gro: Check for GSO packets and packets with frag_list
[linux-2.6/mini2440.git] / net / core / dev.c
blob7dec715293b1d40b1fb770354b552ed88e429c9c
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
130 #include "net-sysfs.h"
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
139 * The list of packet types we will receive (as opposed to discard)
140 * and the routines to invoke.
142 * Why 16. Because with 16 the only overlap we get on a hash of the
143 * low nibble of the protocol value is RARP/SNAP/X.25.
145 * NOTE: That is no longer true with the addition of VLAN tags. Not
146 * sure which should go first, but I bet it won't make much
147 * difference if we are running VLANs. The good news is that
148 * this protocol won't be in the list unless compiled in, so
149 * the average user (w/out VLANs) will not be adversely affected.
150 * --BLG
152 * 0800 IP
153 * 8100 802.1Q VLAN
154 * 0001 802.3
155 * 0002 AX.25
156 * 0004 802.2
157 * 8035 RARP
158 * 0005 SNAP
159 * 0805 X.25
160 * 0806 ARP
161 * 8137 IPX
162 * 0009 Localtalk
163 * 86DD IPv6
166 #define PTYPE_HASH_SIZE (16)
167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
169 static DEFINE_SPINLOCK(ptype_lock);
170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 static struct list_head ptype_all __read_mostly; /* Taps */
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175 * semaphore.
177 * Pure readers hold dev_base_lock for reading.
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
192 DEFINE_RWLOCK(dev_base_lock);
194 EXPORT_SYMBOL(dev_base_lock);
196 #define NETDEV_HASHBITS 8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
213 struct net *net = dev_net(dev);
215 ASSERT_RTNL();
217 write_lock_bh(&dev_base_lock);
218 list_add_tail(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
228 ASSERT_RTNL();
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
239 * Our notifier list
242 static RAW_NOTIFIER_HEAD(netdev_chain);
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
251 #ifdef CONFIG_LOCKDEP
253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
254 * according to dev->type
256 static const unsigned short netdev_lock_type[] =
257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
273 static const char *netdev_lock_name[] =
274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
293 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
295 int i;
297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
298 if (netdev_lock_type[i] == dev_type)
299 return i;
300 /* the last key is used by default */
301 return ARRAY_SIZE(netdev_lock_type) - 1;
304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
305 unsigned short dev_type)
307 int i;
309 i = netdev_lock_pos(dev_type);
310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
311 netdev_lock_name[i]);
314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
316 int i;
318 i = netdev_lock_pos(dev->type);
319 lockdep_set_class_and_name(&dev->addr_list_lock,
320 &netdev_addr_lock_key[i],
321 netdev_lock_name[i]);
323 #else
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 #endif
333 /*******************************************************************************
335 Protocol management and registration routines
337 *******************************************************************************/
340 * Add a protocol ID to the list. Now that the input handler is
341 * smarter we can dispense with all the messy stuff that used to be
342 * here.
344 * BEWARE!!! Protocol handlers, mangling input packets,
345 * MUST BE last in hash buckets and checking protocol handlers
346 * MUST start from promiscuous ptype_all chain in net_bh.
347 * It is true now, do not change it.
348 * Explanation follows: if protocol handler, mangling packet, will
349 * be the first on list, it is not able to sense, that packet
350 * is cloned and should be copied-on-write, so that it will
351 * change it and subsequent readers will get broken packet.
352 * --ANK (980803)
356 * dev_add_pack - add packet handler
357 * @pt: packet type declaration
359 * Add a protocol handler to the networking stack. The passed &packet_type
360 * is linked into kernel lists and may not be freed until it has been
361 * removed from the kernel lists.
363 * This call does not sleep therefore it can not
364 * guarantee all CPU's that are in middle of receiving packets
365 * will see the new packet type (until the next received packet).
368 void dev_add_pack(struct packet_type *pt)
370 int hash;
372 spin_lock_bh(&ptype_lock);
373 if (pt->type == htons(ETH_P_ALL))
374 list_add_rcu(&pt->list, &ptype_all);
375 else {
376 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
377 list_add_rcu(&pt->list, &ptype_base[hash]);
379 spin_unlock_bh(&ptype_lock);
383 * __dev_remove_pack - remove packet handler
384 * @pt: packet type declaration
386 * Remove a protocol handler that was previously added to the kernel
387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
388 * from the kernel lists and can be freed or reused once this function
389 * returns.
391 * The packet type might still be in use by receivers
392 * and must not be freed until after all the CPU's have gone
393 * through a quiescent state.
395 void __dev_remove_pack(struct packet_type *pt)
397 struct list_head *head;
398 struct packet_type *pt1;
400 spin_lock_bh(&ptype_lock);
402 if (pt->type == htons(ETH_P_ALL))
403 head = &ptype_all;
404 else
405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
415 out:
416 spin_unlock_bh(&ptype_lock);
419 * dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
427 * This call sleeps to guarantee that no CPU is looking at the packet
428 * type after return.
430 void dev_remove_pack(struct packet_type *pt)
432 __dev_remove_pack(pt);
434 synchronize_net();
437 /******************************************************************************
439 Device Boot-time Settings Routines
441 *******************************************************************************/
443 /* Boot time configuration table */
444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
447 * netdev_boot_setup_add - add new setup entry
448 * @name: name of the device
449 * @map: configured settings for the device
451 * Adds new setup entry to the dev_boot_setup list. The function
452 * returns 0 on error and 1 on success. This is a generic routine to
453 * all netdevices.
455 static int netdev_boot_setup_add(char *name, struct ifmap *map)
457 struct netdev_boot_setup *s;
458 int i;
460 s = dev_boot_setup;
461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
463 memset(s[i].name, 0, sizeof(s[i].name));
464 strlcpy(s[i].name, name, IFNAMSIZ);
465 memcpy(&s[i].map, map, sizeof(s[i].map));
466 break;
470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
474 * netdev_boot_setup_check - check boot time settings
475 * @dev: the netdevice
477 * Check boot time settings for the device.
478 * The found settings are set for the device to be used
479 * later in the device probing.
480 * Returns 0 if no settings found, 1 if they are.
482 int netdev_boot_setup_check(struct net_device *dev)
484 struct netdev_boot_setup *s = dev_boot_setup;
485 int i;
487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
489 !strcmp(dev->name, s[i].name)) {
490 dev->irq = s[i].map.irq;
491 dev->base_addr = s[i].map.base_addr;
492 dev->mem_start = s[i].map.mem_start;
493 dev->mem_end = s[i].map.mem_end;
494 return 1;
497 return 0;
502 * netdev_boot_base - get address from boot time settings
503 * @prefix: prefix for network device
504 * @unit: id for network device
506 * Check boot time settings for the base address of device.
507 * The found settings are set for the device to be used
508 * later in the device probing.
509 * Returns 0 if no settings found.
511 unsigned long netdev_boot_base(const char *prefix, int unit)
513 const struct netdev_boot_setup *s = dev_boot_setup;
514 char name[IFNAMSIZ];
515 int i;
517 sprintf(name, "%s%d", prefix, unit);
520 * If device already registered then return base of 1
521 * to indicate not to probe for this interface
523 if (__dev_get_by_name(&init_net, name))
524 return 1;
526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
527 if (!strcmp(name, s[i].name))
528 return s[i].map.base_addr;
529 return 0;
533 * Saves at boot time configured settings for any netdevice.
535 int __init netdev_boot_setup(char *str)
537 int ints[5];
538 struct ifmap map;
540 str = get_options(str, ARRAY_SIZE(ints), ints);
541 if (!str || !*str)
542 return 0;
544 /* Save settings */
545 memset(&map, 0, sizeof(map));
546 if (ints[0] > 0)
547 map.irq = ints[1];
548 if (ints[0] > 1)
549 map.base_addr = ints[2];
550 if (ints[0] > 2)
551 map.mem_start = ints[3];
552 if (ints[0] > 3)
553 map.mem_end = ints[4];
555 /* Add new entry to the list */
556 return netdev_boot_setup_add(str, &map);
559 __setup("netdev=", netdev_boot_setup);
561 /*******************************************************************************
563 Device Interface Subroutines
565 *******************************************************************************/
568 * __dev_get_by_name - find a device by its name
569 * @net: the applicable net namespace
570 * @name: name to find
572 * Find an interface by name. Must be called under RTNL semaphore
573 * or @dev_base_lock. If the name is found a pointer to the device
574 * is returned. If the name is not found then %NULL is returned. The
575 * reference counters are not incremented so the caller must be
576 * careful with locks.
579 struct net_device *__dev_get_by_name(struct net *net, const char *name)
581 struct hlist_node *p;
583 hlist_for_each(p, dev_name_hash(net, name)) {
584 struct net_device *dev
585 = hlist_entry(p, struct net_device, name_hlist);
586 if (!strncmp(dev->name, name, IFNAMSIZ))
587 return dev;
589 return NULL;
593 * dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
597 * Find an interface by name. This can be called from any
598 * context and does its own locking. The returned handle has
599 * the usage count incremented and the caller must use dev_put() to
600 * release it when it is no longer needed. %NULL is returned if no
601 * matching device is found.
604 struct net_device *dev_get_by_name(struct net *net, const char *name)
606 struct net_device *dev;
608 read_lock(&dev_base_lock);
609 dev = __dev_get_by_name(net, name);
610 if (dev)
611 dev_hold(dev);
612 read_unlock(&dev_base_lock);
613 return dev;
617 * __dev_get_by_index - find a device by its ifindex
618 * @net: the applicable net namespace
619 * @ifindex: index of device
621 * Search for an interface by index. Returns %NULL if the device
622 * is not found or a pointer to the device. The device has not
623 * had its reference counter increased so the caller must be careful
624 * about locking. The caller must hold either the RTNL semaphore
625 * or @dev_base_lock.
628 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
630 struct hlist_node *p;
632 hlist_for_each(p, dev_index_hash(net, ifindex)) {
633 struct net_device *dev
634 = hlist_entry(p, struct net_device, index_hlist);
635 if (dev->ifindex == ifindex)
636 return dev;
638 return NULL;
643 * dev_get_by_index - find a device by its ifindex
644 * @net: the applicable net namespace
645 * @ifindex: index of device
647 * Search for an interface by index. Returns NULL if the device
648 * is not found or a pointer to the device. The device returned has
649 * had a reference added and the pointer is safe until the user calls
650 * dev_put to indicate they have finished with it.
653 struct net_device *dev_get_by_index(struct net *net, int ifindex)
655 struct net_device *dev;
657 read_lock(&dev_base_lock);
658 dev = __dev_get_by_index(net, ifindex);
659 if (dev)
660 dev_hold(dev);
661 read_unlock(&dev_base_lock);
662 return dev;
666 * dev_getbyhwaddr - find a device by its hardware address
667 * @net: the applicable net namespace
668 * @type: media type of device
669 * @ha: hardware address
671 * Search for an interface by MAC address. Returns NULL if the device
672 * is not found or a pointer to the device. The caller must hold the
673 * rtnl semaphore. The returned device has not had its ref count increased
674 * and the caller must therefore be careful about locking
676 * BUGS:
677 * If the API was consistent this would be __dev_get_by_hwaddr
680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
682 struct net_device *dev;
684 ASSERT_RTNL();
686 for_each_netdev(net, dev)
687 if (dev->type == type &&
688 !memcmp(dev->dev_addr, ha, dev->addr_len))
689 return dev;
691 return NULL;
694 EXPORT_SYMBOL(dev_getbyhwaddr);
696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
698 struct net_device *dev;
700 ASSERT_RTNL();
701 for_each_netdev(net, dev)
702 if (dev->type == type)
703 return dev;
705 return NULL;
708 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
712 struct net_device *dev;
714 rtnl_lock();
715 dev = __dev_getfirstbyhwtype(net, type);
716 if (dev)
717 dev_hold(dev);
718 rtnl_unlock();
719 return dev;
722 EXPORT_SYMBOL(dev_getfirstbyhwtype);
725 * dev_get_by_flags - find any device with given flags
726 * @net: the applicable net namespace
727 * @if_flags: IFF_* values
728 * @mask: bitmask of bits in if_flags to check
730 * Search for any interface with the given flags. Returns NULL if a device
731 * is not found or a pointer to the device. The device returned has
732 * had a reference added and the pointer is safe until the user calls
733 * dev_put to indicate they have finished with it.
736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
738 struct net_device *dev, *ret;
740 ret = NULL;
741 read_lock(&dev_base_lock);
742 for_each_netdev(net, dev) {
743 if (((dev->flags ^ if_flags) & mask) == 0) {
744 dev_hold(dev);
745 ret = dev;
746 break;
749 read_unlock(&dev_base_lock);
750 return ret;
754 * dev_valid_name - check if name is okay for network device
755 * @name: name string
757 * Network device names need to be valid file names to
758 * to allow sysfs to work. We also disallow any kind of
759 * whitespace.
761 int dev_valid_name(const char *name)
763 if (*name == '\0')
764 return 0;
765 if (strlen(name) >= IFNAMSIZ)
766 return 0;
767 if (!strcmp(name, ".") || !strcmp(name, ".."))
768 return 0;
770 while (*name) {
771 if (*name == '/' || isspace(*name))
772 return 0;
773 name++;
775 return 1;
779 * __dev_alloc_name - allocate a name for a device
780 * @net: network namespace to allocate the device name in
781 * @name: name format string
782 * @buf: scratch buffer and result name string
784 * Passed a format string - eg "lt%d" it will try and find a suitable
785 * id. It scans list of devices to build up a free map, then chooses
786 * the first empty slot. The caller must hold the dev_base or rtnl lock
787 * while allocating the name and adding the device in order to avoid
788 * duplicates.
789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
790 * Returns the number of the unit assigned or a negative errno code.
793 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
795 int i = 0;
796 const char *p;
797 const int max_netdevices = 8*PAGE_SIZE;
798 unsigned long *inuse;
799 struct net_device *d;
801 p = strnchr(name, IFNAMSIZ-1, '%');
802 if (p) {
804 * Verify the string as this thing may have come from
805 * the user. There must be either one "%d" and no other "%"
806 * characters.
808 if (p[1] != 'd' || strchr(p + 2, '%'))
809 return -EINVAL;
811 /* Use one page as a bit array of possible slots */
812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
813 if (!inuse)
814 return -ENOMEM;
816 for_each_netdev(net, d) {
817 if (!sscanf(d->name, name, &i))
818 continue;
819 if (i < 0 || i >= max_netdevices)
820 continue;
822 /* avoid cases where sscanf is not exact inverse of printf */
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!strncmp(buf, d->name, IFNAMSIZ))
825 set_bit(i, inuse);
828 i = find_first_zero_bit(inuse, max_netdevices);
829 free_page((unsigned long) inuse);
832 snprintf(buf, IFNAMSIZ, name, i);
833 if (!__dev_get_by_name(net, buf))
834 return i;
836 /* It is possible to run out of possible slots
837 * when the name is long and there isn't enough space left
838 * for the digits, or if all bits are used.
840 return -ENFILE;
844 * dev_alloc_name - allocate a name for a device
845 * @dev: device
846 * @name: name format string
848 * Passed a format string - eg "lt%d" it will try and find a suitable
849 * id. It scans list of devices to build up a free map, then chooses
850 * the first empty slot. The caller must hold the dev_base or rtnl lock
851 * while allocating the name and adding the device in order to avoid
852 * duplicates.
853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
854 * Returns the number of the unit assigned or a negative errno code.
857 int dev_alloc_name(struct net_device *dev, const char *name)
859 char buf[IFNAMSIZ];
860 struct net *net;
861 int ret;
863 BUG_ON(!dev_net(dev));
864 net = dev_net(dev);
865 ret = __dev_alloc_name(net, name, buf);
866 if (ret >= 0)
867 strlcpy(dev->name, buf, IFNAMSIZ);
868 return ret;
873 * dev_change_name - change name of a device
874 * @dev: device
875 * @newname: name (or format string) must be at least IFNAMSIZ
877 * Change name of a device, can pass format strings "eth%d".
878 * for wildcarding.
880 int dev_change_name(struct net_device *dev, const char *newname)
882 char oldname[IFNAMSIZ];
883 int err = 0;
884 int ret;
885 struct net *net;
887 ASSERT_RTNL();
888 BUG_ON(!dev_net(dev));
890 net = dev_net(dev);
891 if (dev->flags & IFF_UP)
892 return -EBUSY;
894 if (!dev_valid_name(newname))
895 return -EINVAL;
897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
898 return 0;
900 memcpy(oldname, dev->name, IFNAMSIZ);
902 if (strchr(newname, '%')) {
903 err = dev_alloc_name(dev, newname);
904 if (err < 0)
905 return err;
907 else if (__dev_get_by_name(net, newname))
908 return -EEXIST;
909 else
910 strlcpy(dev->name, newname, IFNAMSIZ);
912 rollback:
913 /* For now only devices in the initial network namespace
914 * are in sysfs.
916 if (net == &init_net) {
917 ret = device_rename(&dev->dev, dev->name);
918 if (ret) {
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 return ret;
924 write_lock_bh(&dev_base_lock);
925 hlist_del(&dev->name_hlist);
926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
927 write_unlock_bh(&dev_base_lock);
929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
930 ret = notifier_to_errno(ret);
932 if (ret) {
933 if (err) {
934 printk(KERN_ERR
935 "%s: name change rollback failed: %d.\n",
936 dev->name, ret);
937 } else {
938 err = ret;
939 memcpy(dev->name, oldname, IFNAMSIZ);
940 goto rollback;
944 return err;
948 * dev_set_alias - change ifalias of a device
949 * @dev: device
950 * @alias: name up to IFALIASZ
951 * @len: limit of bytes to copy from info
953 * Set ifalias for a device,
955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
957 ASSERT_RTNL();
959 if (len >= IFALIASZ)
960 return -EINVAL;
962 if (!len) {
963 if (dev->ifalias) {
964 kfree(dev->ifalias);
965 dev->ifalias = NULL;
967 return 0;
970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
971 if (!dev->ifalias)
972 return -ENOMEM;
974 strlcpy(dev->ifalias, alias, len+1);
975 return len;
980 * netdev_features_change - device changes features
981 * @dev: device to cause notification
983 * Called to indicate a device has changed features.
985 void netdev_features_change(struct net_device *dev)
987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
989 EXPORT_SYMBOL(netdev_features_change);
992 * netdev_state_change - device changes state
993 * @dev: device to cause notification
995 * Called to indicate a device has changed state. This function calls
996 * the notifier chains for netdev_chain and sends a NEWLINK message
997 * to the routing socket.
999 void netdev_state_change(struct net_device *dev)
1001 if (dev->flags & IFF_UP) {
1002 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1007 void netdev_bonding_change(struct net_device *dev)
1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1011 EXPORT_SYMBOL(netdev_bonding_change);
1014 * dev_load - load a network module
1015 * @net: the applicable net namespace
1016 * @name: name of interface
1018 * If a network interface is not present and the process has suitable
1019 * privileges this function loads the module. If module loading is not
1020 * available in this kernel then it becomes a nop.
1023 void dev_load(struct net *net, const char *name)
1025 struct net_device *dev;
1027 read_lock(&dev_base_lock);
1028 dev = __dev_get_by_name(net, name);
1029 read_unlock(&dev_base_lock);
1031 if (!dev && capable(CAP_SYS_MODULE))
1032 request_module("%s", name);
1036 * dev_open - prepare an interface for use.
1037 * @dev: device to open
1039 * Takes a device from down to up state. The device's private open
1040 * function is invoked and then the multicast lists are loaded. Finally
1041 * the device is moved into the up state and a %NETDEV_UP message is
1042 * sent to the netdev notifier chain.
1044 * Calling this function on an active interface is a nop. On a failure
1045 * a negative errno code is returned.
1047 int dev_open(struct net_device *dev)
1049 const struct net_device_ops *ops = dev->netdev_ops;
1050 int ret = 0;
1052 ASSERT_RTNL();
1055 * Is it already up?
1058 if (dev->flags & IFF_UP)
1059 return 0;
1062 * Is it even present?
1064 if (!netif_device_present(dev))
1065 return -ENODEV;
1068 * Call device private open method
1070 set_bit(__LINK_STATE_START, &dev->state);
1072 if (ops->ndo_validate_addr)
1073 ret = ops->ndo_validate_addr(dev);
1075 if (!ret && ops->ndo_open)
1076 ret = ops->ndo_open(dev);
1079 * If it went open OK then:
1082 if (ret)
1083 clear_bit(__LINK_STATE_START, &dev->state);
1084 else {
1086 * Set the flags.
1088 dev->flags |= IFF_UP;
1091 * Enable NET_DMA
1093 dmaengine_get();
1096 * Initialize multicasting status
1098 dev_set_rx_mode(dev);
1101 * Wakeup transmit queue engine
1103 dev_activate(dev);
1106 * ... and announce new interface.
1108 call_netdevice_notifiers(NETDEV_UP, dev);
1111 return ret;
1115 * dev_close - shutdown an interface.
1116 * @dev: device to shutdown
1118 * This function moves an active device into down state. A
1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1121 * chain.
1123 int dev_close(struct net_device *dev)
1125 const struct net_device_ops *ops = dev->netdev_ops;
1126 ASSERT_RTNL();
1128 might_sleep();
1130 if (!(dev->flags & IFF_UP))
1131 return 0;
1134 * Tell people we are going down, so that they can
1135 * prepare to death, when device is still operating.
1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1139 clear_bit(__LINK_STATE_START, &dev->state);
1141 /* Synchronize to scheduled poll. We cannot touch poll list,
1142 * it can be even on different cpu. So just clear netif_running().
1144 * dev->stop() will invoke napi_disable() on all of it's
1145 * napi_struct instances on this device.
1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1149 dev_deactivate(dev);
1152 * Call the device specific close. This cannot fail.
1153 * Only if device is UP
1155 * We allow it to be called even after a DETACH hot-plug
1156 * event.
1158 if (ops->ndo_stop)
1159 ops->ndo_stop(dev);
1162 * Device is now down.
1165 dev->flags &= ~IFF_UP;
1168 * Tell people we are down
1170 call_netdevice_notifiers(NETDEV_DOWN, dev);
1173 * Shutdown NET_DMA
1175 dmaengine_put();
1177 return 0;
1182 * dev_disable_lro - disable Large Receive Offload on a device
1183 * @dev: device
1185 * Disable Large Receive Offload (LRO) on a net device. Must be
1186 * called under RTNL. This is needed if received packets may be
1187 * forwarded to another interface.
1189 void dev_disable_lro(struct net_device *dev)
1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1192 dev->ethtool_ops->set_flags) {
1193 u32 flags = dev->ethtool_ops->get_flags(dev);
1194 if (flags & ETH_FLAG_LRO) {
1195 flags &= ~ETH_FLAG_LRO;
1196 dev->ethtool_ops->set_flags(dev, flags);
1199 WARN_ON(dev->features & NETIF_F_LRO);
1201 EXPORT_SYMBOL(dev_disable_lro);
1204 static int dev_boot_phase = 1;
1207 * Device change register/unregister. These are not inline or static
1208 * as we export them to the world.
1212 * register_netdevice_notifier - register a network notifier block
1213 * @nb: notifier
1215 * Register a notifier to be called when network device events occur.
1216 * The notifier passed is linked into the kernel structures and must
1217 * not be reused until it has been unregistered. A negative errno code
1218 * is returned on a failure.
1220 * When registered all registration and up events are replayed
1221 * to the new notifier to allow device to have a race free
1222 * view of the network device list.
1225 int register_netdevice_notifier(struct notifier_block *nb)
1227 struct net_device *dev;
1228 struct net_device *last;
1229 struct net *net;
1230 int err;
1232 rtnl_lock();
1233 err = raw_notifier_chain_register(&netdev_chain, nb);
1234 if (err)
1235 goto unlock;
1236 if (dev_boot_phase)
1237 goto unlock;
1238 for_each_net(net) {
1239 for_each_netdev(net, dev) {
1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1241 err = notifier_to_errno(err);
1242 if (err)
1243 goto rollback;
1245 if (!(dev->flags & IFF_UP))
1246 continue;
1248 nb->notifier_call(nb, NETDEV_UP, dev);
1252 unlock:
1253 rtnl_unlock();
1254 return err;
1256 rollback:
1257 last = dev;
1258 for_each_net(net) {
1259 for_each_netdev(net, dev) {
1260 if (dev == last)
1261 break;
1263 if (dev->flags & IFF_UP) {
1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1265 nb->notifier_call(nb, NETDEV_DOWN, dev);
1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1271 raw_notifier_chain_unregister(&netdev_chain, nb);
1272 goto unlock;
1276 * unregister_netdevice_notifier - unregister a network notifier block
1277 * @nb: notifier
1279 * Unregister a notifier previously registered by
1280 * register_netdevice_notifier(). The notifier is unlinked into the
1281 * kernel structures and may then be reused. A negative errno code
1282 * is returned on a failure.
1285 int unregister_netdevice_notifier(struct notifier_block *nb)
1287 int err;
1289 rtnl_lock();
1290 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1291 rtnl_unlock();
1292 return err;
1296 * call_netdevice_notifiers - call all network notifier blocks
1297 * @val: value passed unmodified to notifier function
1298 * @dev: net_device pointer passed unmodified to notifier function
1300 * Call all network notifier blocks. Parameters and return value
1301 * are as for raw_notifier_call_chain().
1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1306 return raw_notifier_call_chain(&netdev_chain, val, dev);
1309 /* When > 0 there are consumers of rx skb time stamps */
1310 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1312 void net_enable_timestamp(void)
1314 atomic_inc(&netstamp_needed);
1317 void net_disable_timestamp(void)
1319 atomic_dec(&netstamp_needed);
1322 static inline void net_timestamp(struct sk_buff *skb)
1324 if (atomic_read(&netstamp_needed))
1325 __net_timestamp(skb);
1326 else
1327 skb->tstamp.tv64 = 0;
1331 * Support routine. Sends outgoing frames to any network
1332 * taps currently in use.
1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1337 struct packet_type *ptype;
1339 net_timestamp(skb);
1341 rcu_read_lock();
1342 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1343 /* Never send packets back to the socket
1344 * they originated from - MvS (miquels@drinkel.ow.org)
1346 if ((ptype->dev == dev || !ptype->dev) &&
1347 (ptype->af_packet_priv == NULL ||
1348 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1349 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1350 if (!skb2)
1351 break;
1353 /* skb->nh should be correctly
1354 set by sender, so that the second statement is
1355 just protection against buggy protocols.
1357 skb_reset_mac_header(skb2);
1359 if (skb_network_header(skb2) < skb2->data ||
1360 skb2->network_header > skb2->tail) {
1361 if (net_ratelimit())
1362 printk(KERN_CRIT "protocol %04x is "
1363 "buggy, dev %s\n",
1364 skb2->protocol, dev->name);
1365 skb_reset_network_header(skb2);
1368 skb2->transport_header = skb2->network_header;
1369 skb2->pkt_type = PACKET_OUTGOING;
1370 ptype->func(skb2, skb->dev, ptype, skb->dev);
1373 rcu_read_unlock();
1377 static inline void __netif_reschedule(struct Qdisc *q)
1379 struct softnet_data *sd;
1380 unsigned long flags;
1382 local_irq_save(flags);
1383 sd = &__get_cpu_var(softnet_data);
1384 q->next_sched = sd->output_queue;
1385 sd->output_queue = q;
1386 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1387 local_irq_restore(flags);
1390 void __netif_schedule(struct Qdisc *q)
1392 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1393 __netif_reschedule(q);
1395 EXPORT_SYMBOL(__netif_schedule);
1397 void dev_kfree_skb_irq(struct sk_buff *skb)
1399 if (atomic_dec_and_test(&skb->users)) {
1400 struct softnet_data *sd;
1401 unsigned long flags;
1403 local_irq_save(flags);
1404 sd = &__get_cpu_var(softnet_data);
1405 skb->next = sd->completion_queue;
1406 sd->completion_queue = skb;
1407 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1408 local_irq_restore(flags);
1411 EXPORT_SYMBOL(dev_kfree_skb_irq);
1413 void dev_kfree_skb_any(struct sk_buff *skb)
1415 if (in_irq() || irqs_disabled())
1416 dev_kfree_skb_irq(skb);
1417 else
1418 dev_kfree_skb(skb);
1420 EXPORT_SYMBOL(dev_kfree_skb_any);
1424 * netif_device_detach - mark device as removed
1425 * @dev: network device
1427 * Mark device as removed from system and therefore no longer available.
1429 void netif_device_detach(struct net_device *dev)
1431 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1432 netif_running(dev)) {
1433 netif_stop_queue(dev);
1436 EXPORT_SYMBOL(netif_device_detach);
1439 * netif_device_attach - mark device as attached
1440 * @dev: network device
1442 * Mark device as attached from system and restart if needed.
1444 void netif_device_attach(struct net_device *dev)
1446 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1447 netif_running(dev)) {
1448 netif_wake_queue(dev);
1449 __netdev_watchdog_up(dev);
1452 EXPORT_SYMBOL(netif_device_attach);
1454 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1456 return ((features & NETIF_F_GEN_CSUM) ||
1457 ((features & NETIF_F_IP_CSUM) &&
1458 protocol == htons(ETH_P_IP)) ||
1459 ((features & NETIF_F_IPV6_CSUM) &&
1460 protocol == htons(ETH_P_IPV6)));
1463 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1465 if (can_checksum_protocol(dev->features, skb->protocol))
1466 return true;
1468 if (skb->protocol == htons(ETH_P_8021Q)) {
1469 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1470 if (can_checksum_protocol(dev->features & dev->vlan_features,
1471 veh->h_vlan_encapsulated_proto))
1472 return true;
1475 return false;
1479 * Invalidate hardware checksum when packet is to be mangled, and
1480 * complete checksum manually on outgoing path.
1482 int skb_checksum_help(struct sk_buff *skb)
1484 __wsum csum;
1485 int ret = 0, offset;
1487 if (skb->ip_summed == CHECKSUM_COMPLETE)
1488 goto out_set_summed;
1490 if (unlikely(skb_shinfo(skb)->gso_size)) {
1491 /* Let GSO fix up the checksum. */
1492 goto out_set_summed;
1495 offset = skb->csum_start - skb_headroom(skb);
1496 BUG_ON(offset >= skb_headlen(skb));
1497 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1499 offset += skb->csum_offset;
1500 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1502 if (skb_cloned(skb) &&
1503 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1504 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1505 if (ret)
1506 goto out;
1509 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1510 out_set_summed:
1511 skb->ip_summed = CHECKSUM_NONE;
1512 out:
1513 return ret;
1517 * skb_gso_segment - Perform segmentation on skb.
1518 * @skb: buffer to segment
1519 * @features: features for the output path (see dev->features)
1521 * This function segments the given skb and returns a list of segments.
1523 * It may return NULL if the skb requires no segmentation. This is
1524 * only possible when GSO is used for verifying header integrity.
1526 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1528 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1529 struct packet_type *ptype;
1530 __be16 type = skb->protocol;
1531 int err;
1533 skb_reset_mac_header(skb);
1534 skb->mac_len = skb->network_header - skb->mac_header;
1535 __skb_pull(skb, skb->mac_len);
1537 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1538 if (skb_header_cloned(skb) &&
1539 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1540 return ERR_PTR(err);
1543 rcu_read_lock();
1544 list_for_each_entry_rcu(ptype,
1545 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1546 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1547 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1548 err = ptype->gso_send_check(skb);
1549 segs = ERR_PTR(err);
1550 if (err || skb_gso_ok(skb, features))
1551 break;
1552 __skb_push(skb, (skb->data -
1553 skb_network_header(skb)));
1555 segs = ptype->gso_segment(skb, features);
1556 break;
1559 rcu_read_unlock();
1561 __skb_push(skb, skb->data - skb_mac_header(skb));
1563 return segs;
1566 EXPORT_SYMBOL(skb_gso_segment);
1568 /* Take action when hardware reception checksum errors are detected. */
1569 #ifdef CONFIG_BUG
1570 void netdev_rx_csum_fault(struct net_device *dev)
1572 if (net_ratelimit()) {
1573 printk(KERN_ERR "%s: hw csum failure.\n",
1574 dev ? dev->name : "<unknown>");
1575 dump_stack();
1578 EXPORT_SYMBOL(netdev_rx_csum_fault);
1579 #endif
1581 /* Actually, we should eliminate this check as soon as we know, that:
1582 * 1. IOMMU is present and allows to map all the memory.
1583 * 2. No high memory really exists on this machine.
1586 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1588 #ifdef CONFIG_HIGHMEM
1589 int i;
1591 if (dev->features & NETIF_F_HIGHDMA)
1592 return 0;
1594 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1595 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1596 return 1;
1598 #endif
1599 return 0;
1602 struct dev_gso_cb {
1603 void (*destructor)(struct sk_buff *skb);
1606 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1608 static void dev_gso_skb_destructor(struct sk_buff *skb)
1610 struct dev_gso_cb *cb;
1612 do {
1613 struct sk_buff *nskb = skb->next;
1615 skb->next = nskb->next;
1616 nskb->next = NULL;
1617 kfree_skb(nskb);
1618 } while (skb->next);
1620 cb = DEV_GSO_CB(skb);
1621 if (cb->destructor)
1622 cb->destructor(skb);
1626 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1627 * @skb: buffer to segment
1629 * This function segments the given skb and stores the list of segments
1630 * in skb->next.
1632 static int dev_gso_segment(struct sk_buff *skb)
1634 struct net_device *dev = skb->dev;
1635 struct sk_buff *segs;
1636 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1637 NETIF_F_SG : 0);
1639 segs = skb_gso_segment(skb, features);
1641 /* Verifying header integrity only. */
1642 if (!segs)
1643 return 0;
1645 if (IS_ERR(segs))
1646 return PTR_ERR(segs);
1648 skb->next = segs;
1649 DEV_GSO_CB(skb)->destructor = skb->destructor;
1650 skb->destructor = dev_gso_skb_destructor;
1652 return 0;
1655 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1656 struct netdev_queue *txq)
1658 const struct net_device_ops *ops = dev->netdev_ops;
1660 prefetch(&dev->netdev_ops->ndo_start_xmit);
1661 if (likely(!skb->next)) {
1662 if (!list_empty(&ptype_all))
1663 dev_queue_xmit_nit(skb, dev);
1665 if (netif_needs_gso(dev, skb)) {
1666 if (unlikely(dev_gso_segment(skb)))
1667 goto out_kfree_skb;
1668 if (skb->next)
1669 goto gso;
1672 return ops->ndo_start_xmit(skb, dev);
1675 gso:
1676 do {
1677 struct sk_buff *nskb = skb->next;
1678 int rc;
1680 skb->next = nskb->next;
1681 nskb->next = NULL;
1682 rc = ops->ndo_start_xmit(nskb, dev);
1683 if (unlikely(rc)) {
1684 nskb->next = skb->next;
1685 skb->next = nskb;
1686 return rc;
1688 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1689 return NETDEV_TX_BUSY;
1690 } while (skb->next);
1692 skb->destructor = DEV_GSO_CB(skb)->destructor;
1694 out_kfree_skb:
1695 kfree_skb(skb);
1696 return 0;
1699 static u32 simple_tx_hashrnd;
1700 static int simple_tx_hashrnd_initialized = 0;
1702 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1704 u32 addr1, addr2, ports;
1705 u32 hash, ihl;
1706 u8 ip_proto = 0;
1708 if (unlikely(!simple_tx_hashrnd_initialized)) {
1709 get_random_bytes(&simple_tx_hashrnd, 4);
1710 simple_tx_hashrnd_initialized = 1;
1713 switch (skb->protocol) {
1714 case htons(ETH_P_IP):
1715 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1716 ip_proto = ip_hdr(skb)->protocol;
1717 addr1 = ip_hdr(skb)->saddr;
1718 addr2 = ip_hdr(skb)->daddr;
1719 ihl = ip_hdr(skb)->ihl;
1720 break;
1721 case htons(ETH_P_IPV6):
1722 ip_proto = ipv6_hdr(skb)->nexthdr;
1723 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1724 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1725 ihl = (40 >> 2);
1726 break;
1727 default:
1728 return 0;
1732 switch (ip_proto) {
1733 case IPPROTO_TCP:
1734 case IPPROTO_UDP:
1735 case IPPROTO_DCCP:
1736 case IPPROTO_ESP:
1737 case IPPROTO_AH:
1738 case IPPROTO_SCTP:
1739 case IPPROTO_UDPLITE:
1740 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1741 break;
1743 default:
1744 ports = 0;
1745 break;
1748 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1750 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1753 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1754 struct sk_buff *skb)
1756 const struct net_device_ops *ops = dev->netdev_ops;
1757 u16 queue_index = 0;
1759 if (ops->ndo_select_queue)
1760 queue_index = ops->ndo_select_queue(dev, skb);
1761 else if (dev->real_num_tx_queues > 1)
1762 queue_index = simple_tx_hash(dev, skb);
1764 skb_set_queue_mapping(skb, queue_index);
1765 return netdev_get_tx_queue(dev, queue_index);
1769 * dev_queue_xmit - transmit a buffer
1770 * @skb: buffer to transmit
1772 * Queue a buffer for transmission to a network device. The caller must
1773 * have set the device and priority and built the buffer before calling
1774 * this function. The function can be called from an interrupt.
1776 * A negative errno code is returned on a failure. A success does not
1777 * guarantee the frame will be transmitted as it may be dropped due
1778 * to congestion or traffic shaping.
1780 * -----------------------------------------------------------------------------------
1781 * I notice this method can also return errors from the queue disciplines,
1782 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1783 * be positive.
1785 * Regardless of the return value, the skb is consumed, so it is currently
1786 * difficult to retry a send to this method. (You can bump the ref count
1787 * before sending to hold a reference for retry if you are careful.)
1789 * When calling this method, interrupts MUST be enabled. This is because
1790 * the BH enable code must have IRQs enabled so that it will not deadlock.
1791 * --BLG
1793 int dev_queue_xmit(struct sk_buff *skb)
1795 struct net_device *dev = skb->dev;
1796 struct netdev_queue *txq;
1797 struct Qdisc *q;
1798 int rc = -ENOMEM;
1800 /* GSO will handle the following emulations directly. */
1801 if (netif_needs_gso(dev, skb))
1802 goto gso;
1804 if (skb_shinfo(skb)->frag_list &&
1805 !(dev->features & NETIF_F_FRAGLIST) &&
1806 __skb_linearize(skb))
1807 goto out_kfree_skb;
1809 /* Fragmented skb is linearized if device does not support SG,
1810 * or if at least one of fragments is in highmem and device
1811 * does not support DMA from it.
1813 if (skb_shinfo(skb)->nr_frags &&
1814 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1815 __skb_linearize(skb))
1816 goto out_kfree_skb;
1818 /* If packet is not checksummed and device does not support
1819 * checksumming for this protocol, complete checksumming here.
1821 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1822 skb_set_transport_header(skb, skb->csum_start -
1823 skb_headroom(skb));
1824 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1825 goto out_kfree_skb;
1828 gso:
1829 /* Disable soft irqs for various locks below. Also
1830 * stops preemption for RCU.
1832 rcu_read_lock_bh();
1834 txq = dev_pick_tx(dev, skb);
1835 q = rcu_dereference(txq->qdisc);
1837 #ifdef CONFIG_NET_CLS_ACT
1838 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1839 #endif
1840 if (q->enqueue) {
1841 spinlock_t *root_lock = qdisc_lock(q);
1843 spin_lock(root_lock);
1845 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1846 kfree_skb(skb);
1847 rc = NET_XMIT_DROP;
1848 } else {
1849 rc = qdisc_enqueue_root(skb, q);
1850 qdisc_run(q);
1852 spin_unlock(root_lock);
1854 goto out;
1857 /* The device has no queue. Common case for software devices:
1858 loopback, all the sorts of tunnels...
1860 Really, it is unlikely that netif_tx_lock protection is necessary
1861 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1862 counters.)
1863 However, it is possible, that they rely on protection
1864 made by us here.
1866 Check this and shot the lock. It is not prone from deadlocks.
1867 Either shot noqueue qdisc, it is even simpler 8)
1869 if (dev->flags & IFF_UP) {
1870 int cpu = smp_processor_id(); /* ok because BHs are off */
1872 if (txq->xmit_lock_owner != cpu) {
1874 HARD_TX_LOCK(dev, txq, cpu);
1876 if (!netif_tx_queue_stopped(txq)) {
1877 rc = 0;
1878 if (!dev_hard_start_xmit(skb, dev, txq)) {
1879 HARD_TX_UNLOCK(dev, txq);
1880 goto out;
1883 HARD_TX_UNLOCK(dev, txq);
1884 if (net_ratelimit())
1885 printk(KERN_CRIT "Virtual device %s asks to "
1886 "queue packet!\n", dev->name);
1887 } else {
1888 /* Recursion is detected! It is possible,
1889 * unfortunately */
1890 if (net_ratelimit())
1891 printk(KERN_CRIT "Dead loop on virtual device "
1892 "%s, fix it urgently!\n", dev->name);
1896 rc = -ENETDOWN;
1897 rcu_read_unlock_bh();
1899 out_kfree_skb:
1900 kfree_skb(skb);
1901 return rc;
1902 out:
1903 rcu_read_unlock_bh();
1904 return rc;
1908 /*=======================================================================
1909 Receiver routines
1910 =======================================================================*/
1912 int netdev_max_backlog __read_mostly = 1000;
1913 int netdev_budget __read_mostly = 300;
1914 int weight_p __read_mostly = 64; /* old backlog weight */
1916 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1920 * netif_rx - post buffer to the network code
1921 * @skb: buffer to post
1923 * This function receives a packet from a device driver and queues it for
1924 * the upper (protocol) levels to process. It always succeeds. The buffer
1925 * may be dropped during processing for congestion control or by the
1926 * protocol layers.
1928 * return values:
1929 * NET_RX_SUCCESS (no congestion)
1930 * NET_RX_DROP (packet was dropped)
1934 int netif_rx(struct sk_buff *skb)
1936 struct softnet_data *queue;
1937 unsigned long flags;
1939 /* if netpoll wants it, pretend we never saw it */
1940 if (netpoll_rx(skb))
1941 return NET_RX_DROP;
1943 if (!skb->tstamp.tv64)
1944 net_timestamp(skb);
1947 * The code is rearranged so that the path is the most
1948 * short when CPU is congested, but is still operating.
1950 local_irq_save(flags);
1951 queue = &__get_cpu_var(softnet_data);
1953 __get_cpu_var(netdev_rx_stat).total++;
1954 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1955 if (queue->input_pkt_queue.qlen) {
1956 enqueue:
1957 __skb_queue_tail(&queue->input_pkt_queue, skb);
1958 local_irq_restore(flags);
1959 return NET_RX_SUCCESS;
1962 napi_schedule(&queue->backlog);
1963 goto enqueue;
1966 __get_cpu_var(netdev_rx_stat).dropped++;
1967 local_irq_restore(flags);
1969 kfree_skb(skb);
1970 return NET_RX_DROP;
1973 int netif_rx_ni(struct sk_buff *skb)
1975 int err;
1977 preempt_disable();
1978 err = netif_rx(skb);
1979 if (local_softirq_pending())
1980 do_softirq();
1981 preempt_enable();
1983 return err;
1986 EXPORT_SYMBOL(netif_rx_ni);
1988 static void net_tx_action(struct softirq_action *h)
1990 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1992 if (sd->completion_queue) {
1993 struct sk_buff *clist;
1995 local_irq_disable();
1996 clist = sd->completion_queue;
1997 sd->completion_queue = NULL;
1998 local_irq_enable();
2000 while (clist) {
2001 struct sk_buff *skb = clist;
2002 clist = clist->next;
2004 WARN_ON(atomic_read(&skb->users));
2005 __kfree_skb(skb);
2009 if (sd->output_queue) {
2010 struct Qdisc *head;
2012 local_irq_disable();
2013 head = sd->output_queue;
2014 sd->output_queue = NULL;
2015 local_irq_enable();
2017 while (head) {
2018 struct Qdisc *q = head;
2019 spinlock_t *root_lock;
2021 head = head->next_sched;
2023 root_lock = qdisc_lock(q);
2024 if (spin_trylock(root_lock)) {
2025 smp_mb__before_clear_bit();
2026 clear_bit(__QDISC_STATE_SCHED,
2027 &q->state);
2028 qdisc_run(q);
2029 spin_unlock(root_lock);
2030 } else {
2031 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2032 &q->state)) {
2033 __netif_reschedule(q);
2034 } else {
2035 smp_mb__before_clear_bit();
2036 clear_bit(__QDISC_STATE_SCHED,
2037 &q->state);
2044 static inline int deliver_skb(struct sk_buff *skb,
2045 struct packet_type *pt_prev,
2046 struct net_device *orig_dev)
2048 atomic_inc(&skb->users);
2049 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2052 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2053 /* These hooks defined here for ATM */
2054 struct net_bridge;
2055 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2056 unsigned char *addr);
2057 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2060 * If bridge module is loaded call bridging hook.
2061 * returns NULL if packet was consumed.
2063 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2064 struct sk_buff *skb) __read_mostly;
2065 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2066 struct packet_type **pt_prev, int *ret,
2067 struct net_device *orig_dev)
2069 struct net_bridge_port *port;
2071 if (skb->pkt_type == PACKET_LOOPBACK ||
2072 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2073 return skb;
2075 if (*pt_prev) {
2076 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2077 *pt_prev = NULL;
2080 return br_handle_frame_hook(port, skb);
2082 #else
2083 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2084 #endif
2086 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2087 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2088 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2090 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2091 struct packet_type **pt_prev,
2092 int *ret,
2093 struct net_device *orig_dev)
2095 if (skb->dev->macvlan_port == NULL)
2096 return skb;
2098 if (*pt_prev) {
2099 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2100 *pt_prev = NULL;
2102 return macvlan_handle_frame_hook(skb);
2104 #else
2105 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2106 #endif
2108 #ifdef CONFIG_NET_CLS_ACT
2109 /* TODO: Maybe we should just force sch_ingress to be compiled in
2110 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2111 * a compare and 2 stores extra right now if we dont have it on
2112 * but have CONFIG_NET_CLS_ACT
2113 * NOTE: This doesnt stop any functionality; if you dont have
2114 * the ingress scheduler, you just cant add policies on ingress.
2117 static int ing_filter(struct sk_buff *skb)
2119 struct net_device *dev = skb->dev;
2120 u32 ttl = G_TC_RTTL(skb->tc_verd);
2121 struct netdev_queue *rxq;
2122 int result = TC_ACT_OK;
2123 struct Qdisc *q;
2125 if (MAX_RED_LOOP < ttl++) {
2126 printk(KERN_WARNING
2127 "Redir loop detected Dropping packet (%d->%d)\n",
2128 skb->iif, dev->ifindex);
2129 return TC_ACT_SHOT;
2132 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2133 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2135 rxq = &dev->rx_queue;
2137 q = rxq->qdisc;
2138 if (q != &noop_qdisc) {
2139 spin_lock(qdisc_lock(q));
2140 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2141 result = qdisc_enqueue_root(skb, q);
2142 spin_unlock(qdisc_lock(q));
2145 return result;
2148 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2149 struct packet_type **pt_prev,
2150 int *ret, struct net_device *orig_dev)
2152 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2153 goto out;
2155 if (*pt_prev) {
2156 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2157 *pt_prev = NULL;
2158 } else {
2159 /* Huh? Why does turning on AF_PACKET affect this? */
2160 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2163 switch (ing_filter(skb)) {
2164 case TC_ACT_SHOT:
2165 case TC_ACT_STOLEN:
2166 kfree_skb(skb);
2167 return NULL;
2170 out:
2171 skb->tc_verd = 0;
2172 return skb;
2174 #endif
2177 * netif_nit_deliver - deliver received packets to network taps
2178 * @skb: buffer
2180 * This function is used to deliver incoming packets to network
2181 * taps. It should be used when the normal netif_receive_skb path
2182 * is bypassed, for example because of VLAN acceleration.
2184 void netif_nit_deliver(struct sk_buff *skb)
2186 struct packet_type *ptype;
2188 if (list_empty(&ptype_all))
2189 return;
2191 skb_reset_network_header(skb);
2192 skb_reset_transport_header(skb);
2193 skb->mac_len = skb->network_header - skb->mac_header;
2195 rcu_read_lock();
2196 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2197 if (!ptype->dev || ptype->dev == skb->dev)
2198 deliver_skb(skb, ptype, skb->dev);
2200 rcu_read_unlock();
2204 * netif_receive_skb - process receive buffer from network
2205 * @skb: buffer to process
2207 * netif_receive_skb() is the main receive data processing function.
2208 * It always succeeds. The buffer may be dropped during processing
2209 * for congestion control or by the protocol layers.
2211 * This function may only be called from softirq context and interrupts
2212 * should be enabled.
2214 * Return values (usually ignored):
2215 * NET_RX_SUCCESS: no congestion
2216 * NET_RX_DROP: packet was dropped
2218 int netif_receive_skb(struct sk_buff *skb)
2220 struct packet_type *ptype, *pt_prev;
2221 struct net_device *orig_dev;
2222 struct net_device *null_or_orig;
2223 int ret = NET_RX_DROP;
2224 __be16 type;
2226 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2227 return NET_RX_SUCCESS;
2229 /* if we've gotten here through NAPI, check netpoll */
2230 if (netpoll_receive_skb(skb))
2231 return NET_RX_DROP;
2233 if (!skb->tstamp.tv64)
2234 net_timestamp(skb);
2236 if (!skb->iif)
2237 skb->iif = skb->dev->ifindex;
2239 null_or_orig = NULL;
2240 orig_dev = skb->dev;
2241 if (orig_dev->master) {
2242 if (skb_bond_should_drop(skb))
2243 null_or_orig = orig_dev; /* deliver only exact match */
2244 else
2245 skb->dev = orig_dev->master;
2248 __get_cpu_var(netdev_rx_stat).total++;
2250 skb_reset_network_header(skb);
2251 skb_reset_transport_header(skb);
2252 skb->mac_len = skb->network_header - skb->mac_header;
2254 pt_prev = NULL;
2256 rcu_read_lock();
2258 /* Don't receive packets in an exiting network namespace */
2259 if (!net_alive(dev_net(skb->dev))) {
2260 kfree_skb(skb);
2261 goto out;
2264 #ifdef CONFIG_NET_CLS_ACT
2265 if (skb->tc_verd & TC_NCLS) {
2266 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2267 goto ncls;
2269 #endif
2271 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2272 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2273 ptype->dev == orig_dev) {
2274 if (pt_prev)
2275 ret = deliver_skb(skb, pt_prev, orig_dev);
2276 pt_prev = ptype;
2280 #ifdef CONFIG_NET_CLS_ACT
2281 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2282 if (!skb)
2283 goto out;
2284 ncls:
2285 #endif
2287 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2288 if (!skb)
2289 goto out;
2290 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2291 if (!skb)
2292 goto out;
2294 type = skb->protocol;
2295 list_for_each_entry_rcu(ptype,
2296 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2297 if (ptype->type == type &&
2298 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2299 ptype->dev == orig_dev)) {
2300 if (pt_prev)
2301 ret = deliver_skb(skb, pt_prev, orig_dev);
2302 pt_prev = ptype;
2306 if (pt_prev) {
2307 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2308 } else {
2309 kfree_skb(skb);
2310 /* Jamal, now you will not able to escape explaining
2311 * me how you were going to use this. :-)
2313 ret = NET_RX_DROP;
2316 out:
2317 rcu_read_unlock();
2318 return ret;
2321 /* Network device is going away, flush any packets still pending */
2322 static void flush_backlog(void *arg)
2324 struct net_device *dev = arg;
2325 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2326 struct sk_buff *skb, *tmp;
2328 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2329 if (skb->dev == dev) {
2330 __skb_unlink(skb, &queue->input_pkt_queue);
2331 kfree_skb(skb);
2335 static int napi_gro_complete(struct sk_buff *skb)
2337 struct packet_type *ptype;
2338 __be16 type = skb->protocol;
2339 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2340 int err = -ENOENT;
2342 if (NAPI_GRO_CB(skb)->count == 1)
2343 goto out;
2345 rcu_read_lock();
2346 list_for_each_entry_rcu(ptype, head, list) {
2347 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2348 continue;
2350 err = ptype->gro_complete(skb);
2351 break;
2353 rcu_read_unlock();
2355 if (err) {
2356 WARN_ON(&ptype->list == head);
2357 kfree_skb(skb);
2358 return NET_RX_SUCCESS;
2361 out:
2362 skb_shinfo(skb)->gso_size = 0;
2363 __skb_push(skb, -skb_network_offset(skb));
2364 return netif_receive_skb(skb);
2367 void napi_gro_flush(struct napi_struct *napi)
2369 struct sk_buff *skb, *next;
2371 for (skb = napi->gro_list; skb; skb = next) {
2372 next = skb->next;
2373 skb->next = NULL;
2374 napi_gro_complete(skb);
2377 napi->gro_list = NULL;
2379 EXPORT_SYMBOL(napi_gro_flush);
2381 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2383 struct sk_buff **pp = NULL;
2384 struct packet_type *ptype;
2385 __be16 type = skb->protocol;
2386 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2387 int count = 0;
2388 int same_flow;
2389 int mac_len;
2390 int free;
2392 if (!(skb->dev->features & NETIF_F_GRO))
2393 goto normal;
2395 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2396 goto normal;
2398 rcu_read_lock();
2399 list_for_each_entry_rcu(ptype, head, list) {
2400 struct sk_buff *p;
2402 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2403 continue;
2405 skb_reset_network_header(skb);
2406 mac_len = skb->network_header - skb->mac_header;
2407 skb->mac_len = mac_len;
2408 NAPI_GRO_CB(skb)->same_flow = 0;
2409 NAPI_GRO_CB(skb)->flush = 0;
2410 NAPI_GRO_CB(skb)->free = 0;
2412 for (p = napi->gro_list; p; p = p->next) {
2413 count++;
2415 if (!NAPI_GRO_CB(p)->same_flow)
2416 continue;
2418 if (p->mac_len != mac_len ||
2419 memcmp(skb_mac_header(p), skb_mac_header(skb),
2420 mac_len))
2421 NAPI_GRO_CB(p)->same_flow = 0;
2424 pp = ptype->gro_receive(&napi->gro_list, skb);
2425 break;
2427 rcu_read_unlock();
2429 if (&ptype->list == head)
2430 goto normal;
2432 same_flow = NAPI_GRO_CB(skb)->same_flow;
2433 free = NAPI_GRO_CB(skb)->free;
2435 if (pp) {
2436 struct sk_buff *nskb = *pp;
2438 *pp = nskb->next;
2439 nskb->next = NULL;
2440 napi_gro_complete(nskb);
2441 count--;
2444 if (same_flow)
2445 goto ok;
2447 if (NAPI_GRO_CB(skb)->flush || count >= MAX_GRO_SKBS) {
2448 __skb_push(skb, -skb_network_offset(skb));
2449 goto normal;
2452 NAPI_GRO_CB(skb)->count = 1;
2453 skb_shinfo(skb)->gso_size = skb->len;
2454 skb->next = napi->gro_list;
2455 napi->gro_list = skb;
2458 return free;
2460 normal:
2461 return -1;
2463 EXPORT_SYMBOL(dev_gro_receive);
2465 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2467 struct sk_buff *p;
2469 for (p = napi->gro_list; p; p = p->next) {
2470 NAPI_GRO_CB(p)->same_flow = 1;
2471 NAPI_GRO_CB(p)->flush = 0;
2474 return dev_gro_receive(napi, skb);
2477 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2479 switch (__napi_gro_receive(napi, skb)) {
2480 case -1:
2481 return netif_receive_skb(skb);
2483 case 1:
2484 kfree_skb(skb);
2485 break;
2488 return NET_RX_SUCCESS;
2490 EXPORT_SYMBOL(napi_gro_receive);
2492 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2494 skb_shinfo(skb)->nr_frags = 0;
2496 skb->len -= skb->data_len;
2497 skb->truesize -= skb->data_len;
2498 skb->data_len = 0;
2500 __skb_pull(skb, skb_headlen(skb));
2501 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2503 napi->skb = skb;
2505 EXPORT_SYMBOL(napi_reuse_skb);
2507 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi,
2508 struct napi_gro_fraginfo *info)
2510 struct net_device *dev = napi->dev;
2511 struct sk_buff *skb = napi->skb;
2513 napi->skb = NULL;
2515 if (!skb) {
2516 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2517 if (!skb)
2518 goto out;
2520 skb_reserve(skb, NET_IP_ALIGN);
2523 BUG_ON(info->nr_frags > MAX_SKB_FRAGS);
2524 skb_shinfo(skb)->nr_frags = info->nr_frags;
2525 memcpy(skb_shinfo(skb)->frags, info->frags, sizeof(info->frags));
2527 skb->data_len = info->len;
2528 skb->len += info->len;
2529 skb->truesize += info->len;
2531 if (!pskb_may_pull(skb, ETH_HLEN)) {
2532 napi_reuse_skb(napi, skb);
2533 goto out;
2536 skb->protocol = eth_type_trans(skb, dev);
2538 skb->ip_summed = info->ip_summed;
2539 skb->csum = info->csum;
2541 out:
2542 return skb;
2544 EXPORT_SYMBOL(napi_fraginfo_skb);
2546 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info)
2548 struct sk_buff *skb = napi_fraginfo_skb(napi, info);
2549 int err = NET_RX_DROP;
2551 if (!skb)
2552 goto out;
2554 err = NET_RX_SUCCESS;
2556 switch (__napi_gro_receive(napi, skb)) {
2557 case -1:
2558 return netif_receive_skb(skb);
2560 case 0:
2561 goto out;
2564 napi_reuse_skb(napi, skb);
2566 out:
2567 return err;
2569 EXPORT_SYMBOL(napi_gro_frags);
2571 static int process_backlog(struct napi_struct *napi, int quota)
2573 int work = 0;
2574 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2575 unsigned long start_time = jiffies;
2577 napi->weight = weight_p;
2578 do {
2579 struct sk_buff *skb;
2581 local_irq_disable();
2582 skb = __skb_dequeue(&queue->input_pkt_queue);
2583 if (!skb) {
2584 __napi_complete(napi);
2585 local_irq_enable();
2586 break;
2588 local_irq_enable();
2590 napi_gro_receive(napi, skb);
2591 } while (++work < quota && jiffies == start_time);
2593 napi_gro_flush(napi);
2595 return work;
2599 * __napi_schedule - schedule for receive
2600 * @n: entry to schedule
2602 * The entry's receive function will be scheduled to run
2604 void __napi_schedule(struct napi_struct *n)
2606 unsigned long flags;
2608 local_irq_save(flags);
2609 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2610 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2611 local_irq_restore(flags);
2613 EXPORT_SYMBOL(__napi_schedule);
2615 void __napi_complete(struct napi_struct *n)
2617 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2618 BUG_ON(n->gro_list);
2620 list_del(&n->poll_list);
2621 smp_mb__before_clear_bit();
2622 clear_bit(NAPI_STATE_SCHED, &n->state);
2624 EXPORT_SYMBOL(__napi_complete);
2626 void napi_complete(struct napi_struct *n)
2628 unsigned long flags;
2631 * don't let napi dequeue from the cpu poll list
2632 * just in case its running on a different cpu
2634 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2635 return;
2637 napi_gro_flush(n);
2638 local_irq_save(flags);
2639 __napi_complete(n);
2640 local_irq_restore(flags);
2642 EXPORT_SYMBOL(napi_complete);
2644 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2645 int (*poll)(struct napi_struct *, int), int weight)
2647 INIT_LIST_HEAD(&napi->poll_list);
2648 napi->gro_list = NULL;
2649 napi->skb = NULL;
2650 napi->poll = poll;
2651 napi->weight = weight;
2652 list_add(&napi->dev_list, &dev->napi_list);
2653 napi->dev = dev;
2654 #ifdef CONFIG_NETPOLL
2655 spin_lock_init(&napi->poll_lock);
2656 napi->poll_owner = -1;
2657 #endif
2658 set_bit(NAPI_STATE_SCHED, &napi->state);
2660 EXPORT_SYMBOL(netif_napi_add);
2662 void netif_napi_del(struct napi_struct *napi)
2664 struct sk_buff *skb, *next;
2666 list_del_init(&napi->dev_list);
2667 kfree(napi->skb);
2669 for (skb = napi->gro_list; skb; skb = next) {
2670 next = skb->next;
2671 skb->next = NULL;
2672 kfree_skb(skb);
2675 napi->gro_list = NULL;
2677 EXPORT_SYMBOL(netif_napi_del);
2680 static void net_rx_action(struct softirq_action *h)
2682 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2683 unsigned long time_limit = jiffies + 2;
2684 int budget = netdev_budget;
2685 void *have;
2687 local_irq_disable();
2689 while (!list_empty(list)) {
2690 struct napi_struct *n;
2691 int work, weight;
2693 /* If softirq window is exhuasted then punt.
2694 * Allow this to run for 2 jiffies since which will allow
2695 * an average latency of 1.5/HZ.
2697 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2698 goto softnet_break;
2700 local_irq_enable();
2702 /* Even though interrupts have been re-enabled, this
2703 * access is safe because interrupts can only add new
2704 * entries to the tail of this list, and only ->poll()
2705 * calls can remove this head entry from the list.
2707 n = list_entry(list->next, struct napi_struct, poll_list);
2709 have = netpoll_poll_lock(n);
2711 weight = n->weight;
2713 /* This NAPI_STATE_SCHED test is for avoiding a race
2714 * with netpoll's poll_napi(). Only the entity which
2715 * obtains the lock and sees NAPI_STATE_SCHED set will
2716 * actually make the ->poll() call. Therefore we avoid
2717 * accidently calling ->poll() when NAPI is not scheduled.
2719 work = 0;
2720 if (test_bit(NAPI_STATE_SCHED, &n->state))
2721 work = n->poll(n, weight);
2723 WARN_ON_ONCE(work > weight);
2725 budget -= work;
2727 local_irq_disable();
2729 /* Drivers must not modify the NAPI state if they
2730 * consume the entire weight. In such cases this code
2731 * still "owns" the NAPI instance and therefore can
2732 * move the instance around on the list at-will.
2734 if (unlikely(work == weight)) {
2735 if (unlikely(napi_disable_pending(n)))
2736 __napi_complete(n);
2737 else
2738 list_move_tail(&n->poll_list, list);
2741 netpoll_poll_unlock(have);
2743 out:
2744 local_irq_enable();
2746 #ifdef CONFIG_NET_DMA
2748 * There may not be any more sk_buffs coming right now, so push
2749 * any pending DMA copies to hardware
2751 dma_issue_pending_all();
2752 #endif
2754 return;
2756 softnet_break:
2757 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2758 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2759 goto out;
2762 static gifconf_func_t * gifconf_list [NPROTO];
2765 * register_gifconf - register a SIOCGIF handler
2766 * @family: Address family
2767 * @gifconf: Function handler
2769 * Register protocol dependent address dumping routines. The handler
2770 * that is passed must not be freed or reused until it has been replaced
2771 * by another handler.
2773 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2775 if (family >= NPROTO)
2776 return -EINVAL;
2777 gifconf_list[family] = gifconf;
2778 return 0;
2783 * Map an interface index to its name (SIOCGIFNAME)
2787 * We need this ioctl for efficient implementation of the
2788 * if_indextoname() function required by the IPv6 API. Without
2789 * it, we would have to search all the interfaces to find a
2790 * match. --pb
2793 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2795 struct net_device *dev;
2796 struct ifreq ifr;
2799 * Fetch the caller's info block.
2802 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2803 return -EFAULT;
2805 read_lock(&dev_base_lock);
2806 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2807 if (!dev) {
2808 read_unlock(&dev_base_lock);
2809 return -ENODEV;
2812 strcpy(ifr.ifr_name, dev->name);
2813 read_unlock(&dev_base_lock);
2815 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2816 return -EFAULT;
2817 return 0;
2821 * Perform a SIOCGIFCONF call. This structure will change
2822 * size eventually, and there is nothing I can do about it.
2823 * Thus we will need a 'compatibility mode'.
2826 static int dev_ifconf(struct net *net, char __user *arg)
2828 struct ifconf ifc;
2829 struct net_device *dev;
2830 char __user *pos;
2831 int len;
2832 int total;
2833 int i;
2836 * Fetch the caller's info block.
2839 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2840 return -EFAULT;
2842 pos = ifc.ifc_buf;
2843 len = ifc.ifc_len;
2846 * Loop over the interfaces, and write an info block for each.
2849 total = 0;
2850 for_each_netdev(net, dev) {
2851 for (i = 0; i < NPROTO; i++) {
2852 if (gifconf_list[i]) {
2853 int done;
2854 if (!pos)
2855 done = gifconf_list[i](dev, NULL, 0);
2856 else
2857 done = gifconf_list[i](dev, pos + total,
2858 len - total);
2859 if (done < 0)
2860 return -EFAULT;
2861 total += done;
2867 * All done. Write the updated control block back to the caller.
2869 ifc.ifc_len = total;
2872 * Both BSD and Solaris return 0 here, so we do too.
2874 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2877 #ifdef CONFIG_PROC_FS
2879 * This is invoked by the /proc filesystem handler to display a device
2880 * in detail.
2882 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2883 __acquires(dev_base_lock)
2885 struct net *net = seq_file_net(seq);
2886 loff_t off;
2887 struct net_device *dev;
2889 read_lock(&dev_base_lock);
2890 if (!*pos)
2891 return SEQ_START_TOKEN;
2893 off = 1;
2894 for_each_netdev(net, dev)
2895 if (off++ == *pos)
2896 return dev;
2898 return NULL;
2901 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2903 struct net *net = seq_file_net(seq);
2904 ++*pos;
2905 return v == SEQ_START_TOKEN ?
2906 first_net_device(net) : next_net_device((struct net_device *)v);
2909 void dev_seq_stop(struct seq_file *seq, void *v)
2910 __releases(dev_base_lock)
2912 read_unlock(&dev_base_lock);
2915 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2917 const struct net_device_stats *stats = dev_get_stats(dev);
2919 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2920 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2921 dev->name, stats->rx_bytes, stats->rx_packets,
2922 stats->rx_errors,
2923 stats->rx_dropped + stats->rx_missed_errors,
2924 stats->rx_fifo_errors,
2925 stats->rx_length_errors + stats->rx_over_errors +
2926 stats->rx_crc_errors + stats->rx_frame_errors,
2927 stats->rx_compressed, stats->multicast,
2928 stats->tx_bytes, stats->tx_packets,
2929 stats->tx_errors, stats->tx_dropped,
2930 stats->tx_fifo_errors, stats->collisions,
2931 stats->tx_carrier_errors +
2932 stats->tx_aborted_errors +
2933 stats->tx_window_errors +
2934 stats->tx_heartbeat_errors,
2935 stats->tx_compressed);
2939 * Called from the PROCfs module. This now uses the new arbitrary sized
2940 * /proc/net interface to create /proc/net/dev
2942 static int dev_seq_show(struct seq_file *seq, void *v)
2944 if (v == SEQ_START_TOKEN)
2945 seq_puts(seq, "Inter-| Receive "
2946 " | Transmit\n"
2947 " face |bytes packets errs drop fifo frame "
2948 "compressed multicast|bytes packets errs "
2949 "drop fifo colls carrier compressed\n");
2950 else
2951 dev_seq_printf_stats(seq, v);
2952 return 0;
2955 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2957 struct netif_rx_stats *rc = NULL;
2959 while (*pos < nr_cpu_ids)
2960 if (cpu_online(*pos)) {
2961 rc = &per_cpu(netdev_rx_stat, *pos);
2962 break;
2963 } else
2964 ++*pos;
2965 return rc;
2968 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2970 return softnet_get_online(pos);
2973 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2975 ++*pos;
2976 return softnet_get_online(pos);
2979 static void softnet_seq_stop(struct seq_file *seq, void *v)
2983 static int softnet_seq_show(struct seq_file *seq, void *v)
2985 struct netif_rx_stats *s = v;
2987 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2988 s->total, s->dropped, s->time_squeeze, 0,
2989 0, 0, 0, 0, /* was fastroute */
2990 s->cpu_collision );
2991 return 0;
2994 static const struct seq_operations dev_seq_ops = {
2995 .start = dev_seq_start,
2996 .next = dev_seq_next,
2997 .stop = dev_seq_stop,
2998 .show = dev_seq_show,
3001 static int dev_seq_open(struct inode *inode, struct file *file)
3003 return seq_open_net(inode, file, &dev_seq_ops,
3004 sizeof(struct seq_net_private));
3007 static const struct file_operations dev_seq_fops = {
3008 .owner = THIS_MODULE,
3009 .open = dev_seq_open,
3010 .read = seq_read,
3011 .llseek = seq_lseek,
3012 .release = seq_release_net,
3015 static const struct seq_operations softnet_seq_ops = {
3016 .start = softnet_seq_start,
3017 .next = softnet_seq_next,
3018 .stop = softnet_seq_stop,
3019 .show = softnet_seq_show,
3022 static int softnet_seq_open(struct inode *inode, struct file *file)
3024 return seq_open(file, &softnet_seq_ops);
3027 static const struct file_operations softnet_seq_fops = {
3028 .owner = THIS_MODULE,
3029 .open = softnet_seq_open,
3030 .read = seq_read,
3031 .llseek = seq_lseek,
3032 .release = seq_release,
3035 static void *ptype_get_idx(loff_t pos)
3037 struct packet_type *pt = NULL;
3038 loff_t i = 0;
3039 int t;
3041 list_for_each_entry_rcu(pt, &ptype_all, list) {
3042 if (i == pos)
3043 return pt;
3044 ++i;
3047 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3048 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3049 if (i == pos)
3050 return pt;
3051 ++i;
3054 return NULL;
3057 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3058 __acquires(RCU)
3060 rcu_read_lock();
3061 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3064 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3066 struct packet_type *pt;
3067 struct list_head *nxt;
3068 int hash;
3070 ++*pos;
3071 if (v == SEQ_START_TOKEN)
3072 return ptype_get_idx(0);
3074 pt = v;
3075 nxt = pt->list.next;
3076 if (pt->type == htons(ETH_P_ALL)) {
3077 if (nxt != &ptype_all)
3078 goto found;
3079 hash = 0;
3080 nxt = ptype_base[0].next;
3081 } else
3082 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3084 while (nxt == &ptype_base[hash]) {
3085 if (++hash >= PTYPE_HASH_SIZE)
3086 return NULL;
3087 nxt = ptype_base[hash].next;
3089 found:
3090 return list_entry(nxt, struct packet_type, list);
3093 static void ptype_seq_stop(struct seq_file *seq, void *v)
3094 __releases(RCU)
3096 rcu_read_unlock();
3099 static int ptype_seq_show(struct seq_file *seq, void *v)
3101 struct packet_type *pt = v;
3103 if (v == SEQ_START_TOKEN)
3104 seq_puts(seq, "Type Device Function\n");
3105 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3106 if (pt->type == htons(ETH_P_ALL))
3107 seq_puts(seq, "ALL ");
3108 else
3109 seq_printf(seq, "%04x", ntohs(pt->type));
3111 seq_printf(seq, " %-8s %pF\n",
3112 pt->dev ? pt->dev->name : "", pt->func);
3115 return 0;
3118 static const struct seq_operations ptype_seq_ops = {
3119 .start = ptype_seq_start,
3120 .next = ptype_seq_next,
3121 .stop = ptype_seq_stop,
3122 .show = ptype_seq_show,
3125 static int ptype_seq_open(struct inode *inode, struct file *file)
3127 return seq_open_net(inode, file, &ptype_seq_ops,
3128 sizeof(struct seq_net_private));
3131 static const struct file_operations ptype_seq_fops = {
3132 .owner = THIS_MODULE,
3133 .open = ptype_seq_open,
3134 .read = seq_read,
3135 .llseek = seq_lseek,
3136 .release = seq_release_net,
3140 static int __net_init dev_proc_net_init(struct net *net)
3142 int rc = -ENOMEM;
3144 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3145 goto out;
3146 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3147 goto out_dev;
3148 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3149 goto out_softnet;
3151 if (wext_proc_init(net))
3152 goto out_ptype;
3153 rc = 0;
3154 out:
3155 return rc;
3156 out_ptype:
3157 proc_net_remove(net, "ptype");
3158 out_softnet:
3159 proc_net_remove(net, "softnet_stat");
3160 out_dev:
3161 proc_net_remove(net, "dev");
3162 goto out;
3165 static void __net_exit dev_proc_net_exit(struct net *net)
3167 wext_proc_exit(net);
3169 proc_net_remove(net, "ptype");
3170 proc_net_remove(net, "softnet_stat");
3171 proc_net_remove(net, "dev");
3174 static struct pernet_operations __net_initdata dev_proc_ops = {
3175 .init = dev_proc_net_init,
3176 .exit = dev_proc_net_exit,
3179 static int __init dev_proc_init(void)
3181 return register_pernet_subsys(&dev_proc_ops);
3183 #else
3184 #define dev_proc_init() 0
3185 #endif /* CONFIG_PROC_FS */
3189 * netdev_set_master - set up master/slave pair
3190 * @slave: slave device
3191 * @master: new master device
3193 * Changes the master device of the slave. Pass %NULL to break the
3194 * bonding. The caller must hold the RTNL semaphore. On a failure
3195 * a negative errno code is returned. On success the reference counts
3196 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3197 * function returns zero.
3199 int netdev_set_master(struct net_device *slave, struct net_device *master)
3201 struct net_device *old = slave->master;
3203 ASSERT_RTNL();
3205 if (master) {
3206 if (old)
3207 return -EBUSY;
3208 dev_hold(master);
3211 slave->master = master;
3213 synchronize_net();
3215 if (old)
3216 dev_put(old);
3218 if (master)
3219 slave->flags |= IFF_SLAVE;
3220 else
3221 slave->flags &= ~IFF_SLAVE;
3223 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3224 return 0;
3227 static void dev_change_rx_flags(struct net_device *dev, int flags)
3229 const struct net_device_ops *ops = dev->netdev_ops;
3231 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3232 ops->ndo_change_rx_flags(dev, flags);
3235 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3237 unsigned short old_flags = dev->flags;
3238 uid_t uid;
3239 gid_t gid;
3241 ASSERT_RTNL();
3243 dev->flags |= IFF_PROMISC;
3244 dev->promiscuity += inc;
3245 if (dev->promiscuity == 0) {
3247 * Avoid overflow.
3248 * If inc causes overflow, untouch promisc and return error.
3250 if (inc < 0)
3251 dev->flags &= ~IFF_PROMISC;
3252 else {
3253 dev->promiscuity -= inc;
3254 printk(KERN_WARNING "%s: promiscuity touches roof, "
3255 "set promiscuity failed, promiscuity feature "
3256 "of device might be broken.\n", dev->name);
3257 return -EOVERFLOW;
3260 if (dev->flags != old_flags) {
3261 printk(KERN_INFO "device %s %s promiscuous mode\n",
3262 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3263 "left");
3264 if (audit_enabled) {
3265 current_uid_gid(&uid, &gid);
3266 audit_log(current->audit_context, GFP_ATOMIC,
3267 AUDIT_ANOM_PROMISCUOUS,
3268 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3269 dev->name, (dev->flags & IFF_PROMISC),
3270 (old_flags & IFF_PROMISC),
3271 audit_get_loginuid(current),
3272 uid, gid,
3273 audit_get_sessionid(current));
3276 dev_change_rx_flags(dev, IFF_PROMISC);
3278 return 0;
3282 * dev_set_promiscuity - update promiscuity count on a device
3283 * @dev: device
3284 * @inc: modifier
3286 * Add or remove promiscuity from a device. While the count in the device
3287 * remains above zero the interface remains promiscuous. Once it hits zero
3288 * the device reverts back to normal filtering operation. A negative inc
3289 * value is used to drop promiscuity on the device.
3290 * Return 0 if successful or a negative errno code on error.
3292 int dev_set_promiscuity(struct net_device *dev, int inc)
3294 unsigned short old_flags = dev->flags;
3295 int err;
3297 err = __dev_set_promiscuity(dev, inc);
3298 if (err < 0)
3299 return err;
3300 if (dev->flags != old_flags)
3301 dev_set_rx_mode(dev);
3302 return err;
3306 * dev_set_allmulti - update allmulti count on a device
3307 * @dev: device
3308 * @inc: modifier
3310 * Add or remove reception of all multicast frames to a device. While the
3311 * count in the device remains above zero the interface remains listening
3312 * to all interfaces. Once it hits zero the device reverts back to normal
3313 * filtering operation. A negative @inc value is used to drop the counter
3314 * when releasing a resource needing all multicasts.
3315 * Return 0 if successful or a negative errno code on error.
3318 int dev_set_allmulti(struct net_device *dev, int inc)
3320 unsigned short old_flags = dev->flags;
3322 ASSERT_RTNL();
3324 dev->flags |= IFF_ALLMULTI;
3325 dev->allmulti += inc;
3326 if (dev->allmulti == 0) {
3328 * Avoid overflow.
3329 * If inc causes overflow, untouch allmulti and return error.
3331 if (inc < 0)
3332 dev->flags &= ~IFF_ALLMULTI;
3333 else {
3334 dev->allmulti -= inc;
3335 printk(KERN_WARNING "%s: allmulti touches roof, "
3336 "set allmulti failed, allmulti feature of "
3337 "device might be broken.\n", dev->name);
3338 return -EOVERFLOW;
3341 if (dev->flags ^ old_flags) {
3342 dev_change_rx_flags(dev, IFF_ALLMULTI);
3343 dev_set_rx_mode(dev);
3345 return 0;
3349 * Upload unicast and multicast address lists to device and
3350 * configure RX filtering. When the device doesn't support unicast
3351 * filtering it is put in promiscuous mode while unicast addresses
3352 * are present.
3354 void __dev_set_rx_mode(struct net_device *dev)
3356 const struct net_device_ops *ops = dev->netdev_ops;
3358 /* dev_open will call this function so the list will stay sane. */
3359 if (!(dev->flags&IFF_UP))
3360 return;
3362 if (!netif_device_present(dev))
3363 return;
3365 if (ops->ndo_set_rx_mode)
3366 ops->ndo_set_rx_mode(dev);
3367 else {
3368 /* Unicast addresses changes may only happen under the rtnl,
3369 * therefore calling __dev_set_promiscuity here is safe.
3371 if (dev->uc_count > 0 && !dev->uc_promisc) {
3372 __dev_set_promiscuity(dev, 1);
3373 dev->uc_promisc = 1;
3374 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3375 __dev_set_promiscuity(dev, -1);
3376 dev->uc_promisc = 0;
3379 if (ops->ndo_set_multicast_list)
3380 ops->ndo_set_multicast_list(dev);
3384 void dev_set_rx_mode(struct net_device *dev)
3386 netif_addr_lock_bh(dev);
3387 __dev_set_rx_mode(dev);
3388 netif_addr_unlock_bh(dev);
3391 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3392 void *addr, int alen, int glbl)
3394 struct dev_addr_list *da;
3396 for (; (da = *list) != NULL; list = &da->next) {
3397 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3398 alen == da->da_addrlen) {
3399 if (glbl) {
3400 int old_glbl = da->da_gusers;
3401 da->da_gusers = 0;
3402 if (old_glbl == 0)
3403 break;
3405 if (--da->da_users)
3406 return 0;
3408 *list = da->next;
3409 kfree(da);
3410 (*count)--;
3411 return 0;
3414 return -ENOENT;
3417 int __dev_addr_add(struct dev_addr_list **list, int *count,
3418 void *addr, int alen, int glbl)
3420 struct dev_addr_list *da;
3422 for (da = *list; da != NULL; da = da->next) {
3423 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3424 da->da_addrlen == alen) {
3425 if (glbl) {
3426 int old_glbl = da->da_gusers;
3427 da->da_gusers = 1;
3428 if (old_glbl)
3429 return 0;
3431 da->da_users++;
3432 return 0;
3436 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3437 if (da == NULL)
3438 return -ENOMEM;
3439 memcpy(da->da_addr, addr, alen);
3440 da->da_addrlen = alen;
3441 da->da_users = 1;
3442 da->da_gusers = glbl ? 1 : 0;
3443 da->next = *list;
3444 *list = da;
3445 (*count)++;
3446 return 0;
3450 * dev_unicast_delete - Release secondary unicast address.
3451 * @dev: device
3452 * @addr: address to delete
3453 * @alen: length of @addr
3455 * Release reference to a secondary unicast address and remove it
3456 * from the device if the reference count drops to zero.
3458 * The caller must hold the rtnl_mutex.
3460 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3462 int err;
3464 ASSERT_RTNL();
3466 netif_addr_lock_bh(dev);
3467 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3468 if (!err)
3469 __dev_set_rx_mode(dev);
3470 netif_addr_unlock_bh(dev);
3471 return err;
3473 EXPORT_SYMBOL(dev_unicast_delete);
3476 * dev_unicast_add - add a secondary unicast address
3477 * @dev: device
3478 * @addr: address to add
3479 * @alen: length of @addr
3481 * Add a secondary unicast address to the device or increase
3482 * the reference count if it already exists.
3484 * The caller must hold the rtnl_mutex.
3486 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3488 int err;
3490 ASSERT_RTNL();
3492 netif_addr_lock_bh(dev);
3493 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3494 if (!err)
3495 __dev_set_rx_mode(dev);
3496 netif_addr_unlock_bh(dev);
3497 return err;
3499 EXPORT_SYMBOL(dev_unicast_add);
3501 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3502 struct dev_addr_list **from, int *from_count)
3504 struct dev_addr_list *da, *next;
3505 int err = 0;
3507 da = *from;
3508 while (da != NULL) {
3509 next = da->next;
3510 if (!da->da_synced) {
3511 err = __dev_addr_add(to, to_count,
3512 da->da_addr, da->da_addrlen, 0);
3513 if (err < 0)
3514 break;
3515 da->da_synced = 1;
3516 da->da_users++;
3517 } else if (da->da_users == 1) {
3518 __dev_addr_delete(to, to_count,
3519 da->da_addr, da->da_addrlen, 0);
3520 __dev_addr_delete(from, from_count,
3521 da->da_addr, da->da_addrlen, 0);
3523 da = next;
3525 return err;
3528 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3529 struct dev_addr_list **from, int *from_count)
3531 struct dev_addr_list *da, *next;
3533 da = *from;
3534 while (da != NULL) {
3535 next = da->next;
3536 if (da->da_synced) {
3537 __dev_addr_delete(to, to_count,
3538 da->da_addr, da->da_addrlen, 0);
3539 da->da_synced = 0;
3540 __dev_addr_delete(from, from_count,
3541 da->da_addr, da->da_addrlen, 0);
3543 da = next;
3548 * dev_unicast_sync - Synchronize device's unicast list to another device
3549 * @to: destination device
3550 * @from: source device
3552 * Add newly added addresses to the destination device and release
3553 * addresses that have no users left. The source device must be
3554 * locked by netif_tx_lock_bh.
3556 * This function is intended to be called from the dev->set_rx_mode
3557 * function of layered software devices.
3559 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3561 int err = 0;
3563 netif_addr_lock_bh(to);
3564 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3565 &from->uc_list, &from->uc_count);
3566 if (!err)
3567 __dev_set_rx_mode(to);
3568 netif_addr_unlock_bh(to);
3569 return err;
3571 EXPORT_SYMBOL(dev_unicast_sync);
3574 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3575 * @to: destination device
3576 * @from: source device
3578 * Remove all addresses that were added to the destination device by
3579 * dev_unicast_sync(). This function is intended to be called from the
3580 * dev->stop function of layered software devices.
3582 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3584 netif_addr_lock_bh(from);
3585 netif_addr_lock(to);
3587 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3588 &from->uc_list, &from->uc_count);
3589 __dev_set_rx_mode(to);
3591 netif_addr_unlock(to);
3592 netif_addr_unlock_bh(from);
3594 EXPORT_SYMBOL(dev_unicast_unsync);
3596 static void __dev_addr_discard(struct dev_addr_list **list)
3598 struct dev_addr_list *tmp;
3600 while (*list != NULL) {
3601 tmp = *list;
3602 *list = tmp->next;
3603 if (tmp->da_users > tmp->da_gusers)
3604 printk("__dev_addr_discard: address leakage! "
3605 "da_users=%d\n", tmp->da_users);
3606 kfree(tmp);
3610 static void dev_addr_discard(struct net_device *dev)
3612 netif_addr_lock_bh(dev);
3614 __dev_addr_discard(&dev->uc_list);
3615 dev->uc_count = 0;
3617 __dev_addr_discard(&dev->mc_list);
3618 dev->mc_count = 0;
3620 netif_addr_unlock_bh(dev);
3624 * dev_get_flags - get flags reported to userspace
3625 * @dev: device
3627 * Get the combination of flag bits exported through APIs to userspace.
3629 unsigned dev_get_flags(const struct net_device *dev)
3631 unsigned flags;
3633 flags = (dev->flags & ~(IFF_PROMISC |
3634 IFF_ALLMULTI |
3635 IFF_RUNNING |
3636 IFF_LOWER_UP |
3637 IFF_DORMANT)) |
3638 (dev->gflags & (IFF_PROMISC |
3639 IFF_ALLMULTI));
3641 if (netif_running(dev)) {
3642 if (netif_oper_up(dev))
3643 flags |= IFF_RUNNING;
3644 if (netif_carrier_ok(dev))
3645 flags |= IFF_LOWER_UP;
3646 if (netif_dormant(dev))
3647 flags |= IFF_DORMANT;
3650 return flags;
3654 * dev_change_flags - change device settings
3655 * @dev: device
3656 * @flags: device state flags
3658 * Change settings on device based state flags. The flags are
3659 * in the userspace exported format.
3661 int dev_change_flags(struct net_device *dev, unsigned flags)
3663 int ret, changes;
3664 int old_flags = dev->flags;
3666 ASSERT_RTNL();
3669 * Set the flags on our device.
3672 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3673 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3674 IFF_AUTOMEDIA)) |
3675 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3676 IFF_ALLMULTI));
3679 * Load in the correct multicast list now the flags have changed.
3682 if ((old_flags ^ flags) & IFF_MULTICAST)
3683 dev_change_rx_flags(dev, IFF_MULTICAST);
3685 dev_set_rx_mode(dev);
3688 * Have we downed the interface. We handle IFF_UP ourselves
3689 * according to user attempts to set it, rather than blindly
3690 * setting it.
3693 ret = 0;
3694 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3695 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3697 if (!ret)
3698 dev_set_rx_mode(dev);
3701 if (dev->flags & IFF_UP &&
3702 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3703 IFF_VOLATILE)))
3704 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3706 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3707 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3708 dev->gflags ^= IFF_PROMISC;
3709 dev_set_promiscuity(dev, inc);
3712 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3713 is important. Some (broken) drivers set IFF_PROMISC, when
3714 IFF_ALLMULTI is requested not asking us and not reporting.
3716 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3717 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3718 dev->gflags ^= IFF_ALLMULTI;
3719 dev_set_allmulti(dev, inc);
3722 /* Exclude state transition flags, already notified */
3723 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3724 if (changes)
3725 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3727 return ret;
3731 * dev_set_mtu - Change maximum transfer unit
3732 * @dev: device
3733 * @new_mtu: new transfer unit
3735 * Change the maximum transfer size of the network device.
3737 int dev_set_mtu(struct net_device *dev, int new_mtu)
3739 const struct net_device_ops *ops = dev->netdev_ops;
3740 int err;
3742 if (new_mtu == dev->mtu)
3743 return 0;
3745 /* MTU must be positive. */
3746 if (new_mtu < 0)
3747 return -EINVAL;
3749 if (!netif_device_present(dev))
3750 return -ENODEV;
3752 err = 0;
3753 if (ops->ndo_change_mtu)
3754 err = ops->ndo_change_mtu(dev, new_mtu);
3755 else
3756 dev->mtu = new_mtu;
3758 if (!err && dev->flags & IFF_UP)
3759 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3760 return err;
3764 * dev_set_mac_address - Change Media Access Control Address
3765 * @dev: device
3766 * @sa: new address
3768 * Change the hardware (MAC) address of the device
3770 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3772 const struct net_device_ops *ops = dev->netdev_ops;
3773 int err;
3775 if (!ops->ndo_set_mac_address)
3776 return -EOPNOTSUPP;
3777 if (sa->sa_family != dev->type)
3778 return -EINVAL;
3779 if (!netif_device_present(dev))
3780 return -ENODEV;
3781 err = ops->ndo_set_mac_address(dev, sa);
3782 if (!err)
3783 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3784 return err;
3788 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3790 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3792 int err;
3793 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3795 if (!dev)
3796 return -ENODEV;
3798 switch (cmd) {
3799 case SIOCGIFFLAGS: /* Get interface flags */
3800 ifr->ifr_flags = dev_get_flags(dev);
3801 return 0;
3803 case SIOCGIFMETRIC: /* Get the metric on the interface
3804 (currently unused) */
3805 ifr->ifr_metric = 0;
3806 return 0;
3808 case SIOCGIFMTU: /* Get the MTU of a device */
3809 ifr->ifr_mtu = dev->mtu;
3810 return 0;
3812 case SIOCGIFHWADDR:
3813 if (!dev->addr_len)
3814 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3815 else
3816 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3817 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3818 ifr->ifr_hwaddr.sa_family = dev->type;
3819 return 0;
3821 case SIOCGIFSLAVE:
3822 err = -EINVAL;
3823 break;
3825 case SIOCGIFMAP:
3826 ifr->ifr_map.mem_start = dev->mem_start;
3827 ifr->ifr_map.mem_end = dev->mem_end;
3828 ifr->ifr_map.base_addr = dev->base_addr;
3829 ifr->ifr_map.irq = dev->irq;
3830 ifr->ifr_map.dma = dev->dma;
3831 ifr->ifr_map.port = dev->if_port;
3832 return 0;
3834 case SIOCGIFINDEX:
3835 ifr->ifr_ifindex = dev->ifindex;
3836 return 0;
3838 case SIOCGIFTXQLEN:
3839 ifr->ifr_qlen = dev->tx_queue_len;
3840 return 0;
3842 default:
3843 /* dev_ioctl() should ensure this case
3844 * is never reached
3846 WARN_ON(1);
3847 err = -EINVAL;
3848 break;
3851 return err;
3855 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3857 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3859 int err;
3860 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3861 const struct net_device_ops *ops;
3863 if (!dev)
3864 return -ENODEV;
3866 ops = dev->netdev_ops;
3868 switch (cmd) {
3869 case SIOCSIFFLAGS: /* Set interface flags */
3870 return dev_change_flags(dev, ifr->ifr_flags);
3872 case SIOCSIFMETRIC: /* Set the metric on the interface
3873 (currently unused) */
3874 return -EOPNOTSUPP;
3876 case SIOCSIFMTU: /* Set the MTU of a device */
3877 return dev_set_mtu(dev, ifr->ifr_mtu);
3879 case SIOCSIFHWADDR:
3880 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3882 case SIOCSIFHWBROADCAST:
3883 if (ifr->ifr_hwaddr.sa_family != dev->type)
3884 return -EINVAL;
3885 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3886 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3887 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3888 return 0;
3890 case SIOCSIFMAP:
3891 if (ops->ndo_set_config) {
3892 if (!netif_device_present(dev))
3893 return -ENODEV;
3894 return ops->ndo_set_config(dev, &ifr->ifr_map);
3896 return -EOPNOTSUPP;
3898 case SIOCADDMULTI:
3899 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3900 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3901 return -EINVAL;
3902 if (!netif_device_present(dev))
3903 return -ENODEV;
3904 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3905 dev->addr_len, 1);
3907 case SIOCDELMULTI:
3908 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3909 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3910 return -EINVAL;
3911 if (!netif_device_present(dev))
3912 return -ENODEV;
3913 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3914 dev->addr_len, 1);
3916 case SIOCSIFTXQLEN:
3917 if (ifr->ifr_qlen < 0)
3918 return -EINVAL;
3919 dev->tx_queue_len = ifr->ifr_qlen;
3920 return 0;
3922 case SIOCSIFNAME:
3923 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3924 return dev_change_name(dev, ifr->ifr_newname);
3927 * Unknown or private ioctl
3930 default:
3931 if ((cmd >= SIOCDEVPRIVATE &&
3932 cmd <= SIOCDEVPRIVATE + 15) ||
3933 cmd == SIOCBONDENSLAVE ||
3934 cmd == SIOCBONDRELEASE ||
3935 cmd == SIOCBONDSETHWADDR ||
3936 cmd == SIOCBONDSLAVEINFOQUERY ||
3937 cmd == SIOCBONDINFOQUERY ||
3938 cmd == SIOCBONDCHANGEACTIVE ||
3939 cmd == SIOCGMIIPHY ||
3940 cmd == SIOCGMIIREG ||
3941 cmd == SIOCSMIIREG ||
3942 cmd == SIOCBRADDIF ||
3943 cmd == SIOCBRDELIF ||
3944 cmd == SIOCWANDEV) {
3945 err = -EOPNOTSUPP;
3946 if (ops->ndo_do_ioctl) {
3947 if (netif_device_present(dev))
3948 err = ops->ndo_do_ioctl(dev, ifr, cmd);
3949 else
3950 err = -ENODEV;
3952 } else
3953 err = -EINVAL;
3956 return err;
3960 * This function handles all "interface"-type I/O control requests. The actual
3961 * 'doing' part of this is dev_ifsioc above.
3965 * dev_ioctl - network device ioctl
3966 * @net: the applicable net namespace
3967 * @cmd: command to issue
3968 * @arg: pointer to a struct ifreq in user space
3970 * Issue ioctl functions to devices. This is normally called by the
3971 * user space syscall interfaces but can sometimes be useful for
3972 * other purposes. The return value is the return from the syscall if
3973 * positive or a negative errno code on error.
3976 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3978 struct ifreq ifr;
3979 int ret;
3980 char *colon;
3982 /* One special case: SIOCGIFCONF takes ifconf argument
3983 and requires shared lock, because it sleeps writing
3984 to user space.
3987 if (cmd == SIOCGIFCONF) {
3988 rtnl_lock();
3989 ret = dev_ifconf(net, (char __user *) arg);
3990 rtnl_unlock();
3991 return ret;
3993 if (cmd == SIOCGIFNAME)
3994 return dev_ifname(net, (struct ifreq __user *)arg);
3996 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3997 return -EFAULT;
3999 ifr.ifr_name[IFNAMSIZ-1] = 0;
4001 colon = strchr(ifr.ifr_name, ':');
4002 if (colon)
4003 *colon = 0;
4006 * See which interface the caller is talking about.
4009 switch (cmd) {
4011 * These ioctl calls:
4012 * - can be done by all.
4013 * - atomic and do not require locking.
4014 * - return a value
4016 case SIOCGIFFLAGS:
4017 case SIOCGIFMETRIC:
4018 case SIOCGIFMTU:
4019 case SIOCGIFHWADDR:
4020 case SIOCGIFSLAVE:
4021 case SIOCGIFMAP:
4022 case SIOCGIFINDEX:
4023 case SIOCGIFTXQLEN:
4024 dev_load(net, ifr.ifr_name);
4025 read_lock(&dev_base_lock);
4026 ret = dev_ifsioc_locked(net, &ifr, cmd);
4027 read_unlock(&dev_base_lock);
4028 if (!ret) {
4029 if (colon)
4030 *colon = ':';
4031 if (copy_to_user(arg, &ifr,
4032 sizeof(struct ifreq)))
4033 ret = -EFAULT;
4035 return ret;
4037 case SIOCETHTOOL:
4038 dev_load(net, ifr.ifr_name);
4039 rtnl_lock();
4040 ret = dev_ethtool(net, &ifr);
4041 rtnl_unlock();
4042 if (!ret) {
4043 if (colon)
4044 *colon = ':';
4045 if (copy_to_user(arg, &ifr,
4046 sizeof(struct ifreq)))
4047 ret = -EFAULT;
4049 return ret;
4052 * These ioctl calls:
4053 * - require superuser power.
4054 * - require strict serialization.
4055 * - return a value
4057 case SIOCGMIIPHY:
4058 case SIOCGMIIREG:
4059 case SIOCSIFNAME:
4060 if (!capable(CAP_NET_ADMIN))
4061 return -EPERM;
4062 dev_load(net, ifr.ifr_name);
4063 rtnl_lock();
4064 ret = dev_ifsioc(net, &ifr, cmd);
4065 rtnl_unlock();
4066 if (!ret) {
4067 if (colon)
4068 *colon = ':';
4069 if (copy_to_user(arg, &ifr,
4070 sizeof(struct ifreq)))
4071 ret = -EFAULT;
4073 return ret;
4076 * These ioctl calls:
4077 * - require superuser power.
4078 * - require strict serialization.
4079 * - do not return a value
4081 case SIOCSIFFLAGS:
4082 case SIOCSIFMETRIC:
4083 case SIOCSIFMTU:
4084 case SIOCSIFMAP:
4085 case SIOCSIFHWADDR:
4086 case SIOCSIFSLAVE:
4087 case SIOCADDMULTI:
4088 case SIOCDELMULTI:
4089 case SIOCSIFHWBROADCAST:
4090 case SIOCSIFTXQLEN:
4091 case SIOCSMIIREG:
4092 case SIOCBONDENSLAVE:
4093 case SIOCBONDRELEASE:
4094 case SIOCBONDSETHWADDR:
4095 case SIOCBONDCHANGEACTIVE:
4096 case SIOCBRADDIF:
4097 case SIOCBRDELIF:
4098 if (!capable(CAP_NET_ADMIN))
4099 return -EPERM;
4100 /* fall through */
4101 case SIOCBONDSLAVEINFOQUERY:
4102 case SIOCBONDINFOQUERY:
4103 dev_load(net, ifr.ifr_name);
4104 rtnl_lock();
4105 ret = dev_ifsioc(net, &ifr, cmd);
4106 rtnl_unlock();
4107 return ret;
4109 case SIOCGIFMEM:
4110 /* Get the per device memory space. We can add this but
4111 * currently do not support it */
4112 case SIOCSIFMEM:
4113 /* Set the per device memory buffer space.
4114 * Not applicable in our case */
4115 case SIOCSIFLINK:
4116 return -EINVAL;
4119 * Unknown or private ioctl.
4121 default:
4122 if (cmd == SIOCWANDEV ||
4123 (cmd >= SIOCDEVPRIVATE &&
4124 cmd <= SIOCDEVPRIVATE + 15)) {
4125 dev_load(net, ifr.ifr_name);
4126 rtnl_lock();
4127 ret = dev_ifsioc(net, &ifr, cmd);
4128 rtnl_unlock();
4129 if (!ret && copy_to_user(arg, &ifr,
4130 sizeof(struct ifreq)))
4131 ret = -EFAULT;
4132 return ret;
4134 /* Take care of Wireless Extensions */
4135 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4136 return wext_handle_ioctl(net, &ifr, cmd, arg);
4137 return -EINVAL;
4143 * dev_new_index - allocate an ifindex
4144 * @net: the applicable net namespace
4146 * Returns a suitable unique value for a new device interface
4147 * number. The caller must hold the rtnl semaphore or the
4148 * dev_base_lock to be sure it remains unique.
4150 static int dev_new_index(struct net *net)
4152 static int ifindex;
4153 for (;;) {
4154 if (++ifindex <= 0)
4155 ifindex = 1;
4156 if (!__dev_get_by_index(net, ifindex))
4157 return ifindex;
4161 /* Delayed registration/unregisteration */
4162 static LIST_HEAD(net_todo_list);
4164 static void net_set_todo(struct net_device *dev)
4166 list_add_tail(&dev->todo_list, &net_todo_list);
4169 static void rollback_registered(struct net_device *dev)
4171 BUG_ON(dev_boot_phase);
4172 ASSERT_RTNL();
4174 /* Some devices call without registering for initialization unwind. */
4175 if (dev->reg_state == NETREG_UNINITIALIZED) {
4176 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4177 "was registered\n", dev->name, dev);
4179 WARN_ON(1);
4180 return;
4183 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4185 /* If device is running, close it first. */
4186 dev_close(dev);
4188 /* And unlink it from device chain. */
4189 unlist_netdevice(dev);
4191 dev->reg_state = NETREG_UNREGISTERING;
4193 synchronize_net();
4195 /* Shutdown queueing discipline. */
4196 dev_shutdown(dev);
4199 /* Notify protocols, that we are about to destroy
4200 this device. They should clean all the things.
4202 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4205 * Flush the unicast and multicast chains
4207 dev_addr_discard(dev);
4209 if (dev->netdev_ops->ndo_uninit)
4210 dev->netdev_ops->ndo_uninit(dev);
4212 /* Notifier chain MUST detach us from master device. */
4213 WARN_ON(dev->master);
4215 /* Remove entries from kobject tree */
4216 netdev_unregister_kobject(dev);
4218 synchronize_net();
4220 dev_put(dev);
4223 static void __netdev_init_queue_locks_one(struct net_device *dev,
4224 struct netdev_queue *dev_queue,
4225 void *_unused)
4227 spin_lock_init(&dev_queue->_xmit_lock);
4228 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4229 dev_queue->xmit_lock_owner = -1;
4232 static void netdev_init_queue_locks(struct net_device *dev)
4234 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4235 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4238 unsigned long netdev_fix_features(unsigned long features, const char *name)
4240 /* Fix illegal SG+CSUM combinations. */
4241 if ((features & NETIF_F_SG) &&
4242 !(features & NETIF_F_ALL_CSUM)) {
4243 if (name)
4244 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4245 "checksum feature.\n", name);
4246 features &= ~NETIF_F_SG;
4249 /* TSO requires that SG is present as well. */
4250 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4251 if (name)
4252 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4253 "SG feature.\n", name);
4254 features &= ~NETIF_F_TSO;
4257 if (features & NETIF_F_UFO) {
4258 if (!(features & NETIF_F_GEN_CSUM)) {
4259 if (name)
4260 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4261 "since no NETIF_F_HW_CSUM feature.\n",
4262 name);
4263 features &= ~NETIF_F_UFO;
4266 if (!(features & NETIF_F_SG)) {
4267 if (name)
4268 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4269 "since no NETIF_F_SG feature.\n", name);
4270 features &= ~NETIF_F_UFO;
4274 return features;
4276 EXPORT_SYMBOL(netdev_fix_features);
4279 * register_netdevice - register a network device
4280 * @dev: device to register
4282 * Take a completed network device structure and add it to the kernel
4283 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4284 * chain. 0 is returned on success. A negative errno code is returned
4285 * on a failure to set up the device, or if the name is a duplicate.
4287 * Callers must hold the rtnl semaphore. You may want
4288 * register_netdev() instead of this.
4290 * BUGS:
4291 * The locking appears insufficient to guarantee two parallel registers
4292 * will not get the same name.
4295 int register_netdevice(struct net_device *dev)
4297 struct hlist_head *head;
4298 struct hlist_node *p;
4299 int ret;
4300 struct net *net = dev_net(dev);
4302 BUG_ON(dev_boot_phase);
4303 ASSERT_RTNL();
4305 might_sleep();
4307 /* When net_device's are persistent, this will be fatal. */
4308 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4309 BUG_ON(!net);
4311 spin_lock_init(&dev->addr_list_lock);
4312 netdev_set_addr_lockdep_class(dev);
4313 netdev_init_queue_locks(dev);
4315 dev->iflink = -1;
4317 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4318 /* Netdevice_ops API compatiability support.
4319 * This is temporary until all network devices are converted.
4321 if (dev->netdev_ops) {
4322 const struct net_device_ops *ops = dev->netdev_ops;
4324 dev->init = ops->ndo_init;
4325 dev->uninit = ops->ndo_uninit;
4326 dev->open = ops->ndo_open;
4327 dev->change_rx_flags = ops->ndo_change_rx_flags;
4328 dev->set_rx_mode = ops->ndo_set_rx_mode;
4329 dev->set_multicast_list = ops->ndo_set_multicast_list;
4330 dev->set_mac_address = ops->ndo_set_mac_address;
4331 dev->validate_addr = ops->ndo_validate_addr;
4332 dev->do_ioctl = ops->ndo_do_ioctl;
4333 dev->set_config = ops->ndo_set_config;
4334 dev->change_mtu = ops->ndo_change_mtu;
4335 dev->tx_timeout = ops->ndo_tx_timeout;
4336 dev->get_stats = ops->ndo_get_stats;
4337 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4338 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4339 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4340 #ifdef CONFIG_NET_POLL_CONTROLLER
4341 dev->poll_controller = ops->ndo_poll_controller;
4342 #endif
4343 } else {
4344 char drivername[64];
4345 pr_info("%s (%s): not using net_device_ops yet\n",
4346 dev->name, netdev_drivername(dev, drivername, 64));
4348 /* This works only because net_device_ops and the
4349 compatiablity structure are the same. */
4350 dev->netdev_ops = (void *) &(dev->init);
4352 #endif
4354 /* Init, if this function is available */
4355 if (dev->netdev_ops->ndo_init) {
4356 ret = dev->netdev_ops->ndo_init(dev);
4357 if (ret) {
4358 if (ret > 0)
4359 ret = -EIO;
4360 goto out;
4364 if (!dev_valid_name(dev->name)) {
4365 ret = -EINVAL;
4366 goto err_uninit;
4369 dev->ifindex = dev_new_index(net);
4370 if (dev->iflink == -1)
4371 dev->iflink = dev->ifindex;
4373 /* Check for existence of name */
4374 head = dev_name_hash(net, dev->name);
4375 hlist_for_each(p, head) {
4376 struct net_device *d
4377 = hlist_entry(p, struct net_device, name_hlist);
4378 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4379 ret = -EEXIST;
4380 goto err_uninit;
4384 /* Fix illegal checksum combinations */
4385 if ((dev->features & NETIF_F_HW_CSUM) &&
4386 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4387 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4388 dev->name);
4389 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4392 if ((dev->features & NETIF_F_NO_CSUM) &&
4393 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4394 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4395 dev->name);
4396 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4399 dev->features = netdev_fix_features(dev->features, dev->name);
4401 /* Enable software GSO if SG is supported. */
4402 if (dev->features & NETIF_F_SG)
4403 dev->features |= NETIF_F_GSO;
4405 netdev_initialize_kobject(dev);
4406 ret = netdev_register_kobject(dev);
4407 if (ret)
4408 goto err_uninit;
4409 dev->reg_state = NETREG_REGISTERED;
4412 * Default initial state at registry is that the
4413 * device is present.
4416 set_bit(__LINK_STATE_PRESENT, &dev->state);
4418 dev_init_scheduler(dev);
4419 dev_hold(dev);
4420 list_netdevice(dev);
4422 /* Notify protocols, that a new device appeared. */
4423 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4424 ret = notifier_to_errno(ret);
4425 if (ret) {
4426 rollback_registered(dev);
4427 dev->reg_state = NETREG_UNREGISTERED;
4430 out:
4431 return ret;
4433 err_uninit:
4434 if (dev->netdev_ops->ndo_uninit)
4435 dev->netdev_ops->ndo_uninit(dev);
4436 goto out;
4440 * register_netdev - register a network device
4441 * @dev: device to register
4443 * Take a completed network device structure and add it to the kernel
4444 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4445 * chain. 0 is returned on success. A negative errno code is returned
4446 * on a failure to set up the device, or if the name is a duplicate.
4448 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4449 * and expands the device name if you passed a format string to
4450 * alloc_netdev.
4452 int register_netdev(struct net_device *dev)
4454 int err;
4456 rtnl_lock();
4459 * If the name is a format string the caller wants us to do a
4460 * name allocation.
4462 if (strchr(dev->name, '%')) {
4463 err = dev_alloc_name(dev, dev->name);
4464 if (err < 0)
4465 goto out;
4468 err = register_netdevice(dev);
4469 out:
4470 rtnl_unlock();
4471 return err;
4473 EXPORT_SYMBOL(register_netdev);
4476 * netdev_wait_allrefs - wait until all references are gone.
4478 * This is called when unregistering network devices.
4480 * Any protocol or device that holds a reference should register
4481 * for netdevice notification, and cleanup and put back the
4482 * reference if they receive an UNREGISTER event.
4483 * We can get stuck here if buggy protocols don't correctly
4484 * call dev_put.
4486 static void netdev_wait_allrefs(struct net_device *dev)
4488 unsigned long rebroadcast_time, warning_time;
4490 rebroadcast_time = warning_time = jiffies;
4491 while (atomic_read(&dev->refcnt) != 0) {
4492 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4493 rtnl_lock();
4495 /* Rebroadcast unregister notification */
4496 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4498 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4499 &dev->state)) {
4500 /* We must not have linkwatch events
4501 * pending on unregister. If this
4502 * happens, we simply run the queue
4503 * unscheduled, resulting in a noop
4504 * for this device.
4506 linkwatch_run_queue();
4509 __rtnl_unlock();
4511 rebroadcast_time = jiffies;
4514 msleep(250);
4516 if (time_after(jiffies, warning_time + 10 * HZ)) {
4517 printk(KERN_EMERG "unregister_netdevice: "
4518 "waiting for %s to become free. Usage "
4519 "count = %d\n",
4520 dev->name, atomic_read(&dev->refcnt));
4521 warning_time = jiffies;
4526 /* The sequence is:
4528 * rtnl_lock();
4529 * ...
4530 * register_netdevice(x1);
4531 * register_netdevice(x2);
4532 * ...
4533 * unregister_netdevice(y1);
4534 * unregister_netdevice(y2);
4535 * ...
4536 * rtnl_unlock();
4537 * free_netdev(y1);
4538 * free_netdev(y2);
4540 * We are invoked by rtnl_unlock().
4541 * This allows us to deal with problems:
4542 * 1) We can delete sysfs objects which invoke hotplug
4543 * without deadlocking with linkwatch via keventd.
4544 * 2) Since we run with the RTNL semaphore not held, we can sleep
4545 * safely in order to wait for the netdev refcnt to drop to zero.
4547 * We must not return until all unregister events added during
4548 * the interval the lock was held have been completed.
4550 void netdev_run_todo(void)
4552 struct list_head list;
4554 /* Snapshot list, allow later requests */
4555 list_replace_init(&net_todo_list, &list);
4557 __rtnl_unlock();
4559 while (!list_empty(&list)) {
4560 struct net_device *dev
4561 = list_entry(list.next, struct net_device, todo_list);
4562 list_del(&dev->todo_list);
4564 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4565 printk(KERN_ERR "network todo '%s' but state %d\n",
4566 dev->name, dev->reg_state);
4567 dump_stack();
4568 continue;
4571 dev->reg_state = NETREG_UNREGISTERED;
4573 on_each_cpu(flush_backlog, dev, 1);
4575 netdev_wait_allrefs(dev);
4577 /* paranoia */
4578 BUG_ON(atomic_read(&dev->refcnt));
4579 WARN_ON(dev->ip_ptr);
4580 WARN_ON(dev->ip6_ptr);
4581 WARN_ON(dev->dn_ptr);
4583 if (dev->destructor)
4584 dev->destructor(dev);
4586 /* Free network device */
4587 kobject_put(&dev->dev.kobj);
4592 * dev_get_stats - get network device statistics
4593 * @dev: device to get statistics from
4595 * Get network statistics from device. The device driver may provide
4596 * its own method by setting dev->netdev_ops->get_stats; otherwise
4597 * the internal statistics structure is used.
4599 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4601 const struct net_device_ops *ops = dev->netdev_ops;
4603 if (ops->ndo_get_stats)
4604 return ops->ndo_get_stats(dev);
4605 else
4606 return &dev->stats;
4608 EXPORT_SYMBOL(dev_get_stats);
4610 static void netdev_init_one_queue(struct net_device *dev,
4611 struct netdev_queue *queue,
4612 void *_unused)
4614 queue->dev = dev;
4617 static void netdev_init_queues(struct net_device *dev)
4619 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4620 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4621 spin_lock_init(&dev->tx_global_lock);
4625 * alloc_netdev_mq - allocate network device
4626 * @sizeof_priv: size of private data to allocate space for
4627 * @name: device name format string
4628 * @setup: callback to initialize device
4629 * @queue_count: the number of subqueues to allocate
4631 * Allocates a struct net_device with private data area for driver use
4632 * and performs basic initialization. Also allocates subquue structs
4633 * for each queue on the device at the end of the netdevice.
4635 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4636 void (*setup)(struct net_device *), unsigned int queue_count)
4638 struct netdev_queue *tx;
4639 struct net_device *dev;
4640 size_t alloc_size;
4641 void *p;
4643 BUG_ON(strlen(name) >= sizeof(dev->name));
4645 alloc_size = sizeof(struct net_device);
4646 if (sizeof_priv) {
4647 /* ensure 32-byte alignment of private area */
4648 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4649 alloc_size += sizeof_priv;
4651 /* ensure 32-byte alignment of whole construct */
4652 alloc_size += NETDEV_ALIGN_CONST;
4654 p = kzalloc(alloc_size, GFP_KERNEL);
4655 if (!p) {
4656 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4657 return NULL;
4660 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4661 if (!tx) {
4662 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4663 "tx qdiscs.\n");
4664 kfree(p);
4665 return NULL;
4668 dev = (struct net_device *)
4669 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4670 dev->padded = (char *)dev - (char *)p;
4671 dev_net_set(dev, &init_net);
4673 dev->_tx = tx;
4674 dev->num_tx_queues = queue_count;
4675 dev->real_num_tx_queues = queue_count;
4677 dev->gso_max_size = GSO_MAX_SIZE;
4679 netdev_init_queues(dev);
4681 INIT_LIST_HEAD(&dev->napi_list);
4682 setup(dev);
4683 strcpy(dev->name, name);
4684 return dev;
4686 EXPORT_SYMBOL(alloc_netdev_mq);
4689 * free_netdev - free network device
4690 * @dev: device
4692 * This function does the last stage of destroying an allocated device
4693 * interface. The reference to the device object is released.
4694 * If this is the last reference then it will be freed.
4696 void free_netdev(struct net_device *dev)
4698 struct napi_struct *p, *n;
4700 release_net(dev_net(dev));
4702 kfree(dev->_tx);
4704 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4705 netif_napi_del(p);
4707 /* Compatibility with error handling in drivers */
4708 if (dev->reg_state == NETREG_UNINITIALIZED) {
4709 kfree((char *)dev - dev->padded);
4710 return;
4713 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4714 dev->reg_state = NETREG_RELEASED;
4716 /* will free via device release */
4717 put_device(&dev->dev);
4721 * synchronize_net - Synchronize with packet receive processing
4723 * Wait for packets currently being received to be done.
4724 * Does not block later packets from starting.
4726 void synchronize_net(void)
4728 might_sleep();
4729 synchronize_rcu();
4733 * unregister_netdevice - remove device from the kernel
4734 * @dev: device
4736 * This function shuts down a device interface and removes it
4737 * from the kernel tables.
4739 * Callers must hold the rtnl semaphore. You may want
4740 * unregister_netdev() instead of this.
4743 void unregister_netdevice(struct net_device *dev)
4745 ASSERT_RTNL();
4747 rollback_registered(dev);
4748 /* Finish processing unregister after unlock */
4749 net_set_todo(dev);
4753 * unregister_netdev - remove device from the kernel
4754 * @dev: device
4756 * This function shuts down a device interface and removes it
4757 * from the kernel tables.
4759 * This is just a wrapper for unregister_netdevice that takes
4760 * the rtnl semaphore. In general you want to use this and not
4761 * unregister_netdevice.
4763 void unregister_netdev(struct net_device *dev)
4765 rtnl_lock();
4766 unregister_netdevice(dev);
4767 rtnl_unlock();
4770 EXPORT_SYMBOL(unregister_netdev);
4773 * dev_change_net_namespace - move device to different nethost namespace
4774 * @dev: device
4775 * @net: network namespace
4776 * @pat: If not NULL name pattern to try if the current device name
4777 * is already taken in the destination network namespace.
4779 * This function shuts down a device interface and moves it
4780 * to a new network namespace. On success 0 is returned, on
4781 * a failure a netagive errno code is returned.
4783 * Callers must hold the rtnl semaphore.
4786 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4788 char buf[IFNAMSIZ];
4789 const char *destname;
4790 int err;
4792 ASSERT_RTNL();
4794 /* Don't allow namespace local devices to be moved. */
4795 err = -EINVAL;
4796 if (dev->features & NETIF_F_NETNS_LOCAL)
4797 goto out;
4799 #ifdef CONFIG_SYSFS
4800 /* Don't allow real devices to be moved when sysfs
4801 * is enabled.
4803 err = -EINVAL;
4804 if (dev->dev.parent)
4805 goto out;
4806 #endif
4808 /* Ensure the device has been registrered */
4809 err = -EINVAL;
4810 if (dev->reg_state != NETREG_REGISTERED)
4811 goto out;
4813 /* Get out if there is nothing todo */
4814 err = 0;
4815 if (net_eq(dev_net(dev), net))
4816 goto out;
4818 /* Pick the destination device name, and ensure
4819 * we can use it in the destination network namespace.
4821 err = -EEXIST;
4822 destname = dev->name;
4823 if (__dev_get_by_name(net, destname)) {
4824 /* We get here if we can't use the current device name */
4825 if (!pat)
4826 goto out;
4827 if (!dev_valid_name(pat))
4828 goto out;
4829 if (strchr(pat, '%')) {
4830 if (__dev_alloc_name(net, pat, buf) < 0)
4831 goto out;
4832 destname = buf;
4833 } else
4834 destname = pat;
4835 if (__dev_get_by_name(net, destname))
4836 goto out;
4840 * And now a mini version of register_netdevice unregister_netdevice.
4843 /* If device is running close it first. */
4844 dev_close(dev);
4846 /* And unlink it from device chain */
4847 err = -ENODEV;
4848 unlist_netdevice(dev);
4850 synchronize_net();
4852 /* Shutdown queueing discipline. */
4853 dev_shutdown(dev);
4855 /* Notify protocols, that we are about to destroy
4856 this device. They should clean all the things.
4858 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4861 * Flush the unicast and multicast chains
4863 dev_addr_discard(dev);
4865 netdev_unregister_kobject(dev);
4867 /* Actually switch the network namespace */
4868 dev_net_set(dev, net);
4870 /* Assign the new device name */
4871 if (destname != dev->name)
4872 strcpy(dev->name, destname);
4874 /* If there is an ifindex conflict assign a new one */
4875 if (__dev_get_by_index(net, dev->ifindex)) {
4876 int iflink = (dev->iflink == dev->ifindex);
4877 dev->ifindex = dev_new_index(net);
4878 if (iflink)
4879 dev->iflink = dev->ifindex;
4882 /* Fixup kobjects */
4883 err = netdev_register_kobject(dev);
4884 WARN_ON(err);
4886 /* Add the device back in the hashes */
4887 list_netdevice(dev);
4889 /* Notify protocols, that a new device appeared. */
4890 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4892 synchronize_net();
4893 err = 0;
4894 out:
4895 return err;
4898 static int dev_cpu_callback(struct notifier_block *nfb,
4899 unsigned long action,
4900 void *ocpu)
4902 struct sk_buff **list_skb;
4903 struct Qdisc **list_net;
4904 struct sk_buff *skb;
4905 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4906 struct softnet_data *sd, *oldsd;
4908 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4909 return NOTIFY_OK;
4911 local_irq_disable();
4912 cpu = smp_processor_id();
4913 sd = &per_cpu(softnet_data, cpu);
4914 oldsd = &per_cpu(softnet_data, oldcpu);
4916 /* Find end of our completion_queue. */
4917 list_skb = &sd->completion_queue;
4918 while (*list_skb)
4919 list_skb = &(*list_skb)->next;
4920 /* Append completion queue from offline CPU. */
4921 *list_skb = oldsd->completion_queue;
4922 oldsd->completion_queue = NULL;
4924 /* Find end of our output_queue. */
4925 list_net = &sd->output_queue;
4926 while (*list_net)
4927 list_net = &(*list_net)->next_sched;
4928 /* Append output queue from offline CPU. */
4929 *list_net = oldsd->output_queue;
4930 oldsd->output_queue = NULL;
4932 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4933 local_irq_enable();
4935 /* Process offline CPU's input_pkt_queue */
4936 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4937 netif_rx(skb);
4939 return NOTIFY_OK;
4944 * netdev_increment_features - increment feature set by one
4945 * @all: current feature set
4946 * @one: new feature set
4947 * @mask: mask feature set
4949 * Computes a new feature set after adding a device with feature set
4950 * @one to the master device with current feature set @all. Will not
4951 * enable anything that is off in @mask. Returns the new feature set.
4953 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
4954 unsigned long mask)
4956 /* If device needs checksumming, downgrade to it. */
4957 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4958 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
4959 else if (mask & NETIF_F_ALL_CSUM) {
4960 /* If one device supports v4/v6 checksumming, set for all. */
4961 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
4962 !(all & NETIF_F_GEN_CSUM)) {
4963 all &= ~NETIF_F_ALL_CSUM;
4964 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
4967 /* If one device supports hw checksumming, set for all. */
4968 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
4969 all &= ~NETIF_F_ALL_CSUM;
4970 all |= NETIF_F_HW_CSUM;
4974 one |= NETIF_F_ALL_CSUM;
4976 one |= all & NETIF_F_ONE_FOR_ALL;
4977 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
4978 all |= one & mask & NETIF_F_ONE_FOR_ALL;
4980 return all;
4982 EXPORT_SYMBOL(netdev_increment_features);
4984 static struct hlist_head *netdev_create_hash(void)
4986 int i;
4987 struct hlist_head *hash;
4989 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4990 if (hash != NULL)
4991 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4992 INIT_HLIST_HEAD(&hash[i]);
4994 return hash;
4997 /* Initialize per network namespace state */
4998 static int __net_init netdev_init(struct net *net)
5000 INIT_LIST_HEAD(&net->dev_base_head);
5002 net->dev_name_head = netdev_create_hash();
5003 if (net->dev_name_head == NULL)
5004 goto err_name;
5006 net->dev_index_head = netdev_create_hash();
5007 if (net->dev_index_head == NULL)
5008 goto err_idx;
5010 return 0;
5012 err_idx:
5013 kfree(net->dev_name_head);
5014 err_name:
5015 return -ENOMEM;
5019 * netdev_drivername - network driver for the device
5020 * @dev: network device
5021 * @buffer: buffer for resulting name
5022 * @len: size of buffer
5024 * Determine network driver for device.
5026 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5028 const struct device_driver *driver;
5029 const struct device *parent;
5031 if (len <= 0 || !buffer)
5032 return buffer;
5033 buffer[0] = 0;
5035 parent = dev->dev.parent;
5037 if (!parent)
5038 return buffer;
5040 driver = parent->driver;
5041 if (driver && driver->name)
5042 strlcpy(buffer, driver->name, len);
5043 return buffer;
5046 static void __net_exit netdev_exit(struct net *net)
5048 kfree(net->dev_name_head);
5049 kfree(net->dev_index_head);
5052 static struct pernet_operations __net_initdata netdev_net_ops = {
5053 .init = netdev_init,
5054 .exit = netdev_exit,
5057 static void __net_exit default_device_exit(struct net *net)
5059 struct net_device *dev;
5061 * Push all migratable of the network devices back to the
5062 * initial network namespace
5064 rtnl_lock();
5065 restart:
5066 for_each_netdev(net, dev) {
5067 int err;
5068 char fb_name[IFNAMSIZ];
5070 /* Ignore unmoveable devices (i.e. loopback) */
5071 if (dev->features & NETIF_F_NETNS_LOCAL)
5072 continue;
5074 /* Delete virtual devices */
5075 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5076 dev->rtnl_link_ops->dellink(dev);
5077 goto restart;
5080 /* Push remaing network devices to init_net */
5081 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5082 err = dev_change_net_namespace(dev, &init_net, fb_name);
5083 if (err) {
5084 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5085 __func__, dev->name, err);
5086 BUG();
5088 goto restart;
5090 rtnl_unlock();
5093 static struct pernet_operations __net_initdata default_device_ops = {
5094 .exit = default_device_exit,
5098 * Initialize the DEV module. At boot time this walks the device list and
5099 * unhooks any devices that fail to initialise (normally hardware not
5100 * present) and leaves us with a valid list of present and active devices.
5105 * This is called single threaded during boot, so no need
5106 * to take the rtnl semaphore.
5108 static int __init net_dev_init(void)
5110 int i, rc = -ENOMEM;
5112 BUG_ON(!dev_boot_phase);
5114 if (dev_proc_init())
5115 goto out;
5117 if (netdev_kobject_init())
5118 goto out;
5120 INIT_LIST_HEAD(&ptype_all);
5121 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5122 INIT_LIST_HEAD(&ptype_base[i]);
5124 if (register_pernet_subsys(&netdev_net_ops))
5125 goto out;
5128 * Initialise the packet receive queues.
5131 for_each_possible_cpu(i) {
5132 struct softnet_data *queue;
5134 queue = &per_cpu(softnet_data, i);
5135 skb_queue_head_init(&queue->input_pkt_queue);
5136 queue->completion_queue = NULL;
5137 INIT_LIST_HEAD(&queue->poll_list);
5139 queue->backlog.poll = process_backlog;
5140 queue->backlog.weight = weight_p;
5141 queue->backlog.gro_list = NULL;
5144 dev_boot_phase = 0;
5146 /* The loopback device is special if any other network devices
5147 * is present in a network namespace the loopback device must
5148 * be present. Since we now dynamically allocate and free the
5149 * loopback device ensure this invariant is maintained by
5150 * keeping the loopback device as the first device on the
5151 * list of network devices. Ensuring the loopback devices
5152 * is the first device that appears and the last network device
5153 * that disappears.
5155 if (register_pernet_device(&loopback_net_ops))
5156 goto out;
5158 if (register_pernet_device(&default_device_ops))
5159 goto out;
5161 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5162 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5164 hotcpu_notifier(dev_cpu_callback, 0);
5165 dst_init();
5166 dev_mcast_init();
5167 rc = 0;
5168 out:
5169 return rc;
5172 subsys_initcall(net_dev_init);
5174 EXPORT_SYMBOL(__dev_get_by_index);
5175 EXPORT_SYMBOL(__dev_get_by_name);
5176 EXPORT_SYMBOL(__dev_remove_pack);
5177 EXPORT_SYMBOL(dev_valid_name);
5178 EXPORT_SYMBOL(dev_add_pack);
5179 EXPORT_SYMBOL(dev_alloc_name);
5180 EXPORT_SYMBOL(dev_close);
5181 EXPORT_SYMBOL(dev_get_by_flags);
5182 EXPORT_SYMBOL(dev_get_by_index);
5183 EXPORT_SYMBOL(dev_get_by_name);
5184 EXPORT_SYMBOL(dev_open);
5185 EXPORT_SYMBOL(dev_queue_xmit);
5186 EXPORT_SYMBOL(dev_remove_pack);
5187 EXPORT_SYMBOL(dev_set_allmulti);
5188 EXPORT_SYMBOL(dev_set_promiscuity);
5189 EXPORT_SYMBOL(dev_change_flags);
5190 EXPORT_SYMBOL(dev_set_mtu);
5191 EXPORT_SYMBOL(dev_set_mac_address);
5192 EXPORT_SYMBOL(free_netdev);
5193 EXPORT_SYMBOL(netdev_boot_setup_check);
5194 EXPORT_SYMBOL(netdev_set_master);
5195 EXPORT_SYMBOL(netdev_state_change);
5196 EXPORT_SYMBOL(netif_receive_skb);
5197 EXPORT_SYMBOL(netif_rx);
5198 EXPORT_SYMBOL(register_gifconf);
5199 EXPORT_SYMBOL(register_netdevice);
5200 EXPORT_SYMBOL(register_netdevice_notifier);
5201 EXPORT_SYMBOL(skb_checksum_help);
5202 EXPORT_SYMBOL(synchronize_net);
5203 EXPORT_SYMBOL(unregister_netdevice);
5204 EXPORT_SYMBOL(unregister_netdevice_notifier);
5205 EXPORT_SYMBOL(net_enable_timestamp);
5206 EXPORT_SYMBOL(net_disable_timestamp);
5207 EXPORT_SYMBOL(dev_get_flags);
5209 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5210 EXPORT_SYMBOL(br_handle_frame_hook);
5211 EXPORT_SYMBOL(br_fdb_get_hook);
5212 EXPORT_SYMBOL(br_fdb_put_hook);
5213 #endif
5215 EXPORT_SYMBOL(dev_load);
5217 EXPORT_PER_CPU_SYMBOL(softnet_data);