handle);
136 return !ACPI_FAILURE(status);
139 static int write_acpi_int(const char *methodName, int val)
141 struct acpi_object_list params;
142 union acpi_object in_objs[1];
143 acpi_status status;
145 params.count = ARRAY_SIZE(in_objs);
146 params.pointer = in_objs;
147 in_objs[0].type = ACPI_TYPE_INTEGER;
148 in_objs[0].integer.value = val;
150 status = acpi_evaluate_object(NULL, (char *)methodName, &params, NULL);
151 return (status == AE_OK);
154 #if 0
155 static int read_acpi_int(const char *methodName, int *pVal)
157 struct acpi_buffer results;
158 union acpi_object out_objs[1];
159 acpi_status status;
161 results.length = sizeof(out_objs);
162 results.pointer = out_objs;
164 status = acpi_evaluate_object(0, (char *)methodName, 0, &results);
165 *pVal = out_objs[0].integer.value;
167 return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER);
169 #endif
171 static const char *method_hci /*= 0*/ ;
173 /* Perform a raw HCI call. Here we don't care about input or output buffer
174 * format.
176 static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS])
178 struct acpi_object_list params;
179 union acpi_object in_objs[HCI_WORDS];
180 struct acpi_buffer results;
181 union acpi_object out_objs[HCI_WORDS + 1];
182 acpi_status status;
183 int i;
185 params.count = HCI_WORDS;
186 params.pointer = in_objs;
187 for (i = 0; i < HCI_WORDS; ++i) {
188 in_objs[i].type = ACPI_TYPE_INTEGER;
189 in_objs[i].integer.value = in[i];
192 results.length = sizeof(out_objs);
193 results.pointer = out_objs;
195 status = acpi_evaluate_object(NULL, (char *)method_hci, &params,
196 &results);
197 if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) {
198 for (i = 0; i < out_objs->package.count; ++i) {
199 out[i] = out_objs->package.elements[i].integer.value;
203 return status;
206 /* common hci tasks (get or set one or two value)
208 * In addition to the ACPI status, the HCI system returns a result which
209 * may be useful (such as "not supported").
212 static acpi_status hci_write1(u32 reg, u32 in1, u32 * result)
214 u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 };
215 u32 out[HCI_WORDS];
216 acpi_status status = hci_raw(in, out);
217 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
218 return status;
221 static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result)
223 u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 };
224 u32 out[HCI_WORDS];
225 acpi_status status = hci_raw(in, out);
226 *out1 = out[2];
227 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
228 return status;
231 static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result)
233 u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 };
234 u32 out[HCI_WORDS];
235 acpi_status status = hci_raw(in, out);
236 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
237 return status;
240 static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result)
242 u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 };
243 u32 out[HCI_WORDS];
244 acpi_status status = hci_raw(in, out);
245 *out1 = out[2];
246 *out2 = out[3];
247 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
248 return status;
251 struct toshiba_acpi_dev {
252 struct platform_device *p_dev;
253 struct rfkill *rfk_dev;
254 struct input_polled_dev *poll_dev;
256 const char *bt_name;
257 const char *rfk_name;
259 bool last_rfk_state;
261 struct mutex mutex;
264 static struct toshiba_acpi_dev toshiba_acpi = {
265 .bt_name = "Toshiba Bluetooth",
266 .rfk_name = "Toshiba RFKill Switch",
267 .last_rfk_state = false,
270 /* Bluetooth rfkill handlers */
272 static u32 hci_get_bt_present(bool *present)
274 u32 hci_result;
275 u32 value, value2;
277 value = 0;
278 value2 = 0;
279 hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
280 if (hci_result == HCI_SUCCESS)
281 *present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false;
283 return hci_result;
286 static u32 hci_get_bt_on(bool *on)
288 u32 hci_result;
289 u32 value, value2;
291 value = 0;
292 value2 = 0x0001;
293 hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
294 if (hci_result == HCI_SUCCESS)
295 *on = (value & HCI_WIRELESS_BT_POWER) &&
296 (value & HCI_WIRELESS_BT_ATTACH);
298 return hci_result;
301 static u32 hci_get_radio_state(bool *radio_state)
303 u32 hci_result;
304 u32 value, value2;
306 value = 0;
307 value2 = 0x0001;
308 hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
310 *radio_state = value & HCI_WIRELESS_KILL_SWITCH;
311 return hci_result;
314 static int bt_rfkill_toggle_radio(void *data, enum rfkill_state state)
316 u32 result1, result2;
317 u32 value;
318 bool radio_state;
319 struct toshiba_acpi_dev *dev = data;
321 value = (state == RFKILL_STATE_UNBLOCKED);
323 if (hci_get_radio_state(&radio_state) != HCI_SUCCESS)
324 return -EFAULT;
326 switch (state) {
327 case RFKILL_STATE_UNBLOCKED:
328 if (!radio_state)
329 return -EPERM;
330 break;
331 case RFKILL_STATE_SOFT_BLOCKED:
332 break;
333 default:
334 return -EINVAL;
337 mutex_lock(&dev->mutex);
338 hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1);
339 hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2);
340 mutex_unlock(&dev->mutex);
342 if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS)
343 return -EFAULT;
345 return 0;
348 static void bt_poll_rfkill(struct input_polled_dev *poll_dev)
350 bool state_changed;
351 bool new_rfk_state;
352 bool value;
353 u32 hci_result;
354 struct toshiba_acpi_dev *dev = poll_dev->private;
356 hci_result = hci_get_radio_state(&value);
357 if (hci_result != HCI_SUCCESS)
358 return; /* Can't do anything useful */
360 new_rfk_state = value;
362 mutex_lock(&dev->mutex);
363 state_changed = new_rfk_state != dev->last_rfk_state;
364 dev->last_rfk_state = new_rfk_state;
365 mutex_unlock(&dev->mutex);
367 if (unlikely(state_changed)) {
368 rfkill_force_state(dev->rfk_dev,
369 new_rfk_state ?
370 RFKILL_STATE_SOFT_BLOCKED :
371 RFKILL_STATE_HARD_BLOCKED);
372 input_report_switch(poll_dev->input, SW_RFKILL_ALL,
373 new_rfk_state);
374 input_sync(poll_dev->input);
378 static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ;
379 static struct backlight_device *toshiba_backlight_device;
380 static int force_fan;
381 static int last_key_event;
382 static int key_event_valid;
384 typedef struct _ProcItem {
385 const char *name;
386 char *(*read_func) (char *);
387 unsigned long (*write_func) (const char *, unsigned long);
388 } ProcItem;
390 /* proc file handlers
393 static int
394 dispatch_read(char *page, char **start, off_t off, int count, int *eof,
395 ProcItem * item)
397 char *p = page;
398 int len;
400 if (off == 0)
401 p = item->read_func(p);
403 /* ISSUE: I don't understand this code */
404 len = (p - page);
405 if (len <= off + count)
406 *eof = 1;
407 *start = page + off;
408 len -= off;
409 if (len > count)
410 len = count;
411 if (len < 0)
412 len = 0;
413 return len;
416 static int
417 dispatch_write(struct file *file, const char __user * buffer,
418 unsigned long count, ProcItem * item)
420 int result;
421 char *tmp_buffer;
423 /* Arg buffer points to userspace memory, which can't be accessed
424 * directly. Since we're making a copy, zero-terminate the
425 * destination so that sscanf can be used on it safely.
427 tmp_buffer = kmalloc(count + 1, GFP_KERNEL);
428 if (!tmp_buffer)
429 return -ENOMEM;
431 if (copy_from_user(tmp_buffer, buffer, count)) {
432 result = -EFAULT;
433 } else {
434 tmp_buffer[count] = 0;
435 result = item->write_func(tmp_buffer, count);
437 kfree(tmp_buffer);
438 return result;
441 static int get_lcd(struct backlight_device *bd)
443 u32 hci_result;
444 u32 value;
446 hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result);
447 if (hci_result == HCI_SUCCESS) {
448 return (value >> HCI_LCD_BRIGHTNESS_SHIFT);
449 } else
450 return -EFAULT;
453 static char *read_lcd(char *p)
455 int value = get_lcd(NULL);
457 if (value >= 0) {
458 p += sprintf(p, "brightness: %d\n", value);
459 p += sprintf(p, "brightness_levels: %d\n",
460 HCI_LCD_BRIGHTNESS_LEVELS);
461 } else {
462 printk(MY_ERR "Error reading LCD brightness\n");
465 return p;
468 static int set_lcd(int value)
470 u32 hci_result;
472 value = value << HCI_LCD_BRIGHTNESS_SHIFT;
473 hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result);
474 if (hci_result != HCI_SUCCESS)
475 return -EFAULT;
477 return 0;
480 static int set_lcd_status(struct backlight_device *bd)
482 return set_lcd(bd->props.brightness);
485 static unsigned long write_lcd(const char *buffer, unsigned long count)
487 int value;
488 int ret;
490 if (sscanf(buffer, " brightness : %i", &value) == 1 &&
491 value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) {
492 ret = set_lcd(value);
493 if (ret == 0)
494 ret = count;
495 } else {
496 ret = -EINVAL;
498 return ret;
501 static char *read_video(char *p)
503 u32 hci_result;
504 u32 value;
506 hci_read1(HCI_VIDEO_OUT, &value, &hci_result);
507 if (hci_result == HCI_SUCCESS) {
508 int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0;
509 int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0;
510 int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0;
511 p += sprintf(p, "lcd_out: %d\n", is_lcd);
512 p += sprintf(p, "crt_out: %d\n", is_crt);
513 p += sprintf(p, "tv_out: %d\n", is_tv);
514 } else {
515 printk(MY_ERR "Error reading video out status\n");
518 return p;
521 static unsigned long write_video(const char *buffer, unsigned long count)
523 int value;
524 int remain = count;
525 int lcd_out = -1;
526 int crt_out = -1;
527 int tv_out = -1;
528 u32 hci_result;
529 u32 video_out;
531 /* scan expression. Multiple expressions may be delimited with ;
533 * NOTE: to keep scanning simple, invalid fields are ignored
535 while (remain) {
536 if (sscanf(buffer, " lcd_out : %i", &value) == 1)
537 lcd_out = value & 1;
538 else if (sscanf(buffer, " crt_out : %i", &value) == 1)
539 crt_out = value & 1;
540 else if (sscanf(buffer, " tv_out : %i", &value) == 1)
541 tv_out = value & 1;
542 /* advance to one character past the next ; */
543 do {
544 ++buffer;
545 --remain;
547 while (remain && *(buffer - 1) != ';');
550 hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result);
551 if (hci_result == HCI_SUCCESS) {
552 unsigned int new_video_out = video_out;
553 if (lcd_out != -1)
554 _set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out);
555 if (crt_out != -1)
556 _set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out);
557 if (tv_out != -1)
558 _set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out);
559 /* To avoid unnecessary video disruption, only write the new
560 * video setting if something changed. */
561 if (new_video_out != video_out)
562 write_acpi_int(METHOD_VIDEO_OUT, new_video_out);
563 } else {
564 return -EFAULT;
567 return count;
570 static char *read_fan(char *p)
572 u32 hci_result;
573 u32 value;
575 hci_read1(HCI_FAN, &value, &hci_result);
576 if (hci_result == HCI_SUCCESS) {
577 p += sprintf(p, "running: %d\n", (value > 0));
578 p += sprintf(p, "force_on: %d\n", force_fan);
579 } else {
580 printk(MY_ERR "Error reading fan status\n");
583 return p;
586 static unsigned long write_fan(const char *buffer, unsigned long count)
588 int value;
589 u32 hci_result;
591 if (sscanf(buffer, " force_on : %i", &value) == 1 &&
592 value >= 0 && value <= 1) {
593 hci_write1(HCI_FAN, value, &hci_result);
594 if (hci_result != HCI_SUCCESS)
595 return -EFAULT;
596 else
597 force_fan = value;
598 } else {
599 return -EINVAL;
602 return count;
605 static char *read_keys(char *p)
607 u32 hci_result;
608 u32 value;
610 if (!key_event_valid) {
611 hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
612 if (hci_result == HCI_SUCCESS) {
613 key_event_valid = 1;
614 last_key_event = value;
615 } else if (hci_result == HCI_EMPTY) {
616 /* better luck next time */
617 } else if (hci_result == HCI_NOT_SUPPORTED) {
618 /* This is a workaround for an unresolved issue on
619 * some machines where system events sporadically
620 * become disabled. */
621 hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
622 printk(MY_NOTICE "Re-enabled hotkeys\n");
623 } else {
624 printk(MY_ERR "Error reading hotkey status\n");
625 goto end;
629 p += sprintf(p, "hotkey_ready: %d\n", key_event_valid);
630 p += sprintf(p, "hotkey: 0x%04x\n", last_key_event);
632 end:
633 return p;
636 static unsigned long write_keys(const char *buffer, unsigned long count)
638 int value;
640 if (sscanf(buffer, " hotkey_ready : %i", &value) == 1 && value == 0) {
641 key_event_valid = 0;
642 } else {
643 return -EINVAL;
646 return count;
649 static char *read_version(char *p)
651 p += sprintf(p, "driver: %s\n", TOSHIBA_ACPI_VERSION);
652 p += sprintf(p, "proc_interface: %d\n",
653 PROC_INTERFACE_VERSION);
654 return p;
657 /* proc and module init
660 #define PROC_TOSHIBA "toshiba"
662 static ProcItem proc_items[] = {
663 {"lcd", read_lcd, write_lcd},
664 {"video", read_video, write_video},
665 {"fan", read_fan, write_fan},
666 {"keys", read_keys, write_keys},
667 {"version", read_version, NULL},
668 {NULL}
671 static acpi_status __init add_device(void)
673 struct proc_dir_entry *proc;
674 ProcItem *item;
676 for (item = proc_items; item->name; ++item) {
677 proc = create_proc_read_entry(item->name,
678 S_IFREG | S_IRUGO | S_IWUSR,
679 toshiba_proc_dir,
680 (read_proc_t *) dispatch_read,
681 item);
682 if (proc)
683 proc->owner = THIS_MODULE;
684 if (proc && item->write_func)
685 proc->write_proc = (write_proc_t *) dispatch_write;
688 return AE_OK;
691 static acpi_status remove_device(void)
693 ProcItem *item;
695 for (item = proc_items; item->name; ++item)
696 remove_proc_entry(item->name, toshiba_proc_dir);
697 return AE_OK;
700 static struct backlight_ops toshiba_backlight_data = {
701 .get_brightness = get_lcd,
702 .update_status = set_lcd_status,
705 static void toshiba_acpi_exit(void)
707 if (toshiba_acpi.poll_dev) {
708 input_unregister_polled_device(toshiba_acpi.poll_dev);
709 input_free_polled_device(toshiba_acpi.poll_dev);
712 if (toshiba_acpi.rfk_dev)
713 rfkill_unregister(toshiba_acpi.rfk_dev);
715 if (toshiba_backlight_device)
716 backlight_device_unregister(toshiba_backlight_device);
718 remove_device();
720 if (toshiba_proc_dir)
721 remove_proc_entry(PROC_TOSHIBA, acpi_root_dir);
723 platform_device_unregister(toshiba_acpi.p_dev);
725 return;
728 static int __init toshiba_acpi_init(void)
730 acpi_status status = AE_OK;
731 u32 hci_result;
732 bool bt_present;
733 bool bt_on;
734 bool radio_on;
735 int ret = 0;
737 if (acpi_disabled)
738 return -ENODEV;
740 /* simple device detection: look for HCI method */
741 if (is_valid_acpi_path(METHOD_HCI_1))
742 method_hci = METHOD_HCI_1;
743 else if (is_valid_acpi_path(METHOD_HCI_2))
744 method_hci = METHOD_HCI_2;
745 else
746 return -ENODEV;
748 printk(MY_INFO "Toshiba Laptop ACPI Extras version %s\n",
749 TOSHIBA_ACPI_VERSION);
750 printk(MY_INFO " HCI method: %s\n", method_hci);
752 mutex_init(&toshiba_acpi.mutex);
754 toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi",
755 -1, NULL, 0);
756 if (IS_ERR(toshiba_acpi.p_dev)) {
757 ret = PTR_ERR(toshiba_acpi.p_dev);
758 printk(MY_ERR "unable to register platform device\n");
759 toshiba_acpi.p_dev = NULL;
760 toshiba_acpi_exit();
761 return ret;
764 force_fan = 0;
765 key_event_valid = 0;
767 /* enable event fifo */
768 hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
770 toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir);
771 if (!toshiba_proc_dir) {
772 toshiba_acpi_exit();
773 return -ENODEV;
774 } else {
775 toshiba_proc_dir->owner = THIS_MODULE;
776 status = add_device();
777 if (ACPI_FAILURE(status)) {
778 toshiba_acpi_exit();
779 return -ENODEV;
783 toshiba_backlight_device = backlight_device_register("toshiba",
784 &toshiba_acpi.p_dev->dev,
785 NULL,
786 &toshiba_backlight_data);
787 if (IS_ERR(toshiba_backlight_device)) {
788 ret = PTR_ERR(toshiba_backlight_device);
790 printk(KERN_ERR "Could not register toshiba backlight device\n");
791 toshiba_backlight_device = NULL;
792 toshiba_acpi_exit();
793 return ret;
795 toshiba_backlight_device->props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1;
797 /* Register rfkill switch for Bluetooth */
798 if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) {
799 toshiba_acpi.rfk_dev = rfkill_allocate(&toshiba_acpi.p_dev->dev,
800 RFKILL_TYPE_BLUETOOTH);
801 if (!toshiba_acpi.rfk_dev) {
802 printk(MY_ERR "unable to allocate rfkill device\n");
803 toshiba_acpi_exit();
804 return -ENOMEM;
807 toshiba_acpi.rfk_dev->name = toshiba_acpi.bt_name;
808 toshiba_acpi.rfk_dev->toggle_radio = bt_rfkill_toggle_radio;
809 toshiba_acpi.rfk_dev->user_claim_unsupported = 1;
810 toshiba_acpi.rfk_dev->data = &toshiba_acpi;
812 if (hci_get_bt_on(&bt_on) == HCI_SUCCESS && bt_on) {
813 toshiba_acpi.rfk_dev->state = RFKILL_STATE_UNBLOCKED;
814 } else if (hci_get_radio_state(&radio_on) == HCI_SUCCESS &&
815 radio_on) {
816 toshiba_acpi.rfk_dev->state = RFKILL_STATE_SOFT_BLOCKED;
817 } else {
818 toshiba_acpi.rfk_dev->state = RFKILL_STATE_HARD_BLOCKED;
821 ret = rfkill_register(toshiba_acpi.rfk_dev);
822 if (ret) {
823 printk(MY_ERR "unable to register rfkill device\n");
824 toshiba_acpi_exit();
825 return -ENOMEM;
829 /* Register input device for kill switch */
830 toshiba_acpi.poll_dev = input_allocate_polled_device();
831 if (!toshiba_acpi.poll_dev) {
832 printk(MY_ERR "unable to allocate kill-switch input device\n");
833 toshiba_acpi_exit();
834 return -ENOMEM;
836 toshiba_acpi.poll_dev->private = &toshiba_acpi;
837 toshiba_acpi.poll_dev->poll = bt_poll_rfkill;
838 toshiba_acpi.poll_dev->poll_interval = 1000; /* msecs */
840 toshiba_acpi.poll_dev->input->name = toshiba_acpi.rfk_name;
841 toshiba_acpi.poll_dev->input->id.bustype = BUS_HOST;
842 toshiba_acpi.poll_dev->input->id.vendor = 0x0930; /* Toshiba USB ID */
843 set_bit(EV_SW, toshiba_acpi.poll_dev->input->evbit);
844 set_bit(SW_RFKILL_ALL, toshiba_acpi.poll_dev->input->swbit);
845 input_report_switch(toshiba_acpi.poll_dev->input, SW_RFKILL_ALL, TRUE);
846 input_sync(toshiba_acpi.poll_dev->input);
848 ret = input_register_polled_device(toshiba_acpi.poll_dev);
849 if (ret) {
850 printk(MY_ERR "unable to register kill-switch input device\n");
851 rfkill_free(toshiba_acpi.rfk_dev);
852 toshiba_acpi.rfk_dev = NULL;
853 toshiba_acpi_exit();
854 return ret;
857 return 0;
860 module_init(toshiba_acpi_init);
861 module_exit(toshiba_acpi_exit);