2 * Intel IXP4xx NPE-C crypto driver
4 * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License
8 * as published by the Free Software Foundation.
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
21 #include <crypto/ctr.h>
22 #include <crypto/des.h>
23 #include <crypto/aes.h>
24 #include <crypto/sha.h>
25 #include <crypto/algapi.h>
26 #include <crypto/aead.h>
27 #include <crypto/authenc.h>
28 #include <crypto/scatterwalk.h>
31 #include <mach/qmgr.h>
35 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
36 #define NPE_CTX_LEN 80
37 #define AES_BLOCK128 16
39 #define NPE_OP_HASH_VERIFY 0x01
40 #define NPE_OP_CCM_ENABLE 0x04
41 #define NPE_OP_CRYPT_ENABLE 0x08
42 #define NPE_OP_HASH_ENABLE 0x10
43 #define NPE_OP_NOT_IN_PLACE 0x20
44 #define NPE_OP_HMAC_DISABLE 0x40
45 #define NPE_OP_CRYPT_ENCRYPT 0x80
47 #define NPE_OP_CCM_GEN_MIC 0xcc
48 #define NPE_OP_HASH_GEN_ICV 0x50
49 #define NPE_OP_ENC_GEN_KEY 0xc9
51 #define MOD_ECB 0x0000
52 #define MOD_CTR 0x1000
53 #define MOD_CBC_ENC 0x2000
54 #define MOD_CBC_DEC 0x3000
55 #define MOD_CCM_ENC 0x4000
56 #define MOD_CCM_DEC 0x5000
62 #define CIPH_DECR 0x0000
63 #define CIPH_ENCR 0x0400
65 #define MOD_DES 0x0000
66 #define MOD_TDEA2 0x0100
67 #define MOD_3DES 0x0200
68 #define MOD_AES 0x0800
69 #define MOD_AES128 (0x0800 | KEYLEN_128)
70 #define MOD_AES192 (0x0900 | KEYLEN_192)
71 #define MOD_AES256 (0x0a00 | KEYLEN_256)
74 #define NPE_ID 2 /* NPE C */
76 /* Space for registering when the first
77 * NPE_QLEN crypt_ctl are busy */
78 #define NPE_QLEN_TOTAL 64
83 #define CTL_FLAG_UNUSED 0x0000
84 #define CTL_FLAG_USED 0x1000
85 #define CTL_FLAG_PERFORM_ABLK 0x0001
86 #define CTL_FLAG_GEN_ICV 0x0002
87 #define CTL_FLAG_GEN_REVAES 0x0004
88 #define CTL_FLAG_PERFORM_AEAD 0x0008
89 #define CTL_FLAG_MASK 0x000f
91 #define HMAC_IPAD_VALUE 0x36
92 #define HMAC_OPAD_VALUE 0x5C
93 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
95 #define MD5_DIGEST_SIZE 16
103 struct buffer_desc
*next
;
104 enum dma_data_direction dir
;
108 u8 mode
; /* NPE_OP_* operation mode */
111 u8 iv
[MAX_IVLEN
]; /* IV for CBC mode or CTR IV for CTR mode */
112 u32 icv_rev_aes
; /* icv or rev aes */
115 u16 auth_offs
; /* Authentication start offset */
116 u16 auth_len
; /* Authentication data length */
117 u16 crypt_offs
; /* Cryption start offset */
118 u16 crypt_len
; /* Cryption data length */
119 u32 aadAddr
; /* Additional Auth Data Addr for CCM mode */
120 u32 crypto_ctx
; /* NPE Crypto Param structure address */
122 /* Used by Host: 4*4 bytes*/
125 struct ablkcipher_request
*ablk_req
;
126 struct aead_request
*aead_req
;
127 struct crypto_tfm
*tfm
;
129 struct buffer_desc
*regist_buf
;
134 struct buffer_desc
*src
;
135 struct buffer_desc
*dst
;
139 struct buffer_desc
*buffer
;
140 struct scatterlist ivlist
;
141 /* used when the hmac is not on one sg entry */
146 struct ix_hash_algo
{
152 unsigned char *npe_ctx
;
153 dma_addr_t npe_ctx_phys
;
159 struct ix_sa_dir encrypt
;
160 struct ix_sa_dir decrypt
;
162 u8 authkey
[MAX_KEYLEN
];
164 u8 enckey
[MAX_KEYLEN
];
166 u8 nonce
[CTR_RFC3686_NONCE_SIZE
];
168 atomic_t configuring
;
169 struct completion completion
;
173 struct crypto_alg crypto
;
174 const struct ix_hash_algo
*hash
;
181 static const struct ix_hash_algo hash_alg_md5
= {
182 .cfgword
= 0xAA010004,
183 .icv
= "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
184 "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
186 static const struct ix_hash_algo hash_alg_sha1
= {
187 .cfgword
= 0x00000005,
188 .icv
= "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
189 "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
192 static struct npe
*npe_c
;
193 static struct dma_pool
*buffer_pool
= NULL
;
194 static struct dma_pool
*ctx_pool
= NULL
;
196 static struct crypt_ctl
*crypt_virt
= NULL
;
197 static dma_addr_t crypt_phys
;
199 static int support_aes
= 1;
201 static void dev_release(struct device
*dev
)
206 #define DRIVER_NAME "ixp4xx_crypto"
207 static struct platform_device pseudo_dev
= {
212 .coherent_dma_mask
= DMA_BIT_MASK(32),
213 .release
= dev_release
,
217 static struct device
*dev
= &pseudo_dev
.dev
;
219 static inline dma_addr_t
crypt_virt2phys(struct crypt_ctl
*virt
)
221 return crypt_phys
+ (virt
- crypt_virt
) * sizeof(struct crypt_ctl
);
224 static inline struct crypt_ctl
*crypt_phys2virt(dma_addr_t phys
)
226 return crypt_virt
+ (phys
- crypt_phys
) / sizeof(struct crypt_ctl
);
229 static inline u32
cipher_cfg_enc(struct crypto_tfm
*tfm
)
231 return container_of(tfm
->__crt_alg
, struct ixp_alg
,crypto
)->cfg_enc
;
234 static inline u32
cipher_cfg_dec(struct crypto_tfm
*tfm
)
236 return container_of(tfm
->__crt_alg
, struct ixp_alg
,crypto
)->cfg_dec
;
239 static inline const struct ix_hash_algo
*ix_hash(struct crypto_tfm
*tfm
)
241 return container_of(tfm
->__crt_alg
, struct ixp_alg
, crypto
)->hash
;
244 static int setup_crypt_desc(void)
246 BUILD_BUG_ON(sizeof(struct crypt_ctl
) != 64);
247 crypt_virt
= dma_alloc_coherent(dev
,
248 NPE_QLEN
* sizeof(struct crypt_ctl
),
249 &crypt_phys
, GFP_KERNEL
);
252 memset(crypt_virt
, 0, NPE_QLEN
* sizeof(struct crypt_ctl
));
256 static spinlock_t desc_lock
;
257 static struct crypt_ctl
*get_crypt_desc(void)
263 spin_lock_irqsave(&desc_lock
, flags
);
265 if (unlikely(!crypt_virt
))
267 if (unlikely(!crypt_virt
)) {
268 spin_unlock_irqrestore(&desc_lock
, flags
);
272 if (crypt_virt
[i
].ctl_flags
== CTL_FLAG_UNUSED
) {
273 if (++idx
>= NPE_QLEN
)
275 crypt_virt
[i
].ctl_flags
= CTL_FLAG_USED
;
276 spin_unlock_irqrestore(&desc_lock
, flags
);
277 return crypt_virt
+i
;
279 spin_unlock_irqrestore(&desc_lock
, flags
);
284 static spinlock_t emerg_lock
;
285 static struct crypt_ctl
*get_crypt_desc_emerg(void)
288 static int idx
= NPE_QLEN
;
289 struct crypt_ctl
*desc
;
292 desc
= get_crypt_desc();
295 if (unlikely(!crypt_virt
))
298 spin_lock_irqsave(&emerg_lock
, flags
);
300 if (crypt_virt
[i
].ctl_flags
== CTL_FLAG_UNUSED
) {
301 if (++idx
>= NPE_QLEN_TOTAL
)
303 crypt_virt
[i
].ctl_flags
= CTL_FLAG_USED
;
304 spin_unlock_irqrestore(&emerg_lock
, flags
);
305 return crypt_virt
+i
;
307 spin_unlock_irqrestore(&emerg_lock
, flags
);
312 static void free_buf_chain(struct device
*dev
, struct buffer_desc
*buf
,u32 phys
)
315 struct buffer_desc
*buf1
;
319 phys1
= buf
->phys_next
;
320 dma_unmap_single(dev
, buf
->phys_next
, buf
->buf_len
, buf
->dir
);
321 dma_pool_free(buffer_pool
, buf
, phys
);
327 static struct tasklet_struct crypto_done_tasklet
;
329 static void finish_scattered_hmac(struct crypt_ctl
*crypt
)
331 struct aead_request
*req
= crypt
->data
.aead_req
;
332 struct aead_ctx
*req_ctx
= aead_request_ctx(req
);
333 struct crypto_aead
*tfm
= crypto_aead_reqtfm(req
);
334 int authsize
= crypto_aead_authsize(tfm
);
335 int decryptlen
= req
->cryptlen
- authsize
;
337 if (req_ctx
->encrypt
) {
338 scatterwalk_map_and_copy(req_ctx
->hmac_virt
,
339 req
->src
, decryptlen
, authsize
, 1);
341 dma_pool_free(buffer_pool
, req_ctx
->hmac_virt
, crypt
->icv_rev_aes
);
344 static void one_packet(dma_addr_t phys
)
346 struct crypt_ctl
*crypt
;
350 failed
= phys
& 0x1 ? -EBADMSG
: 0;
352 crypt
= crypt_phys2virt(phys
);
354 switch (crypt
->ctl_flags
& CTL_FLAG_MASK
) {
355 case CTL_FLAG_PERFORM_AEAD
: {
356 struct aead_request
*req
= crypt
->data
.aead_req
;
357 struct aead_ctx
*req_ctx
= aead_request_ctx(req
);
359 free_buf_chain(dev
, req_ctx
->buffer
, crypt
->src_buf
);
360 if (req_ctx
->hmac_virt
) {
361 finish_scattered_hmac(crypt
);
363 req
->base
.complete(&req
->base
, failed
);
366 case CTL_FLAG_PERFORM_ABLK
: {
367 struct ablkcipher_request
*req
= crypt
->data
.ablk_req
;
368 struct ablk_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
371 free_buf_chain(dev
, req_ctx
->dst
, crypt
->dst_buf
);
373 free_buf_chain(dev
, req_ctx
->src
, crypt
->src_buf
);
374 req
->base
.complete(&req
->base
, failed
);
377 case CTL_FLAG_GEN_ICV
:
378 ctx
= crypto_tfm_ctx(crypt
->data
.tfm
);
379 dma_pool_free(ctx_pool
, crypt
->regist_ptr
,
380 crypt
->regist_buf
->phys_addr
);
381 dma_pool_free(buffer_pool
, crypt
->regist_buf
, crypt
->src_buf
);
382 if (atomic_dec_and_test(&ctx
->configuring
))
383 complete(&ctx
->completion
);
385 case CTL_FLAG_GEN_REVAES
:
386 ctx
= crypto_tfm_ctx(crypt
->data
.tfm
);
387 *(u32
*)ctx
->decrypt
.npe_ctx
&= cpu_to_be32(~CIPH_ENCR
);
388 if (atomic_dec_and_test(&ctx
->configuring
))
389 complete(&ctx
->completion
);
394 crypt
->ctl_flags
= CTL_FLAG_UNUSED
;
397 static void irqhandler(void *_unused
)
399 tasklet_schedule(&crypto_done_tasklet
);
402 static void crypto_done_action(unsigned long arg
)
407 dma_addr_t phys
= qmgr_get_entry(RECV_QID
);
412 tasklet_schedule(&crypto_done_tasklet
);
415 static int init_ixp_crypto(void)
418 u32 msg
[2] = { 0, 0 };
420 if (! ( ~(*IXP4XX_EXP_CFG2
) & (IXP4XX_FEATURE_HASH
|
421 IXP4XX_FEATURE_AES
| IXP4XX_FEATURE_DES
))) {
422 printk(KERN_ERR
"ixp_crypto: No HW crypto available\n");
425 npe_c
= npe_request(NPE_ID
);
429 if (!npe_running(npe_c
)) {
430 ret
= npe_load_firmware(npe_c
, npe_name(npe_c
), dev
);
434 if (npe_recv_message(npe_c
, msg
, "STATUS_MSG"))
437 if (npe_send_message(npe_c
, msg
, "STATUS_MSG"))
440 if (npe_recv_message(npe_c
, msg
, "STATUS_MSG"))
444 switch ((msg
[1]>>16) & 0xff) {
446 printk(KERN_WARNING
"Firmware of %s lacks AES support\n",
455 printk(KERN_ERR
"Firmware of %s lacks crypto support\n",
459 /* buffer_pool will also be used to sometimes store the hmac,
460 * so assure it is large enough
462 BUILD_BUG_ON(SHA1_DIGEST_SIZE
> sizeof(struct buffer_desc
));
463 buffer_pool
= dma_pool_create("buffer", dev
,
464 sizeof(struct buffer_desc
), 32, 0);
469 ctx_pool
= dma_pool_create("context", dev
,
474 ret
= qmgr_request_queue(SEND_QID
, NPE_QLEN_TOTAL
, 0, 0,
475 "ixp_crypto:out", NULL
);
478 ret
= qmgr_request_queue(RECV_QID
, NPE_QLEN
, 0, 0,
479 "ixp_crypto:in", NULL
);
481 qmgr_release_queue(SEND_QID
);
484 qmgr_set_irq(RECV_QID
, QUEUE_IRQ_SRC_NOT_EMPTY
, irqhandler
, NULL
);
485 tasklet_init(&crypto_done_tasklet
, crypto_done_action
, 0);
487 qmgr_enable_irq(RECV_QID
);
491 printk(KERN_ERR
"%s not responding\n", npe_name(npe_c
));
495 dma_pool_destroy(ctx_pool
);
497 dma_pool_destroy(buffer_pool
);
502 static void release_ixp_crypto(void)
504 qmgr_disable_irq(RECV_QID
);
505 tasklet_kill(&crypto_done_tasklet
);
507 qmgr_release_queue(SEND_QID
);
508 qmgr_release_queue(RECV_QID
);
510 dma_pool_destroy(ctx_pool
);
511 dma_pool_destroy(buffer_pool
);
516 dma_free_coherent(dev
,
517 NPE_QLEN_TOTAL
* sizeof( struct crypt_ctl
),
518 crypt_virt
, crypt_phys
);
523 static void reset_sa_dir(struct ix_sa_dir
*dir
)
525 memset(dir
->npe_ctx
, 0, NPE_CTX_LEN
);
526 dir
->npe_ctx_idx
= 0;
530 static int init_sa_dir(struct ix_sa_dir
*dir
)
532 dir
->npe_ctx
= dma_pool_alloc(ctx_pool
, GFP_KERNEL
, &dir
->npe_ctx_phys
);
540 static void free_sa_dir(struct ix_sa_dir
*dir
)
542 memset(dir
->npe_ctx
, 0, NPE_CTX_LEN
);
543 dma_pool_free(ctx_pool
, dir
->npe_ctx
, dir
->npe_ctx_phys
);
546 static int init_tfm(struct crypto_tfm
*tfm
)
548 struct ixp_ctx
*ctx
= crypto_tfm_ctx(tfm
);
551 atomic_set(&ctx
->configuring
, 0);
552 ret
= init_sa_dir(&ctx
->encrypt
);
555 ret
= init_sa_dir(&ctx
->decrypt
);
557 free_sa_dir(&ctx
->encrypt
);
562 static int init_tfm_ablk(struct crypto_tfm
*tfm
)
564 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct ablk_ctx
);
565 return init_tfm(tfm
);
568 static int init_tfm_aead(struct crypto_tfm
*tfm
)
570 tfm
->crt_aead
.reqsize
= sizeof(struct aead_ctx
);
571 return init_tfm(tfm
);
574 static void exit_tfm(struct crypto_tfm
*tfm
)
576 struct ixp_ctx
*ctx
= crypto_tfm_ctx(tfm
);
577 free_sa_dir(&ctx
->encrypt
);
578 free_sa_dir(&ctx
->decrypt
);
581 static int register_chain_var(struct crypto_tfm
*tfm
, u8 xpad
, u32 target
,
582 int init_len
, u32 ctx_addr
, const u8
*key
, int key_len
)
584 struct ixp_ctx
*ctx
= crypto_tfm_ctx(tfm
);
585 struct crypt_ctl
*crypt
;
586 struct buffer_desc
*buf
;
589 u32 pad_phys
, buf_phys
;
591 BUILD_BUG_ON(NPE_CTX_LEN
< HMAC_PAD_BLOCKLEN
);
592 pad
= dma_pool_alloc(ctx_pool
, GFP_KERNEL
, &pad_phys
);
595 buf
= dma_pool_alloc(buffer_pool
, GFP_KERNEL
, &buf_phys
);
597 dma_pool_free(ctx_pool
, pad
, pad_phys
);
600 crypt
= get_crypt_desc_emerg();
602 dma_pool_free(ctx_pool
, pad
, pad_phys
);
603 dma_pool_free(buffer_pool
, buf
, buf_phys
);
607 memcpy(pad
, key
, key_len
);
608 memset(pad
+ key_len
, 0, HMAC_PAD_BLOCKLEN
- key_len
);
609 for (i
= 0; i
< HMAC_PAD_BLOCKLEN
; i
++) {
613 crypt
->data
.tfm
= tfm
;
614 crypt
->regist_ptr
= pad
;
615 crypt
->regist_buf
= buf
;
617 crypt
->auth_offs
= 0;
618 crypt
->auth_len
= HMAC_PAD_BLOCKLEN
;
619 crypt
->crypto_ctx
= ctx_addr
;
620 crypt
->src_buf
= buf_phys
;
621 crypt
->icv_rev_aes
= target
;
622 crypt
->mode
= NPE_OP_HASH_GEN_ICV
;
623 crypt
->init_len
= init_len
;
624 crypt
->ctl_flags
|= CTL_FLAG_GEN_ICV
;
627 buf
->buf_len
= HMAC_PAD_BLOCKLEN
;
629 buf
->phys_addr
= pad_phys
;
631 atomic_inc(&ctx
->configuring
);
632 qmgr_put_entry(SEND_QID
, crypt_virt2phys(crypt
));
633 BUG_ON(qmgr_stat_overflow(SEND_QID
));
637 static int setup_auth(struct crypto_tfm
*tfm
, int encrypt
, unsigned authsize
,
638 const u8
*key
, int key_len
, unsigned digest_len
)
640 u32 itarget
, otarget
, npe_ctx_addr
;
641 unsigned char *cinfo
;
642 int init_len
, ret
= 0;
644 struct ix_sa_dir
*dir
;
645 struct ixp_ctx
*ctx
= crypto_tfm_ctx(tfm
);
646 const struct ix_hash_algo
*algo
;
648 dir
= encrypt
? &ctx
->encrypt
: &ctx
->decrypt
;
649 cinfo
= dir
->npe_ctx
+ dir
->npe_ctx_idx
;
652 /* write cfg word to cryptinfo */
653 cfgword
= algo
->cfgword
| ( authsize
<< 6); /* (authsize/4) << 8 */
654 *(u32
*)cinfo
= cpu_to_be32(cfgword
);
655 cinfo
+= sizeof(cfgword
);
657 /* write ICV to cryptinfo */
658 memcpy(cinfo
, algo
->icv
, digest_len
);
661 itarget
= dir
->npe_ctx_phys
+ dir
->npe_ctx_idx
662 + sizeof(algo
->cfgword
);
663 otarget
= itarget
+ digest_len
;
664 init_len
= cinfo
- (dir
->npe_ctx
+ dir
->npe_ctx_idx
);
665 npe_ctx_addr
= dir
->npe_ctx_phys
+ dir
->npe_ctx_idx
;
667 dir
->npe_ctx_idx
+= init_len
;
668 dir
->npe_mode
|= NPE_OP_HASH_ENABLE
;
671 dir
->npe_mode
|= NPE_OP_HASH_VERIFY
;
673 ret
= register_chain_var(tfm
, HMAC_OPAD_VALUE
, otarget
,
674 init_len
, npe_ctx_addr
, key
, key_len
);
677 return register_chain_var(tfm
, HMAC_IPAD_VALUE
, itarget
,
678 init_len
, npe_ctx_addr
, key
, key_len
);
681 static int gen_rev_aes_key(struct crypto_tfm
*tfm
)
683 struct crypt_ctl
*crypt
;
684 struct ixp_ctx
*ctx
= crypto_tfm_ctx(tfm
);
685 struct ix_sa_dir
*dir
= &ctx
->decrypt
;
687 crypt
= get_crypt_desc_emerg();
691 *(u32
*)dir
->npe_ctx
|= cpu_to_be32(CIPH_ENCR
);
693 crypt
->data
.tfm
= tfm
;
694 crypt
->crypt_offs
= 0;
695 crypt
->crypt_len
= AES_BLOCK128
;
697 crypt
->crypto_ctx
= dir
->npe_ctx_phys
;
698 crypt
->icv_rev_aes
= dir
->npe_ctx_phys
+ sizeof(u32
);
699 crypt
->mode
= NPE_OP_ENC_GEN_KEY
;
700 crypt
->init_len
= dir
->npe_ctx_idx
;
701 crypt
->ctl_flags
|= CTL_FLAG_GEN_REVAES
;
703 atomic_inc(&ctx
->configuring
);
704 qmgr_put_entry(SEND_QID
, crypt_virt2phys(crypt
));
705 BUG_ON(qmgr_stat_overflow(SEND_QID
));
709 static int setup_cipher(struct crypto_tfm
*tfm
, int encrypt
,
710 const u8
*key
, int key_len
)
715 struct ix_sa_dir
*dir
;
716 struct ixp_ctx
*ctx
= crypto_tfm_ctx(tfm
);
717 u32
*flags
= &tfm
->crt_flags
;
719 dir
= encrypt
? &ctx
->encrypt
: &ctx
->decrypt
;
720 cinfo
= dir
->npe_ctx
;
723 cipher_cfg
= cipher_cfg_enc(tfm
);
724 dir
->npe_mode
|= NPE_OP_CRYPT_ENCRYPT
;
726 cipher_cfg
= cipher_cfg_dec(tfm
);
728 if (cipher_cfg
& MOD_AES
) {
730 case 16: keylen_cfg
= MOD_AES128
| KEYLEN_128
; break;
731 case 24: keylen_cfg
= MOD_AES192
| KEYLEN_192
; break;
732 case 32: keylen_cfg
= MOD_AES256
| KEYLEN_256
; break;
734 *flags
|= CRYPTO_TFM_RES_BAD_KEY_LEN
;
737 cipher_cfg
|= keylen_cfg
;
738 } else if (cipher_cfg
& MOD_3DES
) {
739 const u32
*K
= (const u32
*)key
;
740 if (unlikely(!((K
[0] ^ K
[2]) | (K
[1] ^ K
[3])) ||
741 !((K
[2] ^ K
[4]) | (K
[3] ^ K
[5]))))
743 *flags
|= CRYPTO_TFM_RES_BAD_KEY_SCHED
;
747 u32 tmp
[DES_EXPKEY_WORDS
];
748 if (des_ekey(tmp
, key
) == 0) {
749 *flags
|= CRYPTO_TFM_RES_WEAK_KEY
;
752 /* write cfg word to cryptinfo */
753 *(u32
*)cinfo
= cpu_to_be32(cipher_cfg
);
754 cinfo
+= sizeof(cipher_cfg
);
756 /* write cipher key to cryptinfo */
757 memcpy(cinfo
, key
, key_len
);
758 /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
759 if (key_len
< DES3_EDE_KEY_SIZE
&& !(cipher_cfg
& MOD_AES
)) {
760 memset(cinfo
+ key_len
, 0, DES3_EDE_KEY_SIZE
-key_len
);
761 key_len
= DES3_EDE_KEY_SIZE
;
763 dir
->npe_ctx_idx
= sizeof(cipher_cfg
) + key_len
;
764 dir
->npe_mode
|= NPE_OP_CRYPT_ENABLE
;
765 if ((cipher_cfg
& MOD_AES
) && !encrypt
) {
766 return gen_rev_aes_key(tfm
);
771 static struct buffer_desc
*chainup_buffers(struct device
*dev
,
772 struct scatterlist
*sg
, unsigned nbytes
,
773 struct buffer_desc
*buf
, gfp_t flags
,
774 enum dma_data_direction dir
)
776 for (;nbytes
> 0; sg
= scatterwalk_sg_next(sg
)) {
777 unsigned len
= min(nbytes
, sg
->length
);
778 struct buffer_desc
*next_buf
;
783 ptr
= page_address(sg_page(sg
)) + sg
->offset
;
784 next_buf
= dma_pool_alloc(buffer_pool
, flags
, &next_buf_phys
);
789 sg_dma_address(sg
) = dma_map_single(dev
, ptr
, len
, dir
);
790 buf
->next
= next_buf
;
791 buf
->phys_next
= next_buf_phys
;
794 buf
->phys_addr
= sg_dma_address(sg
);
803 static int ablk_setkey(struct crypto_ablkcipher
*tfm
, const u8
*key
,
804 unsigned int key_len
)
806 struct ixp_ctx
*ctx
= crypto_ablkcipher_ctx(tfm
);
807 u32
*flags
= &tfm
->base
.crt_flags
;
810 init_completion(&ctx
->completion
);
811 atomic_inc(&ctx
->configuring
);
813 reset_sa_dir(&ctx
->encrypt
);
814 reset_sa_dir(&ctx
->decrypt
);
816 ctx
->encrypt
.npe_mode
= NPE_OP_HMAC_DISABLE
;
817 ctx
->decrypt
.npe_mode
= NPE_OP_HMAC_DISABLE
;
819 ret
= setup_cipher(&tfm
->base
, 0, key
, key_len
);
822 ret
= setup_cipher(&tfm
->base
, 1, key
, key_len
);
826 if (*flags
& CRYPTO_TFM_RES_WEAK_KEY
) {
827 if (*flags
& CRYPTO_TFM_REQ_WEAK_KEY
) {
830 *flags
&= ~CRYPTO_TFM_RES_WEAK_KEY
;
834 if (!atomic_dec_and_test(&ctx
->configuring
))
835 wait_for_completion(&ctx
->completion
);
839 static int ablk_rfc3686_setkey(struct crypto_ablkcipher
*tfm
, const u8
*key
,
840 unsigned int key_len
)
842 struct ixp_ctx
*ctx
= crypto_ablkcipher_ctx(tfm
);
844 /* the nonce is stored in bytes at end of key */
845 if (key_len
< CTR_RFC3686_NONCE_SIZE
)
848 memcpy(ctx
->nonce
, key
+ (key_len
- CTR_RFC3686_NONCE_SIZE
),
849 CTR_RFC3686_NONCE_SIZE
);
851 key_len
-= CTR_RFC3686_NONCE_SIZE
;
852 return ablk_setkey(tfm
, key
, key_len
);
855 static int ablk_perform(struct ablkcipher_request
*req
, int encrypt
)
857 struct crypto_ablkcipher
*tfm
= crypto_ablkcipher_reqtfm(req
);
858 struct ixp_ctx
*ctx
= crypto_ablkcipher_ctx(tfm
);
859 unsigned ivsize
= crypto_ablkcipher_ivsize(tfm
);
860 struct ix_sa_dir
*dir
;
861 struct crypt_ctl
*crypt
;
862 unsigned int nbytes
= req
->nbytes
;
863 enum dma_data_direction src_direction
= DMA_BIDIRECTIONAL
;
864 struct ablk_ctx
*req_ctx
= ablkcipher_request_ctx(req
);
865 struct buffer_desc src_hook
;
866 gfp_t flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
?
867 GFP_KERNEL
: GFP_ATOMIC
;
869 if (qmgr_stat_full(SEND_QID
))
871 if (atomic_read(&ctx
->configuring
))
874 dir
= encrypt
? &ctx
->encrypt
: &ctx
->decrypt
;
876 crypt
= get_crypt_desc();
880 crypt
->data
.ablk_req
= req
;
881 crypt
->crypto_ctx
= dir
->npe_ctx_phys
;
882 crypt
->mode
= dir
->npe_mode
;
883 crypt
->init_len
= dir
->npe_ctx_idx
;
885 crypt
->crypt_offs
= 0;
886 crypt
->crypt_len
= nbytes
;
888 BUG_ON(ivsize
&& !req
->info
);
889 memcpy(crypt
->iv
, req
->info
, ivsize
);
890 if (req
->src
!= req
->dst
) {
891 struct buffer_desc dst_hook
;
892 crypt
->mode
|= NPE_OP_NOT_IN_PLACE
;
893 /* This was never tested by Intel
894 * for more than one dst buffer, I think. */
895 BUG_ON(req
->dst
->length
< nbytes
);
897 if (!chainup_buffers(dev
, req
->dst
, nbytes
, &dst_hook
,
898 flags
, DMA_FROM_DEVICE
))
900 src_direction
= DMA_TO_DEVICE
;
901 req_ctx
->dst
= dst_hook
.next
;
902 crypt
->dst_buf
= dst_hook
.phys_next
;
907 if (!chainup_buffers(dev
, req
->src
, nbytes
, &src_hook
,
908 flags
, src_direction
))
911 req_ctx
->src
= src_hook
.next
;
912 crypt
->src_buf
= src_hook
.phys_next
;
913 crypt
->ctl_flags
|= CTL_FLAG_PERFORM_ABLK
;
914 qmgr_put_entry(SEND_QID
, crypt_virt2phys(crypt
));
915 BUG_ON(qmgr_stat_overflow(SEND_QID
));
919 free_buf_chain(dev
, req_ctx
->src
, crypt
->src_buf
);
921 if (req
->src
!= req
->dst
) {
922 free_buf_chain(dev
, req_ctx
->dst
, crypt
->dst_buf
);
924 crypt
->ctl_flags
= CTL_FLAG_UNUSED
;
928 static int ablk_encrypt(struct ablkcipher_request
*req
)
930 return ablk_perform(req
, 1);
933 static int ablk_decrypt(struct ablkcipher_request
*req
)
935 return ablk_perform(req
, 0);
938 static int ablk_rfc3686_crypt(struct ablkcipher_request
*req
)
940 struct crypto_ablkcipher
*tfm
= crypto_ablkcipher_reqtfm(req
);
941 struct ixp_ctx
*ctx
= crypto_ablkcipher_ctx(tfm
);
942 u8 iv
[CTR_RFC3686_BLOCK_SIZE
];
943 u8
*info
= req
->info
;
946 /* set up counter block */
947 memcpy(iv
, ctx
->nonce
, CTR_RFC3686_NONCE_SIZE
);
948 memcpy(iv
+ CTR_RFC3686_NONCE_SIZE
, info
, CTR_RFC3686_IV_SIZE
);
950 /* initialize counter portion of counter block */
951 *(__be32
*)(iv
+ CTR_RFC3686_NONCE_SIZE
+ CTR_RFC3686_IV_SIZE
) =
955 ret
= ablk_perform(req
, 1);
960 static int hmac_inconsistent(struct scatterlist
*sg
, unsigned start
,
969 if (start
< offset
+ sg
->length
)
972 offset
+= sg
->length
;
973 sg
= scatterwalk_sg_next(sg
);
975 return (start
+ nbytes
> offset
+ sg
->length
);
978 static int aead_perform(struct aead_request
*req
, int encrypt
,
979 int cryptoffset
, int eff_cryptlen
, u8
*iv
)
981 struct crypto_aead
*tfm
= crypto_aead_reqtfm(req
);
982 struct ixp_ctx
*ctx
= crypto_aead_ctx(tfm
);
983 unsigned ivsize
= crypto_aead_ivsize(tfm
);
984 unsigned authsize
= crypto_aead_authsize(tfm
);
985 struct ix_sa_dir
*dir
;
986 struct crypt_ctl
*crypt
;
987 unsigned int cryptlen
;
988 struct buffer_desc
*buf
, src_hook
;
989 struct aead_ctx
*req_ctx
= aead_request_ctx(req
);
990 gfp_t flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
?
991 GFP_KERNEL
: GFP_ATOMIC
;
993 if (qmgr_stat_full(SEND_QID
))
995 if (atomic_read(&ctx
->configuring
))
1000 cryptlen
= req
->cryptlen
;
1002 dir
= &ctx
->decrypt
;
1003 /* req->cryptlen includes the authsize when decrypting */
1004 cryptlen
= req
->cryptlen
-authsize
;
1005 eff_cryptlen
-= authsize
;
1007 crypt
= get_crypt_desc();
1011 crypt
->data
.aead_req
= req
;
1012 crypt
->crypto_ctx
= dir
->npe_ctx_phys
;
1013 crypt
->mode
= dir
->npe_mode
;
1014 crypt
->init_len
= dir
->npe_ctx_idx
;
1016 crypt
->crypt_offs
= cryptoffset
;
1017 crypt
->crypt_len
= eff_cryptlen
;
1019 crypt
->auth_offs
= 0;
1020 crypt
->auth_len
= req
->assoclen
+ ivsize
+ cryptlen
;
1021 BUG_ON(ivsize
&& !req
->iv
);
1022 memcpy(crypt
->iv
, req
->iv
, ivsize
);
1024 if (req
->src
!= req
->dst
) {
1025 BUG(); /* -ENOTSUP because of my lazyness */
1029 buf
= chainup_buffers(dev
, req
->assoc
, req
->assoclen
, &src_hook
,
1030 flags
, DMA_TO_DEVICE
);
1031 req_ctx
->buffer
= src_hook
.next
;
1032 crypt
->src_buf
= src_hook
.phys_next
;
1036 sg_init_table(&req_ctx
->ivlist
, 1);
1037 sg_set_buf(&req_ctx
->ivlist
, iv
, ivsize
);
1038 buf
= chainup_buffers(dev
, &req_ctx
->ivlist
, ivsize
, buf
, flags
,
1042 if (unlikely(hmac_inconsistent(req
->src
, cryptlen
, authsize
))) {
1043 /* The 12 hmac bytes are scattered,
1044 * we need to copy them into a safe buffer */
1045 req_ctx
->hmac_virt
= dma_pool_alloc(buffer_pool
, flags
,
1046 &crypt
->icv_rev_aes
);
1047 if (unlikely(!req_ctx
->hmac_virt
))
1050 scatterwalk_map_and_copy(req_ctx
->hmac_virt
,
1051 req
->src
, cryptlen
, authsize
, 0);
1053 req_ctx
->encrypt
= encrypt
;
1055 req_ctx
->hmac_virt
= NULL
;
1058 buf
= chainup_buffers(dev
, req
->src
, cryptlen
+ authsize
, buf
, flags
,
1061 goto free_hmac_virt
;
1062 if (!req_ctx
->hmac_virt
) {
1063 crypt
->icv_rev_aes
= buf
->phys_addr
+ buf
->buf_len
- authsize
;
1066 crypt
->ctl_flags
|= CTL_FLAG_PERFORM_AEAD
;
1067 qmgr_put_entry(SEND_QID
, crypt_virt2phys(crypt
));
1068 BUG_ON(qmgr_stat_overflow(SEND_QID
));
1069 return -EINPROGRESS
;
1071 if (req_ctx
->hmac_virt
) {
1072 dma_pool_free(buffer_pool
, req_ctx
->hmac_virt
,
1073 crypt
->icv_rev_aes
);
1076 free_buf_chain(dev
, req_ctx
->buffer
, crypt
->src_buf
);
1078 crypt
->ctl_flags
= CTL_FLAG_UNUSED
;
1082 static int aead_setup(struct crypto_aead
*tfm
, unsigned int authsize
)
1084 struct ixp_ctx
*ctx
= crypto_aead_ctx(tfm
);
1085 u32
*flags
= &tfm
->base
.crt_flags
;
1086 unsigned digest_len
= crypto_aead_alg(tfm
)->maxauthsize
;
1089 if (!ctx
->enckey_len
&& !ctx
->authkey_len
)
1091 init_completion(&ctx
->completion
);
1092 atomic_inc(&ctx
->configuring
);
1094 reset_sa_dir(&ctx
->encrypt
);
1095 reset_sa_dir(&ctx
->decrypt
);
1097 ret
= setup_cipher(&tfm
->base
, 0, ctx
->enckey
, ctx
->enckey_len
);
1100 ret
= setup_cipher(&tfm
->base
, 1, ctx
->enckey
, ctx
->enckey_len
);
1103 ret
= setup_auth(&tfm
->base
, 0, authsize
, ctx
->authkey
,
1104 ctx
->authkey_len
, digest_len
);
1107 ret
= setup_auth(&tfm
->base
, 1, authsize
, ctx
->authkey
,
1108 ctx
->authkey_len
, digest_len
);
1112 if (*flags
& CRYPTO_TFM_RES_WEAK_KEY
) {
1113 if (*flags
& CRYPTO_TFM_REQ_WEAK_KEY
) {
1117 *flags
&= ~CRYPTO_TFM_RES_WEAK_KEY
;
1121 if (!atomic_dec_and_test(&ctx
->configuring
))
1122 wait_for_completion(&ctx
->completion
);
1126 static int aead_setauthsize(struct crypto_aead
*tfm
, unsigned int authsize
)
1128 int max
= crypto_aead_alg(tfm
)->maxauthsize
>> 2;
1130 if ((authsize
>>2) < 1 || (authsize
>>2) > max
|| (authsize
& 3))
1132 return aead_setup(tfm
, authsize
);
1135 static int aead_setkey(struct crypto_aead
*tfm
, const u8
*key
,
1136 unsigned int keylen
)
1138 struct ixp_ctx
*ctx
= crypto_aead_ctx(tfm
);
1139 struct rtattr
*rta
= (struct rtattr
*)key
;
1140 struct crypto_authenc_key_param
*param
;
1142 if (!RTA_OK(rta
, keylen
))
1144 if (rta
->rta_type
!= CRYPTO_AUTHENC_KEYA_PARAM
)
1146 if (RTA_PAYLOAD(rta
) < sizeof(*param
))
1149 param
= RTA_DATA(rta
);
1150 ctx
->enckey_len
= be32_to_cpu(param
->enckeylen
);
1152 key
+= RTA_ALIGN(rta
->rta_len
);
1153 keylen
-= RTA_ALIGN(rta
->rta_len
);
1155 if (keylen
< ctx
->enckey_len
)
1158 ctx
->authkey_len
= keylen
- ctx
->enckey_len
;
1159 memcpy(ctx
->enckey
, key
+ ctx
->authkey_len
, ctx
->enckey_len
);
1160 memcpy(ctx
->authkey
, key
, ctx
->authkey_len
);
1162 return aead_setup(tfm
, crypto_aead_authsize(tfm
));
1164 ctx
->enckey_len
= 0;
1165 crypto_aead_set_flags(tfm
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
1169 static int aead_encrypt(struct aead_request
*req
)
1171 unsigned ivsize
= crypto_aead_ivsize(crypto_aead_reqtfm(req
));
1172 return aead_perform(req
, 1, req
->assoclen
+ ivsize
,
1173 req
->cryptlen
, req
->iv
);
1176 static int aead_decrypt(struct aead_request
*req
)
1178 unsigned ivsize
= crypto_aead_ivsize(crypto_aead_reqtfm(req
));
1179 return aead_perform(req
, 0, req
->assoclen
+ ivsize
,
1180 req
->cryptlen
, req
->iv
);
1183 static int aead_givencrypt(struct aead_givcrypt_request
*req
)
1185 struct crypto_aead
*tfm
= aead_givcrypt_reqtfm(req
);
1186 struct ixp_ctx
*ctx
= crypto_aead_ctx(tfm
);
1187 unsigned len
, ivsize
= crypto_aead_ivsize(tfm
);
1190 /* copied from eseqiv.c */
1192 get_random_bytes(ctx
->salt
, ivsize
);
1195 memcpy(req
->areq
.iv
, ctx
->salt
, ivsize
);
1197 if (ivsize
> sizeof(u64
)) {
1198 memset(req
->giv
, 0, ivsize
- sizeof(u64
));
1201 seq
= cpu_to_be64(req
->seq
);
1202 memcpy(req
->giv
+ ivsize
- len
, &seq
, len
);
1203 return aead_perform(&req
->areq
, 1, req
->areq
.assoclen
,
1204 req
->areq
.cryptlen
+ivsize
, req
->giv
);
1207 static struct ixp_alg ixp4xx_algos
[] = {
1210 .cra_name
= "cbc(des)",
1211 .cra_blocksize
= DES_BLOCK_SIZE
,
1212 .cra_u
= { .ablkcipher
= {
1213 .min_keysize
= DES_KEY_SIZE
,
1214 .max_keysize
= DES_KEY_SIZE
,
1215 .ivsize
= DES_BLOCK_SIZE
,
1220 .cfg_enc
= CIPH_ENCR
| MOD_DES
| MOD_CBC_ENC
| KEYLEN_192
,
1221 .cfg_dec
= CIPH_DECR
| MOD_DES
| MOD_CBC_DEC
| KEYLEN_192
,
1225 .cra_name
= "ecb(des)",
1226 .cra_blocksize
= DES_BLOCK_SIZE
,
1227 .cra_u
= { .ablkcipher
= {
1228 .min_keysize
= DES_KEY_SIZE
,
1229 .max_keysize
= DES_KEY_SIZE
,
1233 .cfg_enc
= CIPH_ENCR
| MOD_DES
| MOD_ECB
| KEYLEN_192
,
1234 .cfg_dec
= CIPH_DECR
| MOD_DES
| MOD_ECB
| KEYLEN_192
,
1237 .cra_name
= "cbc(des3_ede)",
1238 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1239 .cra_u
= { .ablkcipher
= {
1240 .min_keysize
= DES3_EDE_KEY_SIZE
,
1241 .max_keysize
= DES3_EDE_KEY_SIZE
,
1242 .ivsize
= DES3_EDE_BLOCK_SIZE
,
1247 .cfg_enc
= CIPH_ENCR
| MOD_3DES
| MOD_CBC_ENC
| KEYLEN_192
,
1248 .cfg_dec
= CIPH_DECR
| MOD_3DES
| MOD_CBC_DEC
| KEYLEN_192
,
1251 .cra_name
= "ecb(des3_ede)",
1252 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1253 .cra_u
= { .ablkcipher
= {
1254 .min_keysize
= DES3_EDE_KEY_SIZE
,
1255 .max_keysize
= DES3_EDE_KEY_SIZE
,
1259 .cfg_enc
= CIPH_ENCR
| MOD_3DES
| MOD_ECB
| KEYLEN_192
,
1260 .cfg_dec
= CIPH_DECR
| MOD_3DES
| MOD_ECB
| KEYLEN_192
,
1263 .cra_name
= "cbc(aes)",
1264 .cra_blocksize
= AES_BLOCK_SIZE
,
1265 .cra_u
= { .ablkcipher
= {
1266 .min_keysize
= AES_MIN_KEY_SIZE
,
1267 .max_keysize
= AES_MAX_KEY_SIZE
,
1268 .ivsize
= AES_BLOCK_SIZE
,
1273 .cfg_enc
= CIPH_ENCR
| MOD_AES
| MOD_CBC_ENC
,
1274 .cfg_dec
= CIPH_DECR
| MOD_AES
| MOD_CBC_DEC
,
1277 .cra_name
= "ecb(aes)",
1278 .cra_blocksize
= AES_BLOCK_SIZE
,
1279 .cra_u
= { .ablkcipher
= {
1280 .min_keysize
= AES_MIN_KEY_SIZE
,
1281 .max_keysize
= AES_MAX_KEY_SIZE
,
1285 .cfg_enc
= CIPH_ENCR
| MOD_AES
| MOD_ECB
,
1286 .cfg_dec
= CIPH_DECR
| MOD_AES
| MOD_ECB
,
1289 .cra_name
= "ctr(aes)",
1290 .cra_blocksize
= AES_BLOCK_SIZE
,
1291 .cra_u
= { .ablkcipher
= {
1292 .min_keysize
= AES_MIN_KEY_SIZE
,
1293 .max_keysize
= AES_MAX_KEY_SIZE
,
1294 .ivsize
= AES_BLOCK_SIZE
,
1299 .cfg_enc
= CIPH_ENCR
| MOD_AES
| MOD_CTR
,
1300 .cfg_dec
= CIPH_ENCR
| MOD_AES
| MOD_CTR
,
1303 .cra_name
= "rfc3686(ctr(aes))",
1304 .cra_blocksize
= AES_BLOCK_SIZE
,
1305 .cra_u
= { .ablkcipher
= {
1306 .min_keysize
= AES_MIN_KEY_SIZE
,
1307 .max_keysize
= AES_MAX_KEY_SIZE
,
1308 .ivsize
= AES_BLOCK_SIZE
,
1310 .setkey
= ablk_rfc3686_setkey
,
1311 .encrypt
= ablk_rfc3686_crypt
,
1312 .decrypt
= ablk_rfc3686_crypt
}
1315 .cfg_enc
= CIPH_ENCR
| MOD_AES
| MOD_CTR
,
1316 .cfg_dec
= CIPH_ENCR
| MOD_AES
| MOD_CTR
,
1319 .cra_name
= "authenc(hmac(md5),cbc(des))",
1320 .cra_blocksize
= DES_BLOCK_SIZE
,
1321 .cra_u
= { .aead
= {
1322 .ivsize
= DES_BLOCK_SIZE
,
1323 .maxauthsize
= MD5_DIGEST_SIZE
,
1327 .hash
= &hash_alg_md5
,
1328 .cfg_enc
= CIPH_ENCR
| MOD_DES
| MOD_CBC_ENC
| KEYLEN_192
,
1329 .cfg_dec
= CIPH_DECR
| MOD_DES
| MOD_CBC_DEC
| KEYLEN_192
,
1332 .cra_name
= "authenc(hmac(md5),cbc(des3_ede))",
1333 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1334 .cra_u
= { .aead
= {
1335 .ivsize
= DES3_EDE_BLOCK_SIZE
,
1336 .maxauthsize
= MD5_DIGEST_SIZE
,
1340 .hash
= &hash_alg_md5
,
1341 .cfg_enc
= CIPH_ENCR
| MOD_3DES
| MOD_CBC_ENC
| KEYLEN_192
,
1342 .cfg_dec
= CIPH_DECR
| MOD_3DES
| MOD_CBC_DEC
| KEYLEN_192
,
1345 .cra_name
= "authenc(hmac(sha1),cbc(des))",
1346 .cra_blocksize
= DES_BLOCK_SIZE
,
1347 .cra_u
= { .aead
= {
1348 .ivsize
= DES_BLOCK_SIZE
,
1349 .maxauthsize
= SHA1_DIGEST_SIZE
,
1353 .hash
= &hash_alg_sha1
,
1354 .cfg_enc
= CIPH_ENCR
| MOD_DES
| MOD_CBC_ENC
| KEYLEN_192
,
1355 .cfg_dec
= CIPH_DECR
| MOD_DES
| MOD_CBC_DEC
| KEYLEN_192
,
1358 .cra_name
= "authenc(hmac(sha1),cbc(des3_ede))",
1359 .cra_blocksize
= DES3_EDE_BLOCK_SIZE
,
1360 .cra_u
= { .aead
= {
1361 .ivsize
= DES3_EDE_BLOCK_SIZE
,
1362 .maxauthsize
= SHA1_DIGEST_SIZE
,
1366 .hash
= &hash_alg_sha1
,
1367 .cfg_enc
= CIPH_ENCR
| MOD_3DES
| MOD_CBC_ENC
| KEYLEN_192
,
1368 .cfg_dec
= CIPH_DECR
| MOD_3DES
| MOD_CBC_DEC
| KEYLEN_192
,
1371 .cra_name
= "authenc(hmac(md5),cbc(aes))",
1372 .cra_blocksize
= AES_BLOCK_SIZE
,
1373 .cra_u
= { .aead
= {
1374 .ivsize
= AES_BLOCK_SIZE
,
1375 .maxauthsize
= MD5_DIGEST_SIZE
,
1379 .hash
= &hash_alg_md5
,
1380 .cfg_enc
= CIPH_ENCR
| MOD_AES
| MOD_CBC_ENC
,
1381 .cfg_dec
= CIPH_DECR
| MOD_AES
| MOD_CBC_DEC
,
1384 .cra_name
= "authenc(hmac(sha1),cbc(aes))",
1385 .cra_blocksize
= AES_BLOCK_SIZE
,
1386 .cra_u
= { .aead
= {
1387 .ivsize
= AES_BLOCK_SIZE
,
1388 .maxauthsize
= SHA1_DIGEST_SIZE
,
1392 .hash
= &hash_alg_sha1
,
1393 .cfg_enc
= CIPH_ENCR
| MOD_AES
| MOD_CBC_ENC
,
1394 .cfg_dec
= CIPH_DECR
| MOD_AES
| MOD_CBC_DEC
,
1397 #define IXP_POSTFIX "-ixp4xx"
1398 static int __init
ixp_module_init(void)
1400 int num
= ARRAY_SIZE(ixp4xx_algos
);
1403 if (platform_device_register(&pseudo_dev
))
1406 spin_lock_init(&desc_lock
);
1407 spin_lock_init(&emerg_lock
);
1409 err
= init_ixp_crypto();
1411 platform_device_unregister(&pseudo_dev
);
1414 for (i
=0; i
< num
; i
++) {
1415 struct crypto_alg
*cra
= &ixp4xx_algos
[i
].crypto
;
1417 if (snprintf(cra
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
,
1418 "%s"IXP_POSTFIX
, cra
->cra_name
) >=
1419 CRYPTO_MAX_ALG_NAME
)
1423 if (!support_aes
&& (ixp4xx_algos
[i
].cfg_enc
& MOD_AES
)) {
1426 if (!ixp4xx_algos
[i
].hash
) {
1428 cra
->cra_type
= &crypto_ablkcipher_type
;
1429 cra
->cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
1431 if (!cra
->cra_ablkcipher
.setkey
)
1432 cra
->cra_ablkcipher
.setkey
= ablk_setkey
;
1433 if (!cra
->cra_ablkcipher
.encrypt
)
1434 cra
->cra_ablkcipher
.encrypt
= ablk_encrypt
;
1435 if (!cra
->cra_ablkcipher
.decrypt
)
1436 cra
->cra_ablkcipher
.decrypt
= ablk_decrypt
;
1437 cra
->cra_init
= init_tfm_ablk
;
1440 cra
->cra_type
= &crypto_aead_type
;
1441 cra
->cra_flags
= CRYPTO_ALG_TYPE_AEAD
|
1443 cra
->cra_aead
.setkey
= aead_setkey
;
1444 cra
->cra_aead
.setauthsize
= aead_setauthsize
;
1445 cra
->cra_aead
.encrypt
= aead_encrypt
;
1446 cra
->cra_aead
.decrypt
= aead_decrypt
;
1447 cra
->cra_aead
.givencrypt
= aead_givencrypt
;
1448 cra
->cra_init
= init_tfm_aead
;
1450 cra
->cra_ctxsize
= sizeof(struct ixp_ctx
);
1451 cra
->cra_module
= THIS_MODULE
;
1452 cra
->cra_alignmask
= 3;
1453 cra
->cra_priority
= 300;
1454 cra
->cra_exit
= exit_tfm
;
1455 if (crypto_register_alg(cra
))
1456 printk(KERN_ERR
"Failed to register '%s'\n",
1459 ixp4xx_algos
[i
].registered
= 1;
1464 static void __exit
ixp_module_exit(void)
1466 int num
= ARRAY_SIZE(ixp4xx_algos
);
1469 for (i
=0; i
< num
; i
++) {
1470 if (ixp4xx_algos
[i
].registered
)
1471 crypto_unregister_alg(&ixp4xx_algos
[i
].crypto
);
1473 release_ixp_crypto();
1474 platform_device_unregister(&pseudo_dev
);
1477 module_init(ixp_module_init
);
1478 module_exit(ixp_module_exit
);
1480 MODULE_LICENSE("GPL");
1481 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1482 MODULE_DESCRIPTION("IXP4xx hardware crypto");