2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
8 static inline int rt_overloaded(struct rq
*rq
)
10 return atomic_read(&rq
->rd
->rto_count
);
13 static inline void rt_set_overload(struct rq
*rq
)
15 cpu_set(rq
->cpu
, rq
->rd
->rto_mask
);
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
24 atomic_inc(&rq
->rd
->rto_count
);
27 static inline void rt_clear_overload(struct rq
*rq
)
29 /* the order here really doesn't matter */
30 atomic_dec(&rq
->rd
->rto_count
);
31 cpu_clear(rq
->cpu
, rq
->rd
->rto_mask
);
34 static void update_rt_migration(struct rq
*rq
)
36 if (rq
->rt
.rt_nr_migratory
&& (rq
->rt
.rt_nr_running
> 1)) {
37 if (!rq
->rt
.overloaded
) {
39 rq
->rt
.overloaded
= 1;
41 } else if (rq
->rt
.overloaded
) {
42 rt_clear_overload(rq
);
43 rq
->rt
.overloaded
= 0;
46 #endif /* CONFIG_SMP */
48 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
50 return container_of(rt_se
, struct task_struct
, rt
);
53 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
55 return !list_empty(&rt_se
->run_list
);
58 #ifdef CONFIG_RT_GROUP_SCHED
60 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
65 return rt_rq
->tg
->rt_runtime
;
68 #define for_each_leaf_rt_rq(rt_rq, rq) \
69 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
71 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
76 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
81 #define for_each_sched_rt_entity(rt_se) \
82 for (; rt_se; rt_se = rt_se->parent)
84 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
89 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
);
90 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
);
92 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
94 struct sched_rt_entity
*rt_se
= rt_rq
->rt_se
;
96 if (rt_se
&& !on_rt_rq(rt_se
) && rt_rq
->rt_nr_running
) {
97 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
99 enqueue_rt_entity(rt_se
);
100 if (rt_rq
->highest_prio
< curr
->prio
)
105 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
107 struct sched_rt_entity
*rt_se
= rt_rq
->rt_se
;
109 if (rt_se
&& on_rt_rq(rt_se
))
110 dequeue_rt_entity(rt_se
);
113 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
115 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
118 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
120 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
121 struct task_struct
*p
;
124 return !!rt_rq
->rt_nr_boosted
;
126 p
= rt_task_of(rt_se
);
127 return p
->prio
!= p
->normal_prio
;
132 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
134 if (sysctl_sched_rt_runtime
== -1)
137 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
140 #define for_each_leaf_rt_rq(rt_rq, rq) \
141 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
143 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
145 return container_of(rt_rq
, struct rq
, rt
);
148 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
150 struct task_struct
*p
= rt_task_of(rt_se
);
151 struct rq
*rq
= task_rq(p
);
156 #define for_each_sched_rt_entity(rt_se) \
157 for (; rt_se; rt_se = NULL)
159 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
164 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
168 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
172 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
174 return rt_rq
->rt_throttled
;
178 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
180 #ifdef CONFIG_RT_GROUP_SCHED
181 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
184 return rt_rq
->highest_prio
;
187 return rt_task_of(rt_se
)->prio
;
190 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
192 u64 runtime
= sched_rt_runtime(rt_rq
);
194 if (runtime
== RUNTIME_INF
)
197 if (rt_rq
->rt_throttled
)
198 return rt_rq_throttled(rt_rq
);
200 if (rt_rq
->rt_time
> runtime
) {
201 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
203 rq
->rt_throttled
= 1;
204 rt_rq
->rt_throttled
= 1;
206 if (rt_rq_throttled(rt_rq
)) {
207 sched_rt_rq_dequeue(rt_rq
);
215 static void update_sched_rt_period(struct rq
*rq
)
220 while (rq
->clock
> rq
->rt_period_expire
) {
221 period
= (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
222 rq
->rt_period_expire
+= period
;
224 for_each_leaf_rt_rq(rt_rq
, rq
) {
225 u64 runtime
= sched_rt_runtime(rt_rq
);
227 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, runtime
);
228 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
229 rt_rq
->rt_throttled
= 0;
230 sched_rt_rq_enqueue(rt_rq
);
234 rq
->rt_throttled
= 0;
239 * Update the current task's runtime statistics. Skip current tasks that
240 * are not in our scheduling class.
242 static void update_curr_rt(struct rq
*rq
)
244 struct task_struct
*curr
= rq
->curr
;
245 struct sched_rt_entity
*rt_se
= &curr
->rt
;
246 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
249 if (!task_has_rt_policy(curr
))
252 delta_exec
= rq
->clock
- curr
->se
.exec_start
;
253 if (unlikely((s64
)delta_exec
< 0))
256 schedstat_set(curr
->se
.exec_max
, max(curr
->se
.exec_max
, delta_exec
));
258 curr
->se
.sum_exec_runtime
+= delta_exec
;
259 curr
->se
.exec_start
= rq
->clock
;
260 cpuacct_charge(curr
, delta_exec
);
262 rt_rq
->rt_time
+= delta_exec
;
263 if (sched_rt_runtime_exceeded(rt_rq
))
268 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
270 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
271 rt_rq
->rt_nr_running
++;
272 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
273 if (rt_se_prio(rt_se
) < rt_rq
->highest_prio
)
274 rt_rq
->highest_prio
= rt_se_prio(rt_se
);
277 if (rt_se
->nr_cpus_allowed
> 1) {
278 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
279 rq
->rt
.rt_nr_migratory
++;
282 update_rt_migration(rq_of_rt_rq(rt_rq
));
284 #ifdef CONFIG_RT_GROUP_SCHED
285 if (rt_se_boosted(rt_se
))
286 rt_rq
->rt_nr_boosted
++;
291 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
293 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
294 WARN_ON(!rt_rq
->rt_nr_running
);
295 rt_rq
->rt_nr_running
--;
296 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
297 if (rt_rq
->rt_nr_running
) {
298 struct rt_prio_array
*array
;
300 WARN_ON(rt_se_prio(rt_se
) < rt_rq
->highest_prio
);
301 if (rt_se_prio(rt_se
) == rt_rq
->highest_prio
) {
303 array
= &rt_rq
->active
;
304 rt_rq
->highest_prio
=
305 sched_find_first_bit(array
->bitmap
);
306 } /* otherwise leave rq->highest prio alone */
308 rt_rq
->highest_prio
= MAX_RT_PRIO
;
311 if (rt_se
->nr_cpus_allowed
> 1) {
312 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
313 rq
->rt
.rt_nr_migratory
--;
316 update_rt_migration(rq_of_rt_rq(rt_rq
));
317 #endif /* CONFIG_SMP */
318 #ifdef CONFIG_RT_GROUP_SCHED
319 if (rt_se_boosted(rt_se
))
320 rt_rq
->rt_nr_boosted
--;
322 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
326 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
)
328 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
329 struct rt_prio_array
*array
= &rt_rq
->active
;
330 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
332 if (group_rq
&& rt_rq_throttled(group_rq
))
335 list_add_tail(&rt_se
->run_list
, array
->queue
+ rt_se_prio(rt_se
));
336 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
338 inc_rt_tasks(rt_se
, rt_rq
);
341 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
343 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
344 struct rt_prio_array
*array
= &rt_rq
->active
;
346 list_del_init(&rt_se
->run_list
);
347 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
348 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
350 dec_rt_tasks(rt_se
, rt_rq
);
354 * Because the prio of an upper entry depends on the lower
355 * entries, we must remove entries top - down.
357 * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
358 * doesn't matter much for now, as h=2 for GROUP_SCHED.
360 static void dequeue_rt_stack(struct task_struct
*p
)
362 struct sched_rt_entity
*rt_se
, *top_se
;
365 * dequeue all, top - down.
370 for_each_sched_rt_entity(rt_se
) {
375 dequeue_rt_entity(top_se
);
380 * Adding/removing a task to/from a priority array:
382 static void enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
384 struct sched_rt_entity
*rt_se
= &p
->rt
;
392 * enqueue everybody, bottom - up.
394 for_each_sched_rt_entity(rt_se
)
395 enqueue_rt_entity(rt_se
);
397 inc_cpu_load(rq
, p
->se
.load
.weight
);
400 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int sleep
)
402 struct sched_rt_entity
*rt_se
= &p
->rt
;
410 * re-enqueue all non-empty rt_rq entities.
412 for_each_sched_rt_entity(rt_se
) {
413 rt_rq
= group_rt_rq(rt_se
);
414 if (rt_rq
&& rt_rq
->rt_nr_running
)
415 enqueue_rt_entity(rt_se
);
418 dec_cpu_load(rq
, p
->se
.load
.weight
);
422 * Put task to the end of the run list without the overhead of dequeue
423 * followed by enqueue.
426 void requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
)
428 struct rt_prio_array
*array
= &rt_rq
->active
;
430 list_move_tail(&rt_se
->run_list
, array
->queue
+ rt_se_prio(rt_se
));
433 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
)
435 struct sched_rt_entity
*rt_se
= &p
->rt
;
438 for_each_sched_rt_entity(rt_se
) {
439 rt_rq
= rt_rq_of_se(rt_se
);
440 requeue_rt_entity(rt_rq
, rt_se
);
444 static void yield_task_rt(struct rq
*rq
)
446 requeue_task_rt(rq
, rq
->curr
);
450 static int find_lowest_rq(struct task_struct
*task
);
452 static int select_task_rq_rt(struct task_struct
*p
, int sync
)
454 struct rq
*rq
= task_rq(p
);
457 * If the current task is an RT task, then
458 * try to see if we can wake this RT task up on another
459 * runqueue. Otherwise simply start this RT task
460 * on its current runqueue.
462 * We want to avoid overloading runqueues. Even if
463 * the RT task is of higher priority than the current RT task.
464 * RT tasks behave differently than other tasks. If
465 * one gets preempted, we try to push it off to another queue.
466 * So trying to keep a preempting RT task on the same
467 * cache hot CPU will force the running RT task to
468 * a cold CPU. So we waste all the cache for the lower
469 * RT task in hopes of saving some of a RT task
470 * that is just being woken and probably will have
473 if (unlikely(rt_task(rq
->curr
)) &&
474 (p
->rt
.nr_cpus_allowed
> 1)) {
475 int cpu
= find_lowest_rq(p
);
477 return (cpu
== -1) ? task_cpu(p
) : cpu
;
481 * Otherwise, just let it ride on the affined RQ and the
482 * post-schedule router will push the preempted task away
486 #endif /* CONFIG_SMP */
489 * Preempt the current task with a newly woken task if needed:
491 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
)
493 if (p
->prio
< rq
->curr
->prio
)
494 resched_task(rq
->curr
);
497 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
500 struct rt_prio_array
*array
= &rt_rq
->active
;
501 struct sched_rt_entity
*next
= NULL
;
502 struct list_head
*queue
;
505 idx
= sched_find_first_bit(array
->bitmap
);
506 BUG_ON(idx
>= MAX_RT_PRIO
);
508 queue
= array
->queue
+ idx
;
509 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
514 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
516 struct sched_rt_entity
*rt_se
;
517 struct task_struct
*p
;
522 if (unlikely(!rt_rq
->rt_nr_running
))
525 if (rt_rq_throttled(rt_rq
))
529 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
531 rt_rq
= group_rt_rq(rt_se
);
534 p
= rt_task_of(rt_se
);
535 p
->se
.exec_start
= rq
->clock
;
539 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
542 p
->se
.exec_start
= 0;
547 /* Only try algorithms three times */
548 #define RT_MAX_TRIES 3
550 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
);
551 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
);
553 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
555 if (!task_running(rq
, p
) &&
556 (cpu
< 0 || cpu_isset(cpu
, p
->cpus_allowed
)) &&
557 (p
->rt
.nr_cpus_allowed
> 1))
562 /* Return the second highest RT task, NULL otherwise */
563 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
)
565 struct task_struct
*next
= NULL
;
566 struct sched_rt_entity
*rt_se
;
567 struct rt_prio_array
*array
;
571 for_each_leaf_rt_rq(rt_rq
, rq
) {
572 array
= &rt_rq
->active
;
573 idx
= sched_find_first_bit(array
->bitmap
);
575 if (idx
>= MAX_RT_PRIO
)
577 if (next
&& next
->prio
< idx
)
579 list_for_each_entry(rt_se
, array
->queue
+ idx
, run_list
) {
580 struct task_struct
*p
= rt_task_of(rt_se
);
581 if (pick_rt_task(rq
, p
, cpu
)) {
587 idx
= find_next_bit(array
->bitmap
, MAX_RT_PRIO
, idx
+1);
595 static DEFINE_PER_CPU(cpumask_t
, local_cpu_mask
);
597 static int find_lowest_cpus(struct task_struct
*task
, cpumask_t
*lowest_mask
)
599 int lowest_prio
= -1;
604 cpus_and(*lowest_mask
, task_rq(task
)->rd
->online
, task
->cpus_allowed
);
607 * Scan each rq for the lowest prio.
609 for_each_cpu_mask(cpu
, *lowest_mask
) {
610 struct rq
*rq
= cpu_rq(cpu
);
612 /* We look for lowest RT prio or non-rt CPU */
613 if (rq
->rt
.highest_prio
>= MAX_RT_PRIO
) {
615 * if we already found a low RT queue
616 * and now we found this non-rt queue
617 * clear the mask and set our bit.
618 * Otherwise just return the queue as is
619 * and the count==1 will cause the algorithm
620 * to use the first bit found.
622 if (lowest_cpu
!= -1) {
623 cpus_clear(*lowest_mask
);
624 cpu_set(rq
->cpu
, *lowest_mask
);
629 /* no locking for now */
630 if ((rq
->rt
.highest_prio
> task
->prio
)
631 && (rq
->rt
.highest_prio
>= lowest_prio
)) {
632 if (rq
->rt
.highest_prio
> lowest_prio
) {
633 /* new low - clear old data */
634 lowest_prio
= rq
->rt
.highest_prio
;
640 cpu_clear(cpu
, *lowest_mask
);
644 * Clear out all the set bits that represent
645 * runqueues that were of higher prio than
648 if (lowest_cpu
> 0) {
650 * Perhaps we could add another cpumask op to
651 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
652 * Then that could be optimized to use memset and such.
654 for_each_cpu_mask(cpu
, *lowest_mask
) {
655 if (cpu
>= lowest_cpu
)
657 cpu_clear(cpu
, *lowest_mask
);
664 static inline int pick_optimal_cpu(int this_cpu
, cpumask_t
*mask
)
668 /* "this_cpu" is cheaper to preempt than a remote processor */
669 if ((this_cpu
!= -1) && cpu_isset(this_cpu
, *mask
))
672 first
= first_cpu(*mask
);
673 if (first
!= NR_CPUS
)
679 static int find_lowest_rq(struct task_struct
*task
)
681 struct sched_domain
*sd
;
682 cpumask_t
*lowest_mask
= &__get_cpu_var(local_cpu_mask
);
683 int this_cpu
= smp_processor_id();
684 int cpu
= task_cpu(task
);
685 int count
= find_lowest_cpus(task
, lowest_mask
);
688 return -1; /* No targets found */
691 * There is no sense in performing an optimal search if only one
695 return first_cpu(*lowest_mask
);
698 * At this point we have built a mask of cpus representing the
699 * lowest priority tasks in the system. Now we want to elect
700 * the best one based on our affinity and topology.
702 * We prioritize the last cpu that the task executed on since
703 * it is most likely cache-hot in that location.
705 if (cpu_isset(cpu
, *lowest_mask
))
709 * Otherwise, we consult the sched_domains span maps to figure
710 * out which cpu is logically closest to our hot cache data.
713 this_cpu
= -1; /* Skip this_cpu opt if the same */
715 for_each_domain(cpu
, sd
) {
716 if (sd
->flags
& SD_WAKE_AFFINE
) {
717 cpumask_t domain_mask
;
720 cpus_and(domain_mask
, sd
->span
, *lowest_mask
);
722 best_cpu
= pick_optimal_cpu(this_cpu
,
730 * And finally, if there were no matches within the domains
731 * just give the caller *something* to work with from the compatible
734 return pick_optimal_cpu(this_cpu
, lowest_mask
);
737 /* Will lock the rq it finds */
738 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
740 struct rq
*lowest_rq
= NULL
;
744 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
745 cpu
= find_lowest_rq(task
);
747 if ((cpu
== -1) || (cpu
== rq
->cpu
))
750 lowest_rq
= cpu_rq(cpu
);
752 /* if the prio of this runqueue changed, try again */
753 if (double_lock_balance(rq
, lowest_rq
)) {
755 * We had to unlock the run queue. In
756 * the mean time, task could have
757 * migrated already or had its affinity changed.
758 * Also make sure that it wasn't scheduled on its rq.
760 if (unlikely(task_rq(task
) != rq
||
761 !cpu_isset(lowest_rq
->cpu
,
762 task
->cpus_allowed
) ||
763 task_running(rq
, task
) ||
766 spin_unlock(&lowest_rq
->lock
);
772 /* If this rq is still suitable use it. */
773 if (lowest_rq
->rt
.highest_prio
> task
->prio
)
777 spin_unlock(&lowest_rq
->lock
);
785 * If the current CPU has more than one RT task, see if the non
786 * running task can migrate over to a CPU that is running a task
787 * of lesser priority.
789 static int push_rt_task(struct rq
*rq
)
791 struct task_struct
*next_task
;
792 struct rq
*lowest_rq
;
794 int paranoid
= RT_MAX_TRIES
;
796 if (!rq
->rt
.overloaded
)
799 next_task
= pick_next_highest_task_rt(rq
, -1);
804 if (unlikely(next_task
== rq
->curr
)) {
810 * It's possible that the next_task slipped in of
811 * higher priority than current. If that's the case
812 * just reschedule current.
814 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
815 resched_task(rq
->curr
);
819 /* We might release rq lock */
820 get_task_struct(next_task
);
822 /* find_lock_lowest_rq locks the rq if found */
823 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
825 struct task_struct
*task
;
827 * find lock_lowest_rq releases rq->lock
828 * so it is possible that next_task has changed.
829 * If it has, then try again.
831 task
= pick_next_highest_task_rt(rq
, -1);
832 if (unlikely(task
!= next_task
) && task
&& paranoid
--) {
833 put_task_struct(next_task
);
840 deactivate_task(rq
, next_task
, 0);
841 set_task_cpu(next_task
, lowest_rq
->cpu
);
842 activate_task(lowest_rq
, next_task
, 0);
844 resched_task(lowest_rq
->curr
);
846 spin_unlock(&lowest_rq
->lock
);
850 put_task_struct(next_task
);
856 * TODO: Currently we just use the second highest prio task on
857 * the queue, and stop when it can't migrate (or there's
858 * no more RT tasks). There may be a case where a lower
859 * priority RT task has a different affinity than the
860 * higher RT task. In this case the lower RT task could
861 * possibly be able to migrate where as the higher priority
862 * RT task could not. We currently ignore this issue.
863 * Enhancements are welcome!
865 static void push_rt_tasks(struct rq
*rq
)
867 /* push_rt_task will return true if it moved an RT */
868 while (push_rt_task(rq
))
872 static int pull_rt_task(struct rq
*this_rq
)
874 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
875 struct task_struct
*p
, *next
;
878 if (likely(!rt_overloaded(this_rq
)))
881 next
= pick_next_task_rt(this_rq
);
883 for_each_cpu_mask(cpu
, this_rq
->rd
->rto_mask
) {
887 src_rq
= cpu_rq(cpu
);
889 * We can potentially drop this_rq's lock in
890 * double_lock_balance, and another CPU could
891 * steal our next task - hence we must cause
892 * the caller to recalculate the next task
895 if (double_lock_balance(this_rq
, src_rq
)) {
896 struct task_struct
*old_next
= next
;
898 next
= pick_next_task_rt(this_rq
);
899 if (next
!= old_next
)
904 * Are there still pullable RT tasks?
906 if (src_rq
->rt
.rt_nr_running
<= 1)
909 p
= pick_next_highest_task_rt(src_rq
, this_cpu
);
912 * Do we have an RT task that preempts
913 * the to-be-scheduled task?
915 if (p
&& (!next
|| (p
->prio
< next
->prio
))) {
916 WARN_ON(p
== src_rq
->curr
);
917 WARN_ON(!p
->se
.on_rq
);
920 * There's a chance that p is higher in priority
921 * than what's currently running on its cpu.
922 * This is just that p is wakeing up and hasn't
923 * had a chance to schedule. We only pull
924 * p if it is lower in priority than the
925 * current task on the run queue or
926 * this_rq next task is lower in prio than
927 * the current task on that rq.
929 if (p
->prio
< src_rq
->curr
->prio
||
930 (next
&& next
->prio
< src_rq
->curr
->prio
))
935 deactivate_task(src_rq
, p
, 0);
936 set_task_cpu(p
, this_cpu
);
937 activate_task(this_rq
, p
, 0);
939 * We continue with the search, just in
940 * case there's an even higher prio task
941 * in another runqueue. (low likelyhood
944 * Update next so that we won't pick a task
945 * on another cpu with a priority lower (or equal)
946 * than the one we just picked.
952 spin_unlock(&src_rq
->lock
);
958 static void pre_schedule_rt(struct rq
*rq
, struct task_struct
*prev
)
960 /* Try to pull RT tasks here if we lower this rq's prio */
961 if (unlikely(rt_task(prev
)) && rq
->rt
.highest_prio
> prev
->prio
)
965 static void post_schedule_rt(struct rq
*rq
)
968 * If we have more than one rt_task queued, then
969 * see if we can push the other rt_tasks off to other CPUS.
970 * Note we may release the rq lock, and since
971 * the lock was owned by prev, we need to release it
972 * first via finish_lock_switch and then reaquire it here.
974 if (unlikely(rq
->rt
.overloaded
)) {
975 spin_lock_irq(&rq
->lock
);
977 spin_unlock_irq(&rq
->lock
);
982 static void task_wake_up_rt(struct rq
*rq
, struct task_struct
*p
)
984 if (!task_running(rq
, p
) &&
985 (p
->prio
>= rq
->rt
.highest_prio
) &&
991 load_balance_rt(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
992 unsigned long max_load_move
,
993 struct sched_domain
*sd
, enum cpu_idle_type idle
,
994 int *all_pinned
, int *this_best_prio
)
996 /* don't touch RT tasks */
1001 move_one_task_rt(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1002 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1004 /* don't touch RT tasks */
1008 static void set_cpus_allowed_rt(struct task_struct
*p
, cpumask_t
*new_mask
)
1010 int weight
= cpus_weight(*new_mask
);
1012 BUG_ON(!rt_task(p
));
1015 * Update the migration status of the RQ if we have an RT task
1016 * which is running AND changing its weight value.
1018 if (p
->se
.on_rq
&& (weight
!= p
->rt
.nr_cpus_allowed
)) {
1019 struct rq
*rq
= task_rq(p
);
1021 if ((p
->rt
.nr_cpus_allowed
<= 1) && (weight
> 1)) {
1022 rq
->rt
.rt_nr_migratory
++;
1023 } else if ((p
->rt
.nr_cpus_allowed
> 1) && (weight
<= 1)) {
1024 BUG_ON(!rq
->rt
.rt_nr_migratory
);
1025 rq
->rt
.rt_nr_migratory
--;
1028 update_rt_migration(rq
);
1031 p
->cpus_allowed
= *new_mask
;
1032 p
->rt
.nr_cpus_allowed
= weight
;
1035 /* Assumes rq->lock is held */
1036 static void join_domain_rt(struct rq
*rq
)
1038 if (rq
->rt
.overloaded
)
1039 rt_set_overload(rq
);
1042 /* Assumes rq->lock is held */
1043 static void leave_domain_rt(struct rq
*rq
)
1045 if (rq
->rt
.overloaded
)
1046 rt_clear_overload(rq
);
1050 * When switch from the rt queue, we bring ourselves to a position
1051 * that we might want to pull RT tasks from other runqueues.
1053 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
,
1057 * If there are other RT tasks then we will reschedule
1058 * and the scheduling of the other RT tasks will handle
1059 * the balancing. But if we are the last RT task
1060 * we may need to handle the pulling of RT tasks
1063 if (!rq
->rt
.rt_nr_running
)
1066 #endif /* CONFIG_SMP */
1069 * When switching a task to RT, we may overload the runqueue
1070 * with RT tasks. In this case we try to push them off to
1073 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
,
1076 int check_resched
= 1;
1079 * If we are already running, then there's nothing
1080 * that needs to be done. But if we are not running
1081 * we may need to preempt the current running task.
1082 * If that current running task is also an RT task
1083 * then see if we can move to another run queue.
1087 if (rq
->rt
.overloaded
&& push_rt_task(rq
) &&
1088 /* Don't resched if we changed runqueues */
1091 #endif /* CONFIG_SMP */
1092 if (check_resched
&& p
->prio
< rq
->curr
->prio
)
1093 resched_task(rq
->curr
);
1098 * Priority of the task has changed. This may cause
1099 * us to initiate a push or pull.
1101 static void prio_changed_rt(struct rq
*rq
, struct task_struct
*p
,
1102 int oldprio
, int running
)
1107 * If our priority decreases while running, we
1108 * may need to pull tasks to this runqueue.
1110 if (oldprio
< p
->prio
)
1113 * If there's a higher priority task waiting to run
1116 if (p
->prio
> rq
->rt
.highest_prio
)
1119 /* For UP simply resched on drop of prio */
1120 if (oldprio
< p
->prio
)
1122 #endif /* CONFIG_SMP */
1125 * This task is not running, but if it is
1126 * greater than the current running task
1129 if (p
->prio
< rq
->curr
->prio
)
1130 resched_task(rq
->curr
);
1134 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
1136 unsigned long soft
, hard
;
1141 soft
= p
->signal
->rlim
[RLIMIT_RTTIME
].rlim_cur
;
1142 hard
= p
->signal
->rlim
[RLIMIT_RTTIME
].rlim_max
;
1144 if (soft
!= RLIM_INFINITY
) {
1148 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
1149 if (p
->rt
.timeout
> next
)
1150 p
->it_sched_expires
= p
->se
.sum_exec_runtime
;
1154 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
1161 * RR tasks need a special form of timeslice management.
1162 * FIFO tasks have no timeslices.
1164 if (p
->policy
!= SCHED_RR
)
1167 if (--p
->rt
.time_slice
)
1170 p
->rt
.time_slice
= DEF_TIMESLICE
;
1173 * Requeue to the end of queue if we are not the only element
1176 if (p
->rt
.run_list
.prev
!= p
->rt
.run_list
.next
) {
1177 requeue_task_rt(rq
, p
);
1178 set_tsk_need_resched(p
);
1182 static void set_curr_task_rt(struct rq
*rq
)
1184 struct task_struct
*p
= rq
->curr
;
1186 p
->se
.exec_start
= rq
->clock
;
1189 const struct sched_class rt_sched_class
= {
1190 .next
= &fair_sched_class
,
1191 .enqueue_task
= enqueue_task_rt
,
1192 .dequeue_task
= dequeue_task_rt
,
1193 .yield_task
= yield_task_rt
,
1195 .select_task_rq
= select_task_rq_rt
,
1196 #endif /* CONFIG_SMP */
1198 .check_preempt_curr
= check_preempt_curr_rt
,
1200 .pick_next_task
= pick_next_task_rt
,
1201 .put_prev_task
= put_prev_task_rt
,
1204 .load_balance
= load_balance_rt
,
1205 .move_one_task
= move_one_task_rt
,
1206 .set_cpus_allowed
= set_cpus_allowed_rt
,
1207 .join_domain
= join_domain_rt
,
1208 .leave_domain
= leave_domain_rt
,
1209 .pre_schedule
= pre_schedule_rt
,
1210 .post_schedule
= post_schedule_rt
,
1211 .task_wake_up
= task_wake_up_rt
,
1212 .switched_from
= switched_from_rt
,
1215 .set_curr_task
= set_curr_task_rt
,
1216 .task_tick
= task_tick_rt
,
1218 .prio_changed
= prio_changed_rt
,
1219 .switched_to
= switched_to_rt
,