x86: avoid theoretical vmalloc fault loop
[linux-2.6/mini2440.git] / block / elevator.c
blob98259eda0ef66d4051cc5da958c0191f353b8158
1 /*
2 * Block device elevator/IO-scheduler.
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <trace/block.h>
37 #include <linux/hash.h>
38 #include <linux/uaccess.h>
40 #include "blk.h"
42 static DEFINE_SPINLOCK(elv_list_lock);
43 static LIST_HEAD(elv_list);
45 DEFINE_TRACE(block_rq_abort);
48 * Merge hash stuff.
50 static const int elv_hash_shift = 6;
51 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
52 #define ELV_HASH_FN(sec) \
53 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
54 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
55 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
56 #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
58 DEFINE_TRACE(block_rq_insert);
59 DEFINE_TRACE(block_rq_issue);
62 * Query io scheduler to see if the current process issuing bio may be
63 * merged with rq.
65 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
67 struct request_queue *q = rq->q;
68 struct elevator_queue *e = q->elevator;
70 if (e->ops->elevator_allow_merge_fn)
71 return e->ops->elevator_allow_merge_fn(q, rq, bio);
73 return 1;
77 * can we safely merge with this request?
79 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
81 if (!rq_mergeable(rq))
82 return 0;
85 * Don't merge file system requests and discard requests
87 if (bio_discard(bio) != bio_discard(rq->bio))
88 return 0;
91 * different data direction or already started, don't merge
93 if (bio_data_dir(bio) != rq_data_dir(rq))
94 return 0;
97 * must be same device and not a special request
99 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
100 return 0;
103 * only merge integrity protected bio into ditto rq
105 if (bio_integrity(bio) != blk_integrity_rq(rq))
106 return 0;
108 if (!elv_iosched_allow_merge(rq, bio))
109 return 0;
111 return 1;
113 EXPORT_SYMBOL(elv_rq_merge_ok);
115 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
117 int ret = ELEVATOR_NO_MERGE;
120 * we can merge and sequence is ok, check if it's possible
122 if (elv_rq_merge_ok(__rq, bio)) {
123 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
124 ret = ELEVATOR_BACK_MERGE;
125 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
126 ret = ELEVATOR_FRONT_MERGE;
129 return ret;
132 static struct elevator_type *elevator_find(const char *name)
134 struct elevator_type *e;
136 list_for_each_entry(e, &elv_list, list) {
137 if (!strcmp(e->elevator_name, name))
138 return e;
141 return NULL;
144 static void elevator_put(struct elevator_type *e)
146 module_put(e->elevator_owner);
149 static struct elevator_type *elevator_get(const char *name)
151 struct elevator_type *e;
153 spin_lock(&elv_list_lock);
155 e = elevator_find(name);
156 if (!e) {
157 char elv[ELV_NAME_MAX + strlen("-iosched")];
159 spin_unlock(&elv_list_lock);
161 if (!strcmp(name, "anticipatory"))
162 sprintf(elv, "as-iosched");
163 else
164 sprintf(elv, "%s-iosched", name);
166 request_module("%s", elv);
167 spin_lock(&elv_list_lock);
168 e = elevator_find(name);
171 if (e && !try_module_get(e->elevator_owner))
172 e = NULL;
174 spin_unlock(&elv_list_lock);
176 return e;
179 static void *elevator_init_queue(struct request_queue *q,
180 struct elevator_queue *eq)
182 return eq->ops->elevator_init_fn(q);
185 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
186 void *data)
188 q->elevator = eq;
189 eq->elevator_data = data;
192 static char chosen_elevator[16];
194 static int __init elevator_setup(char *str)
197 * Be backwards-compatible with previous kernels, so users
198 * won't get the wrong elevator.
200 if (!strcmp(str, "as"))
201 strcpy(chosen_elevator, "anticipatory");
202 else
203 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
204 return 1;
207 __setup("elevator=", elevator_setup);
209 static struct kobj_type elv_ktype;
211 static struct elevator_queue *elevator_alloc(struct request_queue *q,
212 struct elevator_type *e)
214 struct elevator_queue *eq;
215 int i;
217 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
218 if (unlikely(!eq))
219 goto err;
221 eq->ops = &e->ops;
222 eq->elevator_type = e;
223 kobject_init(&eq->kobj, &elv_ktype);
224 mutex_init(&eq->sysfs_lock);
226 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
227 GFP_KERNEL, q->node);
228 if (!eq->hash)
229 goto err;
231 for (i = 0; i < ELV_HASH_ENTRIES; i++)
232 INIT_HLIST_HEAD(&eq->hash[i]);
234 return eq;
235 err:
236 kfree(eq);
237 elevator_put(e);
238 return NULL;
241 static void elevator_release(struct kobject *kobj)
243 struct elevator_queue *e;
245 e = container_of(kobj, struct elevator_queue, kobj);
246 elevator_put(e->elevator_type);
247 kfree(e->hash);
248 kfree(e);
251 int elevator_init(struct request_queue *q, char *name)
253 struct elevator_type *e = NULL;
254 struct elevator_queue *eq;
255 int ret = 0;
256 void *data;
258 INIT_LIST_HEAD(&q->queue_head);
259 q->last_merge = NULL;
260 q->end_sector = 0;
261 q->boundary_rq = NULL;
263 if (name) {
264 e = elevator_get(name);
265 if (!e)
266 return -EINVAL;
269 if (!e && *chosen_elevator) {
270 e = elevator_get(chosen_elevator);
271 if (!e)
272 printk(KERN_ERR "I/O scheduler %s not found\n",
273 chosen_elevator);
276 if (!e) {
277 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
278 if (!e) {
279 printk(KERN_ERR
280 "Default I/O scheduler not found. " \
281 "Using noop.\n");
282 e = elevator_get("noop");
286 eq = elevator_alloc(q, e);
287 if (!eq)
288 return -ENOMEM;
290 data = elevator_init_queue(q, eq);
291 if (!data) {
292 kobject_put(&eq->kobj);
293 return -ENOMEM;
296 elevator_attach(q, eq, data);
297 return ret;
299 EXPORT_SYMBOL(elevator_init);
301 void elevator_exit(struct elevator_queue *e)
303 mutex_lock(&e->sysfs_lock);
304 if (e->ops->elevator_exit_fn)
305 e->ops->elevator_exit_fn(e);
306 e->ops = NULL;
307 mutex_unlock(&e->sysfs_lock);
309 kobject_put(&e->kobj);
311 EXPORT_SYMBOL(elevator_exit);
313 static void elv_activate_rq(struct request_queue *q, struct request *rq)
315 struct elevator_queue *e = q->elevator;
317 if (e->ops->elevator_activate_req_fn)
318 e->ops->elevator_activate_req_fn(q, rq);
321 static void elv_deactivate_rq(struct request_queue *q, struct request *rq)
323 struct elevator_queue *e = q->elevator;
325 if (e->ops->elevator_deactivate_req_fn)
326 e->ops->elevator_deactivate_req_fn(q, rq);
329 static inline void __elv_rqhash_del(struct request *rq)
331 hlist_del_init(&rq->hash);
334 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
336 if (ELV_ON_HASH(rq))
337 __elv_rqhash_del(rq);
340 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
342 struct elevator_queue *e = q->elevator;
344 BUG_ON(ELV_ON_HASH(rq));
345 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
348 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
350 __elv_rqhash_del(rq);
351 elv_rqhash_add(q, rq);
354 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
356 struct elevator_queue *e = q->elevator;
357 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
358 struct hlist_node *entry, *next;
359 struct request *rq;
361 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
362 BUG_ON(!ELV_ON_HASH(rq));
364 if (unlikely(!rq_mergeable(rq))) {
365 __elv_rqhash_del(rq);
366 continue;
369 if (rq_hash_key(rq) == offset)
370 return rq;
373 return NULL;
377 * RB-tree support functions for inserting/lookup/removal of requests
378 * in a sorted RB tree.
380 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
382 struct rb_node **p = &root->rb_node;
383 struct rb_node *parent = NULL;
384 struct request *__rq;
386 while (*p) {
387 parent = *p;
388 __rq = rb_entry(parent, struct request, rb_node);
390 if (rq->sector < __rq->sector)
391 p = &(*p)->rb_left;
392 else if (rq->sector > __rq->sector)
393 p = &(*p)->rb_right;
394 else
395 return __rq;
398 rb_link_node(&rq->rb_node, parent, p);
399 rb_insert_color(&rq->rb_node, root);
400 return NULL;
402 EXPORT_SYMBOL(elv_rb_add);
404 void elv_rb_del(struct rb_root *root, struct request *rq)
406 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
407 rb_erase(&rq->rb_node, root);
408 RB_CLEAR_NODE(&rq->rb_node);
410 EXPORT_SYMBOL(elv_rb_del);
412 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
414 struct rb_node *n = root->rb_node;
415 struct request *rq;
417 while (n) {
418 rq = rb_entry(n, struct request, rb_node);
420 if (sector < rq->sector)
421 n = n->rb_left;
422 else if (sector > rq->sector)
423 n = n->rb_right;
424 else
425 return rq;
428 return NULL;
430 EXPORT_SYMBOL(elv_rb_find);
433 * Insert rq into dispatch queue of q. Queue lock must be held on
434 * entry. rq is sort instead into the dispatch queue. To be used by
435 * specific elevators.
437 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
439 sector_t boundary;
440 struct list_head *entry;
441 int stop_flags;
443 if (q->last_merge == rq)
444 q->last_merge = NULL;
446 elv_rqhash_del(q, rq);
448 q->nr_sorted--;
450 boundary = q->end_sector;
451 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
452 list_for_each_prev(entry, &q->queue_head) {
453 struct request *pos = list_entry_rq(entry);
455 if (blk_discard_rq(rq) != blk_discard_rq(pos))
456 break;
457 if (rq_data_dir(rq) != rq_data_dir(pos))
458 break;
459 if (pos->cmd_flags & stop_flags)
460 break;
461 if (rq->sector >= boundary) {
462 if (pos->sector < boundary)
463 continue;
464 } else {
465 if (pos->sector >= boundary)
466 break;
468 if (rq->sector >= pos->sector)
469 break;
472 list_add(&rq->queuelist, entry);
474 EXPORT_SYMBOL(elv_dispatch_sort);
477 * Insert rq into dispatch queue of q. Queue lock must be held on
478 * entry. rq is added to the back of the dispatch queue. To be used by
479 * specific elevators.
481 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
483 if (q->last_merge == rq)
484 q->last_merge = NULL;
486 elv_rqhash_del(q, rq);
488 q->nr_sorted--;
490 q->end_sector = rq_end_sector(rq);
491 q->boundary_rq = rq;
492 list_add_tail(&rq->queuelist, &q->queue_head);
494 EXPORT_SYMBOL(elv_dispatch_add_tail);
496 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
498 struct elevator_queue *e = q->elevator;
499 struct request *__rq;
500 int ret;
503 * First try one-hit cache.
505 if (q->last_merge) {
506 ret = elv_try_merge(q->last_merge, bio);
507 if (ret != ELEVATOR_NO_MERGE) {
508 *req = q->last_merge;
509 return ret;
513 if (blk_queue_nomerges(q))
514 return ELEVATOR_NO_MERGE;
517 * See if our hash lookup can find a potential backmerge.
519 __rq = elv_rqhash_find(q, bio->bi_sector);
520 if (__rq && elv_rq_merge_ok(__rq, bio)) {
521 *req = __rq;
522 return ELEVATOR_BACK_MERGE;
525 if (e->ops->elevator_merge_fn)
526 return e->ops->elevator_merge_fn(q, req, bio);
528 return ELEVATOR_NO_MERGE;
531 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
533 struct elevator_queue *e = q->elevator;
535 if (e->ops->elevator_merged_fn)
536 e->ops->elevator_merged_fn(q, rq, type);
538 if (type == ELEVATOR_BACK_MERGE)
539 elv_rqhash_reposition(q, rq);
541 q->last_merge = rq;
544 void elv_merge_requests(struct request_queue *q, struct request *rq,
545 struct request *next)
547 struct elevator_queue *e = q->elevator;
549 if (e->ops->elevator_merge_req_fn)
550 e->ops->elevator_merge_req_fn(q, rq, next);
552 elv_rqhash_reposition(q, rq);
553 elv_rqhash_del(q, next);
555 q->nr_sorted--;
556 q->last_merge = rq;
559 void elv_requeue_request(struct request_queue *q, struct request *rq)
562 * it already went through dequeue, we need to decrement the
563 * in_flight count again
565 if (blk_account_rq(rq)) {
566 q->in_flight--;
567 if (blk_sorted_rq(rq))
568 elv_deactivate_rq(q, rq);
571 rq->cmd_flags &= ~REQ_STARTED;
573 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
576 static void elv_drain_elevator(struct request_queue *q)
578 static int printed;
579 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
581 if (q->nr_sorted == 0)
582 return;
583 if (printed++ < 10) {
584 printk(KERN_ERR "%s: forced dispatching is broken "
585 "(nr_sorted=%u), please report this\n",
586 q->elevator->elevator_type->elevator_name, q->nr_sorted);
590 void elv_insert(struct request_queue *q, struct request *rq, int where)
592 struct list_head *pos;
593 unsigned ordseq;
594 int unplug_it = 1;
596 trace_block_rq_insert(q, rq);
598 rq->q = q;
600 switch (where) {
601 case ELEVATOR_INSERT_FRONT:
602 rq->cmd_flags |= REQ_SOFTBARRIER;
604 list_add(&rq->queuelist, &q->queue_head);
605 break;
607 case ELEVATOR_INSERT_BACK:
608 rq->cmd_flags |= REQ_SOFTBARRIER;
609 elv_drain_elevator(q);
610 list_add_tail(&rq->queuelist, &q->queue_head);
612 * We kick the queue here for the following reasons.
613 * - The elevator might have returned NULL previously
614 * to delay requests and returned them now. As the
615 * queue wasn't empty before this request, ll_rw_blk
616 * won't run the queue on return, resulting in hang.
617 * - Usually, back inserted requests won't be merged
618 * with anything. There's no point in delaying queue
619 * processing.
621 blk_remove_plug(q);
622 blk_start_queueing(q);
623 break;
625 case ELEVATOR_INSERT_SORT:
626 BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
627 rq->cmd_flags |= REQ_SORTED;
628 q->nr_sorted++;
629 if (rq_mergeable(rq)) {
630 elv_rqhash_add(q, rq);
631 if (!q->last_merge)
632 q->last_merge = rq;
636 * Some ioscheds (cfq) run q->request_fn directly, so
637 * rq cannot be accessed after calling
638 * elevator_add_req_fn.
640 q->elevator->ops->elevator_add_req_fn(q, rq);
641 break;
643 case ELEVATOR_INSERT_REQUEUE:
645 * If ordered flush isn't in progress, we do front
646 * insertion; otherwise, requests should be requeued
647 * in ordseq order.
649 rq->cmd_flags |= REQ_SOFTBARRIER;
652 * Most requeues happen because of a busy condition,
653 * don't force unplug of the queue for that case.
655 unplug_it = 0;
657 if (q->ordseq == 0) {
658 list_add(&rq->queuelist, &q->queue_head);
659 break;
662 ordseq = blk_ordered_req_seq(rq);
664 list_for_each(pos, &q->queue_head) {
665 struct request *pos_rq = list_entry_rq(pos);
666 if (ordseq <= blk_ordered_req_seq(pos_rq))
667 break;
670 list_add_tail(&rq->queuelist, pos);
671 break;
673 default:
674 printk(KERN_ERR "%s: bad insertion point %d\n",
675 __func__, where);
676 BUG();
679 if (unplug_it && blk_queue_plugged(q)) {
680 int nrq = q->rq.count[READ] + q->rq.count[WRITE]
681 - q->in_flight;
683 if (nrq >= q->unplug_thresh)
684 __generic_unplug_device(q);
688 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
689 int plug)
691 if (q->ordcolor)
692 rq->cmd_flags |= REQ_ORDERED_COLOR;
694 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
696 * toggle ordered color
698 if (blk_barrier_rq(rq))
699 q->ordcolor ^= 1;
702 * barriers implicitly indicate back insertion
704 if (where == ELEVATOR_INSERT_SORT)
705 where = ELEVATOR_INSERT_BACK;
708 * this request is scheduling boundary, update
709 * end_sector
711 if (blk_fs_request(rq) || blk_discard_rq(rq)) {
712 q->end_sector = rq_end_sector(rq);
713 q->boundary_rq = rq;
715 } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
716 where == ELEVATOR_INSERT_SORT)
717 where = ELEVATOR_INSERT_BACK;
719 if (plug)
720 blk_plug_device(q);
722 elv_insert(q, rq, where);
724 EXPORT_SYMBOL(__elv_add_request);
726 void elv_add_request(struct request_queue *q, struct request *rq, int where,
727 int plug)
729 unsigned long flags;
731 spin_lock_irqsave(q->queue_lock, flags);
732 __elv_add_request(q, rq, where, plug);
733 spin_unlock_irqrestore(q->queue_lock, flags);
735 EXPORT_SYMBOL(elv_add_request);
737 static inline struct request *__elv_next_request(struct request_queue *q)
739 struct request *rq;
741 while (1) {
742 while (!list_empty(&q->queue_head)) {
743 rq = list_entry_rq(q->queue_head.next);
744 if (blk_do_ordered(q, &rq))
745 return rq;
748 if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
749 return NULL;
753 struct request *elv_next_request(struct request_queue *q)
755 struct request *rq;
756 int ret;
758 while ((rq = __elv_next_request(q)) != NULL) {
759 if (!(rq->cmd_flags & REQ_STARTED)) {
761 * This is the first time the device driver
762 * sees this request (possibly after
763 * requeueing). Notify IO scheduler.
765 if (blk_sorted_rq(rq))
766 elv_activate_rq(q, rq);
769 * just mark as started even if we don't start
770 * it, a request that has been delayed should
771 * not be passed by new incoming requests
773 rq->cmd_flags |= REQ_STARTED;
774 trace_block_rq_issue(q, rq);
777 if (!q->boundary_rq || q->boundary_rq == rq) {
778 q->end_sector = rq_end_sector(rq);
779 q->boundary_rq = NULL;
782 if (rq->cmd_flags & REQ_DONTPREP)
783 break;
785 if (q->dma_drain_size && rq->data_len) {
787 * make sure space for the drain appears we
788 * know we can do this because max_hw_segments
789 * has been adjusted to be one fewer than the
790 * device can handle
792 rq->nr_phys_segments++;
795 if (!q->prep_rq_fn)
796 break;
798 ret = q->prep_rq_fn(q, rq);
799 if (ret == BLKPREP_OK) {
800 break;
801 } else if (ret == BLKPREP_DEFER) {
803 * the request may have been (partially) prepped.
804 * we need to keep this request in the front to
805 * avoid resource deadlock. REQ_STARTED will
806 * prevent other fs requests from passing this one.
808 if (q->dma_drain_size && rq->data_len &&
809 !(rq->cmd_flags & REQ_DONTPREP)) {
811 * remove the space for the drain we added
812 * so that we don't add it again
814 --rq->nr_phys_segments;
817 rq = NULL;
818 break;
819 } else if (ret == BLKPREP_KILL) {
820 rq->cmd_flags |= REQ_QUIET;
821 __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
822 } else {
823 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
824 break;
828 return rq;
830 EXPORT_SYMBOL(elv_next_request);
832 void elv_dequeue_request(struct request_queue *q, struct request *rq)
834 BUG_ON(list_empty(&rq->queuelist));
835 BUG_ON(ELV_ON_HASH(rq));
837 list_del_init(&rq->queuelist);
840 * the time frame between a request being removed from the lists
841 * and to it is freed is accounted as io that is in progress at
842 * the driver side.
844 if (blk_account_rq(rq))
845 q->in_flight++;
848 int elv_queue_empty(struct request_queue *q)
850 struct elevator_queue *e = q->elevator;
852 if (!list_empty(&q->queue_head))
853 return 0;
855 if (e->ops->elevator_queue_empty_fn)
856 return e->ops->elevator_queue_empty_fn(q);
858 return 1;
860 EXPORT_SYMBOL(elv_queue_empty);
862 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
864 struct elevator_queue *e = q->elevator;
866 if (e->ops->elevator_latter_req_fn)
867 return e->ops->elevator_latter_req_fn(q, rq);
868 return NULL;
871 struct request *elv_former_request(struct request_queue *q, struct request *rq)
873 struct elevator_queue *e = q->elevator;
875 if (e->ops->elevator_former_req_fn)
876 return e->ops->elevator_former_req_fn(q, rq);
877 return NULL;
880 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
882 struct elevator_queue *e = q->elevator;
884 if (e->ops->elevator_set_req_fn)
885 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
887 rq->elevator_private = NULL;
888 return 0;
891 void elv_put_request(struct request_queue *q, struct request *rq)
893 struct elevator_queue *e = q->elevator;
895 if (e->ops->elevator_put_req_fn)
896 e->ops->elevator_put_req_fn(rq);
899 int elv_may_queue(struct request_queue *q, int rw)
901 struct elevator_queue *e = q->elevator;
903 if (e->ops->elevator_may_queue_fn)
904 return e->ops->elevator_may_queue_fn(q, rw);
906 return ELV_MQUEUE_MAY;
909 void elv_abort_queue(struct request_queue *q)
911 struct request *rq;
913 while (!list_empty(&q->queue_head)) {
914 rq = list_entry_rq(q->queue_head.next);
915 rq->cmd_flags |= REQ_QUIET;
916 trace_block_rq_abort(q, rq);
917 __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
920 EXPORT_SYMBOL(elv_abort_queue);
922 void elv_completed_request(struct request_queue *q, struct request *rq)
924 struct elevator_queue *e = q->elevator;
927 * request is released from the driver, io must be done
929 if (blk_account_rq(rq)) {
930 q->in_flight--;
931 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
932 e->ops->elevator_completed_req_fn(q, rq);
936 * Check if the queue is waiting for fs requests to be
937 * drained for flush sequence.
939 if (unlikely(q->ordseq)) {
940 struct request *next = NULL;
942 if (!list_empty(&q->queue_head))
943 next = list_entry_rq(q->queue_head.next);
945 if (!q->in_flight &&
946 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
947 (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
948 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
949 blk_start_queueing(q);
954 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
956 static ssize_t
957 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
959 struct elv_fs_entry *entry = to_elv(attr);
960 struct elevator_queue *e;
961 ssize_t error;
963 if (!entry->show)
964 return -EIO;
966 e = container_of(kobj, struct elevator_queue, kobj);
967 mutex_lock(&e->sysfs_lock);
968 error = e->ops ? entry->show(e, page) : -ENOENT;
969 mutex_unlock(&e->sysfs_lock);
970 return error;
973 static ssize_t
974 elv_attr_store(struct kobject *kobj, struct attribute *attr,
975 const char *page, size_t length)
977 struct elv_fs_entry *entry = to_elv(attr);
978 struct elevator_queue *e;
979 ssize_t error;
981 if (!entry->store)
982 return -EIO;
984 e = container_of(kobj, struct elevator_queue, kobj);
985 mutex_lock(&e->sysfs_lock);
986 error = e->ops ? entry->store(e, page, length) : -ENOENT;
987 mutex_unlock(&e->sysfs_lock);
988 return error;
991 static struct sysfs_ops elv_sysfs_ops = {
992 .show = elv_attr_show,
993 .store = elv_attr_store,
996 static struct kobj_type elv_ktype = {
997 .sysfs_ops = &elv_sysfs_ops,
998 .release = elevator_release,
1001 int elv_register_queue(struct request_queue *q)
1003 struct elevator_queue *e = q->elevator;
1004 int error;
1006 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
1007 if (!error) {
1008 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
1009 if (attr) {
1010 while (attr->attr.name) {
1011 if (sysfs_create_file(&e->kobj, &attr->attr))
1012 break;
1013 attr++;
1016 kobject_uevent(&e->kobj, KOBJ_ADD);
1018 return error;
1021 static void __elv_unregister_queue(struct elevator_queue *e)
1023 kobject_uevent(&e->kobj, KOBJ_REMOVE);
1024 kobject_del(&e->kobj);
1027 void elv_unregister_queue(struct request_queue *q)
1029 if (q)
1030 __elv_unregister_queue(q->elevator);
1033 void elv_register(struct elevator_type *e)
1035 char *def = "";
1037 spin_lock(&elv_list_lock);
1038 BUG_ON(elevator_find(e->elevator_name));
1039 list_add_tail(&e->list, &elv_list);
1040 spin_unlock(&elv_list_lock);
1042 if (!strcmp(e->elevator_name, chosen_elevator) ||
1043 (!*chosen_elevator &&
1044 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
1045 def = " (default)";
1047 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
1048 def);
1050 EXPORT_SYMBOL_GPL(elv_register);
1052 void elv_unregister(struct elevator_type *e)
1054 struct task_struct *g, *p;
1057 * Iterate every thread in the process to remove the io contexts.
1059 if (e->ops.trim) {
1060 read_lock(&tasklist_lock);
1061 do_each_thread(g, p) {
1062 task_lock(p);
1063 if (p->io_context)
1064 e->ops.trim(p->io_context);
1065 task_unlock(p);
1066 } while_each_thread(g, p);
1067 read_unlock(&tasklist_lock);
1070 spin_lock(&elv_list_lock);
1071 list_del_init(&e->list);
1072 spin_unlock(&elv_list_lock);
1074 EXPORT_SYMBOL_GPL(elv_unregister);
1077 * switch to new_e io scheduler. be careful not to introduce deadlocks -
1078 * we don't free the old io scheduler, before we have allocated what we
1079 * need for the new one. this way we have a chance of going back to the old
1080 * one, if the new one fails init for some reason.
1082 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
1084 struct elevator_queue *old_elevator, *e;
1085 void *data;
1088 * Allocate new elevator
1090 e = elevator_alloc(q, new_e);
1091 if (!e)
1092 return 0;
1094 data = elevator_init_queue(q, e);
1095 if (!data) {
1096 kobject_put(&e->kobj);
1097 return 0;
1101 * Turn on BYPASS and drain all requests w/ elevator private data
1103 spin_lock_irq(q->queue_lock);
1105 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
1107 elv_drain_elevator(q);
1109 while (q->rq.elvpriv) {
1110 blk_start_queueing(q);
1111 spin_unlock_irq(q->queue_lock);
1112 msleep(10);
1113 spin_lock_irq(q->queue_lock);
1114 elv_drain_elevator(q);
1118 * Remember old elevator.
1120 old_elevator = q->elevator;
1123 * attach and start new elevator
1125 elevator_attach(q, e, data);
1127 spin_unlock_irq(q->queue_lock);
1129 __elv_unregister_queue(old_elevator);
1131 if (elv_register_queue(q))
1132 goto fail_register;
1135 * finally exit old elevator and turn off BYPASS.
1137 elevator_exit(old_elevator);
1138 spin_lock_irq(q->queue_lock);
1139 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1140 spin_unlock_irq(q->queue_lock);
1142 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1144 return 1;
1146 fail_register:
1148 * switch failed, exit the new io scheduler and reattach the old
1149 * one again (along with re-adding the sysfs dir)
1151 elevator_exit(e);
1152 q->elevator = old_elevator;
1153 elv_register_queue(q);
1155 spin_lock_irq(q->queue_lock);
1156 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1157 spin_unlock_irq(q->queue_lock);
1159 return 0;
1162 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1163 size_t count)
1165 char elevator_name[ELV_NAME_MAX];
1166 struct elevator_type *e;
1168 strlcpy(elevator_name, name, sizeof(elevator_name));
1169 strstrip(elevator_name);
1171 e = elevator_get(elevator_name);
1172 if (!e) {
1173 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1174 return -EINVAL;
1177 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1178 elevator_put(e);
1179 return count;
1182 if (!elevator_switch(q, e))
1183 printk(KERN_ERR "elevator: switch to %s failed\n",
1184 elevator_name);
1185 return count;
1188 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1190 struct elevator_queue *e = q->elevator;
1191 struct elevator_type *elv = e->elevator_type;
1192 struct elevator_type *__e;
1193 int len = 0;
1195 spin_lock(&elv_list_lock);
1196 list_for_each_entry(__e, &elv_list, list) {
1197 if (!strcmp(elv->elevator_name, __e->elevator_name))
1198 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1199 else
1200 len += sprintf(name+len, "%s ", __e->elevator_name);
1202 spin_unlock(&elv_list_lock);
1204 len += sprintf(len+name, "\n");
1205 return len;
1208 struct request *elv_rb_former_request(struct request_queue *q,
1209 struct request *rq)
1211 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1213 if (rbprev)
1214 return rb_entry_rq(rbprev);
1216 return NULL;
1218 EXPORT_SYMBOL(elv_rb_former_request);
1220 struct request *elv_rb_latter_request(struct request_queue *q,
1221 struct request *rq)
1223 struct rb_node *rbnext = rb_next(&rq->rb_node);
1225 if (rbnext)
1226 return rb_entry_rq(rbnext);
1228 return NULL;
1230 EXPORT_SYMBOL(elv_rb_latter_request);