4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
52 #include <asm/byteorder.h>
54 #include <asm/uaccess.h>
57 static int __ide_end_request(ide_drive_t
*drive
, struct request
*rq
,
58 int uptodate
, unsigned int nr_bytes
, int dequeue
)
64 error
= uptodate
? uptodate
: -EIO
;
67 * if failfast is set on a request, override number of sectors and
68 * complete the whole request right now
70 if (blk_noretry_request(rq
) && error
)
71 nr_bytes
= rq
->hard_nr_sectors
<< 9;
73 if (!blk_fs_request(rq
) && error
&& !rq
->errors
)
77 * decide whether to reenable DMA -- 3 is a random magic for now,
78 * if we DMA timeout more than 3 times, just stay in PIO
80 if (drive
->state
== DMA_PIO_RETRY
&& drive
->retry_pio
<= 3) {
85 if (!__blk_end_request(rq
, error
, nr_bytes
)) {
87 HWGROUP(drive
)->rq
= NULL
;
95 * ide_end_request - complete an IDE I/O
96 * @drive: IDE device for the I/O
98 * @nr_sectors: number of sectors completed
100 * This is our end_request wrapper function. We complete the I/O
101 * update random number input and dequeue the request, which if
102 * it was tagged may be out of order.
105 int ide_end_request (ide_drive_t
*drive
, int uptodate
, int nr_sectors
)
107 unsigned int nr_bytes
= nr_sectors
<< 9;
113 * room for locking improvements here, the calls below don't
114 * need the queue lock held at all
116 spin_lock_irqsave(&ide_lock
, flags
);
117 rq
= HWGROUP(drive
)->rq
;
120 if (blk_pc_request(rq
))
121 nr_bytes
= rq
->data_len
;
123 nr_bytes
= rq
->hard_cur_sectors
<< 9;
126 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_bytes
, 1);
128 spin_unlock_irqrestore(&ide_lock
, flags
);
131 EXPORT_SYMBOL(ide_end_request
);
134 * Power Management state machine. This one is rather trivial for now,
135 * we should probably add more, like switching back to PIO on suspend
136 * to help some BIOSes, re-do the door locking on resume, etc...
140 ide_pm_flush_cache
= ide_pm_state_start_suspend
,
143 idedisk_pm_restore_pio
= ide_pm_state_start_resume
,
148 static void ide_complete_power_step(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 error
)
150 struct request_pm_state
*pm
= rq
->data
;
152 if (drive
->media
!= ide_disk
)
155 switch (pm
->pm_step
) {
156 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) complete */
157 if (pm
->pm_state
== PM_EVENT_FREEZE
)
158 pm
->pm_step
= ide_pm_state_completed
;
160 pm
->pm_step
= idedisk_pm_standby
;
162 case idedisk_pm_standby
: /* Suspend step 2 (standby) complete */
163 pm
->pm_step
= ide_pm_state_completed
;
165 case idedisk_pm_restore_pio
: /* Resume step 1 complete */
166 pm
->pm_step
= idedisk_pm_idle
;
168 case idedisk_pm_idle
: /* Resume step 2 (idle) complete */
169 pm
->pm_step
= ide_pm_restore_dma
;
174 static ide_startstop_t
ide_start_power_step(ide_drive_t
*drive
, struct request
*rq
)
176 struct request_pm_state
*pm
= rq
->data
;
177 ide_task_t
*args
= rq
->special
;
179 memset(args
, 0, sizeof(*args
));
181 switch (pm
->pm_step
) {
182 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) */
183 if (drive
->media
!= ide_disk
)
185 /* Not supported? Switch to next step now. */
186 if (!drive
->wcache
|| !ide_id_has_flush_cache(drive
->id
)) {
187 ide_complete_power_step(drive
, rq
, 0, 0);
190 if (ide_id_has_flush_cache_ext(drive
->id
))
191 args
->tf
.command
= WIN_FLUSH_CACHE_EXT
;
193 args
->tf
.command
= WIN_FLUSH_CACHE
;
196 case idedisk_pm_standby
: /* Suspend step 2 (standby) */
197 args
->tf
.command
= WIN_STANDBYNOW1
;
200 case idedisk_pm_restore_pio
: /* Resume step 1 (restore PIO) */
201 ide_set_max_pio(drive
);
203 * skip idedisk_pm_idle for ATAPI devices
205 if (drive
->media
!= ide_disk
)
206 pm
->pm_step
= ide_pm_restore_dma
;
208 ide_complete_power_step(drive
, rq
, 0, 0);
211 case idedisk_pm_idle
: /* Resume step 2 (idle) */
212 args
->tf
.command
= WIN_IDLEIMMEDIATE
;
215 case ide_pm_restore_dma
: /* Resume step 3 (restore DMA) */
217 * Right now, all we do is call ide_set_dma(drive),
218 * we could be smarter and check for current xfer_speed
219 * in struct drive etc...
221 if (drive
->hwif
->dma_ops
== NULL
)
224 * TODO: respect ->using_dma setting
229 pm
->pm_step
= ide_pm_state_completed
;
233 args
->tf_flags
= IDE_TFLAG_TF
| IDE_TFLAG_DEVICE
;
234 args
->data_phase
= TASKFILE_NO_DATA
;
235 return do_rw_taskfile(drive
, args
);
239 * ide_end_dequeued_request - complete an IDE I/O
240 * @drive: IDE device for the I/O
242 * @nr_sectors: number of sectors completed
244 * Complete an I/O that is no longer on the request queue. This
245 * typically occurs when we pull the request and issue a REQUEST_SENSE.
246 * We must still finish the old request but we must not tamper with the
247 * queue in the meantime.
249 * NOTE: This path does not handle barrier, but barrier is not supported
253 int ide_end_dequeued_request(ide_drive_t
*drive
, struct request
*rq
,
254 int uptodate
, int nr_sectors
)
259 spin_lock_irqsave(&ide_lock
, flags
);
260 BUG_ON(!blk_rq_started(rq
));
261 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_sectors
<< 9, 0);
262 spin_unlock_irqrestore(&ide_lock
, flags
);
266 EXPORT_SYMBOL_GPL(ide_end_dequeued_request
);
270 * ide_complete_pm_request - end the current Power Management request
271 * @drive: target drive
274 * This function cleans up the current PM request and stops the queue
277 static void ide_complete_pm_request (ide_drive_t
*drive
, struct request
*rq
)
282 printk("%s: completing PM request, %s\n", drive
->name
,
283 blk_pm_suspend_request(rq
) ? "suspend" : "resume");
285 spin_lock_irqsave(&ide_lock
, flags
);
286 if (blk_pm_suspend_request(rq
)) {
287 blk_stop_queue(drive
->queue
);
290 blk_start_queue(drive
->queue
);
292 HWGROUP(drive
)->rq
= NULL
;
293 if (__blk_end_request(rq
, 0, 0))
295 spin_unlock_irqrestore(&ide_lock
, flags
);
299 * ide_end_drive_cmd - end an explicit drive command
304 * Clean up after success/failure of an explicit drive command.
305 * These get thrown onto the queue so they are synchronized with
306 * real I/O operations on the drive.
308 * In LBA48 mode we have to read the register set twice to get
309 * all the extra information out.
312 void ide_end_drive_cmd (ide_drive_t
*drive
, u8 stat
, u8 err
)
317 spin_lock_irqsave(&ide_lock
, flags
);
318 rq
= HWGROUP(drive
)->rq
;
319 spin_unlock_irqrestore(&ide_lock
, flags
);
321 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
322 ide_task_t
*task
= (ide_task_t
*)rq
->special
;
325 rq
->errors
= !OK_STAT(stat
, READY_STAT
, BAD_STAT
);
328 struct ide_taskfile
*tf
= &task
->tf
;
333 drive
->hwif
->tp_ops
->tf_read(drive
, task
);
335 if (task
->tf_flags
& IDE_TFLAG_DYN
)
338 } else if (blk_pm_request(rq
)) {
339 struct request_pm_state
*pm
= rq
->data
;
341 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
342 drive
->name
, rq
->pm
->pm_step
, stat
, err
);
344 ide_complete_power_step(drive
, rq
, stat
, err
);
345 if (pm
->pm_step
== ide_pm_state_completed
)
346 ide_complete_pm_request(drive
, rq
);
350 spin_lock_irqsave(&ide_lock
, flags
);
351 HWGROUP(drive
)->rq
= NULL
;
353 if (unlikely(__blk_end_request(rq
, (rq
->errors
? -EIO
: 0),
356 spin_unlock_irqrestore(&ide_lock
, flags
);
359 EXPORT_SYMBOL(ide_end_drive_cmd
);
361 static void ide_kill_rq(ide_drive_t
*drive
, struct request
*rq
)
366 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
367 drv
->end_request(drive
, 0, 0);
369 ide_end_request(drive
, 0, 0);
372 static ide_startstop_t
ide_ata_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
374 ide_hwif_t
*hwif
= drive
->hwif
;
376 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
377 /* other bits are useless when BUSY */
378 rq
->errors
|= ERROR_RESET
;
379 } else if (stat
& ERR_STAT
) {
380 /* err has different meaning on cdrom and tape */
381 if (err
== ABRT_ERR
) {
382 if (drive
->select
.b
.lba
&&
383 /* some newer drives don't support WIN_SPECIFY */
384 hwif
->tp_ops
->read_status(hwif
) == WIN_SPECIFY
)
386 } else if ((err
& BAD_CRC
) == BAD_CRC
) {
387 /* UDMA crc error, just retry the operation */
389 } else if (err
& (BBD_ERR
| ECC_ERR
)) {
390 /* retries won't help these */
391 rq
->errors
= ERROR_MAX
;
392 } else if (err
& TRK0_ERR
) {
393 /* help it find track zero */
394 rq
->errors
|= ERROR_RECAL
;
398 if ((stat
& DRQ_STAT
) && rq_data_dir(rq
) == READ
&&
399 (hwif
->host_flags
& IDE_HFLAG_ERROR_STOPS_FIFO
) == 0) {
400 int nsect
= drive
->mult_count
? drive
->mult_count
: 1;
402 ide_pad_transfer(drive
, READ
, nsect
* SECTOR_SIZE
);
405 if (rq
->errors
>= ERROR_MAX
|| blk_noretry_request(rq
)) {
406 ide_kill_rq(drive
, rq
);
410 if (hwif
->tp_ops
->read_status(hwif
) & (BUSY_STAT
| DRQ_STAT
))
411 rq
->errors
|= ERROR_RESET
;
413 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
415 return ide_do_reset(drive
);
418 if ((rq
->errors
& ERROR_RECAL
) == ERROR_RECAL
)
419 drive
->special
.b
.recalibrate
= 1;
426 static ide_startstop_t
ide_atapi_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
428 ide_hwif_t
*hwif
= drive
->hwif
;
430 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
431 /* other bits are useless when BUSY */
432 rq
->errors
|= ERROR_RESET
;
434 /* add decoding error stuff */
437 if (hwif
->tp_ops
->read_status(hwif
) & (BUSY_STAT
| DRQ_STAT
))
439 hwif
->tp_ops
->exec_command(hwif
, WIN_IDLEIMMEDIATE
);
441 if (rq
->errors
>= ERROR_MAX
) {
442 ide_kill_rq(drive
, rq
);
444 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
446 return ide_do_reset(drive
);
455 __ide_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
457 if (drive
->media
== ide_disk
)
458 return ide_ata_error(drive
, rq
, stat
, err
);
459 return ide_atapi_error(drive
, rq
, stat
, err
);
462 EXPORT_SYMBOL_GPL(__ide_error
);
465 * ide_error - handle an error on the IDE
466 * @drive: drive the error occurred on
467 * @msg: message to report
470 * ide_error() takes action based on the error returned by the drive.
471 * For normal I/O that may well include retries. We deal with
472 * both new-style (taskfile) and old style command handling here.
473 * In the case of taskfile command handling there is work left to
477 ide_startstop_t
ide_error (ide_drive_t
*drive
, const char *msg
, u8 stat
)
482 err
= ide_dump_status(drive
, msg
, stat
);
484 if ((rq
= HWGROUP(drive
)->rq
) == NULL
)
487 /* retry only "normal" I/O: */
488 if (!blk_fs_request(rq
)) {
490 ide_end_drive_cmd(drive
, stat
, err
);
497 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
498 return drv
->error(drive
, rq
, stat
, err
);
500 return __ide_error(drive
, rq
, stat
, err
);
503 EXPORT_SYMBOL_GPL(ide_error
);
505 static void ide_tf_set_specify_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
507 tf
->nsect
= drive
->sect
;
508 tf
->lbal
= drive
->sect
;
509 tf
->lbam
= drive
->cyl
;
510 tf
->lbah
= drive
->cyl
>> 8;
511 tf
->device
= ((drive
->head
- 1) | drive
->select
.all
) & ~ATA_LBA
;
512 tf
->command
= WIN_SPECIFY
;
515 static void ide_tf_set_restore_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
517 tf
->nsect
= drive
->sect
;
518 tf
->command
= WIN_RESTORE
;
521 static void ide_tf_set_setmult_cmd(ide_drive_t
*drive
, struct ide_taskfile
*tf
)
523 tf
->nsect
= drive
->mult_req
;
524 tf
->command
= WIN_SETMULT
;
527 static ide_startstop_t
ide_disk_special(ide_drive_t
*drive
)
529 special_t
*s
= &drive
->special
;
532 memset(&args
, 0, sizeof(ide_task_t
));
533 args
.data_phase
= TASKFILE_NO_DATA
;
535 if (s
->b
.set_geometry
) {
536 s
->b
.set_geometry
= 0;
537 ide_tf_set_specify_cmd(drive
, &args
.tf
);
538 } else if (s
->b
.recalibrate
) {
539 s
->b
.recalibrate
= 0;
540 ide_tf_set_restore_cmd(drive
, &args
.tf
);
541 } else if (s
->b
.set_multmode
) {
542 s
->b
.set_multmode
= 0;
543 if (drive
->mult_req
> drive
->id
->max_multsect
)
544 drive
->mult_req
= drive
->id
->max_multsect
;
545 ide_tf_set_setmult_cmd(drive
, &args
.tf
);
547 int special
= s
->all
;
549 printk(KERN_ERR
"%s: bad special flag: 0x%02x\n", drive
->name
, special
);
553 args
.tf_flags
= IDE_TFLAG_TF
| IDE_TFLAG_DEVICE
|
554 IDE_TFLAG_CUSTOM_HANDLER
;
556 do_rw_taskfile(drive
, &args
);
562 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
564 static int set_pio_mode_abuse(ide_hwif_t
*hwif
, u8 req_pio
)
573 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_DMA_MODES
) ? 1 : 0;
576 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_PREFETCH
) ? 1 : 0;
579 return (hwif
->host_flags
& IDE_HFLAG_ABUSE_FAST_DEVSEL
) ? 1 : 0;
586 * do_special - issue some special commands
587 * @drive: drive the command is for
589 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
590 * commands to a drive. It used to do much more, but has been scaled
594 static ide_startstop_t
do_special (ide_drive_t
*drive
)
596 special_t
*s
= &drive
->special
;
599 printk("%s: do_special: 0x%02x\n", drive
->name
, s
->all
);
602 ide_hwif_t
*hwif
= drive
->hwif
;
603 const struct ide_port_ops
*port_ops
= hwif
->port_ops
;
604 u8 req_pio
= drive
->tune_req
;
608 if (set_pio_mode_abuse(drive
->hwif
, req_pio
)) {
610 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
612 if (req_pio
== 8 || req_pio
== 9) {
615 spin_lock_irqsave(&ide_lock
, flags
);
616 port_ops
->set_pio_mode(drive
, req_pio
);
617 spin_unlock_irqrestore(&ide_lock
, flags
);
619 port_ops
->set_pio_mode(drive
, req_pio
);
621 int keep_dma
= drive
->using_dma
;
623 ide_set_pio(drive
, req_pio
);
625 if (hwif
->host_flags
& IDE_HFLAG_SET_PIO_MODE_KEEP_DMA
) {
633 if (drive
->media
== ide_disk
)
634 return ide_disk_special(drive
);
642 void ide_map_sg(ide_drive_t
*drive
, struct request
*rq
)
644 ide_hwif_t
*hwif
= drive
->hwif
;
645 struct scatterlist
*sg
= hwif
->sg_table
;
647 if (hwif
->sg_mapped
) /* needed by ide-scsi */
650 if (rq
->cmd_type
!= REQ_TYPE_ATA_TASKFILE
) {
651 hwif
->sg_nents
= blk_rq_map_sg(drive
->queue
, rq
, sg
);
653 sg_init_one(sg
, rq
->buffer
, rq
->nr_sectors
* SECTOR_SIZE
);
658 EXPORT_SYMBOL_GPL(ide_map_sg
);
660 void ide_init_sg_cmd(ide_drive_t
*drive
, struct request
*rq
)
662 ide_hwif_t
*hwif
= drive
->hwif
;
664 hwif
->nsect
= hwif
->nleft
= rq
->nr_sectors
;
669 EXPORT_SYMBOL_GPL(ide_init_sg_cmd
);
672 * execute_drive_command - issue special drive command
673 * @drive: the drive to issue the command on
674 * @rq: the request structure holding the command
676 * execute_drive_cmd() issues a special drive command, usually
677 * initiated by ioctl() from the external hdparm program. The
678 * command can be a drive command, drive task or taskfile
679 * operation. Weirdly you can call it with NULL to wait for
680 * all commands to finish. Don't do this as that is due to change
683 static ide_startstop_t
execute_drive_cmd (ide_drive_t
*drive
,
686 ide_hwif_t
*hwif
= HWIF(drive
);
687 ide_task_t
*task
= rq
->special
;
690 hwif
->data_phase
= task
->data_phase
;
692 switch (hwif
->data_phase
) {
693 case TASKFILE_MULTI_OUT
:
695 case TASKFILE_MULTI_IN
:
697 ide_init_sg_cmd(drive
, rq
);
698 ide_map_sg(drive
, rq
);
703 return do_rw_taskfile(drive
, task
);
707 * NULL is actually a valid way of waiting for
708 * all current requests to be flushed from the queue.
711 printk("%s: DRIVE_CMD (null)\n", drive
->name
);
713 ide_end_drive_cmd(drive
, hwif
->tp_ops
->read_status(hwif
),
714 ide_read_error(drive
));
719 static ide_startstop_t
ide_special_rq(ide_drive_t
*drive
, struct request
*rq
)
721 switch (rq
->cmd
[0]) {
722 case REQ_DRIVE_RESET
:
723 return ide_do_reset(drive
);
725 blk_dump_rq_flags(rq
, "ide_special_rq - bad request");
726 ide_end_request(drive
, 0, 0);
731 static void ide_check_pm_state(ide_drive_t
*drive
, struct request
*rq
)
733 struct request_pm_state
*pm
= rq
->data
;
735 if (blk_pm_suspend_request(rq
) &&
736 pm
->pm_step
== ide_pm_state_start_suspend
)
737 /* Mark drive blocked when starting the suspend sequence. */
739 else if (blk_pm_resume_request(rq
) &&
740 pm
->pm_step
== ide_pm_state_start_resume
) {
742 * The first thing we do on wakeup is to wait for BSY bit to
743 * go away (with a looong timeout) as a drive on this hwif may
744 * just be POSTing itself.
745 * We do that before even selecting as the "other" device on
746 * the bus may be broken enough to walk on our toes at this
749 ide_hwif_t
*hwif
= drive
->hwif
;
752 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive
->name
);
754 rc
= ide_wait_not_busy(hwif
, 35000);
756 printk(KERN_WARNING
"%s: bus not ready on wakeup\n", drive
->name
);
758 hwif
->tp_ops
->set_irq(hwif
, 1);
759 rc
= ide_wait_not_busy(hwif
, 100000);
761 printk(KERN_WARNING
"%s: drive not ready on wakeup\n", drive
->name
);
766 * start_request - start of I/O and command issuing for IDE
768 * start_request() initiates handling of a new I/O request. It
769 * accepts commands and I/O (read/write) requests. It also does
770 * the final remapping for weird stuff like EZDrive. Once
771 * device mapper can work sector level the EZDrive stuff can go away
773 * FIXME: this function needs a rename
776 static ide_startstop_t
start_request (ide_drive_t
*drive
, struct request
*rq
)
778 ide_startstop_t startstop
;
781 BUG_ON(!blk_rq_started(rq
));
784 printk("%s: start_request: current=0x%08lx\n",
785 HWIF(drive
)->name
, (unsigned long) rq
);
788 /* bail early if we've exceeded max_failures */
789 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
790 rq
->cmd_flags
|= REQ_FAILED
;
795 if (blk_fs_request(rq
) &&
796 (drive
->media
== ide_disk
|| drive
->media
== ide_floppy
)) {
797 block
+= drive
->sect0
;
799 /* Yecch - this will shift the entire interval,
800 possibly killing some innocent following sector */
801 if (block
== 0 && drive
->remap_0_to_1
== 1)
802 block
= 1; /* redirect MBR access to EZ-Drive partn table */
804 if (blk_pm_request(rq
))
805 ide_check_pm_state(drive
, rq
);
808 if (ide_wait_stat(&startstop
, drive
, drive
->ready_stat
, BUSY_STAT
|DRQ_STAT
, WAIT_READY
)) {
809 printk(KERN_ERR
"%s: drive not ready for command\n", drive
->name
);
812 if (!drive
->special
.all
) {
816 * We reset the drive so we need to issue a SETFEATURES.
817 * Do it _after_ do_special() restored device parameters.
819 if (drive
->current_speed
== 0xff)
820 ide_config_drive_speed(drive
, drive
->desired_speed
);
822 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
)
823 return execute_drive_cmd(drive
, rq
);
824 else if (blk_pm_request(rq
)) {
825 struct request_pm_state
*pm
= rq
->data
;
827 printk("%s: start_power_step(step: %d)\n",
828 drive
->name
, rq
->pm
->pm_step
);
830 startstop
= ide_start_power_step(drive
, rq
);
831 if (startstop
== ide_stopped
&&
832 pm
->pm_step
== ide_pm_state_completed
)
833 ide_complete_pm_request(drive
, rq
);
835 } else if (!rq
->rq_disk
&& blk_special_request(rq
))
837 * TODO: Once all ULDs have been modified to
838 * check for specific op codes rather than
839 * blindly accepting any special request, the
840 * check for ->rq_disk above may be replaced
841 * by a more suitable mechanism or even
844 return ide_special_rq(drive
, rq
);
846 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
847 return drv
->do_request(drive
, rq
, block
);
849 return do_special(drive
);
851 ide_kill_rq(drive
, rq
);
856 * ide_stall_queue - pause an IDE device
857 * @drive: drive to stall
858 * @timeout: time to stall for (jiffies)
860 * ide_stall_queue() can be used by a drive to give excess bandwidth back
861 * to the hwgroup by sleeping for timeout jiffies.
864 void ide_stall_queue (ide_drive_t
*drive
, unsigned long timeout
)
866 if (timeout
> WAIT_WORSTCASE
)
867 timeout
= WAIT_WORSTCASE
;
868 drive
->sleep
= timeout
+ jiffies
;
872 EXPORT_SYMBOL(ide_stall_queue
);
874 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
877 * choose_drive - select a drive to service
878 * @hwgroup: hardware group to select on
880 * choose_drive() selects the next drive which will be serviced.
881 * This is necessary because the IDE layer can't issue commands
882 * to both drives on the same cable, unlike SCSI.
885 static inline ide_drive_t
*choose_drive (ide_hwgroup_t
*hwgroup
)
887 ide_drive_t
*drive
, *best
;
891 drive
= hwgroup
->drive
;
894 * drive is doing pre-flush, ordered write, post-flush sequence. even
895 * though that is 3 requests, it must be seen as a single transaction.
896 * we must not preempt this drive until that is complete
898 if (blk_queue_flushing(drive
->queue
)) {
900 * small race where queue could get replugged during
901 * the 3-request flush cycle, just yank the plug since
902 * we want it to finish asap
904 blk_remove_plug(drive
->queue
);
909 if ((!drive
->sleeping
|| time_after_eq(jiffies
, drive
->sleep
))
910 && !elv_queue_empty(drive
->queue
)) {
912 || (drive
->sleeping
&& (!best
->sleeping
|| time_before(drive
->sleep
, best
->sleep
)))
913 || (!best
->sleeping
&& time_before(WAKEUP(drive
), WAKEUP(best
))))
915 if (!blk_queue_plugged(drive
->queue
))
919 } while ((drive
= drive
->next
) != hwgroup
->drive
);
920 if (best
&& best
->nice1
&& !best
->sleeping
&& best
!= hwgroup
->drive
&& best
->service_time
> WAIT_MIN_SLEEP
) {
921 long t
= (signed long)(WAKEUP(best
) - jiffies
);
922 if (t
>= WAIT_MIN_SLEEP
) {
924 * We *may* have some time to spare, but first let's see if
925 * someone can potentially benefit from our nice mood today..
930 && time_before(jiffies
- best
->service_time
, WAKEUP(drive
))
931 && time_before(WAKEUP(drive
), jiffies
+ t
))
933 ide_stall_queue(best
, min_t(long, t
, 10 * WAIT_MIN_SLEEP
));
936 } while ((drive
= drive
->next
) != best
);
943 * Issue a new request to a drive from hwgroup
944 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
946 * A hwgroup is a serialized group of IDE interfaces. Usually there is
947 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
948 * may have both interfaces in a single hwgroup to "serialize" access.
949 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
950 * together into one hwgroup for serialized access.
952 * Note also that several hwgroups can end up sharing a single IRQ,
953 * possibly along with many other devices. This is especially common in
954 * PCI-based systems with off-board IDE controller cards.
956 * The IDE driver uses the single global ide_lock spinlock to protect
957 * access to the request queues, and to protect the hwgroup->busy flag.
959 * The first thread into the driver for a particular hwgroup sets the
960 * hwgroup->busy flag to indicate that this hwgroup is now active,
961 * and then initiates processing of the top request from the request queue.
963 * Other threads attempting entry notice the busy setting, and will simply
964 * queue their new requests and exit immediately. Note that hwgroup->busy
965 * remains set even when the driver is merely awaiting the next interrupt.
966 * Thus, the meaning is "this hwgroup is busy processing a request".
968 * When processing of a request completes, the completing thread or IRQ-handler
969 * will start the next request from the queue. If no more work remains,
970 * the driver will clear the hwgroup->busy flag and exit.
972 * The ide_lock (spinlock) is used to protect all access to the
973 * hwgroup->busy flag, but is otherwise not needed for most processing in
974 * the driver. This makes the driver much more friendlier to shared IRQs
975 * than previous designs, while remaining 100% (?) SMP safe and capable.
977 static void ide_do_request (ide_hwgroup_t
*hwgroup
, int masked_irq
)
982 ide_startstop_t startstop
;
985 /* for atari only: POSSIBLY BROKEN HERE(?) */
986 ide_get_lock(ide_intr
, hwgroup
);
988 /* caller must own ide_lock */
989 BUG_ON(!irqs_disabled());
991 while (!hwgroup
->busy
) {
993 drive
= choose_drive(hwgroup
);
996 unsigned long sleep
= 0; /* shut up, gcc */
998 drive
= hwgroup
->drive
;
1000 if (drive
->sleeping
&& (!sleeping
|| time_before(drive
->sleep
, sleep
))) {
1002 sleep
= drive
->sleep
;
1004 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1007 * Take a short snooze, and then wake up this hwgroup again.
1008 * This gives other hwgroups on the same a chance to
1009 * play fairly with us, just in case there are big differences
1010 * in relative throughputs.. don't want to hog the cpu too much.
1012 if (time_before(sleep
, jiffies
+ WAIT_MIN_SLEEP
))
1013 sleep
= jiffies
+ WAIT_MIN_SLEEP
;
1015 if (timer_pending(&hwgroup
->timer
))
1016 printk(KERN_CRIT
"ide_set_handler: timer already active\n");
1018 /* so that ide_timer_expiry knows what to do */
1019 hwgroup
->sleeping
= 1;
1020 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
1021 mod_timer(&hwgroup
->timer
, sleep
);
1022 /* we purposely leave hwgroup->busy==1
1025 /* Ugly, but how can we sleep for the lock
1026 * otherwise? perhaps from tq_disk?
1029 /* for atari only */
1034 /* no more work for this hwgroup (for now) */
1039 if (hwgroup
->hwif
->sharing_irq
&& hwif
!= hwgroup
->hwif
) {
1041 * set nIEN for previous hwif, drives in the
1042 * quirk_list may not like intr setups/cleanups
1044 if (drive
->quirk_list
!= 1)
1045 hwif
->tp_ops
->set_irq(hwif
, 0);
1047 hwgroup
->hwif
= hwif
;
1048 hwgroup
->drive
= drive
;
1049 drive
->sleeping
= 0;
1050 drive
->service_start
= jiffies
;
1052 if (blk_queue_plugged(drive
->queue
)) {
1053 printk(KERN_ERR
"ide: huh? queue was plugged!\n");
1058 * we know that the queue isn't empty, but this can happen
1059 * if the q->prep_rq_fn() decides to kill a request
1061 rq
= elv_next_request(drive
->queue
);
1068 * Sanity: don't accept a request that isn't a PM request
1069 * if we are currently power managed. This is very important as
1070 * blk_stop_queue() doesn't prevent the elv_next_request()
1071 * above to return us whatever is in the queue. Since we call
1072 * ide_do_request() ourselves, we end up taking requests while
1073 * the queue is blocked...
1075 * We let requests forced at head of queue with ide-preempt
1076 * though. I hope that doesn't happen too much, hopefully not
1077 * unless the subdriver triggers such a thing in its own PM
1080 * We count how many times we loop here to make sure we service
1081 * all drives in the hwgroup without looping for ever
1083 if (drive
->blocked
&& !blk_pm_request(rq
) && !(rq
->cmd_flags
& REQ_PREEMPT
)) {
1084 drive
= drive
->next
? drive
->next
: hwgroup
->drive
;
1085 if (loops
++ < 4 && !blk_queue_plugged(drive
->queue
))
1087 /* We clear busy, there should be no pending ATA command at this point. */
1095 * Some systems have trouble with IDE IRQs arriving while
1096 * the driver is still setting things up. So, here we disable
1097 * the IRQ used by this interface while the request is being started.
1098 * This may look bad at first, but pretty much the same thing
1099 * happens anyway when any interrupt comes in, IDE or otherwise
1100 * -- the kernel masks the IRQ while it is being handled.
1102 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1103 disable_irq_nosync(hwif
->irq
);
1104 spin_unlock(&ide_lock
);
1105 local_irq_enable_in_hardirq();
1106 /* allow other IRQs while we start this request */
1107 startstop
= start_request(drive
, rq
);
1108 spin_lock_irq(&ide_lock
);
1109 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1110 enable_irq(hwif
->irq
);
1111 if (startstop
== ide_stopped
)
1117 * Passes the stuff to ide_do_request
1119 void do_ide_request(struct request_queue
*q
)
1121 ide_drive_t
*drive
= q
->queuedata
;
1123 ide_do_request(HWGROUP(drive
), IDE_NO_IRQ
);
1127 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1128 * retry the current request in pio mode instead of risking tossing it
1131 static ide_startstop_t
ide_dma_timeout_retry(ide_drive_t
*drive
, int error
)
1133 ide_hwif_t
*hwif
= HWIF(drive
);
1135 ide_startstop_t ret
= ide_stopped
;
1138 * end current dma transaction
1142 printk(KERN_WARNING
"%s: DMA timeout error\n", drive
->name
);
1143 (void)hwif
->dma_ops
->dma_end(drive
);
1144 ret
= ide_error(drive
, "dma timeout error",
1145 hwif
->tp_ops
->read_status(hwif
));
1147 printk(KERN_WARNING
"%s: DMA timeout retry\n", drive
->name
);
1148 hwif
->dma_ops
->dma_timeout(drive
);
1152 * disable dma for now, but remember that we did so because of
1153 * a timeout -- we'll reenable after we finish this next request
1154 * (or rather the first chunk of it) in pio.
1157 drive
->state
= DMA_PIO_RETRY
;
1158 ide_dma_off_quietly(drive
);
1161 * un-busy drive etc (hwgroup->busy is cleared on return) and
1162 * make sure request is sane
1164 rq
= HWGROUP(drive
)->rq
;
1169 HWGROUP(drive
)->rq
= NULL
;
1176 rq
->sector
= rq
->bio
->bi_sector
;
1177 rq
->current_nr_sectors
= bio_iovec(rq
->bio
)->bv_len
>> 9;
1178 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
1179 rq
->buffer
= bio_data(rq
->bio
);
1185 * ide_timer_expiry - handle lack of an IDE interrupt
1186 * @data: timer callback magic (hwgroup)
1188 * An IDE command has timed out before the expected drive return
1189 * occurred. At this point we attempt to clean up the current
1190 * mess. If the current handler includes an expiry handler then
1191 * we invoke the expiry handler, and providing it is happy the
1192 * work is done. If that fails we apply generic recovery rules
1193 * invoking the handler and checking the drive DMA status. We
1194 * have an excessively incestuous relationship with the DMA
1195 * logic that wants cleaning up.
1198 void ide_timer_expiry (unsigned long data
)
1200 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*) data
;
1201 ide_handler_t
*handler
;
1202 ide_expiry_t
*expiry
;
1203 unsigned long flags
;
1204 unsigned long wait
= -1;
1206 spin_lock_irqsave(&ide_lock
, flags
);
1208 if (((handler
= hwgroup
->handler
) == NULL
) ||
1209 (hwgroup
->req_gen
!= hwgroup
->req_gen_timer
)) {
1211 * Either a marginal timeout occurred
1212 * (got the interrupt just as timer expired),
1213 * or we were "sleeping" to give other devices a chance.
1214 * Either way, we don't really want to complain about anything.
1216 if (hwgroup
->sleeping
) {
1217 hwgroup
->sleeping
= 0;
1221 ide_drive_t
*drive
= hwgroup
->drive
;
1223 printk(KERN_ERR
"ide_timer_expiry: hwgroup->drive was NULL\n");
1224 hwgroup
->handler
= NULL
;
1227 ide_startstop_t startstop
= ide_stopped
;
1228 if (!hwgroup
->busy
) {
1229 hwgroup
->busy
= 1; /* paranoia */
1230 printk(KERN_ERR
"%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive
->name
);
1232 if ((expiry
= hwgroup
->expiry
) != NULL
) {
1234 if ((wait
= expiry(drive
)) > 0) {
1236 hwgroup
->timer
.expires
= jiffies
+ wait
;
1237 hwgroup
->req_gen_timer
= hwgroup
->req_gen
;
1238 add_timer(&hwgroup
->timer
);
1239 spin_unlock_irqrestore(&ide_lock
, flags
);
1243 hwgroup
->handler
= NULL
;
1245 * We need to simulate a real interrupt when invoking
1246 * the handler() function, which means we need to
1247 * globally mask the specific IRQ:
1249 spin_unlock(&ide_lock
);
1251 /* disable_irq_nosync ?? */
1252 disable_irq(hwif
->irq
);
1254 * as if we were handling an interrupt */
1255 local_irq_disable();
1256 if (hwgroup
->polling
) {
1257 startstop
= handler(drive
);
1258 } else if (drive_is_ready(drive
)) {
1259 if (drive
->waiting_for_dma
)
1260 hwif
->dma_ops
->dma_lost_irq(drive
);
1261 (void)ide_ack_intr(hwif
);
1262 printk(KERN_WARNING
"%s: lost interrupt\n", drive
->name
);
1263 startstop
= handler(drive
);
1265 if (drive
->waiting_for_dma
) {
1266 startstop
= ide_dma_timeout_retry(drive
, wait
);
1269 ide_error(drive
, "irq timeout",
1270 hwif
->tp_ops
->read_status(hwif
));
1272 drive
->service_time
= jiffies
- drive
->service_start
;
1273 spin_lock_irq(&ide_lock
);
1274 enable_irq(hwif
->irq
);
1275 if (startstop
== ide_stopped
)
1279 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1280 spin_unlock_irqrestore(&ide_lock
, flags
);
1284 * unexpected_intr - handle an unexpected IDE interrupt
1285 * @irq: interrupt line
1286 * @hwgroup: hwgroup being processed
1288 * There's nothing really useful we can do with an unexpected interrupt,
1289 * other than reading the status register (to clear it), and logging it.
1290 * There should be no way that an irq can happen before we're ready for it,
1291 * so we needn't worry much about losing an "important" interrupt here.
1293 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1294 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1295 * looks "good", we just ignore the interrupt completely.
1297 * This routine assumes __cli() is in effect when called.
1299 * If an unexpected interrupt happens on irq15 while we are handling irq14
1300 * and if the two interfaces are "serialized" (CMD640), then it looks like
1301 * we could screw up by interfering with a new request being set up for
1304 * In reality, this is a non-issue. The new command is not sent unless
1305 * the drive is ready to accept one, in which case we know the drive is
1306 * not trying to interrupt us. And ide_set_handler() is always invoked
1307 * before completing the issuance of any new drive command, so we will not
1308 * be accidentally invoked as a result of any valid command completion
1311 * Note that we must walk the entire hwgroup here. We know which hwif
1312 * is doing the current command, but we don't know which hwif burped
1316 static void unexpected_intr (int irq
, ide_hwgroup_t
*hwgroup
)
1319 ide_hwif_t
*hwif
= hwgroup
->hwif
;
1322 * handle the unexpected interrupt
1325 if (hwif
->irq
== irq
) {
1326 stat
= hwif
->tp_ops
->read_status(hwif
);
1328 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
)) {
1329 /* Try to not flood the console with msgs */
1330 static unsigned long last_msgtime
, count
;
1332 if (time_after(jiffies
, last_msgtime
+ HZ
)) {
1333 last_msgtime
= jiffies
;
1334 printk(KERN_ERR
"%s%s: unexpected interrupt, "
1335 "status=0x%02x, count=%ld\n",
1337 (hwif
->next
==hwgroup
->hwif
) ? "" : "(?)", stat
, count
);
1341 } while ((hwif
= hwif
->next
) != hwgroup
->hwif
);
1345 * ide_intr - default IDE interrupt handler
1346 * @irq: interrupt number
1347 * @dev_id: hwif group
1348 * @regs: unused weirdness from the kernel irq layer
1350 * This is the default IRQ handler for the IDE layer. You should
1351 * not need to override it. If you do be aware it is subtle in
1354 * hwgroup->hwif is the interface in the group currently performing
1355 * a command. hwgroup->drive is the drive and hwgroup->handler is
1356 * the IRQ handler to call. As we issue a command the handlers
1357 * step through multiple states, reassigning the handler to the
1358 * next step in the process. Unlike a smart SCSI controller IDE
1359 * expects the main processor to sequence the various transfer
1360 * stages. We also manage a poll timer to catch up with most
1361 * timeout situations. There are still a few where the handlers
1362 * don't ever decide to give up.
1364 * The handler eventually returns ide_stopped to indicate the
1365 * request completed. At this point we issue the next request
1366 * on the hwgroup and the process begins again.
1369 irqreturn_t
ide_intr (int irq
, void *dev_id
)
1371 unsigned long flags
;
1372 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*)dev_id
;
1375 ide_handler_t
*handler
;
1376 ide_startstop_t startstop
;
1378 spin_lock_irqsave(&ide_lock
, flags
);
1379 hwif
= hwgroup
->hwif
;
1381 if (!ide_ack_intr(hwif
)) {
1382 spin_unlock_irqrestore(&ide_lock
, flags
);
1386 if ((handler
= hwgroup
->handler
) == NULL
|| hwgroup
->polling
) {
1388 * Not expecting an interrupt from this drive.
1389 * That means this could be:
1390 * (1) an interrupt from another PCI device
1391 * sharing the same PCI INT# as us.
1392 * or (2) a drive just entered sleep or standby mode,
1393 * and is interrupting to let us know.
1394 * or (3) a spurious interrupt of unknown origin.
1396 * For PCI, we cannot tell the difference,
1397 * so in that case we just ignore it and hope it goes away.
1399 * FIXME: unexpected_intr should be hwif-> then we can
1400 * remove all the ifdef PCI crap
1402 #ifdef CONFIG_BLK_DEV_IDEPCI
1403 if (hwif
->chipset
!= ide_pci
)
1404 #endif /* CONFIG_BLK_DEV_IDEPCI */
1407 * Probably not a shared PCI interrupt,
1408 * so we can safely try to do something about it:
1410 unexpected_intr(irq
, hwgroup
);
1411 #ifdef CONFIG_BLK_DEV_IDEPCI
1414 * Whack the status register, just in case
1415 * we have a leftover pending IRQ.
1417 (void)hwif
->tp_ops
->read_status(hwif
);
1418 #endif /* CONFIG_BLK_DEV_IDEPCI */
1420 spin_unlock_irqrestore(&ide_lock
, flags
);
1423 drive
= hwgroup
->drive
;
1426 * This should NEVER happen, and there isn't much
1427 * we could do about it here.
1429 * [Note - this can occur if the drive is hot unplugged]
1431 spin_unlock_irqrestore(&ide_lock
, flags
);
1434 if (!drive_is_ready(drive
)) {
1436 * This happens regularly when we share a PCI IRQ with
1437 * another device. Unfortunately, it can also happen
1438 * with some buggy drives that trigger the IRQ before
1439 * their status register is up to date. Hopefully we have
1440 * enough advance overhead that the latter isn't a problem.
1442 spin_unlock_irqrestore(&ide_lock
, flags
);
1445 if (!hwgroup
->busy
) {
1446 hwgroup
->busy
= 1; /* paranoia */
1447 printk(KERN_ERR
"%s: ide_intr: hwgroup->busy was 0 ??\n", drive
->name
);
1449 hwgroup
->handler
= NULL
;
1451 del_timer(&hwgroup
->timer
);
1452 spin_unlock(&ide_lock
);
1454 /* Some controllers might set DMA INTR no matter DMA or PIO;
1455 * bmdma status might need to be cleared even for
1456 * PIO interrupts to prevent spurious/lost irq.
1458 if (hwif
->ide_dma_clear_irq
&& !(drive
->waiting_for_dma
))
1459 /* ide_dma_end() needs bmdma status for error checking.
1460 * So, skip clearing bmdma status here and leave it
1461 * to ide_dma_end() if this is dma interrupt.
1463 hwif
->ide_dma_clear_irq(drive
);
1466 local_irq_enable_in_hardirq();
1467 /* service this interrupt, may set handler for next interrupt */
1468 startstop
= handler(drive
);
1469 spin_lock_irq(&ide_lock
);
1472 * Note that handler() may have set things up for another
1473 * interrupt to occur soon, but it cannot happen until
1474 * we exit from this routine, because it will be the
1475 * same irq as is currently being serviced here, and Linux
1476 * won't allow another of the same (on any CPU) until we return.
1478 drive
->service_time
= jiffies
- drive
->service_start
;
1479 if (startstop
== ide_stopped
) {
1480 if (hwgroup
->handler
== NULL
) { /* paranoia */
1482 ide_do_request(hwgroup
, hwif
->irq
);
1484 printk(KERN_ERR
"%s: ide_intr: huh? expected NULL handler "
1485 "on exit\n", drive
->name
);
1488 spin_unlock_irqrestore(&ide_lock
, flags
);
1493 * ide_do_drive_cmd - issue IDE special command
1494 * @drive: device to issue command
1495 * @rq: request to issue
1497 * This function issues a special IDE device request
1498 * onto the request queue.
1500 * the rq is queued at the head of the request queue, displacing
1501 * the currently-being-processed request and this function
1502 * returns immediately without waiting for the new rq to be
1503 * completed. This is VERY DANGEROUS, and is intended for
1504 * careful use by the ATAPI tape/cdrom driver code.
1507 void ide_do_drive_cmd(ide_drive_t
*drive
, struct request
*rq
)
1509 unsigned long flags
;
1510 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1512 spin_lock_irqsave(&ide_lock
, flags
);
1514 __elv_add_request(drive
->queue
, rq
, ELEVATOR_INSERT_FRONT
, 1);
1515 __generic_unplug_device(drive
->queue
);
1516 spin_unlock_irqrestore(&ide_lock
, flags
);
1519 EXPORT_SYMBOL(ide_do_drive_cmd
);
1521 void ide_pktcmd_tf_load(ide_drive_t
*drive
, u32 tf_flags
, u16 bcount
, u8 dma
)
1523 ide_hwif_t
*hwif
= drive
->hwif
;
1526 memset(&task
, 0, sizeof(task
));
1527 task
.tf_flags
= IDE_TFLAG_OUT_LBAH
| IDE_TFLAG_OUT_LBAM
|
1528 IDE_TFLAG_OUT_FEATURE
| tf_flags
;
1529 task
.tf
.feature
= dma
; /* Use PIO/DMA */
1530 task
.tf
.lbam
= bcount
& 0xff;
1531 task
.tf
.lbah
= (bcount
>> 8) & 0xff;
1533 ide_tf_dump(drive
->name
, &task
.tf
);
1534 hwif
->tp_ops
->set_irq(hwif
, 1);
1535 SELECT_MASK(drive
, 0);
1536 hwif
->tp_ops
->tf_load(drive
, &task
);
1539 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load
);
1541 void ide_pad_transfer(ide_drive_t
*drive
, int write
, int len
)
1543 ide_hwif_t
*hwif
= drive
->hwif
;
1548 hwif
->tp_ops
->output_data(drive
, NULL
, buf
, min(4, len
));
1550 hwif
->tp_ops
->input_data(drive
, NULL
, buf
, min(4, len
));
1554 EXPORT_SYMBOL_GPL(ide_pad_transfer
);