1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/i2c-algo-bit.h>
18 #include <linux/mii.h>
19 #include "net_driver.h"
25 #include "falcon_hwdefs.h"
26 #include "falcon_io.h"
30 #include "workarounds.h"
32 /* Falcon hardware control.
33 * Falcon is the internal codename for the SFC4000 controller that is
34 * present in SFE400X evaluation boards
38 * struct falcon_nic_data - Falcon NIC state
39 * @next_buffer_table: First available buffer table id
40 * @pci_dev2: The secondary PCI device if present
41 * @i2c_data: Operations and state for I2C bit-bashing algorithm
42 * @int_error_count: Number of internal errors seen recently
43 * @int_error_expire: Time at which error count will be expired
45 struct falcon_nic_data
{
46 unsigned next_buffer_table
;
47 struct pci_dev
*pci_dev2
;
48 struct i2c_algo_bit_data i2c_data
;
50 unsigned int_error_count
;
51 unsigned long int_error_expire
;
54 /**************************************************************************
58 **************************************************************************
61 static int disable_dma_stats
;
63 /* This is set to 16 for a good reason. In summary, if larger than
64 * 16, the descriptor cache holds more than a default socket
65 * buffer's worth of packets (for UDP we can only have at most one
66 * socket buffer's worth outstanding). This combined with the fact
67 * that we only get 1 TX event per descriptor cache means the NIC
70 #define TX_DC_ENTRIES 16
71 #define TX_DC_ENTRIES_ORDER 0
72 #define TX_DC_BASE 0x130000
74 #define RX_DC_ENTRIES 64
75 #define RX_DC_ENTRIES_ORDER 2
76 #define RX_DC_BASE 0x100000
78 static const unsigned int
79 /* "Large" EEPROM device: Atmel AT25640 or similar
80 * 8 KB, 16-bit address, 32 B write block */
81 large_eeprom_type
= ((13 << SPI_DEV_TYPE_SIZE_LBN
)
82 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
83 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
)),
84 /* Default flash device: Atmel AT25F1024
85 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
86 default_flash_type
= ((17 << SPI_DEV_TYPE_SIZE_LBN
)
87 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
88 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN
)
89 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN
)
90 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
));
92 /* RX FIFO XOFF watermark
94 * When the amount of the RX FIFO increases used increases past this
95 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
96 * This also has an effect on RX/TX arbitration
98 static int rx_xoff_thresh_bytes
= -1;
99 module_param(rx_xoff_thresh_bytes
, int, 0644);
100 MODULE_PARM_DESC(rx_xoff_thresh_bytes
, "RX fifo XOFF threshold");
102 /* RX FIFO XON watermark
104 * When the amount of the RX FIFO used decreases below this
105 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
106 * This also has an effect on RX/TX arbitration
108 static int rx_xon_thresh_bytes
= -1;
109 module_param(rx_xon_thresh_bytes
, int, 0644);
110 MODULE_PARM_DESC(rx_xon_thresh_bytes
, "RX fifo XON threshold");
112 /* TX descriptor ring size - min 512 max 4k */
113 #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
114 #define FALCON_TXD_RING_SIZE 1024
115 #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
117 /* RX descriptor ring size - min 512 max 4k */
118 #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
119 #define FALCON_RXD_RING_SIZE 1024
120 #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
122 /* Event queue size - max 32k */
123 #define FALCON_EVQ_ORDER EVQ_SIZE_4K
124 #define FALCON_EVQ_SIZE 4096
125 #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
127 /* If FALCON_MAX_INT_ERRORS internal errors occur within
128 * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
131 #define FALCON_INT_ERROR_EXPIRE 3600
132 #define FALCON_MAX_INT_ERRORS 5
134 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
136 #define FALCON_FLUSH_INTERVAL 10
137 #define FALCON_FLUSH_POLL_COUNT 100
139 /**************************************************************************
143 **************************************************************************
146 /* DMA address mask */
147 #define FALCON_DMA_MASK DMA_BIT_MASK(46)
149 /* TX DMA length mask (13-bit) */
150 #define FALCON_TX_DMA_MASK (4096 - 1)
152 /* Size and alignment of special buffers (4KB) */
153 #define FALCON_BUF_SIZE 4096
155 /* Dummy SRAM size code */
156 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
158 #define FALCON_IS_DUAL_FUNC(efx) \
159 (falcon_rev(efx) < FALCON_REV_B0)
161 /**************************************************************************
163 * Falcon hardware access
165 **************************************************************************/
167 /* Read the current event from the event queue */
168 static inline efx_qword_t
*falcon_event(struct efx_channel
*channel
,
171 return (((efx_qword_t
*) (channel
->eventq
.addr
)) + index
);
174 /* See if an event is present
176 * We check both the high and low dword of the event for all ones. We
177 * wrote all ones when we cleared the event, and no valid event can
178 * have all ones in either its high or low dwords. This approach is
179 * robust against reordering.
181 * Note that using a single 64-bit comparison is incorrect; even
182 * though the CPU read will be atomic, the DMA write may not be.
184 static inline int falcon_event_present(efx_qword_t
*event
)
186 return (!(EFX_DWORD_IS_ALL_ONES(event
->dword
[0]) |
187 EFX_DWORD_IS_ALL_ONES(event
->dword
[1])));
190 /**************************************************************************
192 * I2C bus - this is a bit-bashing interface using GPIO pins
193 * Note that it uses the output enables to tristate the outputs
194 * SDA is the data pin and SCL is the clock
196 **************************************************************************
198 static void falcon_setsda(void *data
, int state
)
200 struct efx_nic
*efx
= (struct efx_nic
*)data
;
203 falcon_read(efx
, ®
, GPIO_CTL_REG_KER
);
204 EFX_SET_OWORD_FIELD(reg
, GPIO3_OEN
, !state
);
205 falcon_write(efx
, ®
, GPIO_CTL_REG_KER
);
208 static void falcon_setscl(void *data
, int state
)
210 struct efx_nic
*efx
= (struct efx_nic
*)data
;
213 falcon_read(efx
, ®
, GPIO_CTL_REG_KER
);
214 EFX_SET_OWORD_FIELD(reg
, GPIO0_OEN
, !state
);
215 falcon_write(efx
, ®
, GPIO_CTL_REG_KER
);
218 static int falcon_getsda(void *data
)
220 struct efx_nic
*efx
= (struct efx_nic
*)data
;
223 falcon_read(efx
, ®
, GPIO_CTL_REG_KER
);
224 return EFX_OWORD_FIELD(reg
, GPIO3_IN
);
227 static int falcon_getscl(void *data
)
229 struct efx_nic
*efx
= (struct efx_nic
*)data
;
232 falcon_read(efx
, ®
, GPIO_CTL_REG_KER
);
233 return EFX_OWORD_FIELD(reg
, GPIO0_IN
);
236 static struct i2c_algo_bit_data falcon_i2c_bit_operations
= {
237 .setsda
= falcon_setsda
,
238 .setscl
= falcon_setscl
,
239 .getsda
= falcon_getsda
,
240 .getscl
= falcon_getscl
,
242 /* Wait up to 50 ms for slave to let us pull SCL high */
243 .timeout
= DIV_ROUND_UP(HZ
, 20),
246 /**************************************************************************
248 * Falcon special buffer handling
249 * Special buffers are used for event queues and the TX and RX
252 *************************************************************************/
255 * Initialise a Falcon special buffer
257 * This will define a buffer (previously allocated via
258 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
259 * it to be used for event queues, descriptor rings etc.
262 falcon_init_special_buffer(struct efx_nic
*efx
,
263 struct efx_special_buffer
*buffer
)
265 efx_qword_t buf_desc
;
270 EFX_BUG_ON_PARANOID(!buffer
->addr
);
272 /* Write buffer descriptors to NIC */
273 for (i
= 0; i
< buffer
->entries
; i
++) {
274 index
= buffer
->index
+ i
;
275 dma_addr
= buffer
->dma_addr
+ (i
* 4096);
276 EFX_LOG(efx
, "mapping special buffer %d at %llx\n",
277 index
, (unsigned long long)dma_addr
);
278 EFX_POPULATE_QWORD_4(buf_desc
,
279 IP_DAT_BUF_SIZE
, IP_DAT_BUF_SIZE_4K
,
281 BUF_ADR_FBUF
, (dma_addr
>> 12),
282 BUF_OWNER_ID_FBUF
, 0);
283 falcon_write_sram(efx
, &buf_desc
, index
);
287 /* Unmaps a buffer from Falcon and clears the buffer table entries */
289 falcon_fini_special_buffer(struct efx_nic
*efx
,
290 struct efx_special_buffer
*buffer
)
292 efx_oword_t buf_tbl_upd
;
293 unsigned int start
= buffer
->index
;
294 unsigned int end
= (buffer
->index
+ buffer
->entries
- 1);
296 if (!buffer
->entries
)
299 EFX_LOG(efx
, "unmapping special buffers %d-%d\n",
300 buffer
->index
, buffer
->index
+ buffer
->entries
- 1);
302 EFX_POPULATE_OWORD_4(buf_tbl_upd
,
306 BUF_CLR_START_ID
, start
);
307 falcon_write(efx
, &buf_tbl_upd
, BUF_TBL_UPD_REG_KER
);
311 * Allocate a new Falcon special buffer
313 * This allocates memory for a new buffer, clears it and allocates a
314 * new buffer ID range. It does not write into Falcon's buffer table.
316 * This call will allocate 4KB buffers, since Falcon can't use 8KB
317 * buffers for event queues and descriptor rings.
319 static int falcon_alloc_special_buffer(struct efx_nic
*efx
,
320 struct efx_special_buffer
*buffer
,
323 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
325 len
= ALIGN(len
, FALCON_BUF_SIZE
);
327 buffer
->addr
= pci_alloc_consistent(efx
->pci_dev
, len
,
332 buffer
->entries
= len
/ FALCON_BUF_SIZE
;
333 BUG_ON(buffer
->dma_addr
& (FALCON_BUF_SIZE
- 1));
335 /* All zeros is a potentially valid event so memset to 0xff */
336 memset(buffer
->addr
, 0xff, len
);
338 /* Select new buffer ID */
339 buffer
->index
= nic_data
->next_buffer_table
;
340 nic_data
->next_buffer_table
+= buffer
->entries
;
342 EFX_LOG(efx
, "allocating special buffers %d-%d at %llx+%x "
343 "(virt %p phys %llx)\n", buffer
->index
,
344 buffer
->index
+ buffer
->entries
- 1,
345 (u64
)buffer
->dma_addr
, len
,
346 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
351 static void falcon_free_special_buffer(struct efx_nic
*efx
,
352 struct efx_special_buffer
*buffer
)
357 EFX_LOG(efx
, "deallocating special buffers %d-%d at %llx+%x "
358 "(virt %p phys %llx)\n", buffer
->index
,
359 buffer
->index
+ buffer
->entries
- 1,
360 (u64
)buffer
->dma_addr
, buffer
->len
,
361 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
363 pci_free_consistent(efx
->pci_dev
, buffer
->len
, buffer
->addr
,
369 /**************************************************************************
371 * Falcon generic buffer handling
372 * These buffers are used for interrupt status and MAC stats
374 **************************************************************************/
376 static int falcon_alloc_buffer(struct efx_nic
*efx
,
377 struct efx_buffer
*buffer
, unsigned int len
)
379 buffer
->addr
= pci_alloc_consistent(efx
->pci_dev
, len
,
384 memset(buffer
->addr
, 0, len
);
388 static void falcon_free_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
)
391 pci_free_consistent(efx
->pci_dev
, buffer
->len
,
392 buffer
->addr
, buffer
->dma_addr
);
397 /**************************************************************************
401 **************************************************************************/
403 /* Returns a pointer to the specified transmit descriptor in the TX
404 * descriptor queue belonging to the specified channel.
406 static inline efx_qword_t
*falcon_tx_desc(struct efx_tx_queue
*tx_queue
,
409 return (((efx_qword_t
*) (tx_queue
->txd
.addr
)) + index
);
412 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
413 static inline void falcon_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
418 write_ptr
= tx_queue
->write_count
& FALCON_TXD_RING_MASK
;
419 EFX_POPULATE_DWORD_1(reg
, TX_DESC_WPTR_DWORD
, write_ptr
);
420 falcon_writel_page(tx_queue
->efx
, ®
,
421 TX_DESC_UPD_REG_KER_DWORD
, tx_queue
->queue
);
425 /* For each entry inserted into the software descriptor ring, create a
426 * descriptor in the hardware TX descriptor ring (in host memory), and
429 void falcon_push_buffers(struct efx_tx_queue
*tx_queue
)
432 struct efx_tx_buffer
*buffer
;
436 BUG_ON(tx_queue
->write_count
== tx_queue
->insert_count
);
439 write_ptr
= tx_queue
->write_count
& FALCON_TXD_RING_MASK
;
440 buffer
= &tx_queue
->buffer
[write_ptr
];
441 txd
= falcon_tx_desc(tx_queue
, write_ptr
);
442 ++tx_queue
->write_count
;
444 /* Create TX descriptor ring entry */
445 EFX_POPULATE_QWORD_5(*txd
,
447 TX_KER_CONT
, buffer
->continuation
,
448 TX_KER_BYTE_CNT
, buffer
->len
,
449 TX_KER_BUF_REGION
, 0,
450 TX_KER_BUF_ADR
, buffer
->dma_addr
);
451 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
453 wmb(); /* Ensure descriptors are written before they are fetched */
454 falcon_notify_tx_desc(tx_queue
);
457 /* Allocate hardware resources for a TX queue */
458 int falcon_probe_tx(struct efx_tx_queue
*tx_queue
)
460 struct efx_nic
*efx
= tx_queue
->efx
;
461 return falcon_alloc_special_buffer(efx
, &tx_queue
->txd
,
462 FALCON_TXD_RING_SIZE
*
463 sizeof(efx_qword_t
));
466 void falcon_init_tx(struct efx_tx_queue
*tx_queue
)
468 efx_oword_t tx_desc_ptr
;
469 struct efx_nic
*efx
= tx_queue
->efx
;
471 tx_queue
->flushed
= false;
473 /* Pin TX descriptor ring */
474 falcon_init_special_buffer(efx
, &tx_queue
->txd
);
476 /* Push TX descriptor ring to card */
477 EFX_POPULATE_OWORD_10(tx_desc_ptr
,
481 TX_DESCQ_BUF_BASE_ID
, tx_queue
->txd
.index
,
482 TX_DESCQ_EVQ_ID
, tx_queue
->channel
->channel
,
483 TX_DESCQ_OWNER_ID
, 0,
484 TX_DESCQ_LABEL
, tx_queue
->queue
,
485 TX_DESCQ_SIZE
, FALCON_TXD_RING_ORDER
,
487 TX_NON_IP_DROP_DIS_B0
, 1);
489 if (falcon_rev(efx
) >= FALCON_REV_B0
) {
490 int csum
= tx_queue
->queue
== EFX_TX_QUEUE_OFFLOAD_CSUM
;
491 EFX_SET_OWORD_FIELD(tx_desc_ptr
, TX_IP_CHKSM_DIS_B0
, !csum
);
492 EFX_SET_OWORD_FIELD(tx_desc_ptr
, TX_TCP_CHKSM_DIS_B0
, !csum
);
495 falcon_write_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
498 if (falcon_rev(efx
) < FALCON_REV_B0
) {
501 /* Only 128 bits in this register */
502 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT
>= 128);
504 falcon_read(efx
, ®
, TX_CHKSM_CFG_REG_KER_A1
);
505 if (tx_queue
->queue
== EFX_TX_QUEUE_OFFLOAD_CSUM
)
506 clear_bit_le(tx_queue
->queue
, (void *)®
);
508 set_bit_le(tx_queue
->queue
, (void *)®
);
509 falcon_write(efx
, ®
, TX_CHKSM_CFG_REG_KER_A1
);
513 static void falcon_flush_tx_queue(struct efx_tx_queue
*tx_queue
)
515 struct efx_nic
*efx
= tx_queue
->efx
;
516 efx_oword_t tx_flush_descq
;
518 /* Post a flush command */
519 EFX_POPULATE_OWORD_2(tx_flush_descq
,
520 TX_FLUSH_DESCQ_CMD
, 1,
521 TX_FLUSH_DESCQ
, tx_queue
->queue
);
522 falcon_write(efx
, &tx_flush_descq
, TX_FLUSH_DESCQ_REG_KER
);
525 void falcon_fini_tx(struct efx_tx_queue
*tx_queue
)
527 struct efx_nic
*efx
= tx_queue
->efx
;
528 efx_oword_t tx_desc_ptr
;
530 /* The queue should have been flushed */
531 WARN_ON(!tx_queue
->flushed
);
533 /* Remove TX descriptor ring from card */
534 EFX_ZERO_OWORD(tx_desc_ptr
);
535 falcon_write_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
538 /* Unpin TX descriptor ring */
539 falcon_fini_special_buffer(efx
, &tx_queue
->txd
);
542 /* Free buffers backing TX queue */
543 void falcon_remove_tx(struct efx_tx_queue
*tx_queue
)
545 falcon_free_special_buffer(tx_queue
->efx
, &tx_queue
->txd
);
548 /**************************************************************************
552 **************************************************************************/
554 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
555 static inline efx_qword_t
*falcon_rx_desc(struct efx_rx_queue
*rx_queue
,
558 return (((efx_qword_t
*) (rx_queue
->rxd
.addr
)) + index
);
561 /* This creates an entry in the RX descriptor queue */
562 static inline void falcon_build_rx_desc(struct efx_rx_queue
*rx_queue
,
565 struct efx_rx_buffer
*rx_buf
;
568 rxd
= falcon_rx_desc(rx_queue
, index
);
569 rx_buf
= efx_rx_buffer(rx_queue
, index
);
570 EFX_POPULATE_QWORD_3(*rxd
,
573 rx_queue
->efx
->type
->rx_buffer_padding
,
574 RX_KER_BUF_REGION
, 0,
575 RX_KER_BUF_ADR
, rx_buf
->dma_addr
);
578 /* This writes to the RX_DESC_WPTR register for the specified receive
581 void falcon_notify_rx_desc(struct efx_rx_queue
*rx_queue
)
586 while (rx_queue
->notified_count
!= rx_queue
->added_count
) {
587 falcon_build_rx_desc(rx_queue
,
588 rx_queue
->notified_count
&
589 FALCON_RXD_RING_MASK
);
590 ++rx_queue
->notified_count
;
594 write_ptr
= rx_queue
->added_count
& FALCON_RXD_RING_MASK
;
595 EFX_POPULATE_DWORD_1(reg
, RX_DESC_WPTR_DWORD
, write_ptr
);
596 falcon_writel_page(rx_queue
->efx
, ®
,
597 RX_DESC_UPD_REG_KER_DWORD
, rx_queue
->queue
);
600 int falcon_probe_rx(struct efx_rx_queue
*rx_queue
)
602 struct efx_nic
*efx
= rx_queue
->efx
;
603 return falcon_alloc_special_buffer(efx
, &rx_queue
->rxd
,
604 FALCON_RXD_RING_SIZE
*
605 sizeof(efx_qword_t
));
608 void falcon_init_rx(struct efx_rx_queue
*rx_queue
)
610 efx_oword_t rx_desc_ptr
;
611 struct efx_nic
*efx
= rx_queue
->efx
;
612 bool is_b0
= falcon_rev(efx
) >= FALCON_REV_B0
;
613 bool iscsi_digest_en
= is_b0
;
615 EFX_LOG(efx
, "RX queue %d ring in special buffers %d-%d\n",
616 rx_queue
->queue
, rx_queue
->rxd
.index
,
617 rx_queue
->rxd
.index
+ rx_queue
->rxd
.entries
- 1);
619 rx_queue
->flushed
= false;
621 /* Pin RX descriptor ring */
622 falcon_init_special_buffer(efx
, &rx_queue
->rxd
);
624 /* Push RX descriptor ring to card */
625 EFX_POPULATE_OWORD_10(rx_desc_ptr
,
626 RX_ISCSI_DDIG_EN
, iscsi_digest_en
,
627 RX_ISCSI_HDIG_EN
, iscsi_digest_en
,
628 RX_DESCQ_BUF_BASE_ID
, rx_queue
->rxd
.index
,
629 RX_DESCQ_EVQ_ID
, rx_queue
->channel
->channel
,
630 RX_DESCQ_OWNER_ID
, 0,
631 RX_DESCQ_LABEL
, rx_queue
->queue
,
632 RX_DESCQ_SIZE
, FALCON_RXD_RING_ORDER
,
633 RX_DESCQ_TYPE
, 0 /* kernel queue */ ,
634 /* For >=B0 this is scatter so disable */
635 RX_DESCQ_JUMBO
, !is_b0
,
637 falcon_write_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
641 static void falcon_flush_rx_queue(struct efx_rx_queue
*rx_queue
)
643 struct efx_nic
*efx
= rx_queue
->efx
;
644 efx_oword_t rx_flush_descq
;
646 /* Post a flush command */
647 EFX_POPULATE_OWORD_2(rx_flush_descq
,
648 RX_FLUSH_DESCQ_CMD
, 1,
649 RX_FLUSH_DESCQ
, rx_queue
->queue
);
650 falcon_write(efx
, &rx_flush_descq
, RX_FLUSH_DESCQ_REG_KER
);
653 void falcon_fini_rx(struct efx_rx_queue
*rx_queue
)
655 efx_oword_t rx_desc_ptr
;
656 struct efx_nic
*efx
= rx_queue
->efx
;
658 /* The queue should already have been flushed */
659 WARN_ON(!rx_queue
->flushed
);
661 /* Remove RX descriptor ring from card */
662 EFX_ZERO_OWORD(rx_desc_ptr
);
663 falcon_write_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
666 /* Unpin RX descriptor ring */
667 falcon_fini_special_buffer(efx
, &rx_queue
->rxd
);
670 /* Free buffers backing RX queue */
671 void falcon_remove_rx(struct efx_rx_queue
*rx_queue
)
673 falcon_free_special_buffer(rx_queue
->efx
, &rx_queue
->rxd
);
676 /**************************************************************************
678 * Falcon event queue processing
679 * Event queues are processed by per-channel tasklets.
681 **************************************************************************/
683 /* Update a channel's event queue's read pointer (RPTR) register
685 * This writes the EVQ_RPTR_REG register for the specified channel's
688 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
689 * whereas channel->eventq_read_ptr contains the index of the "next to
692 void falcon_eventq_read_ack(struct efx_channel
*channel
)
695 struct efx_nic
*efx
= channel
->efx
;
697 EFX_POPULATE_DWORD_1(reg
, EVQ_RPTR_DWORD
, channel
->eventq_read_ptr
);
698 falcon_writel_table(efx
, ®
, efx
->type
->evq_rptr_tbl_base
,
702 /* Use HW to insert a SW defined event */
703 void falcon_generate_event(struct efx_channel
*channel
, efx_qword_t
*event
)
705 efx_oword_t drv_ev_reg
;
707 EFX_POPULATE_OWORD_2(drv_ev_reg
,
708 DRV_EV_QID
, channel
->channel
,
710 EFX_QWORD_FIELD64(*event
, WHOLE_EVENT
));
711 falcon_write(channel
->efx
, &drv_ev_reg
, DRV_EV_REG_KER
);
714 /* Handle a transmit completion event
716 * Falcon batches TX completion events; the message we receive is of
717 * the form "complete all TX events up to this index".
719 static void falcon_handle_tx_event(struct efx_channel
*channel
,
722 unsigned int tx_ev_desc_ptr
;
723 unsigned int tx_ev_q_label
;
724 struct efx_tx_queue
*tx_queue
;
725 struct efx_nic
*efx
= channel
->efx
;
727 if (likely(EFX_QWORD_FIELD(*event
, TX_EV_COMP
))) {
728 /* Transmit completion */
729 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, TX_EV_DESC_PTR
);
730 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, TX_EV_Q_LABEL
);
731 tx_queue
= &efx
->tx_queue
[tx_ev_q_label
];
732 channel
->irq_mod_score
+=
733 (tx_ev_desc_ptr
- tx_queue
->read_count
) &
734 efx
->type
->txd_ring_mask
;
735 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
);
736 } else if (EFX_QWORD_FIELD(*event
, TX_EV_WQ_FF_FULL
)) {
737 /* Rewrite the FIFO write pointer */
738 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, TX_EV_Q_LABEL
);
739 tx_queue
= &efx
->tx_queue
[tx_ev_q_label
];
741 if (efx_dev_registered(efx
))
742 netif_tx_lock(efx
->net_dev
);
743 falcon_notify_tx_desc(tx_queue
);
744 if (efx_dev_registered(efx
))
745 netif_tx_unlock(efx
->net_dev
);
746 } else if (EFX_QWORD_FIELD(*event
, TX_EV_PKT_ERR
) &&
747 EFX_WORKAROUND_10727(efx
)) {
748 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
750 EFX_ERR(efx
, "channel %d unexpected TX event "
751 EFX_QWORD_FMT
"\n", channel
->channel
,
752 EFX_QWORD_VAL(*event
));
756 /* Detect errors included in the rx_evt_pkt_ok bit. */
757 static void falcon_handle_rx_not_ok(struct efx_rx_queue
*rx_queue
,
758 const efx_qword_t
*event
,
762 struct efx_nic
*efx
= rx_queue
->efx
;
763 bool rx_ev_buf_owner_id_err
, rx_ev_ip_hdr_chksum_err
;
764 bool rx_ev_tcp_udp_chksum_err
, rx_ev_eth_crc_err
;
765 bool rx_ev_frm_trunc
, rx_ev_drib_nib
, rx_ev_tobe_disc
;
766 bool rx_ev_other_err
, rx_ev_pause_frm
;
767 bool rx_ev_ip_frag_err
, rx_ev_hdr_type
, rx_ev_mcast_pkt
;
768 unsigned rx_ev_pkt_type
;
770 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, RX_EV_HDR_TYPE
);
771 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, RX_EV_MCAST_PKT
);
772 rx_ev_tobe_disc
= EFX_QWORD_FIELD(*event
, RX_EV_TOBE_DISC
);
773 rx_ev_pkt_type
= EFX_QWORD_FIELD(*event
, RX_EV_PKT_TYPE
);
774 rx_ev_buf_owner_id_err
= EFX_QWORD_FIELD(*event
,
775 RX_EV_BUF_OWNER_ID_ERR
);
776 rx_ev_ip_frag_err
= EFX_QWORD_FIELD(*event
, RX_EV_IF_FRAG_ERR
);
777 rx_ev_ip_hdr_chksum_err
= EFX_QWORD_FIELD(*event
,
778 RX_EV_IP_HDR_CHKSUM_ERR
);
779 rx_ev_tcp_udp_chksum_err
= EFX_QWORD_FIELD(*event
,
780 RX_EV_TCP_UDP_CHKSUM_ERR
);
781 rx_ev_eth_crc_err
= EFX_QWORD_FIELD(*event
, RX_EV_ETH_CRC_ERR
);
782 rx_ev_frm_trunc
= EFX_QWORD_FIELD(*event
, RX_EV_FRM_TRUNC
);
783 rx_ev_drib_nib
= ((falcon_rev(efx
) >= FALCON_REV_B0
) ?
784 0 : EFX_QWORD_FIELD(*event
, RX_EV_DRIB_NIB
));
785 rx_ev_pause_frm
= EFX_QWORD_FIELD(*event
, RX_EV_PAUSE_FRM_ERR
);
787 /* Every error apart from tobe_disc and pause_frm */
788 rx_ev_other_err
= (rx_ev_drib_nib
| rx_ev_tcp_udp_chksum_err
|
789 rx_ev_buf_owner_id_err
| rx_ev_eth_crc_err
|
790 rx_ev_frm_trunc
| rx_ev_ip_hdr_chksum_err
);
792 /* Count errors that are not in MAC stats. Ignore expected
793 * checksum errors during self-test. */
795 ++rx_queue
->channel
->n_rx_frm_trunc
;
796 else if (rx_ev_tobe_disc
)
797 ++rx_queue
->channel
->n_rx_tobe_disc
;
798 else if (!efx
->loopback_selftest
) {
799 if (rx_ev_ip_hdr_chksum_err
)
800 ++rx_queue
->channel
->n_rx_ip_hdr_chksum_err
;
801 else if (rx_ev_tcp_udp_chksum_err
)
802 ++rx_queue
->channel
->n_rx_tcp_udp_chksum_err
;
804 if (rx_ev_ip_frag_err
)
805 ++rx_queue
->channel
->n_rx_ip_frag_err
;
807 /* The frame must be discarded if any of these are true. */
808 *discard
= (rx_ev_eth_crc_err
| rx_ev_frm_trunc
| rx_ev_drib_nib
|
809 rx_ev_tobe_disc
| rx_ev_pause_frm
);
811 /* TOBE_DISC is expected on unicast mismatches; don't print out an
812 * error message. FRM_TRUNC indicates RXDP dropped the packet due
813 * to a FIFO overflow.
815 #ifdef EFX_ENABLE_DEBUG
816 if (rx_ev_other_err
) {
817 EFX_INFO_RL(efx
, " RX queue %d unexpected RX event "
818 EFX_QWORD_FMT
"%s%s%s%s%s%s%s%s\n",
819 rx_queue
->queue
, EFX_QWORD_VAL(*event
),
820 rx_ev_buf_owner_id_err
? " [OWNER_ID_ERR]" : "",
821 rx_ev_ip_hdr_chksum_err
?
822 " [IP_HDR_CHKSUM_ERR]" : "",
823 rx_ev_tcp_udp_chksum_err
?
824 " [TCP_UDP_CHKSUM_ERR]" : "",
825 rx_ev_eth_crc_err
? " [ETH_CRC_ERR]" : "",
826 rx_ev_frm_trunc
? " [FRM_TRUNC]" : "",
827 rx_ev_drib_nib
? " [DRIB_NIB]" : "",
828 rx_ev_tobe_disc
? " [TOBE_DISC]" : "",
829 rx_ev_pause_frm
? " [PAUSE]" : "");
834 /* Handle receive events that are not in-order. */
835 static void falcon_handle_rx_bad_index(struct efx_rx_queue
*rx_queue
,
838 struct efx_nic
*efx
= rx_queue
->efx
;
839 unsigned expected
, dropped
;
841 expected
= rx_queue
->removed_count
& FALCON_RXD_RING_MASK
;
842 dropped
= ((index
+ FALCON_RXD_RING_SIZE
- expected
) &
843 FALCON_RXD_RING_MASK
);
844 EFX_INFO(efx
, "dropped %d events (index=%d expected=%d)\n",
845 dropped
, index
, expected
);
847 efx_schedule_reset(efx
, EFX_WORKAROUND_5676(efx
) ?
848 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
851 /* Handle a packet received event
853 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
854 * wrong destination address
855 * Also "is multicast" and "matches multicast filter" flags can be used to
856 * discard non-matching multicast packets.
858 static void falcon_handle_rx_event(struct efx_channel
*channel
,
859 const efx_qword_t
*event
)
861 unsigned int rx_ev_desc_ptr
, rx_ev_byte_cnt
;
862 unsigned int rx_ev_hdr_type
, rx_ev_mcast_pkt
;
863 unsigned expected_ptr
;
864 bool rx_ev_pkt_ok
, discard
= false, checksummed
;
865 struct efx_rx_queue
*rx_queue
;
866 struct efx_nic
*efx
= channel
->efx
;
868 /* Basic packet information */
869 rx_ev_byte_cnt
= EFX_QWORD_FIELD(*event
, RX_EV_BYTE_CNT
);
870 rx_ev_pkt_ok
= EFX_QWORD_FIELD(*event
, RX_EV_PKT_OK
);
871 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, RX_EV_HDR_TYPE
);
872 WARN_ON(EFX_QWORD_FIELD(*event
, RX_EV_JUMBO_CONT
));
873 WARN_ON(EFX_QWORD_FIELD(*event
, RX_EV_SOP
) != 1);
874 WARN_ON(EFX_QWORD_FIELD(*event
, RX_EV_Q_LABEL
) != channel
->channel
);
876 rx_queue
= &efx
->rx_queue
[channel
->channel
];
878 rx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, RX_EV_DESC_PTR
);
879 expected_ptr
= rx_queue
->removed_count
& FALCON_RXD_RING_MASK
;
880 if (unlikely(rx_ev_desc_ptr
!= expected_ptr
))
881 falcon_handle_rx_bad_index(rx_queue
, rx_ev_desc_ptr
);
883 if (likely(rx_ev_pkt_ok
)) {
884 /* If packet is marked as OK and packet type is TCP/IPv4 or
885 * UDP/IPv4, then we can rely on the hardware checksum.
887 checksummed
= RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type
);
889 falcon_handle_rx_not_ok(rx_queue
, event
, &rx_ev_pkt_ok
,
894 /* Detect multicast packets that didn't match the filter */
895 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, RX_EV_MCAST_PKT
);
896 if (rx_ev_mcast_pkt
) {
897 unsigned int rx_ev_mcast_hash_match
=
898 EFX_QWORD_FIELD(*event
, RX_EV_MCAST_HASH_MATCH
);
900 if (unlikely(!rx_ev_mcast_hash_match
))
904 channel
->irq_mod_score
+= 2;
906 /* Handle received packet */
907 efx_rx_packet(rx_queue
, rx_ev_desc_ptr
, rx_ev_byte_cnt
,
908 checksummed
, discard
);
911 /* Global events are basically PHY events */
912 static void falcon_handle_global_event(struct efx_channel
*channel
,
915 struct efx_nic
*efx
= channel
->efx
;
916 bool handled
= false;
918 if (EFX_QWORD_FIELD(*event
, G_PHY0_INTR
) ||
919 EFX_QWORD_FIELD(*event
, G_PHY1_INTR
) ||
920 EFX_QWORD_FIELD(*event
, XG_PHY_INTR
) ||
921 EFX_QWORD_FIELD(*event
, XFP_PHY_INTR
)) {
922 efx
->phy_op
->clear_interrupt(efx
);
923 queue_work(efx
->workqueue
, &efx
->phy_work
);
927 if ((falcon_rev(efx
) >= FALCON_REV_B0
) &&
928 EFX_QWORD_FIELD(*event
, XG_MNT_INTR_B0
)) {
929 queue_work(efx
->workqueue
, &efx
->mac_work
);
933 if (EFX_QWORD_FIELD_VER(efx
, *event
, RX_RECOVERY
)) {
934 EFX_ERR(efx
, "channel %d seen global RX_RESET "
935 "event. Resetting.\n", channel
->channel
);
937 atomic_inc(&efx
->rx_reset
);
938 efx_schedule_reset(efx
, EFX_WORKAROUND_6555(efx
) ?
939 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
944 EFX_ERR(efx
, "channel %d unknown global event "
945 EFX_QWORD_FMT
"\n", channel
->channel
,
946 EFX_QWORD_VAL(*event
));
949 static void falcon_handle_driver_event(struct efx_channel
*channel
,
952 struct efx_nic
*efx
= channel
->efx
;
953 unsigned int ev_sub_code
;
954 unsigned int ev_sub_data
;
956 ev_sub_code
= EFX_QWORD_FIELD(*event
, DRIVER_EV_SUB_CODE
);
957 ev_sub_data
= EFX_QWORD_FIELD(*event
, DRIVER_EV_SUB_DATA
);
959 switch (ev_sub_code
) {
960 case TX_DESCQ_FLS_DONE_EV_DECODE
:
961 EFX_TRACE(efx
, "channel %d TXQ %d flushed\n",
962 channel
->channel
, ev_sub_data
);
964 case RX_DESCQ_FLS_DONE_EV_DECODE
:
965 EFX_TRACE(efx
, "channel %d RXQ %d flushed\n",
966 channel
->channel
, ev_sub_data
);
968 case EVQ_INIT_DONE_EV_DECODE
:
969 EFX_LOG(efx
, "channel %d EVQ %d initialised\n",
970 channel
->channel
, ev_sub_data
);
972 case SRM_UPD_DONE_EV_DECODE
:
973 EFX_TRACE(efx
, "channel %d SRAM update done\n",
976 case WAKE_UP_EV_DECODE
:
977 EFX_TRACE(efx
, "channel %d RXQ %d wakeup event\n",
978 channel
->channel
, ev_sub_data
);
980 case TIMER_EV_DECODE
:
981 EFX_TRACE(efx
, "channel %d RX queue %d timer expired\n",
982 channel
->channel
, ev_sub_data
);
984 case RX_RECOVERY_EV_DECODE
:
985 EFX_ERR(efx
, "channel %d seen DRIVER RX_RESET event. "
986 "Resetting.\n", channel
->channel
);
987 atomic_inc(&efx
->rx_reset
);
988 efx_schedule_reset(efx
,
989 EFX_WORKAROUND_6555(efx
) ?
990 RESET_TYPE_RX_RECOVERY
:
993 case RX_DSC_ERROR_EV_DECODE
:
994 EFX_ERR(efx
, "RX DMA Q %d reports descriptor fetch error."
995 " RX Q %d is disabled.\n", ev_sub_data
, ev_sub_data
);
996 efx_schedule_reset(efx
, RESET_TYPE_RX_DESC_FETCH
);
998 case TX_DSC_ERROR_EV_DECODE
:
999 EFX_ERR(efx
, "TX DMA Q %d reports descriptor fetch error."
1000 " TX Q %d is disabled.\n", ev_sub_data
, ev_sub_data
);
1001 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
1004 EFX_TRACE(efx
, "channel %d unknown driver event code %d "
1005 "data %04x\n", channel
->channel
, ev_sub_code
,
1011 int falcon_process_eventq(struct efx_channel
*channel
, int rx_quota
)
1013 unsigned int read_ptr
;
1014 efx_qword_t event
, *p_event
;
1018 read_ptr
= channel
->eventq_read_ptr
;
1021 p_event
= falcon_event(channel
, read_ptr
);
1024 if (!falcon_event_present(&event
))
1028 EFX_TRACE(channel
->efx
, "channel %d event is "EFX_QWORD_FMT
"\n",
1029 channel
->channel
, EFX_QWORD_VAL(event
));
1031 /* Clear this event by marking it all ones */
1032 EFX_SET_QWORD(*p_event
);
1034 ev_code
= EFX_QWORD_FIELD(event
, EV_CODE
);
1037 case RX_IP_EV_DECODE
:
1038 falcon_handle_rx_event(channel
, &event
);
1041 case TX_IP_EV_DECODE
:
1042 falcon_handle_tx_event(channel
, &event
);
1044 case DRV_GEN_EV_DECODE
:
1045 channel
->eventq_magic
1046 = EFX_QWORD_FIELD(event
, EVQ_MAGIC
);
1047 EFX_LOG(channel
->efx
, "channel %d received generated "
1048 "event "EFX_QWORD_FMT
"\n", channel
->channel
,
1049 EFX_QWORD_VAL(event
));
1051 case GLOBAL_EV_DECODE
:
1052 falcon_handle_global_event(channel
, &event
);
1054 case DRIVER_EV_DECODE
:
1055 falcon_handle_driver_event(channel
, &event
);
1058 EFX_ERR(channel
->efx
, "channel %d unknown event type %d"
1059 " (data " EFX_QWORD_FMT
")\n", channel
->channel
,
1060 ev_code
, EFX_QWORD_VAL(event
));
1063 /* Increment read pointer */
1064 read_ptr
= (read_ptr
+ 1) & FALCON_EVQ_MASK
;
1066 } while (rx_packets
< rx_quota
);
1068 channel
->eventq_read_ptr
= read_ptr
;
1072 void falcon_set_int_moderation(struct efx_channel
*channel
)
1074 efx_dword_t timer_cmd
;
1075 struct efx_nic
*efx
= channel
->efx
;
1077 /* Set timer register */
1078 if (channel
->irq_moderation
) {
1079 /* Round to resolution supported by hardware. The value we
1080 * program is based at 0. So actual interrupt moderation
1081 * achieved is ((x + 1) * res).
1083 channel
->irq_moderation
-= (channel
->irq_moderation
%
1084 FALCON_IRQ_MOD_RESOLUTION
);
1085 if (channel
->irq_moderation
< FALCON_IRQ_MOD_RESOLUTION
)
1086 channel
->irq_moderation
= FALCON_IRQ_MOD_RESOLUTION
;
1087 EFX_POPULATE_DWORD_2(timer_cmd
,
1088 TIMER_MODE
, TIMER_MODE_INT_HLDOFF
,
1090 channel
->irq_moderation
/
1091 FALCON_IRQ_MOD_RESOLUTION
- 1);
1093 EFX_POPULATE_DWORD_2(timer_cmd
,
1094 TIMER_MODE
, TIMER_MODE_DIS
,
1097 falcon_writel_page_locked(efx
, &timer_cmd
, TIMER_CMD_REG_KER
,
1102 /* Allocate buffer table entries for event queue */
1103 int falcon_probe_eventq(struct efx_channel
*channel
)
1105 struct efx_nic
*efx
= channel
->efx
;
1106 unsigned int evq_size
;
1108 evq_size
= FALCON_EVQ_SIZE
* sizeof(efx_qword_t
);
1109 return falcon_alloc_special_buffer(efx
, &channel
->eventq
, evq_size
);
1112 void falcon_init_eventq(struct efx_channel
*channel
)
1114 efx_oword_t evq_ptr
;
1115 struct efx_nic
*efx
= channel
->efx
;
1117 EFX_LOG(efx
, "channel %d event queue in special buffers %d-%d\n",
1118 channel
->channel
, channel
->eventq
.index
,
1119 channel
->eventq
.index
+ channel
->eventq
.entries
- 1);
1121 /* Pin event queue buffer */
1122 falcon_init_special_buffer(efx
, &channel
->eventq
);
1124 /* Fill event queue with all ones (i.e. empty events) */
1125 memset(channel
->eventq
.addr
, 0xff, channel
->eventq
.len
);
1127 /* Push event queue to card */
1128 EFX_POPULATE_OWORD_3(evq_ptr
,
1130 EVQ_SIZE
, FALCON_EVQ_ORDER
,
1131 EVQ_BUF_BASE_ID
, channel
->eventq
.index
);
1132 falcon_write_table(efx
, &evq_ptr
, efx
->type
->evq_ptr_tbl_base
,
1135 falcon_set_int_moderation(channel
);
1138 void falcon_fini_eventq(struct efx_channel
*channel
)
1140 efx_oword_t eventq_ptr
;
1141 struct efx_nic
*efx
= channel
->efx
;
1143 /* Remove event queue from card */
1144 EFX_ZERO_OWORD(eventq_ptr
);
1145 falcon_write_table(efx
, &eventq_ptr
, efx
->type
->evq_ptr_tbl_base
,
1148 /* Unpin event queue */
1149 falcon_fini_special_buffer(efx
, &channel
->eventq
);
1152 /* Free buffers backing event queue */
1153 void falcon_remove_eventq(struct efx_channel
*channel
)
1155 falcon_free_special_buffer(channel
->efx
, &channel
->eventq
);
1159 /* Generates a test event on the event queue. A subsequent call to
1160 * process_eventq() should pick up the event and place the value of
1161 * "magic" into channel->eventq_magic;
1163 void falcon_generate_test_event(struct efx_channel
*channel
, unsigned int magic
)
1165 efx_qword_t test_event
;
1167 EFX_POPULATE_QWORD_2(test_event
,
1168 EV_CODE
, DRV_GEN_EV_DECODE
,
1170 falcon_generate_event(channel
, &test_event
);
1173 void falcon_sim_phy_event(struct efx_nic
*efx
)
1175 efx_qword_t phy_event
;
1177 EFX_POPULATE_QWORD_1(phy_event
, EV_CODE
, GLOBAL_EV_DECODE
);
1179 EFX_SET_OWORD_FIELD(phy_event
, XG_PHY_INTR
, 1);
1181 EFX_SET_OWORD_FIELD(phy_event
, G_PHY0_INTR
, 1);
1183 falcon_generate_event(&efx
->channel
[0], &phy_event
);
1186 /**************************************************************************
1190 **************************************************************************/
1193 static void falcon_poll_flush_events(struct efx_nic
*efx
)
1195 struct efx_channel
*channel
= &efx
->channel
[0];
1196 struct efx_tx_queue
*tx_queue
;
1197 struct efx_rx_queue
*rx_queue
;
1198 unsigned int read_ptr
= channel
->eventq_read_ptr
;
1199 unsigned int end_ptr
= (read_ptr
- 1) & FALCON_EVQ_MASK
;
1202 efx_qword_t
*event
= falcon_event(channel
, read_ptr
);
1203 int ev_code
, ev_sub_code
, ev_queue
;
1206 if (!falcon_event_present(event
))
1209 ev_code
= EFX_QWORD_FIELD(*event
, EV_CODE
);
1210 ev_sub_code
= EFX_QWORD_FIELD(*event
, DRIVER_EV_SUB_CODE
);
1211 if (ev_code
== DRIVER_EV_DECODE
&&
1212 ev_sub_code
== TX_DESCQ_FLS_DONE_EV_DECODE
) {
1213 ev_queue
= EFX_QWORD_FIELD(*event
,
1214 DRIVER_EV_TX_DESCQ_ID
);
1215 if (ev_queue
< EFX_TX_QUEUE_COUNT
) {
1216 tx_queue
= efx
->tx_queue
+ ev_queue
;
1217 tx_queue
->flushed
= true;
1219 } else if (ev_code
== DRIVER_EV_DECODE
&&
1220 ev_sub_code
== RX_DESCQ_FLS_DONE_EV_DECODE
) {
1221 ev_queue
= EFX_QWORD_FIELD(*event
,
1222 DRIVER_EV_RX_DESCQ_ID
);
1223 ev_failed
= EFX_QWORD_FIELD(*event
,
1224 DRIVER_EV_RX_FLUSH_FAIL
);
1225 if (ev_queue
< efx
->n_rx_queues
) {
1226 rx_queue
= efx
->rx_queue
+ ev_queue
;
1228 /* retry the rx flush */
1230 falcon_flush_rx_queue(rx_queue
);
1232 rx_queue
->flushed
= true;
1236 read_ptr
= (read_ptr
+ 1) & FALCON_EVQ_MASK
;
1237 } while (read_ptr
!= end_ptr
);
1240 /* Handle tx and rx flushes at the same time, since they run in
1241 * parallel in the hardware and there's no reason for us to
1243 int falcon_flush_queues(struct efx_nic
*efx
)
1245 struct efx_rx_queue
*rx_queue
;
1246 struct efx_tx_queue
*tx_queue
;
1250 /* Issue flush requests */
1251 efx_for_each_tx_queue(tx_queue
, efx
) {
1252 tx_queue
->flushed
= false;
1253 falcon_flush_tx_queue(tx_queue
);
1255 efx_for_each_rx_queue(rx_queue
, efx
) {
1256 rx_queue
->flushed
= false;
1257 falcon_flush_rx_queue(rx_queue
);
1260 /* Poll the evq looking for flush completions. Since we're not pushing
1261 * any more rx or tx descriptors at this point, we're in no danger of
1262 * overflowing the evq whilst we wait */
1263 for (i
= 0; i
< FALCON_FLUSH_POLL_COUNT
; ++i
) {
1264 msleep(FALCON_FLUSH_INTERVAL
);
1265 falcon_poll_flush_events(efx
);
1267 /* Check if every queue has been succesfully flushed */
1268 outstanding
= false;
1269 efx_for_each_tx_queue(tx_queue
, efx
)
1270 outstanding
|= !tx_queue
->flushed
;
1271 efx_for_each_rx_queue(rx_queue
, efx
)
1272 outstanding
|= !rx_queue
->flushed
;
1277 /* Mark the queues as all flushed. We're going to return failure
1278 * leading to a reset, or fake up success anyway. "flushed" now
1279 * indicates that we tried to flush. */
1280 efx_for_each_tx_queue(tx_queue
, efx
) {
1281 if (!tx_queue
->flushed
)
1282 EFX_ERR(efx
, "tx queue %d flush command timed out\n",
1284 tx_queue
->flushed
= true;
1286 efx_for_each_rx_queue(rx_queue
, efx
) {
1287 if (!rx_queue
->flushed
)
1288 EFX_ERR(efx
, "rx queue %d flush command timed out\n",
1290 rx_queue
->flushed
= true;
1293 if (EFX_WORKAROUND_7803(efx
))
1299 /**************************************************************************
1301 * Falcon hardware interrupts
1302 * The hardware interrupt handler does very little work; all the event
1303 * queue processing is carried out by per-channel tasklets.
1305 **************************************************************************/
1307 /* Enable/disable/generate Falcon interrupts */
1308 static inline void falcon_interrupts(struct efx_nic
*efx
, int enabled
,
1311 efx_oword_t int_en_reg_ker
;
1313 EFX_POPULATE_OWORD_2(int_en_reg_ker
,
1315 DRV_INT_EN_KER
, enabled
);
1316 falcon_write(efx
, &int_en_reg_ker
, INT_EN_REG_KER
);
1319 void falcon_enable_interrupts(struct efx_nic
*efx
)
1321 efx_oword_t int_adr_reg_ker
;
1322 struct efx_channel
*channel
;
1324 EFX_ZERO_OWORD(*((efx_oword_t
*) efx
->irq_status
.addr
));
1325 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1327 /* Program address */
1328 EFX_POPULATE_OWORD_2(int_adr_reg_ker
,
1329 NORM_INT_VEC_DIS_KER
, EFX_INT_MODE_USE_MSI(efx
),
1330 INT_ADR_KER
, efx
->irq_status
.dma_addr
);
1331 falcon_write(efx
, &int_adr_reg_ker
, INT_ADR_REG_KER
);
1333 /* Enable interrupts */
1334 falcon_interrupts(efx
, 1, 0);
1336 /* Force processing of all the channels to get the EVQ RPTRs up to
1338 efx_for_each_channel(channel
, efx
)
1339 efx_schedule_channel(channel
);
1342 void falcon_disable_interrupts(struct efx_nic
*efx
)
1344 /* Disable interrupts */
1345 falcon_interrupts(efx
, 0, 0);
1348 /* Generate a Falcon test interrupt
1349 * Interrupt must already have been enabled, otherwise nasty things
1352 void falcon_generate_interrupt(struct efx_nic
*efx
)
1354 falcon_interrupts(efx
, 1, 1);
1357 /* Acknowledge a legacy interrupt from Falcon
1359 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1361 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1362 * BIU. Interrupt acknowledge is read sensitive so must write instead
1363 * (then read to ensure the BIU collector is flushed)
1365 * NB most hardware supports MSI interrupts
1367 static inline void falcon_irq_ack_a1(struct efx_nic
*efx
)
1371 EFX_POPULATE_DWORD_1(reg
, INT_ACK_DUMMY_DATA
, 0xb7eb7e);
1372 falcon_writel(efx
, ®
, INT_ACK_REG_KER_A1
);
1373 falcon_readl(efx
, ®
, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1
);
1376 /* Process a fatal interrupt
1377 * Disable bus mastering ASAP and schedule a reset
1379 static irqreturn_t
falcon_fatal_interrupt(struct efx_nic
*efx
)
1381 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1382 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1383 efx_oword_t fatal_intr
;
1384 int error
, mem_perr
;
1386 falcon_read(efx
, &fatal_intr
, FATAL_INTR_REG_KER
);
1387 error
= EFX_OWORD_FIELD(fatal_intr
, INT_KER_ERROR
);
1389 EFX_ERR(efx
, "SYSTEM ERROR " EFX_OWORD_FMT
" status "
1390 EFX_OWORD_FMT
": %s\n", EFX_OWORD_VAL(*int_ker
),
1391 EFX_OWORD_VAL(fatal_intr
),
1392 error
? "disabling bus mastering" : "no recognised error");
1396 /* If this is a memory parity error dump which blocks are offending */
1397 mem_perr
= EFX_OWORD_FIELD(fatal_intr
, MEM_PERR_INT_KER
);
1400 falcon_read(efx
, ®
, MEM_STAT_REG_KER
);
1401 EFX_ERR(efx
, "SYSTEM ERROR: memory parity error "
1402 EFX_OWORD_FMT
"\n", EFX_OWORD_VAL(reg
));
1405 /* Disable both devices */
1406 pci_clear_master(efx
->pci_dev
);
1407 if (FALCON_IS_DUAL_FUNC(efx
))
1408 pci_clear_master(nic_data
->pci_dev2
);
1409 falcon_disable_interrupts(efx
);
1411 /* Count errors and reset or disable the NIC accordingly */
1412 if (nic_data
->int_error_count
== 0 ||
1413 time_after(jiffies
, nic_data
->int_error_expire
)) {
1414 nic_data
->int_error_count
= 0;
1415 nic_data
->int_error_expire
=
1416 jiffies
+ FALCON_INT_ERROR_EXPIRE
* HZ
;
1418 if (++nic_data
->int_error_count
< FALCON_MAX_INT_ERRORS
) {
1419 EFX_ERR(efx
, "SYSTEM ERROR - reset scheduled\n");
1420 efx_schedule_reset(efx
, RESET_TYPE_INT_ERROR
);
1422 EFX_ERR(efx
, "SYSTEM ERROR - max number of errors seen."
1423 "NIC will be disabled\n");
1424 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1430 /* Handle a legacy interrupt from Falcon
1431 * Acknowledges the interrupt and schedule event queue processing.
1433 static irqreturn_t
falcon_legacy_interrupt_b0(int irq
, void *dev_id
)
1435 struct efx_nic
*efx
= dev_id
;
1436 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1437 irqreturn_t result
= IRQ_NONE
;
1438 struct efx_channel
*channel
;
1443 /* Read the ISR which also ACKs the interrupts */
1444 falcon_readl(efx
, ®
, INT_ISR0_B0
);
1445 queues
= EFX_EXTRACT_DWORD(reg
, 0, 31);
1447 /* Check to see if we have a serious error condition */
1448 syserr
= EFX_OWORD_FIELD(*int_ker
, FATAL_INT
);
1449 if (unlikely(syserr
))
1450 return falcon_fatal_interrupt(efx
);
1452 /* Schedule processing of any interrupting queues */
1453 efx_for_each_channel(channel
, efx
) {
1455 falcon_event_present(
1456 falcon_event(channel
, channel
->eventq_read_ptr
))) {
1457 efx_schedule_channel(channel
);
1458 result
= IRQ_HANDLED
;
1463 if (result
== IRQ_HANDLED
) {
1464 efx
->last_irq_cpu
= raw_smp_processor_id();
1465 EFX_TRACE(efx
, "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
1466 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
1473 static irqreturn_t
falcon_legacy_interrupt_a1(int irq
, void *dev_id
)
1475 struct efx_nic
*efx
= dev_id
;
1476 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1477 struct efx_channel
*channel
;
1481 /* Check to see if this is our interrupt. If it isn't, we
1482 * exit without having touched the hardware.
1484 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker
))) {
1485 EFX_TRACE(efx
, "IRQ %d on CPU %d not for me\n", irq
,
1486 raw_smp_processor_id());
1489 efx
->last_irq_cpu
= raw_smp_processor_id();
1490 EFX_TRACE(efx
, "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
1491 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
1493 /* Check to see if we have a serious error condition */
1494 syserr
= EFX_OWORD_FIELD(*int_ker
, FATAL_INT
);
1495 if (unlikely(syserr
))
1496 return falcon_fatal_interrupt(efx
);
1498 /* Determine interrupting queues, clear interrupt status
1499 * register and acknowledge the device interrupt.
1501 BUILD_BUG_ON(INT_EVQS_WIDTH
> EFX_MAX_CHANNELS
);
1502 queues
= EFX_OWORD_FIELD(*int_ker
, INT_EVQS
);
1503 EFX_ZERO_OWORD(*int_ker
);
1504 wmb(); /* Ensure the vector is cleared before interrupt ack */
1505 falcon_irq_ack_a1(efx
);
1507 /* Schedule processing of any interrupting queues */
1508 channel
= &efx
->channel
[0];
1511 efx_schedule_channel(channel
);
1519 /* Handle an MSI interrupt from Falcon
1521 * Handle an MSI hardware interrupt. This routine schedules event
1522 * queue processing. No interrupt acknowledgement cycle is necessary.
1523 * Also, we never need to check that the interrupt is for us, since
1524 * MSI interrupts cannot be shared.
1526 static irqreturn_t
falcon_msi_interrupt(int irq
, void *dev_id
)
1528 struct efx_channel
*channel
= dev_id
;
1529 struct efx_nic
*efx
= channel
->efx
;
1530 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1533 efx
->last_irq_cpu
= raw_smp_processor_id();
1534 EFX_TRACE(efx
, "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
1535 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
1537 /* Check to see if we have a serious error condition */
1538 syserr
= EFX_OWORD_FIELD(*int_ker
, FATAL_INT
);
1539 if (unlikely(syserr
))
1540 return falcon_fatal_interrupt(efx
);
1542 /* Schedule processing of the channel */
1543 efx_schedule_channel(channel
);
1549 /* Setup RSS indirection table.
1550 * This maps from the hash value of the packet to RXQ
1552 static void falcon_setup_rss_indir_table(struct efx_nic
*efx
)
1555 unsigned long offset
;
1558 if (falcon_rev(efx
) < FALCON_REV_B0
)
1561 for (offset
= RX_RSS_INDIR_TBL_B0
;
1562 offset
< RX_RSS_INDIR_TBL_B0
+ 0x800;
1564 EFX_POPULATE_DWORD_1(dword
, RX_RSS_INDIR_ENT_B0
,
1565 i
% efx
->n_rx_queues
);
1566 falcon_writel(efx
, &dword
, offset
);
1571 /* Hook interrupt handler(s)
1572 * Try MSI and then legacy interrupts.
1574 int falcon_init_interrupt(struct efx_nic
*efx
)
1576 struct efx_channel
*channel
;
1579 if (!EFX_INT_MODE_USE_MSI(efx
)) {
1580 irq_handler_t handler
;
1581 if (falcon_rev(efx
) >= FALCON_REV_B0
)
1582 handler
= falcon_legacy_interrupt_b0
;
1584 handler
= falcon_legacy_interrupt_a1
;
1586 rc
= request_irq(efx
->legacy_irq
, handler
, IRQF_SHARED
,
1589 EFX_ERR(efx
, "failed to hook legacy IRQ %d\n",
1596 /* Hook MSI or MSI-X interrupt */
1597 efx_for_each_channel(channel
, efx
) {
1598 rc
= request_irq(channel
->irq
, falcon_msi_interrupt
,
1599 IRQF_PROBE_SHARED
, /* Not shared */
1600 channel
->name
, channel
);
1602 EFX_ERR(efx
, "failed to hook IRQ %d\n", channel
->irq
);
1610 efx_for_each_channel(channel
, efx
)
1611 free_irq(channel
->irq
, channel
);
1616 void falcon_fini_interrupt(struct efx_nic
*efx
)
1618 struct efx_channel
*channel
;
1621 /* Disable MSI/MSI-X interrupts */
1622 efx_for_each_channel(channel
, efx
) {
1624 free_irq(channel
->irq
, channel
);
1627 /* ACK legacy interrupt */
1628 if (falcon_rev(efx
) >= FALCON_REV_B0
)
1629 falcon_read(efx
, ®
, INT_ISR0_B0
);
1631 falcon_irq_ack_a1(efx
);
1633 /* Disable legacy interrupt */
1634 if (efx
->legacy_irq
)
1635 free_irq(efx
->legacy_irq
, efx
);
1638 /**************************************************************************
1642 **************************************************************************
1645 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1647 static int falcon_spi_poll(struct efx_nic
*efx
)
1650 falcon_read(efx
, ®
, EE_SPI_HCMD_REG_KER
);
1651 return EFX_OWORD_FIELD(reg
, EE_SPI_HCMD_CMD_EN
) ? -EBUSY
: 0;
1654 /* Wait for SPI command completion */
1655 static int falcon_spi_wait(struct efx_nic
*efx
)
1657 /* Most commands will finish quickly, so we start polling at
1658 * very short intervals. Sometimes the command may have to
1659 * wait for VPD or expansion ROM access outside of our
1660 * control, so we allow up to 100 ms. */
1661 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 10);
1664 for (i
= 0; i
< 10; i
++) {
1665 if (!falcon_spi_poll(efx
))
1671 if (!falcon_spi_poll(efx
))
1673 if (time_after_eq(jiffies
, timeout
)) {
1674 EFX_ERR(efx
, "timed out waiting for SPI\n");
1677 schedule_timeout_uninterruptible(1);
1681 int falcon_spi_cmd(const struct efx_spi_device
*spi
,
1682 unsigned int command
, int address
,
1683 const void *in
, void *out
, size_t len
)
1685 struct efx_nic
*efx
= spi
->efx
;
1686 bool addressed
= (address
>= 0);
1687 bool reading
= (out
!= NULL
);
1691 /* Input validation */
1692 if (len
> FALCON_SPI_MAX_LEN
)
1694 BUG_ON(!mutex_is_locked(&efx
->spi_lock
));
1696 /* Check that previous command is not still running */
1697 rc
= falcon_spi_poll(efx
);
1701 /* Program address register, if we have an address */
1703 EFX_POPULATE_OWORD_1(reg
, EE_SPI_HADR_ADR
, address
);
1704 falcon_write(efx
, ®
, EE_SPI_HADR_REG_KER
);
1707 /* Program data register, if we have data */
1709 memcpy(®
, in
, len
);
1710 falcon_write(efx
, ®
, EE_SPI_HDATA_REG_KER
);
1713 /* Issue read/write command */
1714 EFX_POPULATE_OWORD_7(reg
,
1715 EE_SPI_HCMD_CMD_EN
, 1,
1716 EE_SPI_HCMD_SF_SEL
, spi
->device_id
,
1717 EE_SPI_HCMD_DABCNT
, len
,
1718 EE_SPI_HCMD_READ
, reading
,
1719 EE_SPI_HCMD_DUBCNT
, 0,
1721 (addressed
? spi
->addr_len
: 0),
1722 EE_SPI_HCMD_ENC
, command
);
1723 falcon_write(efx
, ®
, EE_SPI_HCMD_REG_KER
);
1725 /* Wait for read/write to complete */
1726 rc
= falcon_spi_wait(efx
);
1732 falcon_read(efx
, ®
, EE_SPI_HDATA_REG_KER
);
1733 memcpy(out
, ®
, len
);
1740 falcon_spi_write_limit(const struct efx_spi_device
*spi
, size_t start
)
1742 return min(FALCON_SPI_MAX_LEN
,
1743 (spi
->block_size
- (start
& (spi
->block_size
- 1))));
1747 efx_spi_munge_command(const struct efx_spi_device
*spi
,
1748 const u8 command
, const unsigned int address
)
1750 return command
| (((address
>> 8) & spi
->munge_address
) << 3);
1753 /* Wait up to 10 ms for buffered write completion */
1754 int falcon_spi_wait_write(const struct efx_spi_device
*spi
)
1756 struct efx_nic
*efx
= spi
->efx
;
1757 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 100);
1762 rc
= falcon_spi_cmd(spi
, SPI_RDSR
, -1, NULL
,
1763 &status
, sizeof(status
));
1766 if (!(status
& SPI_STATUS_NRDY
))
1768 if (time_after_eq(jiffies
, timeout
)) {
1769 EFX_ERR(efx
, "SPI write timeout on device %d"
1770 " last status=0x%02x\n",
1771 spi
->device_id
, status
);
1774 schedule_timeout_uninterruptible(1);
1778 int falcon_spi_read(const struct efx_spi_device
*spi
, loff_t start
,
1779 size_t len
, size_t *retlen
, u8
*buffer
)
1781 size_t block_len
, pos
= 0;
1782 unsigned int command
;
1786 block_len
= min(len
- pos
, FALCON_SPI_MAX_LEN
);
1788 command
= efx_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
1789 rc
= falcon_spi_cmd(spi
, command
, start
+ pos
, NULL
,
1790 buffer
+ pos
, block_len
);
1795 /* Avoid locking up the system */
1797 if (signal_pending(current
)) {
1808 int falcon_spi_write(const struct efx_spi_device
*spi
, loff_t start
,
1809 size_t len
, size_t *retlen
, const u8
*buffer
)
1811 u8 verify_buffer
[FALCON_SPI_MAX_LEN
];
1812 size_t block_len
, pos
= 0;
1813 unsigned int command
;
1817 rc
= falcon_spi_cmd(spi
, SPI_WREN
, -1, NULL
, NULL
, 0);
1821 block_len
= min(len
- pos
,
1822 falcon_spi_write_limit(spi
, start
+ pos
));
1823 command
= efx_spi_munge_command(spi
, SPI_WRITE
, start
+ pos
);
1824 rc
= falcon_spi_cmd(spi
, command
, start
+ pos
,
1825 buffer
+ pos
, NULL
, block_len
);
1829 rc
= falcon_spi_wait_write(spi
);
1833 command
= efx_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
1834 rc
= falcon_spi_cmd(spi
, command
, start
+ pos
,
1835 NULL
, verify_buffer
, block_len
);
1836 if (memcmp(verify_buffer
, buffer
+ pos
, block_len
)) {
1843 /* Avoid locking up the system */
1845 if (signal_pending(current
)) {
1856 /**************************************************************************
1860 **************************************************************************
1863 static int falcon_reset_macs(struct efx_nic
*efx
)
1868 if (falcon_rev(efx
) < FALCON_REV_B0
) {
1869 /* It's not safe to use GLB_CTL_REG to reset the
1870 * macs, so instead use the internal MAC resets
1872 if (!EFX_IS10G(efx
)) {
1873 EFX_POPULATE_OWORD_1(reg
, GM_SW_RST
, 1);
1874 falcon_write(efx
, ®
, GM_CFG1_REG
);
1877 EFX_POPULATE_OWORD_1(reg
, GM_SW_RST
, 0);
1878 falcon_write(efx
, ®
, GM_CFG1_REG
);
1882 EFX_POPULATE_OWORD_1(reg
, XM_CORE_RST
, 1);
1883 falcon_write(efx
, ®
, XM_GLB_CFG_REG
);
1885 for (count
= 0; count
< 10000; count
++) {
1886 falcon_read(efx
, ®
, XM_GLB_CFG_REG
);
1887 if (EFX_OWORD_FIELD(reg
, XM_CORE_RST
) == 0)
1892 EFX_ERR(efx
, "timed out waiting for XMAC core reset\n");
1897 /* MAC stats will fail whilst the TX fifo is draining. Serialise
1898 * the drain sequence with the statistics fetch */
1899 efx_stats_disable(efx
);
1901 falcon_read(efx
, ®
, MAC0_CTRL_REG_KER
);
1902 EFX_SET_OWORD_FIELD(reg
, TXFIFO_DRAIN_EN_B0
, 1);
1903 falcon_write(efx
, ®
, MAC0_CTRL_REG_KER
);
1905 falcon_read(efx
, ®
, GLB_CTL_REG_KER
);
1906 EFX_SET_OWORD_FIELD(reg
, RST_XGTX
, 1);
1907 EFX_SET_OWORD_FIELD(reg
, RST_XGRX
, 1);
1908 EFX_SET_OWORD_FIELD(reg
, RST_EM
, 1);
1909 falcon_write(efx
, ®
, GLB_CTL_REG_KER
);
1913 falcon_read(efx
, ®
, GLB_CTL_REG_KER
);
1914 if (!EFX_OWORD_FIELD(reg
, RST_XGTX
) &&
1915 !EFX_OWORD_FIELD(reg
, RST_XGRX
) &&
1916 !EFX_OWORD_FIELD(reg
, RST_EM
)) {
1917 EFX_LOG(efx
, "Completed MAC reset after %d loops\n",
1922 EFX_ERR(efx
, "MAC reset failed\n");
1929 efx_stats_enable(efx
);
1931 /* If we've reset the EM block and the link is up, then
1932 * we'll have to kick the XAUI link so the PHY can recover */
1933 if (efx
->link_up
&& EFX_IS10G(efx
) && EFX_WORKAROUND_5147(efx
))
1934 falcon_reset_xaui(efx
);
1939 void falcon_drain_tx_fifo(struct efx_nic
*efx
)
1943 if ((falcon_rev(efx
) < FALCON_REV_B0
) ||
1944 (efx
->loopback_mode
!= LOOPBACK_NONE
))
1947 falcon_read(efx
, ®
, MAC0_CTRL_REG_KER
);
1948 /* There is no point in draining more than once */
1949 if (EFX_OWORD_FIELD(reg
, TXFIFO_DRAIN_EN_B0
))
1952 falcon_reset_macs(efx
);
1955 void falcon_deconfigure_mac_wrapper(struct efx_nic
*efx
)
1959 if (falcon_rev(efx
) < FALCON_REV_B0
)
1962 /* Isolate the MAC -> RX */
1963 falcon_read(efx
, ®
, RX_CFG_REG_KER
);
1964 EFX_SET_OWORD_FIELD(reg
, RX_INGR_EN_B0
, 0);
1965 falcon_write(efx
, ®
, RX_CFG_REG_KER
);
1968 falcon_drain_tx_fifo(efx
);
1971 void falcon_reconfigure_mac_wrapper(struct efx_nic
*efx
)
1977 switch (efx
->link_speed
) {
1978 case 10000: link_speed
= 3; break;
1979 case 1000: link_speed
= 2; break;
1980 case 100: link_speed
= 1; break;
1981 default: link_speed
= 0; break;
1983 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1984 * as advertised. Disable to ensure packets are not
1985 * indefinitely held and TX queue can be flushed at any point
1986 * while the link is down. */
1987 EFX_POPULATE_OWORD_5(reg
,
1988 MAC_XOFF_VAL
, 0xffff /* max pause time */,
1990 MAC_UC_PROM
, efx
->promiscuous
,
1991 MAC_LINK_STATUS
, 1, /* always set */
1992 MAC_SPEED
, link_speed
);
1993 /* On B0, MAC backpressure can be disabled and packets get
1995 if (falcon_rev(efx
) >= FALCON_REV_B0
) {
1996 EFX_SET_OWORD_FIELD(reg
, TXFIFO_DRAIN_EN_B0
,
2000 falcon_write(efx
, ®
, MAC0_CTRL_REG_KER
);
2002 /* Restore the multicast hash registers. */
2003 falcon_set_multicast_hash(efx
);
2005 /* Transmission of pause frames when RX crosses the threshold is
2006 * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
2007 * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
2008 tx_fc
= !!(efx
->link_fc
& EFX_FC_TX
);
2009 falcon_read(efx
, ®
, RX_CFG_REG_KER
);
2010 EFX_SET_OWORD_FIELD_VER(efx
, reg
, RX_XOFF_MAC_EN
, tx_fc
);
2012 /* Unisolate the MAC -> RX */
2013 if (falcon_rev(efx
) >= FALCON_REV_B0
)
2014 EFX_SET_OWORD_FIELD(reg
, RX_INGR_EN_B0
, 1);
2015 falcon_write(efx
, ®
, RX_CFG_REG_KER
);
2018 int falcon_dma_stats(struct efx_nic
*efx
, unsigned int done_offset
)
2024 if (disable_dma_stats
)
2027 /* Statistics fetch will fail if the MAC is in TX drain */
2028 if (falcon_rev(efx
) >= FALCON_REV_B0
) {
2030 falcon_read(efx
, &temp
, MAC0_CTRL_REG_KER
);
2031 if (EFX_OWORD_FIELD(temp
, TXFIFO_DRAIN_EN_B0
))
2035 dma_done
= (efx
->stats_buffer
.addr
+ done_offset
);
2036 *dma_done
= FALCON_STATS_NOT_DONE
;
2037 wmb(); /* ensure done flag is clear */
2039 /* Initiate DMA transfer of stats */
2040 EFX_POPULATE_OWORD_2(reg
,
2041 MAC_STAT_DMA_CMD
, 1,
2043 efx
->stats_buffer
.dma_addr
);
2044 falcon_write(efx
, ®
, MAC0_STAT_DMA_REG_KER
);
2046 /* Wait for transfer to complete */
2047 for (i
= 0; i
< 400; i
++) {
2048 if (*(volatile u32
*)dma_done
== FALCON_STATS_DONE
) {
2049 rmb(); /* Ensure the stats are valid. */
2055 EFX_ERR(efx
, "timed out waiting for statistics\n");
2059 /**************************************************************************
2061 * PHY access via GMII
2063 **************************************************************************
2066 /* Use the top bit of the MII PHY id to indicate the PHY type
2067 * (1G/10G), with the remaining bits as the actual PHY id.
2069 * This allows us to avoid leaking information from the mii_if_info
2070 * structure into other data structures.
2072 #define FALCON_PHY_ID_ID_WIDTH EFX_WIDTH(MD_PRT_DEV_ADR)
2073 #define FALCON_PHY_ID_ID_MASK ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
2074 #define FALCON_PHY_ID_WIDTH (FALCON_PHY_ID_ID_WIDTH + 1)
2075 #define FALCON_PHY_ID_MASK ((1 << FALCON_PHY_ID_WIDTH) - 1)
2076 #define FALCON_PHY_ID_10G (1 << (FALCON_PHY_ID_WIDTH - 1))
2079 /* Packing the clause 45 port and device fields into a single value */
2080 #define MD_PRT_ADR_COMP_LBN (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
2081 #define MD_PRT_ADR_COMP_WIDTH MD_PRT_ADR_WIDTH
2082 #define MD_DEV_ADR_COMP_LBN 0
2083 #define MD_DEV_ADR_COMP_WIDTH MD_DEV_ADR_WIDTH
2086 /* Wait for GMII access to complete */
2087 static int falcon_gmii_wait(struct efx_nic
*efx
)
2089 efx_dword_t md_stat
;
2092 /* wait upto 50ms - taken max from datasheet */
2093 for (count
= 0; count
< 5000; count
++) {
2094 falcon_readl(efx
, &md_stat
, MD_STAT_REG_KER
);
2095 if (EFX_DWORD_FIELD(md_stat
, MD_BSY
) == 0) {
2096 if (EFX_DWORD_FIELD(md_stat
, MD_LNFL
) != 0 ||
2097 EFX_DWORD_FIELD(md_stat
, MD_BSERR
) != 0) {
2098 EFX_ERR(efx
, "error from GMII access "
2100 EFX_DWORD_VAL(md_stat
));
2107 EFX_ERR(efx
, "timed out waiting for GMII\n");
2111 /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
2112 static void falcon_mdio_write(struct net_device
*net_dev
, int phy_id
,
2113 int addr
, int value
)
2115 struct efx_nic
*efx
= netdev_priv(net_dev
);
2116 unsigned int phy_id2
= phy_id
& FALCON_PHY_ID_ID_MASK
;
2119 /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
2120 * chosen so that the only current user, Falcon, can take the
2121 * packed value and use them directly.
2122 * Fail to build if this assumption is broken.
2124 BUILD_BUG_ON(FALCON_PHY_ID_10G
!= MDIO45_XPRT_ID_IS10G
);
2125 BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH
!= MDIO45_PRT_DEV_WIDTH
);
2126 BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN
!= MDIO45_PRT_ID_COMP_LBN
);
2127 BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN
!= MDIO45_DEV_ID_COMP_LBN
);
2129 if (phy_id2
== PHY_ADDR_INVALID
)
2132 /* See falcon_mdio_read for an explanation. */
2133 if (!(phy_id
& FALCON_PHY_ID_10G
)) {
2134 int mmd
= ffs(efx
->phy_op
->mmds
) - 1;
2135 EFX_TRACE(efx
, "Fixing erroneous clause22 write\n");
2136 phy_id2
= mdio_clause45_pack(phy_id2
, mmd
)
2137 & FALCON_PHY_ID_ID_MASK
;
2140 EFX_REGDUMP(efx
, "writing GMII %d register %02x with %04x\n", phy_id
,
2143 spin_lock_bh(&efx
->phy_lock
);
2145 /* Check MII not currently being accessed */
2146 if (falcon_gmii_wait(efx
) != 0)
2149 /* Write the address/ID register */
2150 EFX_POPULATE_OWORD_1(reg
, MD_PHY_ADR
, addr
);
2151 falcon_write(efx
, ®
, MD_PHY_ADR_REG_KER
);
2153 EFX_POPULATE_OWORD_1(reg
, MD_PRT_DEV_ADR
, phy_id2
);
2154 falcon_write(efx
, ®
, MD_ID_REG_KER
);
2157 EFX_POPULATE_OWORD_1(reg
, MD_TXD
, value
);
2158 falcon_write(efx
, ®
, MD_TXD_REG_KER
);
2160 EFX_POPULATE_OWORD_2(reg
,
2163 falcon_write(efx
, ®
, MD_CS_REG_KER
);
2165 /* Wait for data to be written */
2166 if (falcon_gmii_wait(efx
) != 0) {
2167 /* Abort the write operation */
2168 EFX_POPULATE_OWORD_2(reg
,
2171 falcon_write(efx
, ®
, MD_CS_REG_KER
);
2176 spin_unlock_bh(&efx
->phy_lock
);
2179 /* Reads a GMII register from a PHY connected to Falcon. If no value
2180 * could be read, -1 will be returned. */
2181 static int falcon_mdio_read(struct net_device
*net_dev
, int phy_id
, int addr
)
2183 struct efx_nic
*efx
= netdev_priv(net_dev
);
2184 unsigned int phy_addr
= phy_id
& FALCON_PHY_ID_ID_MASK
;
2188 if (phy_addr
== PHY_ADDR_INVALID
)
2191 /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
2192 * but the generic Linux code does not make any distinction or have
2193 * any state for this.
2194 * We spot the case where someone tried to talk 22 to a 45 PHY and
2195 * redirect the request to the lowest numbered MMD as a clause45
2196 * request. This is enough to allow simple queries like id and link
2197 * state to succeed. TODO: We may need to do more in future.
2199 if (!(phy_id
& FALCON_PHY_ID_10G
)) {
2200 int mmd
= ffs(efx
->phy_op
->mmds
) - 1;
2201 EFX_TRACE(efx
, "Fixing erroneous clause22 read\n");
2202 phy_addr
= mdio_clause45_pack(phy_addr
, mmd
)
2203 & FALCON_PHY_ID_ID_MASK
;
2206 spin_lock_bh(&efx
->phy_lock
);
2208 /* Check MII not currently being accessed */
2209 if (falcon_gmii_wait(efx
) != 0)
2212 EFX_POPULATE_OWORD_1(reg
, MD_PHY_ADR
, addr
);
2213 falcon_write(efx
, ®
, MD_PHY_ADR_REG_KER
);
2215 EFX_POPULATE_OWORD_1(reg
, MD_PRT_DEV_ADR
, phy_addr
);
2216 falcon_write(efx
, ®
, MD_ID_REG_KER
);
2218 /* Request data to be read */
2219 EFX_POPULATE_OWORD_2(reg
, MD_RDC
, 1, MD_GC
, 0);
2220 falcon_write(efx
, ®
, MD_CS_REG_KER
);
2222 /* Wait for data to become available */
2223 value
= falcon_gmii_wait(efx
);
2225 falcon_read(efx
, ®
, MD_RXD_REG_KER
);
2226 value
= EFX_OWORD_FIELD(reg
, MD_RXD
);
2227 EFX_REGDUMP(efx
, "read from GMII %d register %02x, got %04x\n",
2228 phy_id
, addr
, value
);
2230 /* Abort the read operation */
2231 EFX_POPULATE_OWORD_2(reg
,
2234 falcon_write(efx
, ®
, MD_CS_REG_KER
);
2236 EFX_LOG(efx
, "read from GMII 0x%x register %02x, got "
2237 "error %d\n", phy_id
, addr
, value
);
2241 spin_unlock_bh(&efx
->phy_lock
);
2246 static void falcon_init_mdio(struct mii_if_info
*gmii
)
2248 gmii
->mdio_read
= falcon_mdio_read
;
2249 gmii
->mdio_write
= falcon_mdio_write
;
2250 gmii
->phy_id_mask
= FALCON_PHY_ID_MASK
;
2251 gmii
->reg_num_mask
= ((1 << EFX_WIDTH(MD_PHY_ADR
)) - 1);
2254 static int falcon_probe_phy(struct efx_nic
*efx
)
2256 switch (efx
->phy_type
) {
2257 case PHY_TYPE_SFX7101
:
2258 efx
->phy_op
= &falcon_sfx7101_phy_ops
;
2260 case PHY_TYPE_SFT9001A
:
2261 case PHY_TYPE_SFT9001B
:
2262 efx
->phy_op
= &falcon_sft9001_phy_ops
;
2264 case PHY_TYPE_QT2022C2
:
2265 case PHY_TYPE_QT2025C
:
2266 efx
->phy_op
= &falcon_xfp_phy_ops
;
2269 EFX_ERR(efx
, "Unknown PHY type %d\n",
2274 if (efx
->phy_op
->macs
& EFX_XMAC
)
2275 efx
->loopback_modes
|= ((1 << LOOPBACK_XGMII
) |
2276 (1 << LOOPBACK_XGXS
) |
2277 (1 << LOOPBACK_XAUI
));
2278 if (efx
->phy_op
->macs
& EFX_GMAC
)
2279 efx
->loopback_modes
|= (1 << LOOPBACK_GMAC
);
2280 efx
->loopback_modes
|= efx
->phy_op
->loopbacks
;
2285 int falcon_switch_mac(struct efx_nic
*efx
)
2287 struct efx_mac_operations
*old_mac_op
= efx
->mac_op
;
2288 efx_oword_t nic_stat
;
2292 /* Don't try to fetch MAC stats while we're switching MACs */
2293 efx_stats_disable(efx
);
2295 /* Internal loopbacks override the phy speed setting */
2296 if (efx
->loopback_mode
== LOOPBACK_GMAC
) {
2297 efx
->link_speed
= 1000;
2298 efx
->link_fd
= true;
2299 } else if (LOOPBACK_INTERNAL(efx
)) {
2300 efx
->link_speed
= 10000;
2301 efx
->link_fd
= true;
2304 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
2305 efx
->mac_op
= (EFX_IS10G(efx
) ?
2306 &falcon_xmac_operations
: &falcon_gmac_operations
);
2308 /* Always push the NIC_STAT_REG setting even if the mac hasn't
2309 * changed, because this function is run post online reset */
2310 falcon_read(efx
, &nic_stat
, NIC_STAT_REG
);
2311 strap_val
= EFX_IS10G(efx
) ? 5 : 3;
2312 if (falcon_rev(efx
) >= FALCON_REV_B0
) {
2313 EFX_SET_OWORD_FIELD(nic_stat
, EE_STRAP_EN
, 1);
2314 EFX_SET_OWORD_FIELD(nic_stat
, EE_STRAP_OVR
, strap_val
);
2315 falcon_write(efx
, &nic_stat
, NIC_STAT_REG
);
2317 /* Falcon A1 does not support 1G/10G speed switching
2318 * and must not be used with a PHY that does. */
2319 BUG_ON(EFX_OWORD_FIELD(nic_stat
, STRAP_PINS
) != strap_val
);
2322 if (old_mac_op
== efx
->mac_op
)
2325 EFX_LOG(efx
, "selected %cMAC\n", EFX_IS10G(efx
) ? 'X' : 'G');
2326 /* Not all macs support a mac-level link state */
2329 rc
= falcon_reset_macs(efx
);
2331 efx_stats_enable(efx
);
2335 /* This call is responsible for hooking in the MAC and PHY operations */
2336 int falcon_probe_port(struct efx_nic
*efx
)
2340 /* Hook in PHY operations table */
2341 rc
= falcon_probe_phy(efx
);
2345 /* Set up GMII structure for PHY */
2346 efx
->mii
.supports_gmii
= true;
2347 falcon_init_mdio(&efx
->mii
);
2349 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2350 if (falcon_rev(efx
) >= FALCON_REV_B0
)
2351 efx
->wanted_fc
= EFX_FC_RX
| EFX_FC_TX
;
2353 efx
->wanted_fc
= EFX_FC_RX
;
2355 /* Allocate buffer for stats */
2356 rc
= falcon_alloc_buffer(efx
, &efx
->stats_buffer
,
2357 FALCON_MAC_STATS_SIZE
);
2360 EFX_LOG(efx
, "stats buffer at %llx (virt %p phys %llx)\n",
2361 (u64
)efx
->stats_buffer
.dma_addr
,
2362 efx
->stats_buffer
.addr
,
2363 (u64
)virt_to_phys(efx
->stats_buffer
.addr
));
2368 void falcon_remove_port(struct efx_nic
*efx
)
2370 falcon_free_buffer(efx
, &efx
->stats_buffer
);
2373 /**************************************************************************
2375 * Multicast filtering
2377 **************************************************************************
2380 void falcon_set_multicast_hash(struct efx_nic
*efx
)
2382 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
2384 /* Broadcast packets go through the multicast hash filter.
2385 * ether_crc_le() of the broadcast address is 0xbe2612ff
2386 * so we always add bit 0xff to the mask.
2388 set_bit_le(0xff, mc_hash
->byte
);
2390 falcon_write(efx
, &mc_hash
->oword
[0], MAC_MCAST_HASH_REG0_KER
);
2391 falcon_write(efx
, &mc_hash
->oword
[1], MAC_MCAST_HASH_REG1_KER
);
2395 /**************************************************************************
2399 **************************************************************************/
2401 int falcon_read_nvram(struct efx_nic
*efx
, struct falcon_nvconfig
*nvconfig_out
)
2403 struct falcon_nvconfig
*nvconfig
;
2404 struct efx_spi_device
*spi
;
2406 int rc
, magic_num
, struct_ver
;
2407 __le16
*word
, *limit
;
2410 spi
= efx
->spi_flash
? efx
->spi_flash
: efx
->spi_eeprom
;
2414 region
= kmalloc(FALCON_NVCONFIG_END
, GFP_KERNEL
);
2417 nvconfig
= region
+ NVCONFIG_OFFSET
;
2419 mutex_lock(&efx
->spi_lock
);
2420 rc
= falcon_spi_read(spi
, 0, FALCON_NVCONFIG_END
, NULL
, region
);
2421 mutex_unlock(&efx
->spi_lock
);
2423 EFX_ERR(efx
, "Failed to read %s\n",
2424 efx
->spi_flash
? "flash" : "EEPROM");
2429 magic_num
= le16_to_cpu(nvconfig
->board_magic_num
);
2430 struct_ver
= le16_to_cpu(nvconfig
->board_struct_ver
);
2433 if (magic_num
!= NVCONFIG_BOARD_MAGIC_NUM
) {
2434 EFX_ERR(efx
, "NVRAM bad magic 0x%x\n", magic_num
);
2437 if (struct_ver
< 2) {
2438 EFX_ERR(efx
, "NVRAM has ancient version 0x%x\n", struct_ver
);
2440 } else if (struct_ver
< 4) {
2441 word
= &nvconfig
->board_magic_num
;
2442 limit
= (__le16
*) (nvconfig
+ 1);
2445 limit
= region
+ FALCON_NVCONFIG_END
;
2447 for (csum
= 0; word
< limit
; ++word
)
2448 csum
+= le16_to_cpu(*word
);
2450 if (~csum
& 0xffff) {
2451 EFX_ERR(efx
, "NVRAM has incorrect checksum\n");
2457 memcpy(nvconfig_out
, nvconfig
, sizeof(*nvconfig
));
2464 /* Registers tested in the falcon register test */
2468 } efx_test_registers
[] = {
2469 { ADR_REGION_REG_KER
,
2470 EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2472 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2474 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2476 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2477 { MAC0_CTRL_REG_KER
,
2478 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2479 { SRM_TX_DC_CFG_REG_KER
,
2480 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2481 { RX_DC_CFG_REG_KER
,
2482 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2483 { RX_DC_PF_WM_REG_KER
,
2484 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2486 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2488 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2490 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2492 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2494 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2496 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2498 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2500 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2502 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2504 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2507 static bool efx_masked_compare_oword(const efx_oword_t
*a
, const efx_oword_t
*b
,
2508 const efx_oword_t
*mask
)
2510 return ((a
->u64
[0] ^ b
->u64
[0]) & mask
->u64
[0]) ||
2511 ((a
->u64
[1] ^ b
->u64
[1]) & mask
->u64
[1]);
2514 int falcon_test_registers(struct efx_nic
*efx
)
2516 unsigned address
= 0, i
, j
;
2517 efx_oword_t mask
, imask
, original
, reg
, buf
;
2519 /* Falcon should be in loopback to isolate the XMAC from the PHY */
2520 WARN_ON(!LOOPBACK_INTERNAL(efx
));
2522 for (i
= 0; i
< ARRAY_SIZE(efx_test_registers
); ++i
) {
2523 address
= efx_test_registers
[i
].address
;
2524 mask
= imask
= efx_test_registers
[i
].mask
;
2525 EFX_INVERT_OWORD(imask
);
2527 falcon_read(efx
, &original
, address
);
2529 /* bit sweep on and off */
2530 for (j
= 0; j
< 128; j
++) {
2531 if (!EFX_EXTRACT_OWORD32(mask
, j
, j
))
2534 /* Test this testable bit can be set in isolation */
2535 EFX_AND_OWORD(reg
, original
, mask
);
2536 EFX_SET_OWORD32(reg
, j
, j
, 1);
2538 falcon_write(efx
, ®
, address
);
2539 falcon_read(efx
, &buf
, address
);
2541 if (efx_masked_compare_oword(®
, &buf
, &mask
))
2544 /* Test this testable bit can be cleared in isolation */
2545 EFX_OR_OWORD(reg
, original
, mask
);
2546 EFX_SET_OWORD32(reg
, j
, j
, 0);
2548 falcon_write(efx
, ®
, address
);
2549 falcon_read(efx
, &buf
, address
);
2551 if (efx_masked_compare_oword(®
, &buf
, &mask
))
2555 falcon_write(efx
, &original
, address
);
2561 EFX_ERR(efx
, "wrote "EFX_OWORD_FMT
" read "EFX_OWORD_FMT
2562 " at address 0x%x mask "EFX_OWORD_FMT
"\n", EFX_OWORD_VAL(reg
),
2563 EFX_OWORD_VAL(buf
), address
, EFX_OWORD_VAL(mask
));
2567 /**************************************************************************
2571 **************************************************************************
2574 /* Resets NIC to known state. This routine must be called in process
2575 * context and is allowed to sleep. */
2576 int falcon_reset_hw(struct efx_nic
*efx
, enum reset_type method
)
2578 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2579 efx_oword_t glb_ctl_reg_ker
;
2582 EFX_LOG(efx
, "performing hardware reset (%d)\n", method
);
2584 /* Initiate device reset */
2585 if (method
== RESET_TYPE_WORLD
) {
2586 rc
= pci_save_state(efx
->pci_dev
);
2588 EFX_ERR(efx
, "failed to backup PCI state of primary "
2589 "function prior to hardware reset\n");
2592 if (FALCON_IS_DUAL_FUNC(efx
)) {
2593 rc
= pci_save_state(nic_data
->pci_dev2
);
2595 EFX_ERR(efx
, "failed to backup PCI state of "
2596 "secondary function prior to "
2597 "hardware reset\n");
2602 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker
,
2603 EXT_PHY_RST_DUR
, 0x7,
2606 int reset_phy
= (method
== RESET_TYPE_INVISIBLE
?
2607 EXCLUDE_FROM_RESET
: 0);
2609 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker
,
2610 EXT_PHY_RST_CTL
, reset_phy
,
2611 PCIE_CORE_RST_CTL
, EXCLUDE_FROM_RESET
,
2612 PCIE_NSTCK_RST_CTL
, EXCLUDE_FROM_RESET
,
2613 PCIE_SD_RST_CTL
, EXCLUDE_FROM_RESET
,
2614 EE_RST_CTL
, EXCLUDE_FROM_RESET
,
2615 EXT_PHY_RST_DUR
, 0x7 /* 10ms */,
2618 falcon_write(efx
, &glb_ctl_reg_ker
, GLB_CTL_REG_KER
);
2620 EFX_LOG(efx
, "waiting for hardware reset\n");
2621 schedule_timeout_uninterruptible(HZ
/ 20);
2623 /* Restore PCI configuration if needed */
2624 if (method
== RESET_TYPE_WORLD
) {
2625 if (FALCON_IS_DUAL_FUNC(efx
)) {
2626 rc
= pci_restore_state(nic_data
->pci_dev2
);
2628 EFX_ERR(efx
, "failed to restore PCI config for "
2629 "the secondary function\n");
2633 rc
= pci_restore_state(efx
->pci_dev
);
2635 EFX_ERR(efx
, "failed to restore PCI config for the "
2636 "primary function\n");
2639 EFX_LOG(efx
, "successfully restored PCI config\n");
2642 /* Assert that reset complete */
2643 falcon_read(efx
, &glb_ctl_reg_ker
, GLB_CTL_REG_KER
);
2644 if (EFX_OWORD_FIELD(glb_ctl_reg_ker
, SWRST
) != 0) {
2646 EFX_ERR(efx
, "timed out waiting for hardware reset\n");
2649 EFX_LOG(efx
, "hardware reset complete\n");
2653 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2656 pci_restore_state(efx
->pci_dev
);
2663 /* Zeroes out the SRAM contents. This routine must be called in
2664 * process context and is allowed to sleep.
2666 static int falcon_reset_sram(struct efx_nic
*efx
)
2668 efx_oword_t srm_cfg_reg_ker
, gpio_cfg_reg_ker
;
2671 /* Set the SRAM wake/sleep GPIO appropriately. */
2672 falcon_read(efx
, &gpio_cfg_reg_ker
, GPIO_CTL_REG_KER
);
2673 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, GPIO1_OEN
, 1);
2674 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, GPIO1_OUT
, 1);
2675 falcon_write(efx
, &gpio_cfg_reg_ker
, GPIO_CTL_REG_KER
);
2677 /* Initiate SRAM reset */
2678 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker
,
2679 SRAM_OOB_BT_INIT_EN
, 1,
2680 SRM_NUM_BANKS_AND_BANK_SIZE
, 0);
2681 falcon_write(efx
, &srm_cfg_reg_ker
, SRM_CFG_REG_KER
);
2683 /* Wait for SRAM reset to complete */
2686 EFX_LOG(efx
, "waiting for SRAM reset (attempt %d)...\n", count
);
2688 /* SRAM reset is slow; expect around 16ms */
2689 schedule_timeout_uninterruptible(HZ
/ 50);
2691 /* Check for reset complete */
2692 falcon_read(efx
, &srm_cfg_reg_ker
, SRM_CFG_REG_KER
);
2693 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker
, SRAM_OOB_BT_INIT_EN
)) {
2694 EFX_LOG(efx
, "SRAM reset complete\n");
2698 } while (++count
< 20); /* wait upto 0.4 sec */
2700 EFX_ERR(efx
, "timed out waiting for SRAM reset\n");
2704 static int falcon_spi_device_init(struct efx_nic
*efx
,
2705 struct efx_spi_device
**spi_device_ret
,
2706 unsigned int device_id
, u32 device_type
)
2708 struct efx_spi_device
*spi_device
;
2710 if (device_type
!= 0) {
2711 spi_device
= kzalloc(sizeof(*spi_device
), GFP_KERNEL
);
2714 spi_device
->device_id
= device_id
;
2716 1 << SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_SIZE
);
2717 spi_device
->addr_len
=
2718 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ADDR_LEN
);
2719 spi_device
->munge_address
= (spi_device
->size
== 1 << 9 &&
2720 spi_device
->addr_len
== 1);
2721 spi_device
->erase_command
=
2722 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ERASE_CMD
);
2723 spi_device
->erase_size
=
2724 1 << SPI_DEV_TYPE_FIELD(device_type
,
2725 SPI_DEV_TYPE_ERASE_SIZE
);
2726 spi_device
->block_size
=
2727 1 << SPI_DEV_TYPE_FIELD(device_type
,
2728 SPI_DEV_TYPE_BLOCK_SIZE
);
2730 spi_device
->efx
= efx
;
2735 kfree(*spi_device_ret
);
2736 *spi_device_ret
= spi_device
;
2741 static void falcon_remove_spi_devices(struct efx_nic
*efx
)
2743 kfree(efx
->spi_eeprom
);
2744 efx
->spi_eeprom
= NULL
;
2745 kfree(efx
->spi_flash
);
2746 efx
->spi_flash
= NULL
;
2749 /* Extract non-volatile configuration */
2750 static int falcon_probe_nvconfig(struct efx_nic
*efx
)
2752 struct falcon_nvconfig
*nvconfig
;
2756 nvconfig
= kmalloc(sizeof(*nvconfig
), GFP_KERNEL
);
2760 rc
= falcon_read_nvram(efx
, nvconfig
);
2761 if (rc
== -EINVAL
) {
2762 EFX_ERR(efx
, "NVRAM is invalid therefore using defaults\n");
2763 efx
->phy_type
= PHY_TYPE_NONE
;
2764 efx
->mii
.phy_id
= PHY_ADDR_INVALID
;
2770 struct falcon_nvconfig_board_v2
*v2
= &nvconfig
->board_v2
;
2771 struct falcon_nvconfig_board_v3
*v3
= &nvconfig
->board_v3
;
2773 efx
->phy_type
= v2
->port0_phy_type
;
2774 efx
->mii
.phy_id
= v2
->port0_phy_addr
;
2775 board_rev
= le16_to_cpu(v2
->board_revision
);
2777 if (le16_to_cpu(nvconfig
->board_struct_ver
) >= 3) {
2778 __le32 fl
= v3
->spi_device_type
[EE_SPI_FLASH
];
2779 __le32 ee
= v3
->spi_device_type
[EE_SPI_EEPROM
];
2780 rc
= falcon_spi_device_init(efx
, &efx
->spi_flash
,
2785 rc
= falcon_spi_device_init(efx
, &efx
->spi_eeprom
,
2793 /* Read the MAC addresses */
2794 memcpy(efx
->mac_address
, nvconfig
->mac_address
[0], ETH_ALEN
);
2796 EFX_LOG(efx
, "PHY is %d phy_id %d\n", efx
->phy_type
, efx
->mii
.phy_id
);
2798 efx_set_board_info(efx
, board_rev
);
2804 falcon_remove_spi_devices(efx
);
2810 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2811 * count, port speed). Set workaround and feature flags accordingly.
2813 static int falcon_probe_nic_variant(struct efx_nic
*efx
)
2815 efx_oword_t altera_build
;
2816 efx_oword_t nic_stat
;
2818 falcon_read(efx
, &altera_build
, ALTERA_BUILD_REG_KER
);
2819 if (EFX_OWORD_FIELD(altera_build
, VER_ALL
)) {
2820 EFX_ERR(efx
, "Falcon FPGA not supported\n");
2824 falcon_read(efx
, &nic_stat
, NIC_STAT_REG
);
2826 switch (falcon_rev(efx
)) {
2829 EFX_ERR(efx
, "Falcon rev A0 not supported\n");
2833 if (EFX_OWORD_FIELD(nic_stat
, STRAP_PCIE
) == 0) {
2834 EFX_ERR(efx
, "Falcon rev A1 PCI-X not supported\n");
2843 EFX_ERR(efx
, "Unknown Falcon rev %d\n", falcon_rev(efx
));
2847 /* Initial assumed speed */
2848 efx
->link_speed
= EFX_OWORD_FIELD(nic_stat
, STRAP_10G
) ? 10000 : 1000;
2853 /* Probe all SPI devices on the NIC */
2854 static void falcon_probe_spi_devices(struct efx_nic
*efx
)
2856 efx_oword_t nic_stat
, gpio_ctl
, ee_vpd_cfg
;
2859 falcon_read(efx
, &gpio_ctl
, GPIO_CTL_REG_KER
);
2860 falcon_read(efx
, &nic_stat
, NIC_STAT_REG
);
2861 falcon_read(efx
, &ee_vpd_cfg
, EE_VPD_CFG_REG_KER
);
2863 if (EFX_OWORD_FIELD(gpio_ctl
, BOOTED_USING_NVDEVICE
)) {
2864 boot_dev
= (EFX_OWORD_FIELD(nic_stat
, SF_PRST
) ?
2865 EE_SPI_FLASH
: EE_SPI_EEPROM
);
2866 EFX_LOG(efx
, "Booted from %s\n",
2867 boot_dev
== EE_SPI_FLASH
? "flash" : "EEPROM");
2869 /* Disable VPD and set clock dividers to safe
2870 * values for initial programming. */
2872 EFX_LOG(efx
, "Booted from internal ASIC settings;"
2873 " setting SPI config\n");
2874 EFX_POPULATE_OWORD_3(ee_vpd_cfg
, EE_VPD_EN
, 0,
2875 /* 125 MHz / 7 ~= 20 MHz */
2877 /* 125 MHz / 63 ~= 2 MHz */
2878 EE_EE_CLOCK_DIV
, 63);
2879 falcon_write(efx
, &ee_vpd_cfg
, EE_VPD_CFG_REG_KER
);
2882 if (boot_dev
== EE_SPI_FLASH
)
2883 falcon_spi_device_init(efx
, &efx
->spi_flash
, EE_SPI_FLASH
,
2884 default_flash_type
);
2885 if (boot_dev
== EE_SPI_EEPROM
)
2886 falcon_spi_device_init(efx
, &efx
->spi_eeprom
, EE_SPI_EEPROM
,
2890 int falcon_probe_nic(struct efx_nic
*efx
)
2892 struct falcon_nic_data
*nic_data
;
2895 /* Allocate storage for hardware specific data */
2896 nic_data
= kzalloc(sizeof(*nic_data
), GFP_KERNEL
);
2899 efx
->nic_data
= nic_data
;
2901 /* Determine number of ports etc. */
2902 rc
= falcon_probe_nic_variant(efx
);
2906 /* Probe secondary function if expected */
2907 if (FALCON_IS_DUAL_FUNC(efx
)) {
2908 struct pci_dev
*dev
= pci_dev_get(efx
->pci_dev
);
2910 while ((dev
= pci_get_device(EFX_VENDID_SFC
, FALCON_A_S_DEVID
,
2912 if (dev
->bus
== efx
->pci_dev
->bus
&&
2913 dev
->devfn
== efx
->pci_dev
->devfn
+ 1) {
2914 nic_data
->pci_dev2
= dev
;
2918 if (!nic_data
->pci_dev2
) {
2919 EFX_ERR(efx
, "failed to find secondary function\n");
2925 /* Now we can reset the NIC */
2926 rc
= falcon_reset_hw(efx
, RESET_TYPE_ALL
);
2928 EFX_ERR(efx
, "failed to reset NIC\n");
2932 /* Allocate memory for INT_KER */
2933 rc
= falcon_alloc_buffer(efx
, &efx
->irq_status
, sizeof(efx_oword_t
));
2936 BUG_ON(efx
->irq_status
.dma_addr
& 0x0f);
2938 EFX_LOG(efx
, "INT_KER at %llx (virt %p phys %llx)\n",
2939 (u64
)efx
->irq_status
.dma_addr
,
2940 efx
->irq_status
.addr
, (u64
)virt_to_phys(efx
->irq_status
.addr
));
2942 falcon_probe_spi_devices(efx
);
2944 /* Read in the non-volatile configuration */
2945 rc
= falcon_probe_nvconfig(efx
);
2949 /* Initialise I2C adapter */
2950 efx
->i2c_adap
.owner
= THIS_MODULE
;
2951 nic_data
->i2c_data
= falcon_i2c_bit_operations
;
2952 nic_data
->i2c_data
.data
= efx
;
2953 efx
->i2c_adap
.algo_data
= &nic_data
->i2c_data
;
2954 efx
->i2c_adap
.dev
.parent
= &efx
->pci_dev
->dev
;
2955 strlcpy(efx
->i2c_adap
.name
, "SFC4000 GPIO", sizeof(efx
->i2c_adap
.name
));
2956 rc
= i2c_bit_add_bus(&efx
->i2c_adap
);
2963 falcon_remove_spi_devices(efx
);
2964 falcon_free_buffer(efx
, &efx
->irq_status
);
2967 if (nic_data
->pci_dev2
) {
2968 pci_dev_put(nic_data
->pci_dev2
);
2969 nic_data
->pci_dev2
= NULL
;
2973 kfree(efx
->nic_data
);
2977 /* This call performs hardware-specific global initialisation, such as
2978 * defining the descriptor cache sizes and number of RSS channels.
2979 * It does not set up any buffers, descriptor rings or event queues.
2981 int falcon_init_nic(struct efx_nic
*efx
)
2987 /* Use on-chip SRAM */
2988 falcon_read(efx
, &temp
, NIC_STAT_REG
);
2989 EFX_SET_OWORD_FIELD(temp
, ONCHIP_SRAM
, 1);
2990 falcon_write(efx
, &temp
, NIC_STAT_REG
);
2992 /* Set the source of the GMAC clock */
2993 if (falcon_rev(efx
) == FALCON_REV_B0
) {
2994 falcon_read(efx
, &temp
, GPIO_CTL_REG_KER
);
2995 EFX_SET_OWORD_FIELD(temp
, GPIO_USE_NIC_CLK
, true);
2996 falcon_write(efx
, &temp
, GPIO_CTL_REG_KER
);
2999 /* Set buffer table mode */
3000 EFX_POPULATE_OWORD_1(temp
, BUF_TBL_MODE
, BUF_TBL_MODE_FULL
);
3001 falcon_write(efx
, &temp
, BUF_TBL_CFG_REG_KER
);
3003 rc
= falcon_reset_sram(efx
);
3007 /* Set positions of descriptor caches in SRAM. */
3008 EFX_POPULATE_OWORD_1(temp
, SRM_TX_DC_BASE_ADR
, TX_DC_BASE
/ 8);
3009 falcon_write(efx
, &temp
, SRM_TX_DC_CFG_REG_KER
);
3010 EFX_POPULATE_OWORD_1(temp
, SRM_RX_DC_BASE_ADR
, RX_DC_BASE
/ 8);
3011 falcon_write(efx
, &temp
, SRM_RX_DC_CFG_REG_KER
);
3013 /* Set TX descriptor cache size. */
3014 BUILD_BUG_ON(TX_DC_ENTRIES
!= (16 << TX_DC_ENTRIES_ORDER
));
3015 EFX_POPULATE_OWORD_1(temp
, TX_DC_SIZE
, TX_DC_ENTRIES_ORDER
);
3016 falcon_write(efx
, &temp
, TX_DC_CFG_REG_KER
);
3018 /* Set RX descriptor cache size. Set low watermark to size-8, as
3019 * this allows most efficient prefetching.
3021 BUILD_BUG_ON(RX_DC_ENTRIES
!= (16 << RX_DC_ENTRIES_ORDER
));
3022 EFX_POPULATE_OWORD_1(temp
, RX_DC_SIZE
, RX_DC_ENTRIES_ORDER
);
3023 falcon_write(efx
, &temp
, RX_DC_CFG_REG_KER
);
3024 EFX_POPULATE_OWORD_1(temp
, RX_DC_PF_LWM
, RX_DC_ENTRIES
- 8);
3025 falcon_write(efx
, &temp
, RX_DC_PF_WM_REG_KER
);
3027 /* Clear the parity enables on the TX data fifos as
3028 * they produce false parity errors because of timing issues
3030 if (EFX_WORKAROUND_5129(efx
)) {
3031 falcon_read(efx
, &temp
, SPARE_REG_KER
);
3032 EFX_SET_OWORD_FIELD(temp
, MEM_PERR_EN_TX_DATA
, 0);
3033 falcon_write(efx
, &temp
, SPARE_REG_KER
);
3036 /* Enable all the genuinely fatal interrupts. (They are still
3037 * masked by the overall interrupt mask, controlled by
3038 * falcon_interrupts()).
3040 * Note: All other fatal interrupts are enabled
3042 EFX_POPULATE_OWORD_3(temp
,
3043 ILL_ADR_INT_KER_EN
, 1,
3044 RBUF_OWN_INT_KER_EN
, 1,
3045 TBUF_OWN_INT_KER_EN
, 1);
3046 EFX_INVERT_OWORD(temp
);
3047 falcon_write(efx
, &temp
, FATAL_INTR_REG_KER
);
3049 if (EFX_WORKAROUND_7244(efx
)) {
3050 falcon_read(efx
, &temp
, RX_FILTER_CTL_REG
);
3051 EFX_SET_OWORD_FIELD(temp
, UDP_FULL_SRCH_LIMIT
, 8);
3052 EFX_SET_OWORD_FIELD(temp
, UDP_WILD_SRCH_LIMIT
, 8);
3053 EFX_SET_OWORD_FIELD(temp
, TCP_FULL_SRCH_LIMIT
, 8);
3054 EFX_SET_OWORD_FIELD(temp
, TCP_WILD_SRCH_LIMIT
, 8);
3055 falcon_write(efx
, &temp
, RX_FILTER_CTL_REG
);
3058 falcon_setup_rss_indir_table(efx
);
3060 /* Setup RX. Wait for descriptor is broken and must
3061 * be disabled. RXDP recovery shouldn't be needed, but is.
3063 falcon_read(efx
, &temp
, RX_SELF_RST_REG_KER
);
3064 EFX_SET_OWORD_FIELD(temp
, RX_NODESC_WAIT_DIS
, 1);
3065 EFX_SET_OWORD_FIELD(temp
, RX_RECOVERY_EN
, 1);
3066 if (EFX_WORKAROUND_5583(efx
))
3067 EFX_SET_OWORD_FIELD(temp
, RX_ISCSI_DIS
, 1);
3068 falcon_write(efx
, &temp
, RX_SELF_RST_REG_KER
);
3070 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3071 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3073 falcon_read(efx
, &temp
, TX_CFG2_REG_KER
);
3074 EFX_SET_OWORD_FIELD(temp
, TX_RX_SPACER
, 0xfe);
3075 EFX_SET_OWORD_FIELD(temp
, TX_RX_SPACER_EN
, 1);
3076 EFX_SET_OWORD_FIELD(temp
, TX_ONE_PKT_PER_Q
, 1);
3077 EFX_SET_OWORD_FIELD(temp
, TX_CSR_PUSH_EN
, 0);
3078 EFX_SET_OWORD_FIELD(temp
, TX_DIS_NON_IP_EV
, 1);
3079 /* Enable SW_EV to inherit in char driver - assume harmless here */
3080 EFX_SET_OWORD_FIELD(temp
, TX_SW_EV_EN
, 1);
3081 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3082 EFX_SET_OWORD_FIELD(temp
, TX_PREF_THRESHOLD
, 2);
3083 /* Squash TX of packets of 16 bytes or less */
3084 if (falcon_rev(efx
) >= FALCON_REV_B0
&& EFX_WORKAROUND_9141(efx
))
3085 EFX_SET_OWORD_FIELD(temp
, TX_FLUSH_MIN_LEN_EN_B0
, 1);
3086 falcon_write(efx
, &temp
, TX_CFG2_REG_KER
);
3088 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3089 * descriptors (which is bad).
3091 falcon_read(efx
, &temp
, TX_CFG_REG_KER
);
3092 EFX_SET_OWORD_FIELD(temp
, TX_NO_EOP_DISC_EN
, 0);
3093 falcon_write(efx
, &temp
, TX_CFG_REG_KER
);
3096 falcon_read(efx
, &temp
, RX_CFG_REG_KER
);
3097 EFX_SET_OWORD_FIELD_VER(efx
, temp
, RX_DESC_PUSH_EN
, 0);
3098 if (EFX_WORKAROUND_7575(efx
))
3099 EFX_SET_OWORD_FIELD_VER(efx
, temp
, RX_USR_BUF_SIZE
,
3101 if (falcon_rev(efx
) >= FALCON_REV_B0
)
3102 EFX_SET_OWORD_FIELD(temp
, RX_INGR_EN_B0
, 1);
3104 /* RX FIFO flow control thresholds */
3105 thresh
= ((rx_xon_thresh_bytes
>= 0) ?
3106 rx_xon_thresh_bytes
: efx
->type
->rx_xon_thresh
);
3107 EFX_SET_OWORD_FIELD_VER(efx
, temp
, RX_XON_MAC_TH
, thresh
/ 256);
3108 thresh
= ((rx_xoff_thresh_bytes
>= 0) ?
3109 rx_xoff_thresh_bytes
: efx
->type
->rx_xoff_thresh
);
3110 EFX_SET_OWORD_FIELD_VER(efx
, temp
, RX_XOFF_MAC_TH
, thresh
/ 256);
3111 /* RX control FIFO thresholds [32 entries] */
3112 EFX_SET_OWORD_FIELD_VER(efx
, temp
, RX_XON_TX_TH
, 20);
3113 EFX_SET_OWORD_FIELD_VER(efx
, temp
, RX_XOFF_TX_TH
, 25);
3114 falcon_write(efx
, &temp
, RX_CFG_REG_KER
);
3116 /* Set destination of both TX and RX Flush events */
3117 if (falcon_rev(efx
) >= FALCON_REV_B0
) {
3118 EFX_POPULATE_OWORD_1(temp
, FLS_EVQ_ID
, 0);
3119 falcon_write(efx
, &temp
, DP_CTRL_REG
);
3125 void falcon_remove_nic(struct efx_nic
*efx
)
3127 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
3130 /* Remove I2C adapter and clear it in preparation for a retry */
3131 rc
= i2c_del_adapter(&efx
->i2c_adap
);
3133 memset(&efx
->i2c_adap
, 0, sizeof(efx
->i2c_adap
));
3135 falcon_remove_spi_devices(efx
);
3136 falcon_free_buffer(efx
, &efx
->irq_status
);
3138 falcon_reset_hw(efx
, RESET_TYPE_ALL
);
3140 /* Release the second function after the reset */
3141 if (nic_data
->pci_dev2
) {
3142 pci_dev_put(nic_data
->pci_dev2
);
3143 nic_data
->pci_dev2
= NULL
;
3146 /* Tear down the private nic state */
3147 kfree(efx
->nic_data
);
3148 efx
->nic_data
= NULL
;
3151 void falcon_update_nic_stats(struct efx_nic
*efx
)
3155 falcon_read(efx
, &cnt
, RX_NODESC_DROP_REG_KER
);
3156 efx
->n_rx_nodesc_drop_cnt
+= EFX_OWORD_FIELD(cnt
, RX_NODESC_DROP_CNT
);
3159 /**************************************************************************
3161 * Revision-dependent attributes used by efx.c
3163 **************************************************************************
3166 struct efx_nic_type falcon_a_nic_type
= {
3168 .mem_map_size
= 0x20000,
3169 .txd_ptr_tbl_base
= TX_DESC_PTR_TBL_KER_A1
,
3170 .rxd_ptr_tbl_base
= RX_DESC_PTR_TBL_KER_A1
,
3171 .buf_tbl_base
= BUF_TBL_KER_A1
,
3172 .evq_ptr_tbl_base
= EVQ_PTR_TBL_KER_A1
,
3173 .evq_rptr_tbl_base
= EVQ_RPTR_REG_KER_A1
,
3174 .txd_ring_mask
= FALCON_TXD_RING_MASK
,
3175 .rxd_ring_mask
= FALCON_RXD_RING_MASK
,
3176 .evq_size
= FALCON_EVQ_SIZE
,
3177 .max_dma_mask
= FALCON_DMA_MASK
,
3178 .tx_dma_mask
= FALCON_TX_DMA_MASK
,
3179 .bug5391_mask
= 0xf,
3180 .rx_xoff_thresh
= 2048,
3181 .rx_xon_thresh
= 512,
3182 .rx_buffer_padding
= 0x24,
3183 .max_interrupt_mode
= EFX_INT_MODE_MSI
,
3184 .phys_addr_channels
= 4,
3187 struct efx_nic_type falcon_b_nic_type
= {
3189 /* Map everything up to and including the RSS indirection
3190 * table. Don't map MSI-X table, MSI-X PBA since Linux
3191 * requires that they not be mapped. */
3192 .mem_map_size
= RX_RSS_INDIR_TBL_B0
+ 0x800,
3193 .txd_ptr_tbl_base
= TX_DESC_PTR_TBL_KER_B0
,
3194 .rxd_ptr_tbl_base
= RX_DESC_PTR_TBL_KER_B0
,
3195 .buf_tbl_base
= BUF_TBL_KER_B0
,
3196 .evq_ptr_tbl_base
= EVQ_PTR_TBL_KER_B0
,
3197 .evq_rptr_tbl_base
= EVQ_RPTR_REG_KER_B0
,
3198 .txd_ring_mask
= FALCON_TXD_RING_MASK
,
3199 .rxd_ring_mask
= FALCON_RXD_RING_MASK
,
3200 .evq_size
= FALCON_EVQ_SIZE
,
3201 .max_dma_mask
= FALCON_DMA_MASK
,
3202 .tx_dma_mask
= FALCON_TX_DMA_MASK
,
3204 .rx_xoff_thresh
= 54272, /* ~80Kb - 3*max MTU */
3205 .rx_xon_thresh
= 27648, /* ~3*max MTU */
3206 .rx_buffer_padding
= 0,
3207 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
3208 .phys_addr_channels
= 32, /* Hardware limit is 64, but the legacy
3209 * interrupt handler only supports 32