checkpatch: allow printk strings to exceed 80 characters to maintain their searchability
[linux-2.6/mini2440.git] / include / linux / cpumask.h
blob1b5c98e7fef79fffd94805cb1d8cfd9fdadb39f5
1 #ifndef __LINUX_CPUMASK_H
2 #define __LINUX_CPUMASK_H
4 /*
5 * Cpumasks provide a bitmap suitable for representing the
6 * set of CPU's in a system, one bit position per CPU number.
8 * See detailed comments in the file linux/bitmap.h describing the
9 * data type on which these cpumasks are based.
11 * For details of cpumask_scnprintf() and cpumask_parse_user(),
12 * see bitmap_scnprintf() and bitmap_parse_user() in lib/bitmap.c.
13 * For details of cpulist_scnprintf() and cpulist_parse(), see
14 * bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c.
15 * For details of cpu_remap(), see bitmap_bitremap in lib/bitmap.c
16 * For details of cpus_remap(), see bitmap_remap in lib/bitmap.c.
17 * For details of cpus_onto(), see bitmap_onto in lib/bitmap.c.
18 * For details of cpus_fold(), see bitmap_fold in lib/bitmap.c.
20 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21 * Note: The alternate operations with the suffix "_nr" are used
22 * to limit the range of the loop to nr_cpu_ids instead of
23 * NR_CPUS when NR_CPUS > 64 for performance reasons.
24 * If NR_CPUS is <= 64 then most assembler bitmask
25 * operators execute faster with a constant range, so
26 * the operator will continue to use NR_CPUS.
28 * Another consideration is that nr_cpu_ids is initialized
29 * to NR_CPUS and isn't lowered until the possible cpus are
30 * discovered (including any disabled cpus). So early uses
31 * will span the entire range of NR_CPUS.
32 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34 * The available cpumask operations are:
36 * void cpu_set(cpu, mask) turn on bit 'cpu' in mask
37 * void cpu_clear(cpu, mask) turn off bit 'cpu' in mask
38 * void cpus_setall(mask) set all bits
39 * void cpus_clear(mask) clear all bits
40 * int cpu_isset(cpu, mask) true iff bit 'cpu' set in mask
41 * int cpu_test_and_set(cpu, mask) test and set bit 'cpu' in mask
43 * void cpus_and(dst, src1, src2) dst = src1 & src2 [intersection]
44 * void cpus_or(dst, src1, src2) dst = src1 | src2 [union]
45 * void cpus_xor(dst, src1, src2) dst = src1 ^ src2
46 * void cpus_andnot(dst, src1, src2) dst = src1 & ~src2
47 * void cpus_complement(dst, src) dst = ~src
49 * int cpus_equal(mask1, mask2) Does mask1 == mask2?
50 * int cpus_intersects(mask1, mask2) Do mask1 and mask2 intersect?
51 * int cpus_subset(mask1, mask2) Is mask1 a subset of mask2?
52 * int cpus_empty(mask) Is mask empty (no bits sets)?
53 * int cpus_full(mask) Is mask full (all bits sets)?
54 * int cpus_weight(mask) Hamming weigh - number of set bits
55 * int cpus_weight_nr(mask) Same using nr_cpu_ids instead of NR_CPUS
57 * void cpus_shift_right(dst, src, n) Shift right
58 * void cpus_shift_left(dst, src, n) Shift left
60 * int first_cpu(mask) Number lowest set bit, or NR_CPUS
61 * int next_cpu(cpu, mask) Next cpu past 'cpu', or NR_CPUS
62 * int next_cpu_nr(cpu, mask) Next cpu past 'cpu', or nr_cpu_ids
64 * cpumask_t cpumask_of_cpu(cpu) Return cpumask with bit 'cpu' set
65 *ifdef CONFIG_HAS_CPUMASK_OF_CPU
66 * cpumask_of_cpu_ptr_declare(v) Declares cpumask_t *v
67 * cpumask_of_cpu_ptr_next(v, cpu) Sets v = &cpumask_of_cpu_map[cpu]
68 * cpumask_of_cpu_ptr(v, cpu) Combines above two operations
69 *else
70 * cpumask_of_cpu_ptr_declare(v) Declares cpumask_t _v and *v = &_v
71 * cpumask_of_cpu_ptr_next(v, cpu) Sets _v = cpumask_of_cpu(cpu)
72 * cpumask_of_cpu_ptr(v, cpu) Combines above two operations
73 *endif
74 * CPU_MASK_ALL Initializer - all bits set
75 * CPU_MASK_NONE Initializer - no bits set
76 * unsigned long *cpus_addr(mask) Array of unsigned long's in mask
78 * CPUMASK_ALLOC kmalloc's a structure that is a composite of many cpumask_t
79 * variables, and CPUMASK_PTR provides pointers to each field.
81 * The structure should be defined something like this:
82 * struct my_cpumasks {
83 * cpumask_t mask1;
84 * cpumask_t mask2;
85 * };
87 * Usage is then:
88 * CPUMASK_ALLOC(my_cpumasks);
89 * CPUMASK_PTR(mask1, my_cpumasks);
90 * CPUMASK_PTR(mask2, my_cpumasks);
92 * --- DO NOT reference cpumask_t pointers until this check ---
93 * if (my_cpumasks == NULL)
94 * "kmalloc failed"...
96 * References are now pointers to the cpumask_t variables (*mask1, ...)
98 *if NR_CPUS > BITS_PER_LONG
99 * CPUMASK_ALLOC(m) Declares and allocates struct m *m =
100 * kmalloc(sizeof(*m), GFP_KERNEL)
101 * CPUMASK_FREE(m) Macro for kfree(m)
102 *else
103 * CPUMASK_ALLOC(m) Declares struct m _m, *m = &_m
104 * CPUMASK_FREE(m) Nop
105 *endif
106 * CPUMASK_PTR(v, m) Declares cpumask_t *v = &(m->v)
107 * ------------------------------------------------------------------------
109 * int cpumask_scnprintf(buf, len, mask) Format cpumask for printing
110 * int cpumask_parse_user(ubuf, ulen, mask) Parse ascii string as cpumask
111 * int cpulist_scnprintf(buf, len, mask) Format cpumask as list for printing
112 * int cpulist_parse(buf, map) Parse ascii string as cpulist
113 * int cpu_remap(oldbit, old, new) newbit = map(old, new)(oldbit)
114 * void cpus_remap(dst, src, old, new) *dst = map(old, new)(src)
115 * void cpus_onto(dst, orig, relmap) *dst = orig relative to relmap
116 * void cpus_fold(dst, orig, sz) dst bits = orig bits mod sz
118 * for_each_cpu_mask(cpu, mask) for-loop cpu over mask using NR_CPUS
119 * for_each_cpu_mask_nr(cpu, mask) for-loop cpu over mask using nr_cpu_ids
121 * int num_online_cpus() Number of online CPUs
122 * int num_possible_cpus() Number of all possible CPUs
123 * int num_present_cpus() Number of present CPUs
125 * int cpu_online(cpu) Is some cpu online?
126 * int cpu_possible(cpu) Is some cpu possible?
127 * int cpu_present(cpu) Is some cpu present (can schedule)?
129 * int any_online_cpu(mask) First online cpu in mask
131 * for_each_possible_cpu(cpu) for-loop cpu over cpu_possible_map
132 * for_each_online_cpu(cpu) for-loop cpu over cpu_online_map
133 * for_each_present_cpu(cpu) for-loop cpu over cpu_present_map
135 * Subtlety:
136 * 1) The 'type-checked' form of cpu_isset() causes gcc (3.3.2, anyway)
137 * to generate slightly worse code. Note for example the additional
138 * 40 lines of assembly code compiling the "for each possible cpu"
139 * loops buried in the disk_stat_read() macros calls when compiling
140 * drivers/block/genhd.c (arch i386, CONFIG_SMP=y). So use a simple
141 * one-line #define for cpu_isset(), instead of wrapping an inline
142 * inside a macro, the way we do the other calls.
145 #include <linux/kernel.h>
146 #include <linux/threads.h>
147 #include <linux/bitmap.h>
149 typedef struct { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
150 extern cpumask_t _unused_cpumask_arg_;
152 #define cpu_set(cpu, dst) __cpu_set((cpu), &(dst))
153 static inline void __cpu_set(int cpu, volatile cpumask_t *dstp)
155 set_bit(cpu, dstp->bits);
158 #define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst))
159 static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp)
161 clear_bit(cpu, dstp->bits);
164 #define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS)
165 static inline void __cpus_setall(cpumask_t *dstp, int nbits)
167 bitmap_fill(dstp->bits, nbits);
170 #define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS)
171 static inline void __cpus_clear(cpumask_t *dstp, int nbits)
173 bitmap_zero(dstp->bits, nbits);
176 /* No static inline type checking - see Subtlety (1) above. */
177 #define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits)
179 #define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask))
180 static inline int __cpu_test_and_set(int cpu, cpumask_t *addr)
182 return test_and_set_bit(cpu, addr->bits);
185 #define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS)
186 static inline void __cpus_and(cpumask_t *dstp, const cpumask_t *src1p,
187 const cpumask_t *src2p, int nbits)
189 bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits);
192 #define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS)
193 static inline void __cpus_or(cpumask_t *dstp, const cpumask_t *src1p,
194 const cpumask_t *src2p, int nbits)
196 bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits);
199 #define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS)
200 static inline void __cpus_xor(cpumask_t *dstp, const cpumask_t *src1p,
201 const cpumask_t *src2p, int nbits)
203 bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits);
206 #define cpus_andnot(dst, src1, src2) \
207 __cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS)
208 static inline void __cpus_andnot(cpumask_t *dstp, const cpumask_t *src1p,
209 const cpumask_t *src2p, int nbits)
211 bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits);
214 #define cpus_complement(dst, src) __cpus_complement(&(dst), &(src), NR_CPUS)
215 static inline void __cpus_complement(cpumask_t *dstp,
216 const cpumask_t *srcp, int nbits)
218 bitmap_complement(dstp->bits, srcp->bits, nbits);
221 #define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS)
222 static inline int __cpus_equal(const cpumask_t *src1p,
223 const cpumask_t *src2p, int nbits)
225 return bitmap_equal(src1p->bits, src2p->bits, nbits);
228 #define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS)
229 static inline int __cpus_intersects(const cpumask_t *src1p,
230 const cpumask_t *src2p, int nbits)
232 return bitmap_intersects(src1p->bits, src2p->bits, nbits);
235 #define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS)
236 static inline int __cpus_subset(const cpumask_t *src1p,
237 const cpumask_t *src2p, int nbits)
239 return bitmap_subset(src1p->bits, src2p->bits, nbits);
242 #define cpus_empty(src) __cpus_empty(&(src), NR_CPUS)
243 static inline int __cpus_empty(const cpumask_t *srcp, int nbits)
245 return bitmap_empty(srcp->bits, nbits);
248 #define cpus_full(cpumask) __cpus_full(&(cpumask), NR_CPUS)
249 static inline int __cpus_full(const cpumask_t *srcp, int nbits)
251 return bitmap_full(srcp->bits, nbits);
254 #define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS)
255 static inline int __cpus_weight(const cpumask_t *srcp, int nbits)
257 return bitmap_weight(srcp->bits, nbits);
260 #define cpus_shift_right(dst, src, n) \
261 __cpus_shift_right(&(dst), &(src), (n), NR_CPUS)
262 static inline void __cpus_shift_right(cpumask_t *dstp,
263 const cpumask_t *srcp, int n, int nbits)
265 bitmap_shift_right(dstp->bits, srcp->bits, n, nbits);
268 #define cpus_shift_left(dst, src, n) \
269 __cpus_shift_left(&(dst), &(src), (n), NR_CPUS)
270 static inline void __cpus_shift_left(cpumask_t *dstp,
271 const cpumask_t *srcp, int n, int nbits)
273 bitmap_shift_left(dstp->bits, srcp->bits, n, nbits);
277 #ifdef CONFIG_HAVE_CPUMASK_OF_CPU_MAP
278 extern cpumask_t *cpumask_of_cpu_map;
279 #define cpumask_of_cpu(cpu) (cpumask_of_cpu_map[cpu])
280 #define cpumask_of_cpu_ptr(v, cpu) \
281 const cpumask_t *v = &cpumask_of_cpu(cpu)
282 #define cpumask_of_cpu_ptr_declare(v) \
283 const cpumask_t *v
284 #define cpumask_of_cpu_ptr_next(v, cpu) \
285 v = &cpumask_of_cpu(cpu)
286 #else
287 #define cpumask_of_cpu(cpu) \
288 ({ \
289 typeof(_unused_cpumask_arg_) m; \
290 if (sizeof(m) == sizeof(unsigned long)) { \
291 m.bits[0] = 1UL<<(cpu); \
292 } else { \
293 cpus_clear(m); \
294 cpu_set((cpu), m); \
296 m; \
298 #define cpumask_of_cpu_ptr(v, cpu) \
299 cpumask_t _##v = cpumask_of_cpu(cpu); \
300 const cpumask_t *v = &_##v
301 #define cpumask_of_cpu_ptr_declare(v) \
302 cpumask_t _##v; \
303 const cpumask_t *v = &_##v
304 #define cpumask_of_cpu_ptr_next(v, cpu) \
305 _##v = cpumask_of_cpu(cpu)
306 #endif
308 #define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS)
310 #if NR_CPUS <= BITS_PER_LONG
312 #define CPU_MASK_ALL \
313 (cpumask_t) { { \
314 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
317 #define CPU_MASK_ALL_PTR (&CPU_MASK_ALL)
319 #else
321 #define CPU_MASK_ALL \
322 (cpumask_t) { { \
323 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
324 [BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD \
327 /* cpu_mask_all is in init/main.c */
328 extern cpumask_t cpu_mask_all;
329 #define CPU_MASK_ALL_PTR (&cpu_mask_all)
331 #endif
333 #define CPU_MASK_NONE \
334 (cpumask_t) { { \
335 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
338 #define CPU_MASK_CPU0 \
339 (cpumask_t) { { \
340 [0] = 1UL \
343 #define cpus_addr(src) ((src).bits)
345 #if NR_CPUS > BITS_PER_LONG
346 #define CPUMASK_ALLOC(m) struct m *m = kmalloc(sizeof(*m), GFP_KERNEL)
347 #define CPUMASK_FREE(m) kfree(m)
348 #else
349 #define CPUMASK_ALLOC(m) struct m _m, *m = &_m
350 #define CPUMASK_FREE(m)
351 #endif
352 #define CPUMASK_PTR(v, m) cpumask_t *v = &(m->v)
354 #define cpumask_scnprintf(buf, len, src) \
355 __cpumask_scnprintf((buf), (len), &(src), NR_CPUS)
356 static inline int __cpumask_scnprintf(char *buf, int len,
357 const cpumask_t *srcp, int nbits)
359 return bitmap_scnprintf(buf, len, srcp->bits, nbits);
362 #define cpumask_parse_user(ubuf, ulen, dst) \
363 __cpumask_parse_user((ubuf), (ulen), &(dst), NR_CPUS)
364 static inline int __cpumask_parse_user(const char __user *buf, int len,
365 cpumask_t *dstp, int nbits)
367 return bitmap_parse_user(buf, len, dstp->bits, nbits);
370 #define cpulist_scnprintf(buf, len, src) \
371 __cpulist_scnprintf((buf), (len), &(src), NR_CPUS)
372 static inline int __cpulist_scnprintf(char *buf, int len,
373 const cpumask_t *srcp, int nbits)
375 return bitmap_scnlistprintf(buf, len, srcp->bits, nbits);
378 #define cpulist_parse(buf, dst) __cpulist_parse((buf), &(dst), NR_CPUS)
379 static inline int __cpulist_parse(const char *buf, cpumask_t *dstp, int nbits)
381 return bitmap_parselist(buf, dstp->bits, nbits);
384 #define cpu_remap(oldbit, old, new) \
385 __cpu_remap((oldbit), &(old), &(new), NR_CPUS)
386 static inline int __cpu_remap(int oldbit,
387 const cpumask_t *oldp, const cpumask_t *newp, int nbits)
389 return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits);
392 #define cpus_remap(dst, src, old, new) \
393 __cpus_remap(&(dst), &(src), &(old), &(new), NR_CPUS)
394 static inline void __cpus_remap(cpumask_t *dstp, const cpumask_t *srcp,
395 const cpumask_t *oldp, const cpumask_t *newp, int nbits)
397 bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits);
400 #define cpus_onto(dst, orig, relmap) \
401 __cpus_onto(&(dst), &(orig), &(relmap), NR_CPUS)
402 static inline void __cpus_onto(cpumask_t *dstp, const cpumask_t *origp,
403 const cpumask_t *relmapp, int nbits)
405 bitmap_onto(dstp->bits, origp->bits, relmapp->bits, nbits);
408 #define cpus_fold(dst, orig, sz) \
409 __cpus_fold(&(dst), &(orig), sz, NR_CPUS)
410 static inline void __cpus_fold(cpumask_t *dstp, const cpumask_t *origp,
411 int sz, int nbits)
413 bitmap_fold(dstp->bits, origp->bits, sz, nbits);
416 #if NR_CPUS == 1
418 #define nr_cpu_ids 1
419 #define first_cpu(src) ({ (void)(src); 0; })
420 #define next_cpu(n, src) ({ (void)(src); 1; })
421 #define any_online_cpu(mask) 0
422 #define for_each_cpu_mask(cpu, mask) \
423 for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
425 #else /* NR_CPUS > 1 */
427 extern int nr_cpu_ids;
428 int __first_cpu(const cpumask_t *srcp);
429 int __next_cpu(int n, const cpumask_t *srcp);
430 int __any_online_cpu(const cpumask_t *mask);
432 #define first_cpu(src) __first_cpu(&(src))
433 #define next_cpu(n, src) __next_cpu((n), &(src))
434 #define any_online_cpu(mask) __any_online_cpu(&(mask))
435 #define for_each_cpu_mask(cpu, mask) \
436 for ((cpu) = -1; \
437 (cpu) = next_cpu((cpu), (mask)), \
438 (cpu) < NR_CPUS; )
439 #endif
441 #if NR_CPUS <= 64
443 #define next_cpu_nr(n, src) next_cpu(n, src)
444 #define cpus_weight_nr(cpumask) cpus_weight(cpumask)
445 #define for_each_cpu_mask_nr(cpu, mask) for_each_cpu_mask(cpu, mask)
447 #else /* NR_CPUS > 64 */
449 int __next_cpu_nr(int n, const cpumask_t *srcp);
450 #define next_cpu_nr(n, src) __next_cpu_nr((n), &(src))
451 #define cpus_weight_nr(cpumask) __cpus_weight(&(cpumask), nr_cpu_ids)
452 #define for_each_cpu_mask_nr(cpu, mask) \
453 for ((cpu) = -1; \
454 (cpu) = next_cpu_nr((cpu), (mask)), \
455 (cpu) < nr_cpu_ids; )
457 #endif /* NR_CPUS > 64 */
460 * The following particular system cpumasks and operations manage
461 * possible, present, active and online cpus. Each of them is a fixed size
462 * bitmap of size NR_CPUS.
464 * #ifdef CONFIG_HOTPLUG_CPU
465 * cpu_possible_map - has bit 'cpu' set iff cpu is populatable
466 * cpu_present_map - has bit 'cpu' set iff cpu is populated
467 * cpu_online_map - has bit 'cpu' set iff cpu available to scheduler
468 * cpu_active_map - has bit 'cpu' set iff cpu available to migration
469 * #else
470 * cpu_possible_map - has bit 'cpu' set iff cpu is populated
471 * cpu_present_map - copy of cpu_possible_map
472 * cpu_online_map - has bit 'cpu' set iff cpu available to scheduler
473 * #endif
475 * In either case, NR_CPUS is fixed at compile time, as the static
476 * size of these bitmaps. The cpu_possible_map is fixed at boot
477 * time, as the set of CPU id's that it is possible might ever
478 * be plugged in at anytime during the life of that system boot.
479 * The cpu_present_map is dynamic(*), representing which CPUs
480 * are currently plugged in. And cpu_online_map is the dynamic
481 * subset of cpu_present_map, indicating those CPUs available
482 * for scheduling.
484 * If HOTPLUG is enabled, then cpu_possible_map is forced to have
485 * all NR_CPUS bits set, otherwise it is just the set of CPUs that
486 * ACPI reports present at boot.
488 * If HOTPLUG is enabled, then cpu_present_map varies dynamically,
489 * depending on what ACPI reports as currently plugged in, otherwise
490 * cpu_present_map is just a copy of cpu_possible_map.
492 * (*) Well, cpu_present_map is dynamic in the hotplug case. If not
493 * hotplug, it's a copy of cpu_possible_map, hence fixed at boot.
495 * Subtleties:
496 * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
497 * assumption that their single CPU is online. The UP
498 * cpu_{online,possible,present}_maps are placebos. Changing them
499 * will have no useful affect on the following num_*_cpus()
500 * and cpu_*() macros in the UP case. This ugliness is a UP
501 * optimization - don't waste any instructions or memory references
502 * asking if you're online or how many CPUs there are if there is
503 * only one CPU.
504 * 2) Most SMP arch's #define some of these maps to be some
505 * other map specific to that arch. Therefore, the following
506 * must be #define macros, not inlines. To see why, examine
507 * the assembly code produced by the following. Note that
508 * set1() writes phys_x_map, but set2() writes x_map:
509 * int x_map, phys_x_map;
510 * #define set1(a) x_map = a
511 * inline void set2(int a) { x_map = a; }
512 * #define x_map phys_x_map
513 * main(){ set1(3); set2(5); }
516 extern cpumask_t cpu_possible_map;
517 extern cpumask_t cpu_online_map;
518 extern cpumask_t cpu_present_map;
519 extern cpumask_t cpu_active_map;
521 #if NR_CPUS > 1
522 #define num_online_cpus() cpus_weight_nr(cpu_online_map)
523 #define num_possible_cpus() cpus_weight_nr(cpu_possible_map)
524 #define num_present_cpus() cpus_weight_nr(cpu_present_map)
525 #define cpu_online(cpu) cpu_isset((cpu), cpu_online_map)
526 #define cpu_possible(cpu) cpu_isset((cpu), cpu_possible_map)
527 #define cpu_present(cpu) cpu_isset((cpu), cpu_present_map)
528 #define cpu_active(cpu) cpu_isset((cpu), cpu_active_map)
529 #else
530 #define num_online_cpus() 1
531 #define num_possible_cpus() 1
532 #define num_present_cpus() 1
533 #define cpu_online(cpu) ((cpu) == 0)
534 #define cpu_possible(cpu) ((cpu) == 0)
535 #define cpu_present(cpu) ((cpu) == 0)
536 #define cpu_active(cpu) ((cpu) == 0)
537 #endif
539 #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu))
541 #define for_each_possible_cpu(cpu) for_each_cpu_mask_nr((cpu), cpu_possible_map)
542 #define for_each_online_cpu(cpu) for_each_cpu_mask_nr((cpu), cpu_online_map)
543 #define for_each_present_cpu(cpu) for_each_cpu_mask_nr((cpu), cpu_present_map)
545 #endif /* __LINUX_CPUMASK_H */