RESEND: libata: check cdb len per dev instead of per host
[linux-2.6/mini2440.git] / drivers / ata / libata-core.c
blob99a881558e8d7e40ffd0c32966ac5910653dc52c
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
62 #define DRV_VERSION "2.20" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
75 static unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
78 struct workqueue_struct *ata_aux_wq;
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93 module_param(ata_probe_timeout, int, 0444);
94 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
96 int libata_noacpi = 1;
97 module_param_named(noacpi, libata_noacpi, int, 0444);
98 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
100 MODULE_AUTHOR("Jeff Garzik");
101 MODULE_DESCRIPTION("Library module for ATA devices");
102 MODULE_LICENSE("GPL");
103 MODULE_VERSION(DRV_VERSION);
107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108 * @tf: Taskfile to convert
109 * @fis: Buffer into which data will output
110 * @pmp: Port multiplier port
112 * Converts a standard ATA taskfile to a Serial ATA
113 * FIS structure (Register - Host to Device).
115 * LOCKING:
116 * Inherited from caller.
119 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
121 fis[0] = 0x27; /* Register - Host to Device FIS */
122 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
123 bit 7 indicates Command FIS */
124 fis[2] = tf->command;
125 fis[3] = tf->feature;
127 fis[4] = tf->lbal;
128 fis[5] = tf->lbam;
129 fis[6] = tf->lbah;
130 fis[7] = tf->device;
132 fis[8] = tf->hob_lbal;
133 fis[9] = tf->hob_lbam;
134 fis[10] = tf->hob_lbah;
135 fis[11] = tf->hob_feature;
137 fis[12] = tf->nsect;
138 fis[13] = tf->hob_nsect;
139 fis[14] = 0;
140 fis[15] = tf->ctl;
142 fis[16] = 0;
143 fis[17] = 0;
144 fis[18] = 0;
145 fis[19] = 0;
149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150 * @fis: Buffer from which data will be input
151 * @tf: Taskfile to output
153 * Converts a serial ATA FIS structure to a standard ATA taskfile.
155 * LOCKING:
156 * Inherited from caller.
159 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
161 tf->command = fis[2]; /* status */
162 tf->feature = fis[3]; /* error */
164 tf->lbal = fis[4];
165 tf->lbam = fis[5];
166 tf->lbah = fis[6];
167 tf->device = fis[7];
169 tf->hob_lbal = fis[8];
170 tf->hob_lbam = fis[9];
171 tf->hob_lbah = fis[10];
173 tf->nsect = fis[12];
174 tf->hob_nsect = fis[13];
177 static const u8 ata_rw_cmds[] = {
178 /* pio multi */
179 ATA_CMD_READ_MULTI,
180 ATA_CMD_WRITE_MULTI,
181 ATA_CMD_READ_MULTI_EXT,
182 ATA_CMD_WRITE_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_FUA_EXT,
187 /* pio */
188 ATA_CMD_PIO_READ,
189 ATA_CMD_PIO_WRITE,
190 ATA_CMD_PIO_READ_EXT,
191 ATA_CMD_PIO_WRITE_EXT,
196 /* dma */
197 ATA_CMD_READ,
198 ATA_CMD_WRITE,
199 ATA_CMD_READ_EXT,
200 ATA_CMD_WRITE_EXT,
204 ATA_CMD_WRITE_FUA_EXT
208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
209 * @tf: command to examine and configure
210 * @dev: device tf belongs to
212 * Examine the device configuration and tf->flags to calculate
213 * the proper read/write commands and protocol to use.
215 * LOCKING:
216 * caller.
218 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
220 u8 cmd;
222 int index, fua, lba48, write;
224 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
225 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
226 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
228 if (dev->flags & ATA_DFLAG_PIO) {
229 tf->protocol = ATA_PROT_PIO;
230 index = dev->multi_count ? 0 : 8;
231 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
232 /* Unable to use DMA due to host limitation */
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else {
236 tf->protocol = ATA_PROT_DMA;
237 index = 16;
240 cmd = ata_rw_cmds[index + fua + lba48 + write];
241 if (cmd) {
242 tf->command = cmd;
243 return 0;
245 return -1;
249 * ata_tf_read_block - Read block address from ATA taskfile
250 * @tf: ATA taskfile of interest
251 * @dev: ATA device @tf belongs to
253 * LOCKING:
254 * None.
256 * Read block address from @tf. This function can handle all
257 * three address formats - LBA, LBA48 and CHS. tf->protocol and
258 * flags select the address format to use.
260 * RETURNS:
261 * Block address read from @tf.
263 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
265 u64 block = 0;
267 if (tf->flags & ATA_TFLAG_LBA) {
268 if (tf->flags & ATA_TFLAG_LBA48) {
269 block |= (u64)tf->hob_lbah << 40;
270 block |= (u64)tf->hob_lbam << 32;
271 block |= tf->hob_lbal << 24;
272 } else
273 block |= (tf->device & 0xf) << 24;
275 block |= tf->lbah << 16;
276 block |= tf->lbam << 8;
277 block |= tf->lbal;
278 } else {
279 u32 cyl, head, sect;
281 cyl = tf->lbam | (tf->lbah << 8);
282 head = tf->device & 0xf;
283 sect = tf->lbal;
285 block = (cyl * dev->heads + head) * dev->sectors + sect;
288 return block;
292 * ata_build_rw_tf - Build ATA taskfile for given read/write request
293 * @tf: Target ATA taskfile
294 * @dev: ATA device @tf belongs to
295 * @block: Block address
296 * @n_block: Number of blocks
297 * @tf_flags: RW/FUA etc...
298 * @tag: tag
300 * LOCKING:
301 * None.
303 * Build ATA taskfile @tf for read/write request described by
304 * @block, @n_block, @tf_flags and @tag on @dev.
306 * RETURNS:
308 * 0 on success, -ERANGE if the request is too large for @dev,
309 * -EINVAL if the request is invalid.
311 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
312 u64 block, u32 n_block, unsigned int tf_flags,
313 unsigned int tag)
315 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
316 tf->flags |= tf_flags;
318 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
319 /* yay, NCQ */
320 if (!lba_48_ok(block, n_block))
321 return -ERANGE;
323 tf->protocol = ATA_PROT_NCQ;
324 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
326 if (tf->flags & ATA_TFLAG_WRITE)
327 tf->command = ATA_CMD_FPDMA_WRITE;
328 else
329 tf->command = ATA_CMD_FPDMA_READ;
331 tf->nsect = tag << 3;
332 tf->hob_feature = (n_block >> 8) & 0xff;
333 tf->feature = n_block & 0xff;
335 tf->hob_lbah = (block >> 40) & 0xff;
336 tf->hob_lbam = (block >> 32) & 0xff;
337 tf->hob_lbal = (block >> 24) & 0xff;
338 tf->lbah = (block >> 16) & 0xff;
339 tf->lbam = (block >> 8) & 0xff;
340 tf->lbal = block & 0xff;
342 tf->device = 1 << 6;
343 if (tf->flags & ATA_TFLAG_FUA)
344 tf->device |= 1 << 7;
345 } else if (dev->flags & ATA_DFLAG_LBA) {
346 tf->flags |= ATA_TFLAG_LBA;
348 if (lba_28_ok(block, n_block)) {
349 /* use LBA28 */
350 tf->device |= (block >> 24) & 0xf;
351 } else if (lba_48_ok(block, n_block)) {
352 if (!(dev->flags & ATA_DFLAG_LBA48))
353 return -ERANGE;
355 /* use LBA48 */
356 tf->flags |= ATA_TFLAG_LBA48;
358 tf->hob_nsect = (n_block >> 8) & 0xff;
360 tf->hob_lbah = (block >> 40) & 0xff;
361 tf->hob_lbam = (block >> 32) & 0xff;
362 tf->hob_lbal = (block >> 24) & 0xff;
363 } else
364 /* request too large even for LBA48 */
365 return -ERANGE;
367 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
368 return -EINVAL;
370 tf->nsect = n_block & 0xff;
372 tf->lbah = (block >> 16) & 0xff;
373 tf->lbam = (block >> 8) & 0xff;
374 tf->lbal = block & 0xff;
376 tf->device |= ATA_LBA;
377 } else {
378 /* CHS */
379 u32 sect, head, cyl, track;
381 /* The request -may- be too large for CHS addressing. */
382 if (!lba_28_ok(block, n_block))
383 return -ERANGE;
385 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
386 return -EINVAL;
388 /* Convert LBA to CHS */
389 track = (u32)block / dev->sectors;
390 cyl = track / dev->heads;
391 head = track % dev->heads;
392 sect = (u32)block % dev->sectors + 1;
394 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
395 (u32)block, track, cyl, head, sect);
397 /* Check whether the converted CHS can fit.
398 Cylinder: 0-65535
399 Head: 0-15
400 Sector: 1-255*/
401 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
402 return -ERANGE;
404 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
405 tf->lbal = sect;
406 tf->lbam = cyl;
407 tf->lbah = cyl >> 8;
408 tf->device |= head;
411 return 0;
415 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
416 * @pio_mask: pio_mask
417 * @mwdma_mask: mwdma_mask
418 * @udma_mask: udma_mask
420 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
421 * unsigned int xfer_mask.
423 * LOCKING:
424 * None.
426 * RETURNS:
427 * Packed xfer_mask.
429 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
430 unsigned int mwdma_mask,
431 unsigned int udma_mask)
433 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
434 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
435 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
439 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
440 * @xfer_mask: xfer_mask to unpack
441 * @pio_mask: resulting pio_mask
442 * @mwdma_mask: resulting mwdma_mask
443 * @udma_mask: resulting udma_mask
445 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
446 * Any NULL distination masks will be ignored.
448 static void ata_unpack_xfermask(unsigned int xfer_mask,
449 unsigned int *pio_mask,
450 unsigned int *mwdma_mask,
451 unsigned int *udma_mask)
453 if (pio_mask)
454 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
455 if (mwdma_mask)
456 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
457 if (udma_mask)
458 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
461 static const struct ata_xfer_ent {
462 int shift, bits;
463 u8 base;
464 } ata_xfer_tbl[] = {
465 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
466 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
467 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
468 { -1, },
472 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
473 * @xfer_mask: xfer_mask of interest
475 * Return matching XFER_* value for @xfer_mask. Only the highest
476 * bit of @xfer_mask is considered.
478 * LOCKING:
479 * None.
481 * RETURNS:
482 * Matching XFER_* value, 0 if no match found.
484 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
486 int highbit = fls(xfer_mask) - 1;
487 const struct ata_xfer_ent *ent;
489 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
490 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
491 return ent->base + highbit - ent->shift;
492 return 0;
496 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
497 * @xfer_mode: XFER_* of interest
499 * Return matching xfer_mask for @xfer_mode.
501 * LOCKING:
502 * None.
504 * RETURNS:
505 * Matching xfer_mask, 0 if no match found.
507 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
509 const struct ata_xfer_ent *ent;
511 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
512 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
513 return 1 << (ent->shift + xfer_mode - ent->base);
514 return 0;
518 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
519 * @xfer_mode: XFER_* of interest
521 * Return matching xfer_shift for @xfer_mode.
523 * LOCKING:
524 * None.
526 * RETURNS:
527 * Matching xfer_shift, -1 if no match found.
529 static int ata_xfer_mode2shift(unsigned int xfer_mode)
531 const struct ata_xfer_ent *ent;
533 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
534 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
535 return ent->shift;
536 return -1;
540 * ata_mode_string - convert xfer_mask to string
541 * @xfer_mask: mask of bits supported; only highest bit counts.
543 * Determine string which represents the highest speed
544 * (highest bit in @modemask).
546 * LOCKING:
547 * None.
549 * RETURNS:
550 * Constant C string representing highest speed listed in
551 * @mode_mask, or the constant C string "<n/a>".
553 static const char *ata_mode_string(unsigned int xfer_mask)
555 static const char * const xfer_mode_str[] = {
556 "PIO0",
557 "PIO1",
558 "PIO2",
559 "PIO3",
560 "PIO4",
561 "PIO5",
562 "PIO6",
563 "MWDMA0",
564 "MWDMA1",
565 "MWDMA2",
566 "MWDMA3",
567 "MWDMA4",
568 "UDMA/16",
569 "UDMA/25",
570 "UDMA/33",
571 "UDMA/44",
572 "UDMA/66",
573 "UDMA/100",
574 "UDMA/133",
575 "UDMA7",
577 int highbit;
579 highbit = fls(xfer_mask) - 1;
580 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
581 return xfer_mode_str[highbit];
582 return "<n/a>";
585 static const char *sata_spd_string(unsigned int spd)
587 static const char * const spd_str[] = {
588 "1.5 Gbps",
589 "3.0 Gbps",
592 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
593 return "<unknown>";
594 return spd_str[spd - 1];
597 void ata_dev_disable(struct ata_device *dev)
599 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
600 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
601 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
602 ATA_DNXFER_QUIET);
603 dev->class++;
608 * ata_devchk - PATA device presence detection
609 * @ap: ATA channel to examine
610 * @device: Device to examine (starting at zero)
612 * This technique was originally described in
613 * Hale Landis's ATADRVR (www.ata-atapi.com), and
614 * later found its way into the ATA/ATAPI spec.
616 * Write a pattern to the ATA shadow registers,
617 * and if a device is present, it will respond by
618 * correctly storing and echoing back the
619 * ATA shadow register contents.
621 * LOCKING:
622 * caller.
625 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
627 struct ata_ioports *ioaddr = &ap->ioaddr;
628 u8 nsect, lbal;
630 ap->ops->dev_select(ap, device);
632 iowrite8(0x55, ioaddr->nsect_addr);
633 iowrite8(0xaa, ioaddr->lbal_addr);
635 iowrite8(0xaa, ioaddr->nsect_addr);
636 iowrite8(0x55, ioaddr->lbal_addr);
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
641 nsect = ioread8(ioaddr->nsect_addr);
642 lbal = ioread8(ioaddr->lbal_addr);
644 if ((nsect == 0x55) && (lbal == 0xaa))
645 return 1; /* we found a device */
647 return 0; /* nothing found */
651 * ata_dev_classify - determine device type based on ATA-spec signature
652 * @tf: ATA taskfile register set for device to be identified
654 * Determine from taskfile register contents whether a device is
655 * ATA or ATAPI, as per "Signature and persistence" section
656 * of ATA/PI spec (volume 1, sect 5.14).
658 * LOCKING:
659 * None.
661 * RETURNS:
662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663 * the event of failure.
666 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
668 /* Apple's open source Darwin code hints that some devices only
669 * put a proper signature into the LBA mid/high registers,
670 * So, we only check those. It's sufficient for uniqueness.
673 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
674 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
675 DPRINTK("found ATA device by sig\n");
676 return ATA_DEV_ATA;
679 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
680 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
681 DPRINTK("found ATAPI device by sig\n");
682 return ATA_DEV_ATAPI;
685 DPRINTK("unknown device\n");
686 return ATA_DEV_UNKNOWN;
690 * ata_dev_try_classify - Parse returned ATA device signature
691 * @ap: ATA channel to examine
692 * @device: Device to examine (starting at zero)
693 * @r_err: Value of error register on completion
695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696 * an ATA/ATAPI-defined set of values is placed in the ATA
697 * shadow registers, indicating the results of device detection
698 * and diagnostics.
700 * Select the ATA device, and read the values from the ATA shadow
701 * registers. Then parse according to the Error register value,
702 * and the spec-defined values examined by ata_dev_classify().
704 * LOCKING:
705 * caller.
707 * RETURNS:
708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
711 unsigned int
712 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
714 struct ata_taskfile tf;
715 unsigned int class;
716 u8 err;
718 ap->ops->dev_select(ap, device);
720 memset(&tf, 0, sizeof(tf));
722 ap->ops->tf_read(ap, &tf);
723 err = tf.feature;
724 if (r_err)
725 *r_err = err;
727 /* see if device passed diags: if master then continue and warn later */
728 if (err == 0 && device == 0)
729 /* diagnostic fail : do nothing _YET_ */
730 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
731 else if (err == 1)
732 /* do nothing */ ;
733 else if ((device == 0) && (err == 0x81))
734 /* do nothing */ ;
735 else
736 return ATA_DEV_NONE;
738 /* determine if device is ATA or ATAPI */
739 class = ata_dev_classify(&tf);
741 if (class == ATA_DEV_UNKNOWN)
742 return ATA_DEV_NONE;
743 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
744 return ATA_DEV_NONE;
745 return class;
749 * ata_id_string - Convert IDENTIFY DEVICE page into string
750 * @id: IDENTIFY DEVICE results we will examine
751 * @s: string into which data is output
752 * @ofs: offset into identify device page
753 * @len: length of string to return. must be an even number.
755 * The strings in the IDENTIFY DEVICE page are broken up into
756 * 16-bit chunks. Run through the string, and output each
757 * 8-bit chunk linearly, regardless of platform.
759 * LOCKING:
760 * caller.
763 void ata_id_string(const u16 *id, unsigned char *s,
764 unsigned int ofs, unsigned int len)
766 unsigned int c;
768 while (len > 0) {
769 c = id[ofs] >> 8;
770 *s = c;
771 s++;
773 c = id[ofs] & 0xff;
774 *s = c;
775 s++;
777 ofs++;
778 len -= 2;
783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
784 * @id: IDENTIFY DEVICE results we will examine
785 * @s: string into which data is output
786 * @ofs: offset into identify device page
787 * @len: length of string to return. must be an odd number.
789 * This function is identical to ata_id_string except that it
790 * trims trailing spaces and terminates the resulting string with
791 * null. @len must be actual maximum length (even number) + 1.
793 * LOCKING:
794 * caller.
796 void ata_id_c_string(const u16 *id, unsigned char *s,
797 unsigned int ofs, unsigned int len)
799 unsigned char *p;
801 WARN_ON(!(len & 1));
803 ata_id_string(id, s, ofs, len - 1);
805 p = s + strnlen(s, len - 1);
806 while (p > s && p[-1] == ' ')
807 p--;
808 *p = '\0';
811 static u64 ata_id_n_sectors(const u16 *id)
813 if (ata_id_has_lba(id)) {
814 if (ata_id_has_lba48(id))
815 return ata_id_u64(id, 100);
816 else
817 return ata_id_u32(id, 60);
818 } else {
819 if (ata_id_current_chs_valid(id))
820 return ata_id_u32(id, 57);
821 else
822 return id[1] * id[3] * id[6];
827 * ata_id_to_dma_mode - Identify DMA mode from id block
828 * @dev: device to identify
829 * @unknown: mode to assume if we cannot tell
831 * Set up the timing values for the device based upon the identify
832 * reported values for the DMA mode. This function is used by drivers
833 * which rely upon firmware configured modes, but wish to report the
834 * mode correctly when possible.
836 * In addition we emit similarly formatted messages to the default
837 * ata_dev_set_mode handler, in order to provide consistency of
838 * presentation.
841 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
843 unsigned int mask;
844 u8 mode;
846 /* Pack the DMA modes */
847 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
848 if (dev->id[53] & 0x04)
849 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
851 /* Select the mode in use */
852 mode = ata_xfer_mask2mode(mask);
854 if (mode != 0) {
855 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
856 ata_mode_string(mask));
857 } else {
858 /* SWDMA perhaps ? */
859 mode = unknown;
860 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
863 /* Configure the device reporting */
864 dev->xfer_mode = mode;
865 dev->xfer_shift = ata_xfer_mode2shift(mode);
869 * ata_noop_dev_select - Select device 0/1 on ATA bus
870 * @ap: ATA channel to manipulate
871 * @device: ATA device (numbered from zero) to select
873 * This function performs no actual function.
875 * May be used as the dev_select() entry in ata_port_operations.
877 * LOCKING:
878 * caller.
880 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
886 * ata_std_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
890 * Use the method defined in the ATA specification to
891 * make either device 0, or device 1, active on the
892 * ATA channel. Works with both PIO and MMIO.
894 * May be used as the dev_select() entry in ata_port_operations.
896 * LOCKING:
897 * caller.
900 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
902 u8 tmp;
904 if (device == 0)
905 tmp = ATA_DEVICE_OBS;
906 else
907 tmp = ATA_DEVICE_OBS | ATA_DEV1;
909 iowrite8(tmp, ap->ioaddr.device_addr);
910 ata_pause(ap); /* needed; also flushes, for mmio */
914 * ata_dev_select - Select device 0/1 on ATA bus
915 * @ap: ATA channel to manipulate
916 * @device: ATA device (numbered from zero) to select
917 * @wait: non-zero to wait for Status register BSY bit to clear
918 * @can_sleep: non-zero if context allows sleeping
920 * Use the method defined in the ATA specification to
921 * make either device 0, or device 1, active on the
922 * ATA channel.
924 * This is a high-level version of ata_std_dev_select(),
925 * which additionally provides the services of inserting
926 * the proper pauses and status polling, where needed.
928 * LOCKING:
929 * caller.
932 void ata_dev_select(struct ata_port *ap, unsigned int device,
933 unsigned int wait, unsigned int can_sleep)
935 if (ata_msg_probe(ap))
936 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
937 "device %u, wait %u\n", device, wait);
939 if (wait)
940 ata_wait_idle(ap);
942 ap->ops->dev_select(ap, device);
944 if (wait) {
945 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
946 msleep(150);
947 ata_wait_idle(ap);
952 * ata_dump_id - IDENTIFY DEVICE info debugging output
953 * @id: IDENTIFY DEVICE page to dump
955 * Dump selected 16-bit words from the given IDENTIFY DEVICE
956 * page.
958 * LOCKING:
959 * caller.
962 static inline void ata_dump_id(const u16 *id)
964 DPRINTK("49==0x%04x "
965 "53==0x%04x "
966 "63==0x%04x "
967 "64==0x%04x "
968 "75==0x%04x \n",
969 id[49],
970 id[53],
971 id[63],
972 id[64],
973 id[75]);
974 DPRINTK("80==0x%04x "
975 "81==0x%04x "
976 "82==0x%04x "
977 "83==0x%04x "
978 "84==0x%04x \n",
979 id[80],
980 id[81],
981 id[82],
982 id[83],
983 id[84]);
984 DPRINTK("88==0x%04x "
985 "93==0x%04x\n",
986 id[88],
987 id[93]);
991 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
992 * @id: IDENTIFY data to compute xfer mask from
994 * Compute the xfermask for this device. This is not as trivial
995 * as it seems if we must consider early devices correctly.
997 * FIXME: pre IDE drive timing (do we care ?).
999 * LOCKING:
1000 * None.
1002 * RETURNS:
1003 * Computed xfermask
1005 static unsigned int ata_id_xfermask(const u16 *id)
1007 unsigned int pio_mask, mwdma_mask, udma_mask;
1009 /* Usual case. Word 53 indicates word 64 is valid */
1010 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1011 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1012 pio_mask <<= 3;
1013 pio_mask |= 0x7;
1014 } else {
1015 /* If word 64 isn't valid then Word 51 high byte holds
1016 * the PIO timing number for the maximum. Turn it into
1017 * a mask.
1019 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1020 if (mode < 5) /* Valid PIO range */
1021 pio_mask = (2 << mode) - 1;
1022 else
1023 pio_mask = 1;
1025 /* But wait.. there's more. Design your standards by
1026 * committee and you too can get a free iordy field to
1027 * process. However its the speeds not the modes that
1028 * are supported... Note drivers using the timing API
1029 * will get this right anyway
1033 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1035 if (ata_id_is_cfa(id)) {
1037 * Process compact flash extended modes
1039 int pio = id[163] & 0x7;
1040 int dma = (id[163] >> 3) & 7;
1042 if (pio)
1043 pio_mask |= (1 << 5);
1044 if (pio > 1)
1045 pio_mask |= (1 << 6);
1046 if (dma)
1047 mwdma_mask |= (1 << 3);
1048 if (dma > 1)
1049 mwdma_mask |= (1 << 4);
1052 udma_mask = 0;
1053 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1054 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1056 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1060 * ata_port_queue_task - Queue port_task
1061 * @ap: The ata_port to queue port_task for
1062 * @fn: workqueue function to be scheduled
1063 * @data: data for @fn to use
1064 * @delay: delay time for workqueue function
1066 * Schedule @fn(@data) for execution after @delay jiffies using
1067 * port_task. There is one port_task per port and it's the
1068 * user(low level driver)'s responsibility to make sure that only
1069 * one task is active at any given time.
1071 * libata core layer takes care of synchronization between
1072 * port_task and EH. ata_port_queue_task() may be ignored for EH
1073 * synchronization.
1075 * LOCKING:
1076 * Inherited from caller.
1078 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1079 unsigned long delay)
1081 int rc;
1083 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1084 return;
1086 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1087 ap->port_task_data = data;
1089 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1091 /* rc == 0 means that another user is using port task */
1092 WARN_ON(rc == 0);
1096 * ata_port_flush_task - Flush port_task
1097 * @ap: The ata_port to flush port_task for
1099 * After this function completes, port_task is guranteed not to
1100 * be running or scheduled.
1102 * LOCKING:
1103 * Kernel thread context (may sleep)
1105 void ata_port_flush_task(struct ata_port *ap)
1107 unsigned long flags;
1109 DPRINTK("ENTER\n");
1111 spin_lock_irqsave(ap->lock, flags);
1112 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1113 spin_unlock_irqrestore(ap->lock, flags);
1115 DPRINTK("flush #1\n");
1116 flush_workqueue(ata_wq);
1119 * At this point, if a task is running, it's guaranteed to see
1120 * the FLUSH flag; thus, it will never queue pio tasks again.
1121 * Cancel and flush.
1123 if (!cancel_delayed_work(&ap->port_task)) {
1124 if (ata_msg_ctl(ap))
1125 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1126 __FUNCTION__);
1127 flush_workqueue(ata_wq);
1130 spin_lock_irqsave(ap->lock, flags);
1131 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1132 spin_unlock_irqrestore(ap->lock, flags);
1134 if (ata_msg_ctl(ap))
1135 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1138 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1140 struct completion *waiting = qc->private_data;
1142 complete(waiting);
1146 * ata_exec_internal_sg - execute libata internal command
1147 * @dev: Device to which the command is sent
1148 * @tf: Taskfile registers for the command and the result
1149 * @cdb: CDB for packet command
1150 * @dma_dir: Data tranfer direction of the command
1151 * @sg: sg list for the data buffer of the command
1152 * @n_elem: Number of sg entries
1154 * Executes libata internal command with timeout. @tf contains
1155 * command on entry and result on return. Timeout and error
1156 * conditions are reported via return value. No recovery action
1157 * is taken after a command times out. It's caller's duty to
1158 * clean up after timeout.
1160 * LOCKING:
1161 * None. Should be called with kernel context, might sleep.
1163 * RETURNS:
1164 * Zero on success, AC_ERR_* mask on failure
1166 unsigned ata_exec_internal_sg(struct ata_device *dev,
1167 struct ata_taskfile *tf, const u8 *cdb,
1168 int dma_dir, struct scatterlist *sg,
1169 unsigned int n_elem)
1171 struct ata_port *ap = dev->ap;
1172 u8 command = tf->command;
1173 struct ata_queued_cmd *qc;
1174 unsigned int tag, preempted_tag;
1175 u32 preempted_sactive, preempted_qc_active;
1176 DECLARE_COMPLETION_ONSTACK(wait);
1177 unsigned long flags;
1178 unsigned int err_mask;
1179 int rc;
1181 spin_lock_irqsave(ap->lock, flags);
1183 /* no internal command while frozen */
1184 if (ap->pflags & ATA_PFLAG_FROZEN) {
1185 spin_unlock_irqrestore(ap->lock, flags);
1186 return AC_ERR_SYSTEM;
1189 /* initialize internal qc */
1191 /* XXX: Tag 0 is used for drivers with legacy EH as some
1192 * drivers choke if any other tag is given. This breaks
1193 * ata_tag_internal() test for those drivers. Don't use new
1194 * EH stuff without converting to it.
1196 if (ap->ops->error_handler)
1197 tag = ATA_TAG_INTERNAL;
1198 else
1199 tag = 0;
1201 if (test_and_set_bit(tag, &ap->qc_allocated))
1202 BUG();
1203 qc = __ata_qc_from_tag(ap, tag);
1205 qc->tag = tag;
1206 qc->scsicmd = NULL;
1207 qc->ap = ap;
1208 qc->dev = dev;
1209 ata_qc_reinit(qc);
1211 preempted_tag = ap->active_tag;
1212 preempted_sactive = ap->sactive;
1213 preempted_qc_active = ap->qc_active;
1214 ap->active_tag = ATA_TAG_POISON;
1215 ap->sactive = 0;
1216 ap->qc_active = 0;
1218 /* prepare & issue qc */
1219 qc->tf = *tf;
1220 if (cdb)
1221 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1222 qc->flags |= ATA_QCFLAG_RESULT_TF;
1223 qc->dma_dir = dma_dir;
1224 if (dma_dir != DMA_NONE) {
1225 unsigned int i, buflen = 0;
1227 for (i = 0; i < n_elem; i++)
1228 buflen += sg[i].length;
1230 ata_sg_init(qc, sg, n_elem);
1231 qc->nbytes = buflen;
1234 qc->private_data = &wait;
1235 qc->complete_fn = ata_qc_complete_internal;
1237 ata_qc_issue(qc);
1239 spin_unlock_irqrestore(ap->lock, flags);
1241 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1243 ata_port_flush_task(ap);
1245 if (!rc) {
1246 spin_lock_irqsave(ap->lock, flags);
1248 /* We're racing with irq here. If we lose, the
1249 * following test prevents us from completing the qc
1250 * twice. If we win, the port is frozen and will be
1251 * cleaned up by ->post_internal_cmd().
1253 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1254 qc->err_mask |= AC_ERR_TIMEOUT;
1256 if (ap->ops->error_handler)
1257 ata_port_freeze(ap);
1258 else
1259 ata_qc_complete(qc);
1261 if (ata_msg_warn(ap))
1262 ata_dev_printk(dev, KERN_WARNING,
1263 "qc timeout (cmd 0x%x)\n", command);
1266 spin_unlock_irqrestore(ap->lock, flags);
1269 /* do post_internal_cmd */
1270 if (ap->ops->post_internal_cmd)
1271 ap->ops->post_internal_cmd(qc);
1273 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
1274 if (ata_msg_warn(ap))
1275 ata_dev_printk(dev, KERN_WARNING,
1276 "zero err_mask for failed "
1277 "internal command, assuming AC_ERR_OTHER\n");
1278 qc->err_mask |= AC_ERR_OTHER;
1281 /* finish up */
1282 spin_lock_irqsave(ap->lock, flags);
1284 *tf = qc->result_tf;
1285 err_mask = qc->err_mask;
1287 ata_qc_free(qc);
1288 ap->active_tag = preempted_tag;
1289 ap->sactive = preempted_sactive;
1290 ap->qc_active = preempted_qc_active;
1292 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1293 * Until those drivers are fixed, we detect the condition
1294 * here, fail the command with AC_ERR_SYSTEM and reenable the
1295 * port.
1297 * Note that this doesn't change any behavior as internal
1298 * command failure results in disabling the device in the
1299 * higher layer for LLDDs without new reset/EH callbacks.
1301 * Kill the following code as soon as those drivers are fixed.
1303 if (ap->flags & ATA_FLAG_DISABLED) {
1304 err_mask |= AC_ERR_SYSTEM;
1305 ata_port_probe(ap);
1308 spin_unlock_irqrestore(ap->lock, flags);
1310 return err_mask;
1314 * ata_exec_internal - execute libata internal command
1315 * @dev: Device to which the command is sent
1316 * @tf: Taskfile registers for the command and the result
1317 * @cdb: CDB for packet command
1318 * @dma_dir: Data tranfer direction of the command
1319 * @buf: Data buffer of the command
1320 * @buflen: Length of data buffer
1322 * Wrapper around ata_exec_internal_sg() which takes simple
1323 * buffer instead of sg list.
1325 * LOCKING:
1326 * None. Should be called with kernel context, might sleep.
1328 * RETURNS:
1329 * Zero on success, AC_ERR_* mask on failure
1331 unsigned ata_exec_internal(struct ata_device *dev,
1332 struct ata_taskfile *tf, const u8 *cdb,
1333 int dma_dir, void *buf, unsigned int buflen)
1335 struct scatterlist *psg = NULL, sg;
1336 unsigned int n_elem = 0;
1338 if (dma_dir != DMA_NONE) {
1339 WARN_ON(!buf);
1340 sg_init_one(&sg, buf, buflen);
1341 psg = &sg;
1342 n_elem++;
1345 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1349 * ata_do_simple_cmd - execute simple internal command
1350 * @dev: Device to which the command is sent
1351 * @cmd: Opcode to execute
1353 * Execute a 'simple' command, that only consists of the opcode
1354 * 'cmd' itself, without filling any other registers
1356 * LOCKING:
1357 * Kernel thread context (may sleep).
1359 * RETURNS:
1360 * Zero on success, AC_ERR_* mask on failure
1362 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1364 struct ata_taskfile tf;
1366 ata_tf_init(dev, &tf);
1368 tf.command = cmd;
1369 tf.flags |= ATA_TFLAG_DEVICE;
1370 tf.protocol = ATA_PROT_NODATA;
1372 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1376 * ata_pio_need_iordy - check if iordy needed
1377 * @adev: ATA device
1379 * Check if the current speed of the device requires IORDY. Used
1380 * by various controllers for chip configuration.
1383 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1385 int pio;
1386 int speed = adev->pio_mode - XFER_PIO_0;
1388 if (speed < 2)
1389 return 0;
1390 if (speed > 2)
1391 return 1;
1393 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1395 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1396 pio = adev->id[ATA_ID_EIDE_PIO];
1397 /* Is the speed faster than the drive allows non IORDY ? */
1398 if (pio) {
1399 /* This is cycle times not frequency - watch the logic! */
1400 if (pio > 240) /* PIO2 is 240nS per cycle */
1401 return 1;
1402 return 0;
1405 return 0;
1409 * ata_dev_read_id - Read ID data from the specified device
1410 * @dev: target device
1411 * @p_class: pointer to class of the target device (may be changed)
1412 * @flags: ATA_READID_* flags
1413 * @id: buffer to read IDENTIFY data into
1415 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1416 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1417 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1418 * for pre-ATA4 drives.
1420 * LOCKING:
1421 * Kernel thread context (may sleep)
1423 * RETURNS:
1424 * 0 on success, -errno otherwise.
1426 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1427 unsigned int flags, u16 *id)
1429 struct ata_port *ap = dev->ap;
1430 unsigned int class = *p_class;
1431 struct ata_taskfile tf;
1432 unsigned int err_mask = 0;
1433 const char *reason;
1434 int rc;
1436 if (ata_msg_ctl(ap))
1437 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1439 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1441 retry:
1442 ata_tf_init(dev, &tf);
1444 switch (class) {
1445 case ATA_DEV_ATA:
1446 tf.command = ATA_CMD_ID_ATA;
1447 break;
1448 case ATA_DEV_ATAPI:
1449 tf.command = ATA_CMD_ID_ATAPI;
1450 break;
1451 default:
1452 rc = -ENODEV;
1453 reason = "unsupported class";
1454 goto err_out;
1457 tf.protocol = ATA_PROT_PIO;
1459 /* Some devices choke if TF registers contain garbage. Make
1460 * sure those are properly initialized.
1462 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1464 /* Device presence detection is unreliable on some
1465 * controllers. Always poll IDENTIFY if available.
1467 tf.flags |= ATA_TFLAG_POLLING;
1469 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1470 id, sizeof(id[0]) * ATA_ID_WORDS);
1471 if (err_mask) {
1472 if (err_mask & AC_ERR_NODEV_HINT) {
1473 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1474 ap->print_id, dev->devno);
1475 return -ENOENT;
1478 rc = -EIO;
1479 reason = "I/O error";
1480 goto err_out;
1483 swap_buf_le16(id, ATA_ID_WORDS);
1485 /* sanity check */
1486 rc = -EINVAL;
1487 reason = "device reports illegal type";
1489 if (class == ATA_DEV_ATA) {
1490 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1491 goto err_out;
1492 } else {
1493 if (ata_id_is_ata(id))
1494 goto err_out;
1497 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1499 * The exact sequence expected by certain pre-ATA4 drives is:
1500 * SRST RESET
1501 * IDENTIFY
1502 * INITIALIZE DEVICE PARAMETERS
1503 * anything else..
1504 * Some drives were very specific about that exact sequence.
1506 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1507 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1508 if (err_mask) {
1509 rc = -EIO;
1510 reason = "INIT_DEV_PARAMS failed";
1511 goto err_out;
1514 /* current CHS translation info (id[53-58]) might be
1515 * changed. reread the identify device info.
1517 flags &= ~ATA_READID_POSTRESET;
1518 goto retry;
1522 *p_class = class;
1524 return 0;
1526 err_out:
1527 if (ata_msg_warn(ap))
1528 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1529 "(%s, err_mask=0x%x)\n", reason, err_mask);
1530 return rc;
1533 static inline u8 ata_dev_knobble(struct ata_device *dev)
1535 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1538 static void ata_dev_config_ncq(struct ata_device *dev,
1539 char *desc, size_t desc_sz)
1541 struct ata_port *ap = dev->ap;
1542 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1544 if (!ata_id_has_ncq(dev->id)) {
1545 desc[0] = '\0';
1546 return;
1548 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1549 snprintf(desc, desc_sz, "NCQ (not used)");
1550 return;
1552 if (ap->flags & ATA_FLAG_NCQ) {
1553 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1554 dev->flags |= ATA_DFLAG_NCQ;
1557 if (hdepth >= ddepth)
1558 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1559 else
1560 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1564 * ata_dev_configure - Configure the specified ATA/ATAPI device
1565 * @dev: Target device to configure
1567 * Configure @dev according to @dev->id. Generic and low-level
1568 * driver specific fixups are also applied.
1570 * LOCKING:
1571 * Kernel thread context (may sleep)
1573 * RETURNS:
1574 * 0 on success, -errno otherwise
1576 int ata_dev_configure(struct ata_device *dev)
1578 struct ata_port *ap = dev->ap;
1579 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1580 const u16 *id = dev->id;
1581 unsigned int xfer_mask;
1582 char revbuf[7]; /* XYZ-99\0 */
1583 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1584 char modelbuf[ATA_ID_PROD_LEN+1];
1585 int rc;
1587 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1588 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1589 __FUNCTION__);
1590 return 0;
1593 if (ata_msg_probe(ap))
1594 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1596 /* set _SDD */
1597 rc = ata_acpi_push_id(ap, dev->devno);
1598 if (rc) {
1599 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1600 rc);
1603 /* retrieve and execute the ATA task file of _GTF */
1604 ata_acpi_exec_tfs(ap);
1606 /* print device capabilities */
1607 if (ata_msg_probe(ap))
1608 ata_dev_printk(dev, KERN_DEBUG,
1609 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1610 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1611 __FUNCTION__,
1612 id[49], id[82], id[83], id[84],
1613 id[85], id[86], id[87], id[88]);
1615 /* initialize to-be-configured parameters */
1616 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1617 dev->max_sectors = 0;
1618 dev->cdb_len = 0;
1619 dev->n_sectors = 0;
1620 dev->cylinders = 0;
1621 dev->heads = 0;
1622 dev->sectors = 0;
1625 * common ATA, ATAPI feature tests
1628 /* find max transfer mode; for printk only */
1629 xfer_mask = ata_id_xfermask(id);
1631 if (ata_msg_probe(ap))
1632 ata_dump_id(id);
1634 /* ATA-specific feature tests */
1635 if (dev->class == ATA_DEV_ATA) {
1636 if (ata_id_is_cfa(id)) {
1637 if (id[162] & 1) /* CPRM may make this media unusable */
1638 ata_dev_printk(dev, KERN_WARNING,
1639 "supports DRM functions and may "
1640 "not be fully accessable.\n");
1641 snprintf(revbuf, 7, "CFA");
1643 else
1644 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1646 dev->n_sectors = ata_id_n_sectors(id);
1648 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1649 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1650 sizeof(fwrevbuf));
1652 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1653 sizeof(modelbuf));
1655 if (dev->id[59] & 0x100)
1656 dev->multi_count = dev->id[59] & 0xff;
1658 if (ata_id_has_lba(id)) {
1659 const char *lba_desc;
1660 char ncq_desc[20];
1662 lba_desc = "LBA";
1663 dev->flags |= ATA_DFLAG_LBA;
1664 if (ata_id_has_lba48(id)) {
1665 dev->flags |= ATA_DFLAG_LBA48;
1666 lba_desc = "LBA48";
1668 if (dev->n_sectors >= (1UL << 28) &&
1669 ata_id_has_flush_ext(id))
1670 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1673 /* config NCQ */
1674 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1676 /* print device info to dmesg */
1677 if (ata_msg_drv(ap) && print_info) {
1678 ata_dev_printk(dev, KERN_INFO,
1679 "%s: %s, %s, max %s\n",
1680 revbuf, modelbuf, fwrevbuf,
1681 ata_mode_string(xfer_mask));
1682 ata_dev_printk(dev, KERN_INFO,
1683 "%Lu sectors, multi %u: %s %s\n",
1684 (unsigned long long)dev->n_sectors,
1685 dev->multi_count, lba_desc, ncq_desc);
1687 } else {
1688 /* CHS */
1690 /* Default translation */
1691 dev->cylinders = id[1];
1692 dev->heads = id[3];
1693 dev->sectors = id[6];
1695 if (ata_id_current_chs_valid(id)) {
1696 /* Current CHS translation is valid. */
1697 dev->cylinders = id[54];
1698 dev->heads = id[55];
1699 dev->sectors = id[56];
1702 /* print device info to dmesg */
1703 if (ata_msg_drv(ap) && print_info) {
1704 ata_dev_printk(dev, KERN_INFO,
1705 "%s: %s, %s, max %s\n",
1706 revbuf, modelbuf, fwrevbuf,
1707 ata_mode_string(xfer_mask));
1708 ata_dev_printk(dev, KERN_INFO,
1709 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1710 (unsigned long long)dev->n_sectors,
1711 dev->multi_count, dev->cylinders,
1712 dev->heads, dev->sectors);
1716 dev->cdb_len = 16;
1719 /* ATAPI-specific feature tests */
1720 else if (dev->class == ATA_DEV_ATAPI) {
1721 char *cdb_intr_string = "";
1723 rc = atapi_cdb_len(id);
1724 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1725 if (ata_msg_warn(ap))
1726 ata_dev_printk(dev, KERN_WARNING,
1727 "unsupported CDB len\n");
1728 rc = -EINVAL;
1729 goto err_out_nosup;
1731 dev->cdb_len = (unsigned int) rc;
1733 if (ata_id_cdb_intr(dev->id)) {
1734 dev->flags |= ATA_DFLAG_CDB_INTR;
1735 cdb_intr_string = ", CDB intr";
1738 /* print device info to dmesg */
1739 if (ata_msg_drv(ap) && print_info)
1740 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1741 ata_mode_string(xfer_mask),
1742 cdb_intr_string);
1745 /* determine max_sectors */
1746 dev->max_sectors = ATA_MAX_SECTORS;
1747 if (dev->flags & ATA_DFLAG_LBA48)
1748 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1750 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1751 /* Let the user know. We don't want to disallow opens for
1752 rescue purposes, or in case the vendor is just a blithering
1753 idiot */
1754 if (print_info) {
1755 ata_dev_printk(dev, KERN_WARNING,
1756 "Drive reports diagnostics failure. This may indicate a drive\n");
1757 ata_dev_printk(dev, KERN_WARNING,
1758 "fault or invalid emulation. Contact drive vendor for information.\n");
1762 /* limit bridge transfers to udma5, 200 sectors */
1763 if (ata_dev_knobble(dev)) {
1764 if (ata_msg_drv(ap) && print_info)
1765 ata_dev_printk(dev, KERN_INFO,
1766 "applying bridge limits\n");
1767 dev->udma_mask &= ATA_UDMA5;
1768 dev->max_sectors = ATA_MAX_SECTORS;
1771 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
1772 dev->max_sectors = min(ATA_MAX_SECTORS_128, dev->max_sectors);
1774 /* limit ATAPI DMA to R/W commands only */
1775 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
1776 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
1778 if (ap->ops->dev_config)
1779 ap->ops->dev_config(dev);
1781 if (ata_msg_probe(ap))
1782 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1783 __FUNCTION__, ata_chk_status(ap));
1784 return 0;
1786 err_out_nosup:
1787 if (ata_msg_probe(ap))
1788 ata_dev_printk(dev, KERN_DEBUG,
1789 "%s: EXIT, err\n", __FUNCTION__);
1790 return rc;
1794 * ata_bus_probe - Reset and probe ATA bus
1795 * @ap: Bus to probe
1797 * Master ATA bus probing function. Initiates a hardware-dependent
1798 * bus reset, then attempts to identify any devices found on
1799 * the bus.
1801 * LOCKING:
1802 * PCI/etc. bus probe sem.
1804 * RETURNS:
1805 * Zero on success, negative errno otherwise.
1808 int ata_bus_probe(struct ata_port *ap)
1810 unsigned int classes[ATA_MAX_DEVICES];
1811 int tries[ATA_MAX_DEVICES];
1812 int i, rc;
1813 struct ata_device *dev;
1815 ata_port_probe(ap);
1817 for (i = 0; i < ATA_MAX_DEVICES; i++)
1818 tries[i] = ATA_PROBE_MAX_TRIES;
1820 retry:
1821 /* reset and determine device classes */
1822 ap->ops->phy_reset(ap);
1824 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1825 dev = &ap->device[i];
1827 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1828 dev->class != ATA_DEV_UNKNOWN)
1829 classes[dev->devno] = dev->class;
1830 else
1831 classes[dev->devno] = ATA_DEV_NONE;
1833 dev->class = ATA_DEV_UNKNOWN;
1836 ata_port_probe(ap);
1838 /* after the reset the device state is PIO 0 and the controller
1839 state is undefined. Record the mode */
1841 for (i = 0; i < ATA_MAX_DEVICES; i++)
1842 ap->device[i].pio_mode = XFER_PIO_0;
1844 /* read IDENTIFY page and configure devices. We have to do the identify
1845 specific sequence bass-ackwards so that PDIAG- is released by
1846 the slave device */
1848 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
1849 dev = &ap->device[i];
1851 if (tries[i])
1852 dev->class = classes[i];
1854 if (!ata_dev_enabled(dev))
1855 continue;
1857 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1858 dev->id);
1859 if (rc)
1860 goto fail;
1863 /* After the identify sequence we can now set up the devices. We do
1864 this in the normal order so that the user doesn't get confused */
1866 for(i = 0; i < ATA_MAX_DEVICES; i++) {
1867 dev = &ap->device[i];
1868 if (!ata_dev_enabled(dev))
1869 continue;
1871 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1872 rc = ata_dev_configure(dev);
1873 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1874 if (rc)
1875 goto fail;
1878 /* configure transfer mode */
1879 rc = ata_set_mode(ap, &dev);
1880 if (rc)
1881 goto fail;
1883 for (i = 0; i < ATA_MAX_DEVICES; i++)
1884 if (ata_dev_enabled(&ap->device[i]))
1885 return 0;
1887 /* no device present, disable port */
1888 ata_port_disable(ap);
1889 ap->ops->port_disable(ap);
1890 return -ENODEV;
1892 fail:
1893 tries[dev->devno]--;
1895 switch (rc) {
1896 case -EINVAL:
1897 /* eeek, something went very wrong, give up */
1898 tries[dev->devno] = 0;
1899 break;
1901 case -ENODEV:
1902 /* give it just one more chance */
1903 tries[dev->devno] = min(tries[dev->devno], 1);
1904 case -EIO:
1905 if (tries[dev->devno] == 1) {
1906 /* This is the last chance, better to slow
1907 * down than lose it.
1909 sata_down_spd_limit(ap);
1910 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
1914 if (!tries[dev->devno])
1915 ata_dev_disable(dev);
1917 goto retry;
1921 * ata_port_probe - Mark port as enabled
1922 * @ap: Port for which we indicate enablement
1924 * Modify @ap data structure such that the system
1925 * thinks that the entire port is enabled.
1927 * LOCKING: host lock, or some other form of
1928 * serialization.
1931 void ata_port_probe(struct ata_port *ap)
1933 ap->flags &= ~ATA_FLAG_DISABLED;
1937 * sata_print_link_status - Print SATA link status
1938 * @ap: SATA port to printk link status about
1940 * This function prints link speed and status of a SATA link.
1942 * LOCKING:
1943 * None.
1945 void sata_print_link_status(struct ata_port *ap)
1947 u32 sstatus, scontrol, tmp;
1949 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1950 return;
1951 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1953 if (ata_port_online(ap)) {
1954 tmp = (sstatus >> 4) & 0xf;
1955 ata_port_printk(ap, KERN_INFO,
1956 "SATA link up %s (SStatus %X SControl %X)\n",
1957 sata_spd_string(tmp), sstatus, scontrol);
1958 } else {
1959 ata_port_printk(ap, KERN_INFO,
1960 "SATA link down (SStatus %X SControl %X)\n",
1961 sstatus, scontrol);
1966 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1967 * @ap: SATA port associated with target SATA PHY.
1969 * This function issues commands to standard SATA Sxxx
1970 * PHY registers, to wake up the phy (and device), and
1971 * clear any reset condition.
1973 * LOCKING:
1974 * PCI/etc. bus probe sem.
1977 void __sata_phy_reset(struct ata_port *ap)
1979 u32 sstatus;
1980 unsigned long timeout = jiffies + (HZ * 5);
1982 if (ap->flags & ATA_FLAG_SATA_RESET) {
1983 /* issue phy wake/reset */
1984 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1985 /* Couldn't find anything in SATA I/II specs, but
1986 * AHCI-1.1 10.4.2 says at least 1 ms. */
1987 mdelay(1);
1989 /* phy wake/clear reset */
1990 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1992 /* wait for phy to become ready, if necessary */
1993 do {
1994 msleep(200);
1995 sata_scr_read(ap, SCR_STATUS, &sstatus);
1996 if ((sstatus & 0xf) != 1)
1997 break;
1998 } while (time_before(jiffies, timeout));
2000 /* print link status */
2001 sata_print_link_status(ap);
2003 /* TODO: phy layer with polling, timeouts, etc. */
2004 if (!ata_port_offline(ap))
2005 ata_port_probe(ap);
2006 else
2007 ata_port_disable(ap);
2009 if (ap->flags & ATA_FLAG_DISABLED)
2010 return;
2012 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2013 ata_port_disable(ap);
2014 return;
2017 ap->cbl = ATA_CBL_SATA;
2021 * sata_phy_reset - Reset SATA bus.
2022 * @ap: SATA port associated with target SATA PHY.
2024 * This function resets the SATA bus, and then probes
2025 * the bus for devices.
2027 * LOCKING:
2028 * PCI/etc. bus probe sem.
2031 void sata_phy_reset(struct ata_port *ap)
2033 __sata_phy_reset(ap);
2034 if (ap->flags & ATA_FLAG_DISABLED)
2035 return;
2036 ata_bus_reset(ap);
2040 * ata_dev_pair - return other device on cable
2041 * @adev: device
2043 * Obtain the other device on the same cable, or if none is
2044 * present NULL is returned
2047 struct ata_device *ata_dev_pair(struct ata_device *adev)
2049 struct ata_port *ap = adev->ap;
2050 struct ata_device *pair = &ap->device[1 - adev->devno];
2051 if (!ata_dev_enabled(pair))
2052 return NULL;
2053 return pair;
2057 * ata_port_disable - Disable port.
2058 * @ap: Port to be disabled.
2060 * Modify @ap data structure such that the system
2061 * thinks that the entire port is disabled, and should
2062 * never attempt to probe or communicate with devices
2063 * on this port.
2065 * LOCKING: host lock, or some other form of
2066 * serialization.
2069 void ata_port_disable(struct ata_port *ap)
2071 ap->device[0].class = ATA_DEV_NONE;
2072 ap->device[1].class = ATA_DEV_NONE;
2073 ap->flags |= ATA_FLAG_DISABLED;
2077 * sata_down_spd_limit - adjust SATA spd limit downward
2078 * @ap: Port to adjust SATA spd limit for
2080 * Adjust SATA spd limit of @ap downward. Note that this
2081 * function only adjusts the limit. The change must be applied
2082 * using sata_set_spd().
2084 * LOCKING:
2085 * Inherited from caller.
2087 * RETURNS:
2088 * 0 on success, negative errno on failure
2090 int sata_down_spd_limit(struct ata_port *ap)
2092 u32 sstatus, spd, mask;
2093 int rc, highbit;
2095 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2096 if (rc)
2097 return rc;
2099 mask = ap->sata_spd_limit;
2100 if (mask <= 1)
2101 return -EINVAL;
2102 highbit = fls(mask) - 1;
2103 mask &= ~(1 << highbit);
2105 spd = (sstatus >> 4) & 0xf;
2106 if (spd <= 1)
2107 return -EINVAL;
2108 spd--;
2109 mask &= (1 << spd) - 1;
2110 if (!mask)
2111 return -EINVAL;
2113 ap->sata_spd_limit = mask;
2115 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2116 sata_spd_string(fls(mask)));
2118 return 0;
2121 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2123 u32 spd, limit;
2125 if (ap->sata_spd_limit == UINT_MAX)
2126 limit = 0;
2127 else
2128 limit = fls(ap->sata_spd_limit);
2130 spd = (*scontrol >> 4) & 0xf;
2131 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2133 return spd != limit;
2137 * sata_set_spd_needed - is SATA spd configuration needed
2138 * @ap: Port in question
2140 * Test whether the spd limit in SControl matches
2141 * @ap->sata_spd_limit. This function is used to determine
2142 * whether hardreset is necessary to apply SATA spd
2143 * configuration.
2145 * LOCKING:
2146 * Inherited from caller.
2148 * RETURNS:
2149 * 1 if SATA spd configuration is needed, 0 otherwise.
2151 int sata_set_spd_needed(struct ata_port *ap)
2153 u32 scontrol;
2155 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2156 return 0;
2158 return __sata_set_spd_needed(ap, &scontrol);
2162 * sata_set_spd - set SATA spd according to spd limit
2163 * @ap: Port to set SATA spd for
2165 * Set SATA spd of @ap according to sata_spd_limit.
2167 * LOCKING:
2168 * Inherited from caller.
2170 * RETURNS:
2171 * 0 if spd doesn't need to be changed, 1 if spd has been
2172 * changed. Negative errno if SCR registers are inaccessible.
2174 int sata_set_spd(struct ata_port *ap)
2176 u32 scontrol;
2177 int rc;
2179 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2180 return rc;
2182 if (!__sata_set_spd_needed(ap, &scontrol))
2183 return 0;
2185 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2186 return rc;
2188 return 1;
2192 * This mode timing computation functionality is ported over from
2193 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2196 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2197 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2198 * for UDMA6, which is currently supported only by Maxtor drives.
2200 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2203 static const struct ata_timing ata_timing[] = {
2205 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2206 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2207 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2208 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2210 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2211 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2212 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2213 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2214 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2216 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2218 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2219 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2220 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2222 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2223 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2224 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2226 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2227 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2228 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2229 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2231 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2232 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2233 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2235 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2237 { 0xFF }
2240 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2241 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2243 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2245 q->setup = EZ(t->setup * 1000, T);
2246 q->act8b = EZ(t->act8b * 1000, T);
2247 q->rec8b = EZ(t->rec8b * 1000, T);
2248 q->cyc8b = EZ(t->cyc8b * 1000, T);
2249 q->active = EZ(t->active * 1000, T);
2250 q->recover = EZ(t->recover * 1000, T);
2251 q->cycle = EZ(t->cycle * 1000, T);
2252 q->udma = EZ(t->udma * 1000, UT);
2255 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2256 struct ata_timing *m, unsigned int what)
2258 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2259 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2260 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2261 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2262 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2263 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2264 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2265 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2268 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2270 const struct ata_timing *t;
2272 for (t = ata_timing; t->mode != speed; t++)
2273 if (t->mode == 0xFF)
2274 return NULL;
2275 return t;
2278 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2279 struct ata_timing *t, int T, int UT)
2281 const struct ata_timing *s;
2282 struct ata_timing p;
2285 * Find the mode.
2288 if (!(s = ata_timing_find_mode(speed)))
2289 return -EINVAL;
2291 memcpy(t, s, sizeof(*s));
2294 * If the drive is an EIDE drive, it can tell us it needs extended
2295 * PIO/MW_DMA cycle timing.
2298 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2299 memset(&p, 0, sizeof(p));
2300 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2301 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2302 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2303 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2304 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2306 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2310 * Convert the timing to bus clock counts.
2313 ata_timing_quantize(t, t, T, UT);
2316 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2317 * S.M.A.R.T * and some other commands. We have to ensure that the
2318 * DMA cycle timing is slower/equal than the fastest PIO timing.
2321 if (speed > XFER_PIO_6) {
2322 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2323 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2327 * Lengthen active & recovery time so that cycle time is correct.
2330 if (t->act8b + t->rec8b < t->cyc8b) {
2331 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2332 t->rec8b = t->cyc8b - t->act8b;
2335 if (t->active + t->recover < t->cycle) {
2336 t->active += (t->cycle - (t->active + t->recover)) / 2;
2337 t->recover = t->cycle - t->active;
2340 return 0;
2344 * ata_down_xfermask_limit - adjust dev xfer masks downward
2345 * @dev: Device to adjust xfer masks
2346 * @sel: ATA_DNXFER_* selector
2348 * Adjust xfer masks of @dev downward. Note that this function
2349 * does not apply the change. Invoking ata_set_mode() afterwards
2350 * will apply the limit.
2352 * LOCKING:
2353 * Inherited from caller.
2355 * RETURNS:
2356 * 0 on success, negative errno on failure
2358 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2360 char buf[32];
2361 unsigned int orig_mask, xfer_mask;
2362 unsigned int pio_mask, mwdma_mask, udma_mask;
2363 int quiet, highbit;
2365 quiet = !!(sel & ATA_DNXFER_QUIET);
2366 sel &= ~ATA_DNXFER_QUIET;
2368 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2369 dev->mwdma_mask,
2370 dev->udma_mask);
2371 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2373 switch (sel) {
2374 case ATA_DNXFER_PIO:
2375 highbit = fls(pio_mask) - 1;
2376 pio_mask &= ~(1 << highbit);
2377 break;
2379 case ATA_DNXFER_DMA:
2380 if (udma_mask) {
2381 highbit = fls(udma_mask) - 1;
2382 udma_mask &= ~(1 << highbit);
2383 if (!udma_mask)
2384 return -ENOENT;
2385 } else if (mwdma_mask) {
2386 highbit = fls(mwdma_mask) - 1;
2387 mwdma_mask &= ~(1 << highbit);
2388 if (!mwdma_mask)
2389 return -ENOENT;
2391 break;
2393 case ATA_DNXFER_40C:
2394 udma_mask &= ATA_UDMA_MASK_40C;
2395 break;
2397 case ATA_DNXFER_FORCE_PIO0:
2398 pio_mask &= 1;
2399 case ATA_DNXFER_FORCE_PIO:
2400 mwdma_mask = 0;
2401 udma_mask = 0;
2402 break;
2404 default:
2405 BUG();
2408 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2410 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2411 return -ENOENT;
2413 if (!quiet) {
2414 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2415 snprintf(buf, sizeof(buf), "%s:%s",
2416 ata_mode_string(xfer_mask),
2417 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2418 else
2419 snprintf(buf, sizeof(buf), "%s",
2420 ata_mode_string(xfer_mask));
2422 ata_dev_printk(dev, KERN_WARNING,
2423 "limiting speed to %s\n", buf);
2426 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2427 &dev->udma_mask);
2429 return 0;
2432 static int ata_dev_set_mode(struct ata_device *dev)
2434 struct ata_eh_context *ehc = &dev->ap->eh_context;
2435 unsigned int err_mask;
2436 int rc;
2438 dev->flags &= ~ATA_DFLAG_PIO;
2439 if (dev->xfer_shift == ATA_SHIFT_PIO)
2440 dev->flags |= ATA_DFLAG_PIO;
2442 err_mask = ata_dev_set_xfermode(dev);
2443 /* Old CFA may refuse this command, which is just fine */
2444 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2445 err_mask &= ~AC_ERR_DEV;
2447 if (err_mask) {
2448 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2449 "(err_mask=0x%x)\n", err_mask);
2450 return -EIO;
2453 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2454 rc = ata_dev_revalidate(dev, 0);
2455 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2456 if (rc)
2457 return rc;
2459 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2460 dev->xfer_shift, (int)dev->xfer_mode);
2462 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2463 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2464 return 0;
2468 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2469 * @ap: port on which timings will be programmed
2470 * @r_failed_dev: out paramter for failed device
2472 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2473 * ata_set_mode() fails, pointer to the failing device is
2474 * returned in @r_failed_dev.
2476 * LOCKING:
2477 * PCI/etc. bus probe sem.
2479 * RETURNS:
2480 * 0 on success, negative errno otherwise
2482 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2484 struct ata_device *dev;
2485 int i, rc = 0, used_dma = 0, found = 0;
2487 /* has private set_mode? */
2488 if (ap->ops->set_mode)
2489 return ap->ops->set_mode(ap, r_failed_dev);
2491 /* step 1: calculate xfer_mask */
2492 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2493 unsigned int pio_mask, dma_mask;
2495 dev = &ap->device[i];
2497 if (!ata_dev_enabled(dev))
2498 continue;
2500 ata_dev_xfermask(dev);
2502 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2503 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2504 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2505 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2507 found = 1;
2508 if (dev->dma_mode)
2509 used_dma = 1;
2511 if (!found)
2512 goto out;
2514 /* step 2: always set host PIO timings */
2515 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2516 dev = &ap->device[i];
2517 if (!ata_dev_enabled(dev))
2518 continue;
2520 if (!dev->pio_mode) {
2521 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2522 rc = -EINVAL;
2523 goto out;
2526 dev->xfer_mode = dev->pio_mode;
2527 dev->xfer_shift = ATA_SHIFT_PIO;
2528 if (ap->ops->set_piomode)
2529 ap->ops->set_piomode(ap, dev);
2532 /* step 3: set host DMA timings */
2533 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2534 dev = &ap->device[i];
2536 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2537 continue;
2539 dev->xfer_mode = dev->dma_mode;
2540 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2541 if (ap->ops->set_dmamode)
2542 ap->ops->set_dmamode(ap, dev);
2545 /* step 4: update devices' xfer mode */
2546 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2547 dev = &ap->device[i];
2549 /* don't update suspended devices' xfer mode */
2550 if (!ata_dev_ready(dev))
2551 continue;
2553 rc = ata_dev_set_mode(dev);
2554 if (rc)
2555 goto out;
2558 /* Record simplex status. If we selected DMA then the other
2559 * host channels are not permitted to do so.
2561 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2562 ap->host->simplex_claimed = ap;
2564 /* step5: chip specific finalisation */
2565 if (ap->ops->post_set_mode)
2566 ap->ops->post_set_mode(ap);
2567 out:
2568 if (rc)
2569 *r_failed_dev = dev;
2570 return rc;
2574 * ata_tf_to_host - issue ATA taskfile to host controller
2575 * @ap: port to which command is being issued
2576 * @tf: ATA taskfile register set
2578 * Issues ATA taskfile register set to ATA host controller,
2579 * with proper synchronization with interrupt handler and
2580 * other threads.
2582 * LOCKING:
2583 * spin_lock_irqsave(host lock)
2586 static inline void ata_tf_to_host(struct ata_port *ap,
2587 const struct ata_taskfile *tf)
2589 ap->ops->tf_load(ap, tf);
2590 ap->ops->exec_command(ap, tf);
2594 * ata_busy_sleep - sleep until BSY clears, or timeout
2595 * @ap: port containing status register to be polled
2596 * @tmout_pat: impatience timeout
2597 * @tmout: overall timeout
2599 * Sleep until ATA Status register bit BSY clears,
2600 * or a timeout occurs.
2602 * LOCKING:
2603 * Kernel thread context (may sleep).
2605 * RETURNS:
2606 * 0 on success, -errno otherwise.
2608 int ata_busy_sleep(struct ata_port *ap,
2609 unsigned long tmout_pat, unsigned long tmout)
2611 unsigned long timer_start, timeout;
2612 u8 status;
2614 status = ata_busy_wait(ap, ATA_BUSY, 300);
2615 timer_start = jiffies;
2616 timeout = timer_start + tmout_pat;
2617 while (status != 0xff && (status & ATA_BUSY) &&
2618 time_before(jiffies, timeout)) {
2619 msleep(50);
2620 status = ata_busy_wait(ap, ATA_BUSY, 3);
2623 if (status != 0xff && (status & ATA_BUSY))
2624 ata_port_printk(ap, KERN_WARNING,
2625 "port is slow to respond, please be patient "
2626 "(Status 0x%x)\n", status);
2628 timeout = timer_start + tmout;
2629 while (status != 0xff && (status & ATA_BUSY) &&
2630 time_before(jiffies, timeout)) {
2631 msleep(50);
2632 status = ata_chk_status(ap);
2635 if (status == 0xff)
2636 return -ENODEV;
2638 if (status & ATA_BUSY) {
2639 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2640 "(%lu secs, Status 0x%x)\n",
2641 tmout / HZ, status);
2642 return -EBUSY;
2645 return 0;
2648 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2650 struct ata_ioports *ioaddr = &ap->ioaddr;
2651 unsigned int dev0 = devmask & (1 << 0);
2652 unsigned int dev1 = devmask & (1 << 1);
2653 unsigned long timeout;
2655 /* if device 0 was found in ata_devchk, wait for its
2656 * BSY bit to clear
2658 if (dev0)
2659 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2661 /* if device 1 was found in ata_devchk, wait for
2662 * register access, then wait for BSY to clear
2664 timeout = jiffies + ATA_TMOUT_BOOT;
2665 while (dev1) {
2666 u8 nsect, lbal;
2668 ap->ops->dev_select(ap, 1);
2669 nsect = ioread8(ioaddr->nsect_addr);
2670 lbal = ioread8(ioaddr->lbal_addr);
2671 if ((nsect == 1) && (lbal == 1))
2672 break;
2673 if (time_after(jiffies, timeout)) {
2674 dev1 = 0;
2675 break;
2677 msleep(50); /* give drive a breather */
2679 if (dev1)
2680 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2682 /* is all this really necessary? */
2683 ap->ops->dev_select(ap, 0);
2684 if (dev1)
2685 ap->ops->dev_select(ap, 1);
2686 if (dev0)
2687 ap->ops->dev_select(ap, 0);
2690 static unsigned int ata_bus_softreset(struct ata_port *ap,
2691 unsigned int devmask)
2693 struct ata_ioports *ioaddr = &ap->ioaddr;
2695 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2697 /* software reset. causes dev0 to be selected */
2698 iowrite8(ap->ctl, ioaddr->ctl_addr);
2699 udelay(20); /* FIXME: flush */
2700 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2701 udelay(20); /* FIXME: flush */
2702 iowrite8(ap->ctl, ioaddr->ctl_addr);
2704 /* spec mandates ">= 2ms" before checking status.
2705 * We wait 150ms, because that was the magic delay used for
2706 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2707 * between when the ATA command register is written, and then
2708 * status is checked. Because waiting for "a while" before
2709 * checking status is fine, post SRST, we perform this magic
2710 * delay here as well.
2712 * Old drivers/ide uses the 2mS rule and then waits for ready
2714 msleep(150);
2716 /* Before we perform post reset processing we want to see if
2717 * the bus shows 0xFF because the odd clown forgets the D7
2718 * pulldown resistor.
2720 if (ata_check_status(ap) == 0xFF)
2721 return 0;
2723 ata_bus_post_reset(ap, devmask);
2725 return 0;
2729 * ata_bus_reset - reset host port and associated ATA channel
2730 * @ap: port to reset
2732 * This is typically the first time we actually start issuing
2733 * commands to the ATA channel. We wait for BSY to clear, then
2734 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2735 * result. Determine what devices, if any, are on the channel
2736 * by looking at the device 0/1 error register. Look at the signature
2737 * stored in each device's taskfile registers, to determine if
2738 * the device is ATA or ATAPI.
2740 * LOCKING:
2741 * PCI/etc. bus probe sem.
2742 * Obtains host lock.
2744 * SIDE EFFECTS:
2745 * Sets ATA_FLAG_DISABLED if bus reset fails.
2748 void ata_bus_reset(struct ata_port *ap)
2750 struct ata_ioports *ioaddr = &ap->ioaddr;
2751 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2752 u8 err;
2753 unsigned int dev0, dev1 = 0, devmask = 0;
2755 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2757 /* determine if device 0/1 are present */
2758 if (ap->flags & ATA_FLAG_SATA_RESET)
2759 dev0 = 1;
2760 else {
2761 dev0 = ata_devchk(ap, 0);
2762 if (slave_possible)
2763 dev1 = ata_devchk(ap, 1);
2766 if (dev0)
2767 devmask |= (1 << 0);
2768 if (dev1)
2769 devmask |= (1 << 1);
2771 /* select device 0 again */
2772 ap->ops->dev_select(ap, 0);
2774 /* issue bus reset */
2775 if (ap->flags & ATA_FLAG_SRST)
2776 if (ata_bus_softreset(ap, devmask))
2777 goto err_out;
2780 * determine by signature whether we have ATA or ATAPI devices
2782 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2783 if ((slave_possible) && (err != 0x81))
2784 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2786 /* re-enable interrupts */
2787 ap->ops->irq_on(ap);
2789 /* is double-select really necessary? */
2790 if (ap->device[1].class != ATA_DEV_NONE)
2791 ap->ops->dev_select(ap, 1);
2792 if (ap->device[0].class != ATA_DEV_NONE)
2793 ap->ops->dev_select(ap, 0);
2795 /* if no devices were detected, disable this port */
2796 if ((ap->device[0].class == ATA_DEV_NONE) &&
2797 (ap->device[1].class == ATA_DEV_NONE))
2798 goto err_out;
2800 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2801 /* set up device control for ATA_FLAG_SATA_RESET */
2802 iowrite8(ap->ctl, ioaddr->ctl_addr);
2805 DPRINTK("EXIT\n");
2806 return;
2808 err_out:
2809 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2810 ap->ops->port_disable(ap);
2812 DPRINTK("EXIT\n");
2816 * sata_phy_debounce - debounce SATA phy status
2817 * @ap: ATA port to debounce SATA phy status for
2818 * @params: timing parameters { interval, duratinon, timeout } in msec
2820 * Make sure SStatus of @ap reaches stable state, determined by
2821 * holding the same value where DET is not 1 for @duration polled
2822 * every @interval, before @timeout. Timeout constraints the
2823 * beginning of the stable state. Because, after hot unplugging,
2824 * DET gets stuck at 1 on some controllers, this functions waits
2825 * until timeout then returns 0 if DET is stable at 1.
2827 * LOCKING:
2828 * Kernel thread context (may sleep)
2830 * RETURNS:
2831 * 0 on success, -errno on failure.
2833 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2835 unsigned long interval_msec = params[0];
2836 unsigned long duration = params[1] * HZ / 1000;
2837 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2838 unsigned long last_jiffies;
2839 u32 last, cur;
2840 int rc;
2842 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2843 return rc;
2844 cur &= 0xf;
2846 last = cur;
2847 last_jiffies = jiffies;
2849 while (1) {
2850 msleep(interval_msec);
2851 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2852 return rc;
2853 cur &= 0xf;
2855 /* DET stable? */
2856 if (cur == last) {
2857 if (cur == 1 && time_before(jiffies, timeout))
2858 continue;
2859 if (time_after(jiffies, last_jiffies + duration))
2860 return 0;
2861 continue;
2864 /* unstable, start over */
2865 last = cur;
2866 last_jiffies = jiffies;
2868 /* check timeout */
2869 if (time_after(jiffies, timeout))
2870 return -EBUSY;
2875 * sata_phy_resume - resume SATA phy
2876 * @ap: ATA port to resume SATA phy for
2877 * @params: timing parameters { interval, duratinon, timeout } in msec
2879 * Resume SATA phy of @ap and debounce it.
2881 * LOCKING:
2882 * Kernel thread context (may sleep)
2884 * RETURNS:
2885 * 0 on success, -errno on failure.
2887 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2889 u32 scontrol;
2890 int rc;
2892 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2893 return rc;
2895 scontrol = (scontrol & 0x0f0) | 0x300;
2897 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2898 return rc;
2900 /* Some PHYs react badly if SStatus is pounded immediately
2901 * after resuming. Delay 200ms before debouncing.
2903 msleep(200);
2905 return sata_phy_debounce(ap, params);
2908 static void ata_wait_spinup(struct ata_port *ap)
2910 struct ata_eh_context *ehc = &ap->eh_context;
2911 unsigned long end, secs;
2912 int rc;
2914 /* first, debounce phy if SATA */
2915 if (ap->cbl == ATA_CBL_SATA) {
2916 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2918 /* if debounced successfully and offline, no need to wait */
2919 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2920 return;
2923 /* okay, let's give the drive time to spin up */
2924 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2925 secs = ((end - jiffies) + HZ - 1) / HZ;
2927 if (time_after(jiffies, end))
2928 return;
2930 if (secs > 5)
2931 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2932 "(%lu secs)\n", secs);
2934 schedule_timeout_uninterruptible(end - jiffies);
2938 * ata_std_prereset - prepare for reset
2939 * @ap: ATA port to be reset
2941 * @ap is about to be reset. Initialize it.
2943 * LOCKING:
2944 * Kernel thread context (may sleep)
2946 * RETURNS:
2947 * 0 on success, -errno otherwise.
2949 int ata_std_prereset(struct ata_port *ap)
2951 struct ata_eh_context *ehc = &ap->eh_context;
2952 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2953 int rc;
2955 /* handle link resume & hotplug spinup */
2956 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2957 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2958 ehc->i.action |= ATA_EH_HARDRESET;
2960 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2961 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2962 ata_wait_spinup(ap);
2964 /* if we're about to do hardreset, nothing more to do */
2965 if (ehc->i.action & ATA_EH_HARDRESET)
2966 return 0;
2968 /* if SATA, resume phy */
2969 if (ap->cbl == ATA_CBL_SATA) {
2970 rc = sata_phy_resume(ap, timing);
2971 if (rc && rc != -EOPNOTSUPP) {
2972 /* phy resume failed */
2973 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2974 "link for reset (errno=%d)\n", rc);
2975 return rc;
2979 /* Wait for !BSY if the controller can wait for the first D2H
2980 * Reg FIS and we don't know that no device is attached.
2982 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2983 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2985 return 0;
2989 * ata_std_softreset - reset host port via ATA SRST
2990 * @ap: port to reset
2991 * @classes: resulting classes of attached devices
2993 * Reset host port using ATA SRST.
2995 * LOCKING:
2996 * Kernel thread context (may sleep)
2998 * RETURNS:
2999 * 0 on success, -errno otherwise.
3001 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
3003 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3004 unsigned int devmask = 0, err_mask;
3005 u8 err;
3007 DPRINTK("ENTER\n");
3009 if (ata_port_offline(ap)) {
3010 classes[0] = ATA_DEV_NONE;
3011 goto out;
3014 /* determine if device 0/1 are present */
3015 if (ata_devchk(ap, 0))
3016 devmask |= (1 << 0);
3017 if (slave_possible && ata_devchk(ap, 1))
3018 devmask |= (1 << 1);
3020 /* select device 0 again */
3021 ap->ops->dev_select(ap, 0);
3023 /* issue bus reset */
3024 DPRINTK("about to softreset, devmask=%x\n", devmask);
3025 err_mask = ata_bus_softreset(ap, devmask);
3026 if (err_mask) {
3027 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3028 err_mask);
3029 return -EIO;
3032 /* determine by signature whether we have ATA or ATAPI devices */
3033 classes[0] = ata_dev_try_classify(ap, 0, &err);
3034 if (slave_possible && err != 0x81)
3035 classes[1] = ata_dev_try_classify(ap, 1, &err);
3037 out:
3038 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3039 return 0;
3043 * sata_port_hardreset - reset port via SATA phy reset
3044 * @ap: port to reset
3045 * @timing: timing parameters { interval, duratinon, timeout } in msec
3047 * SATA phy-reset host port using DET bits of SControl register.
3049 * LOCKING:
3050 * Kernel thread context (may sleep)
3052 * RETURNS:
3053 * 0 on success, -errno otherwise.
3055 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3057 u32 scontrol;
3058 int rc;
3060 DPRINTK("ENTER\n");
3062 if (sata_set_spd_needed(ap)) {
3063 /* SATA spec says nothing about how to reconfigure
3064 * spd. To be on the safe side, turn off phy during
3065 * reconfiguration. This works for at least ICH7 AHCI
3066 * and Sil3124.
3068 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3069 goto out;
3071 scontrol = (scontrol & 0x0f0) | 0x304;
3073 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3074 goto out;
3076 sata_set_spd(ap);
3079 /* issue phy wake/reset */
3080 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3081 goto out;
3083 scontrol = (scontrol & 0x0f0) | 0x301;
3085 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3086 goto out;
3088 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3089 * 10.4.2 says at least 1 ms.
3091 msleep(1);
3093 /* bring phy back */
3094 rc = sata_phy_resume(ap, timing);
3095 out:
3096 DPRINTK("EXIT, rc=%d\n", rc);
3097 return rc;
3101 * sata_std_hardreset - reset host port via SATA phy reset
3102 * @ap: port to reset
3103 * @class: resulting class of attached device
3105 * SATA phy-reset host port using DET bits of SControl register,
3106 * wait for !BSY and classify the attached device.
3108 * LOCKING:
3109 * Kernel thread context (may sleep)
3111 * RETURNS:
3112 * 0 on success, -errno otherwise.
3114 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3116 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3117 int rc;
3119 DPRINTK("ENTER\n");
3121 /* do hardreset */
3122 rc = sata_port_hardreset(ap, timing);
3123 if (rc) {
3124 ata_port_printk(ap, KERN_ERR,
3125 "COMRESET failed (errno=%d)\n", rc);
3126 return rc;
3129 /* TODO: phy layer with polling, timeouts, etc. */
3130 if (ata_port_offline(ap)) {
3131 *class = ATA_DEV_NONE;
3132 DPRINTK("EXIT, link offline\n");
3133 return 0;
3136 /* wait a while before checking status, see SRST for more info */
3137 msleep(150);
3139 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3140 ata_port_printk(ap, KERN_ERR,
3141 "COMRESET failed (device not ready)\n");
3142 return -EIO;
3145 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3147 *class = ata_dev_try_classify(ap, 0, NULL);
3149 DPRINTK("EXIT, class=%u\n", *class);
3150 return 0;
3154 * ata_std_postreset - standard postreset callback
3155 * @ap: the target ata_port
3156 * @classes: classes of attached devices
3158 * This function is invoked after a successful reset. Note that
3159 * the device might have been reset more than once using
3160 * different reset methods before postreset is invoked.
3162 * LOCKING:
3163 * Kernel thread context (may sleep)
3165 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3167 u32 serror;
3169 DPRINTK("ENTER\n");
3171 /* print link status */
3172 sata_print_link_status(ap);
3174 /* clear SError */
3175 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3176 sata_scr_write(ap, SCR_ERROR, serror);
3178 /* re-enable interrupts */
3179 if (!ap->ops->error_handler)
3180 ap->ops->irq_on(ap);
3182 /* is double-select really necessary? */
3183 if (classes[0] != ATA_DEV_NONE)
3184 ap->ops->dev_select(ap, 1);
3185 if (classes[1] != ATA_DEV_NONE)
3186 ap->ops->dev_select(ap, 0);
3188 /* bail out if no device is present */
3189 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3190 DPRINTK("EXIT, no device\n");
3191 return;
3194 /* set up device control */
3195 if (ap->ioaddr.ctl_addr)
3196 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3198 DPRINTK("EXIT\n");
3202 * ata_dev_same_device - Determine whether new ID matches configured device
3203 * @dev: device to compare against
3204 * @new_class: class of the new device
3205 * @new_id: IDENTIFY page of the new device
3207 * Compare @new_class and @new_id against @dev and determine
3208 * whether @dev is the device indicated by @new_class and
3209 * @new_id.
3211 * LOCKING:
3212 * None.
3214 * RETURNS:
3215 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3217 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3218 const u16 *new_id)
3220 const u16 *old_id = dev->id;
3221 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3222 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3223 u64 new_n_sectors;
3225 if (dev->class != new_class) {
3226 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3227 dev->class, new_class);
3228 return 0;
3231 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3232 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3233 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3234 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3235 new_n_sectors = ata_id_n_sectors(new_id);
3237 if (strcmp(model[0], model[1])) {
3238 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3239 "'%s' != '%s'\n", model[0], model[1]);
3240 return 0;
3243 if (strcmp(serial[0], serial[1])) {
3244 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3245 "'%s' != '%s'\n", serial[0], serial[1]);
3246 return 0;
3249 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3250 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3251 "%llu != %llu\n",
3252 (unsigned long long)dev->n_sectors,
3253 (unsigned long long)new_n_sectors);
3254 return 0;
3257 return 1;
3261 * ata_dev_revalidate - Revalidate ATA device
3262 * @dev: device to revalidate
3263 * @readid_flags: read ID flags
3265 * Re-read IDENTIFY page and make sure @dev is still attached to
3266 * the port.
3268 * LOCKING:
3269 * Kernel thread context (may sleep)
3271 * RETURNS:
3272 * 0 on success, negative errno otherwise
3274 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3276 unsigned int class = dev->class;
3277 u16 *id = (void *)dev->ap->sector_buf;
3278 int rc;
3280 if (!ata_dev_enabled(dev)) {
3281 rc = -ENODEV;
3282 goto fail;
3285 /* read ID data */
3286 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3287 if (rc)
3288 goto fail;
3290 /* is the device still there? */
3291 if (!ata_dev_same_device(dev, class, id)) {
3292 rc = -ENODEV;
3293 goto fail;
3296 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3298 /* configure device according to the new ID */
3299 rc = ata_dev_configure(dev);
3300 if (rc == 0)
3301 return 0;
3303 fail:
3304 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3305 return rc;
3308 struct ata_blacklist_entry {
3309 const char *model_num;
3310 const char *model_rev;
3311 unsigned long horkage;
3314 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3315 /* Devices with DMA related problems under Linux */
3316 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3317 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3318 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3319 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3320 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3321 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3322 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3323 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3324 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3325 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3326 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3327 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3328 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3329 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3330 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3331 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3332 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3333 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3334 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3335 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3336 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3337 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3338 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3339 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3340 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3341 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3342 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3343 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3344 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3346 /* Weird ATAPI devices */
3347 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3348 ATA_HORKAGE_DMA_RW_ONLY },
3350 /* Devices we expect to fail diagnostics */
3352 /* Devices where NCQ should be avoided */
3353 /* NCQ is slow */
3354 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3355 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3356 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3357 /* NCQ is broken */
3358 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3359 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3360 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3361 /* Blacklist entries taken from Silicon Image 3124/3132
3362 Windows driver .inf file - also several Linux problem reports */
3363 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3364 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3365 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3367 /* Devices with NCQ limits */
3369 /* End Marker */
3373 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3375 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3376 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3377 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3379 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3380 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3382 while (ad->model_num) {
3383 if (!strcmp(ad->model_num, model_num)) {
3384 if (ad->model_rev == NULL)
3385 return ad->horkage;
3386 if (!strcmp(ad->model_rev, model_rev))
3387 return ad->horkage;
3389 ad++;
3391 return 0;
3394 static int ata_dma_blacklisted(const struct ata_device *dev)
3396 /* We don't support polling DMA.
3397 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3398 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3400 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3401 (dev->flags & ATA_DFLAG_CDB_INTR))
3402 return 1;
3403 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3407 * ata_dev_xfermask - Compute supported xfermask of the given device
3408 * @dev: Device to compute xfermask for
3410 * Compute supported xfermask of @dev and store it in
3411 * dev->*_mask. This function is responsible for applying all
3412 * known limits including host controller limits, device
3413 * blacklist, etc...
3415 * LOCKING:
3416 * None.
3418 static void ata_dev_xfermask(struct ata_device *dev)
3420 struct ata_port *ap = dev->ap;
3421 struct ata_host *host = ap->host;
3422 unsigned long xfer_mask;
3424 /* controller modes available */
3425 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3426 ap->mwdma_mask, ap->udma_mask);
3428 /* Apply cable rule here. Don't apply it early because when
3429 * we handle hot plug the cable type can itself change.
3431 if (ap->cbl == ATA_CBL_PATA40)
3432 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3433 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3434 * host side are checked drive side as well. Cases where we know a
3435 * 40wire cable is used safely for 80 are not checked here.
3437 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3438 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3441 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3442 dev->mwdma_mask, dev->udma_mask);
3443 xfer_mask &= ata_id_xfermask(dev->id);
3446 * CFA Advanced TrueIDE timings are not allowed on a shared
3447 * cable
3449 if (ata_dev_pair(dev)) {
3450 /* No PIO5 or PIO6 */
3451 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3452 /* No MWDMA3 or MWDMA 4 */
3453 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3456 if (ata_dma_blacklisted(dev)) {
3457 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3458 ata_dev_printk(dev, KERN_WARNING,
3459 "device is on DMA blacklist, disabling DMA\n");
3462 if ((host->flags & ATA_HOST_SIMPLEX) &&
3463 host->simplex_claimed && host->simplex_claimed != ap) {
3464 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3465 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3466 "other device, disabling DMA\n");
3469 if (ap->ops->mode_filter)
3470 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3472 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3473 &dev->mwdma_mask, &dev->udma_mask);
3477 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3478 * @dev: Device to which command will be sent
3480 * Issue SET FEATURES - XFER MODE command to device @dev
3481 * on port @ap.
3483 * LOCKING:
3484 * PCI/etc. bus probe sem.
3486 * RETURNS:
3487 * 0 on success, AC_ERR_* mask otherwise.
3490 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3492 struct ata_taskfile tf;
3493 unsigned int err_mask;
3495 /* set up set-features taskfile */
3496 DPRINTK("set features - xfer mode\n");
3498 ata_tf_init(dev, &tf);
3499 tf.command = ATA_CMD_SET_FEATURES;
3500 tf.feature = SETFEATURES_XFER;
3501 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3502 tf.protocol = ATA_PROT_NODATA;
3503 tf.nsect = dev->xfer_mode;
3505 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3507 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3508 return err_mask;
3512 * ata_dev_init_params - Issue INIT DEV PARAMS command
3513 * @dev: Device to which command will be sent
3514 * @heads: Number of heads (taskfile parameter)
3515 * @sectors: Number of sectors (taskfile parameter)
3517 * LOCKING:
3518 * Kernel thread context (may sleep)
3520 * RETURNS:
3521 * 0 on success, AC_ERR_* mask otherwise.
3523 static unsigned int ata_dev_init_params(struct ata_device *dev,
3524 u16 heads, u16 sectors)
3526 struct ata_taskfile tf;
3527 unsigned int err_mask;
3529 /* Number of sectors per track 1-255. Number of heads 1-16 */
3530 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3531 return AC_ERR_INVALID;
3533 /* set up init dev params taskfile */
3534 DPRINTK("init dev params \n");
3536 ata_tf_init(dev, &tf);
3537 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3538 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3539 tf.protocol = ATA_PROT_NODATA;
3540 tf.nsect = sectors;
3541 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3543 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3545 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3546 return err_mask;
3550 * ata_sg_clean - Unmap DMA memory associated with command
3551 * @qc: Command containing DMA memory to be released
3553 * Unmap all mapped DMA memory associated with this command.
3555 * LOCKING:
3556 * spin_lock_irqsave(host lock)
3558 void ata_sg_clean(struct ata_queued_cmd *qc)
3560 struct ata_port *ap = qc->ap;
3561 struct scatterlist *sg = qc->__sg;
3562 int dir = qc->dma_dir;
3563 void *pad_buf = NULL;
3565 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3566 WARN_ON(sg == NULL);
3568 if (qc->flags & ATA_QCFLAG_SINGLE)
3569 WARN_ON(qc->n_elem > 1);
3571 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3573 /* if we padded the buffer out to 32-bit bound, and data
3574 * xfer direction is from-device, we must copy from the
3575 * pad buffer back into the supplied buffer
3577 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3578 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3580 if (qc->flags & ATA_QCFLAG_SG) {
3581 if (qc->n_elem)
3582 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3583 /* restore last sg */
3584 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3585 if (pad_buf) {
3586 struct scatterlist *psg = &qc->pad_sgent;
3587 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3588 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3589 kunmap_atomic(addr, KM_IRQ0);
3591 } else {
3592 if (qc->n_elem)
3593 dma_unmap_single(ap->dev,
3594 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3595 dir);
3596 /* restore sg */
3597 sg->length += qc->pad_len;
3598 if (pad_buf)
3599 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3600 pad_buf, qc->pad_len);
3603 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3604 qc->__sg = NULL;
3608 * ata_fill_sg - Fill PCI IDE PRD table
3609 * @qc: Metadata associated with taskfile to be transferred
3611 * Fill PCI IDE PRD (scatter-gather) table with segments
3612 * associated with the current disk command.
3614 * LOCKING:
3615 * spin_lock_irqsave(host lock)
3618 static void ata_fill_sg(struct ata_queued_cmd *qc)
3620 struct ata_port *ap = qc->ap;
3621 struct scatterlist *sg;
3622 unsigned int idx;
3624 WARN_ON(qc->__sg == NULL);
3625 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3627 idx = 0;
3628 ata_for_each_sg(sg, qc) {
3629 u32 addr, offset;
3630 u32 sg_len, len;
3632 /* determine if physical DMA addr spans 64K boundary.
3633 * Note h/w doesn't support 64-bit, so we unconditionally
3634 * truncate dma_addr_t to u32.
3636 addr = (u32) sg_dma_address(sg);
3637 sg_len = sg_dma_len(sg);
3639 while (sg_len) {
3640 offset = addr & 0xffff;
3641 len = sg_len;
3642 if ((offset + sg_len) > 0x10000)
3643 len = 0x10000 - offset;
3645 ap->prd[idx].addr = cpu_to_le32(addr);
3646 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3647 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3649 idx++;
3650 sg_len -= len;
3651 addr += len;
3655 if (idx)
3656 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3659 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3660 * @qc: Metadata associated with taskfile to check
3662 * Allow low-level driver to filter ATA PACKET commands, returning
3663 * a status indicating whether or not it is OK to use DMA for the
3664 * supplied PACKET command.
3666 * LOCKING:
3667 * spin_lock_irqsave(host lock)
3669 * RETURNS: 0 when ATAPI DMA can be used
3670 * nonzero otherwise
3672 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3674 struct ata_port *ap = qc->ap;
3675 int rc = 0; /* Assume ATAPI DMA is OK by default */
3677 /* some drives can only do ATAPI DMA on read/write */
3678 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
3679 struct scsi_cmnd *cmd = qc->scsicmd;
3680 u8 *scsicmd = cmd->cmnd;
3682 switch (scsicmd[0]) {
3683 case READ_10:
3684 case WRITE_10:
3685 case READ_12:
3686 case WRITE_12:
3687 case READ_6:
3688 case WRITE_6:
3689 /* atapi dma maybe ok */
3690 break;
3691 default:
3692 /* turn off atapi dma */
3693 return 1;
3697 if (ap->ops->check_atapi_dma)
3698 rc = ap->ops->check_atapi_dma(qc);
3700 return rc;
3703 * ata_qc_prep - Prepare taskfile for submission
3704 * @qc: Metadata associated with taskfile to be prepared
3706 * Prepare ATA taskfile for submission.
3708 * LOCKING:
3709 * spin_lock_irqsave(host lock)
3711 void ata_qc_prep(struct ata_queued_cmd *qc)
3713 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3714 return;
3716 ata_fill_sg(qc);
3719 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3722 * ata_sg_init_one - Associate command with memory buffer
3723 * @qc: Command to be associated
3724 * @buf: Memory buffer
3725 * @buflen: Length of memory buffer, in bytes.
3727 * Initialize the data-related elements of queued_cmd @qc
3728 * to point to a single memory buffer, @buf of byte length @buflen.
3730 * LOCKING:
3731 * spin_lock_irqsave(host lock)
3734 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3736 qc->flags |= ATA_QCFLAG_SINGLE;
3738 qc->__sg = &qc->sgent;
3739 qc->n_elem = 1;
3740 qc->orig_n_elem = 1;
3741 qc->buf_virt = buf;
3742 qc->nbytes = buflen;
3744 sg_init_one(&qc->sgent, buf, buflen);
3748 * ata_sg_init - Associate command with scatter-gather table.
3749 * @qc: Command to be associated
3750 * @sg: Scatter-gather table.
3751 * @n_elem: Number of elements in s/g table.
3753 * Initialize the data-related elements of queued_cmd @qc
3754 * to point to a scatter-gather table @sg, containing @n_elem
3755 * elements.
3757 * LOCKING:
3758 * spin_lock_irqsave(host lock)
3761 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3762 unsigned int n_elem)
3764 qc->flags |= ATA_QCFLAG_SG;
3765 qc->__sg = sg;
3766 qc->n_elem = n_elem;
3767 qc->orig_n_elem = n_elem;
3771 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3772 * @qc: Command with memory buffer to be mapped.
3774 * DMA-map the memory buffer associated with queued_cmd @qc.
3776 * LOCKING:
3777 * spin_lock_irqsave(host lock)
3779 * RETURNS:
3780 * Zero on success, negative on error.
3783 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3785 struct ata_port *ap = qc->ap;
3786 int dir = qc->dma_dir;
3787 struct scatterlist *sg = qc->__sg;
3788 dma_addr_t dma_address;
3789 int trim_sg = 0;
3791 /* we must lengthen transfers to end on a 32-bit boundary */
3792 qc->pad_len = sg->length & 3;
3793 if (qc->pad_len) {
3794 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3795 struct scatterlist *psg = &qc->pad_sgent;
3797 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3799 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3801 if (qc->tf.flags & ATA_TFLAG_WRITE)
3802 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3803 qc->pad_len);
3805 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3806 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3807 /* trim sg */
3808 sg->length -= qc->pad_len;
3809 if (sg->length == 0)
3810 trim_sg = 1;
3812 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3813 sg->length, qc->pad_len);
3816 if (trim_sg) {
3817 qc->n_elem--;
3818 goto skip_map;
3821 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3822 sg->length, dir);
3823 if (dma_mapping_error(dma_address)) {
3824 /* restore sg */
3825 sg->length += qc->pad_len;
3826 return -1;
3829 sg_dma_address(sg) = dma_address;
3830 sg_dma_len(sg) = sg->length;
3832 skip_map:
3833 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3834 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3836 return 0;
3840 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3841 * @qc: Command with scatter-gather table to be mapped.
3843 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3845 * LOCKING:
3846 * spin_lock_irqsave(host lock)
3848 * RETURNS:
3849 * Zero on success, negative on error.
3853 static int ata_sg_setup(struct ata_queued_cmd *qc)
3855 struct ata_port *ap = qc->ap;
3856 struct scatterlist *sg = qc->__sg;
3857 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3858 int n_elem, pre_n_elem, dir, trim_sg = 0;
3860 VPRINTK("ENTER, ata%u\n", ap->print_id);
3861 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3863 /* we must lengthen transfers to end on a 32-bit boundary */
3864 qc->pad_len = lsg->length & 3;
3865 if (qc->pad_len) {
3866 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3867 struct scatterlist *psg = &qc->pad_sgent;
3868 unsigned int offset;
3870 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3872 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3875 * psg->page/offset are used to copy to-be-written
3876 * data in this function or read data in ata_sg_clean.
3878 offset = lsg->offset + lsg->length - qc->pad_len;
3879 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3880 psg->offset = offset_in_page(offset);
3882 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3883 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3884 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3885 kunmap_atomic(addr, KM_IRQ0);
3888 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3889 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3890 /* trim last sg */
3891 lsg->length -= qc->pad_len;
3892 if (lsg->length == 0)
3893 trim_sg = 1;
3895 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3896 qc->n_elem - 1, lsg->length, qc->pad_len);
3899 pre_n_elem = qc->n_elem;
3900 if (trim_sg && pre_n_elem)
3901 pre_n_elem--;
3903 if (!pre_n_elem) {
3904 n_elem = 0;
3905 goto skip_map;
3908 dir = qc->dma_dir;
3909 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3910 if (n_elem < 1) {
3911 /* restore last sg */
3912 lsg->length += qc->pad_len;
3913 return -1;
3916 DPRINTK("%d sg elements mapped\n", n_elem);
3918 skip_map:
3919 qc->n_elem = n_elem;
3921 return 0;
3925 * swap_buf_le16 - swap halves of 16-bit words in place
3926 * @buf: Buffer to swap
3927 * @buf_words: Number of 16-bit words in buffer.
3929 * Swap halves of 16-bit words if needed to convert from
3930 * little-endian byte order to native cpu byte order, or
3931 * vice-versa.
3933 * LOCKING:
3934 * Inherited from caller.
3936 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3938 #ifdef __BIG_ENDIAN
3939 unsigned int i;
3941 for (i = 0; i < buf_words; i++)
3942 buf[i] = le16_to_cpu(buf[i]);
3943 #endif /* __BIG_ENDIAN */
3947 * ata_data_xfer - Transfer data by PIO
3948 * @adev: device to target
3949 * @buf: data buffer
3950 * @buflen: buffer length
3951 * @write_data: read/write
3953 * Transfer data from/to the device data register by PIO.
3955 * LOCKING:
3956 * Inherited from caller.
3958 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
3959 unsigned int buflen, int write_data)
3961 struct ata_port *ap = adev->ap;
3962 unsigned int words = buflen >> 1;
3964 /* Transfer multiple of 2 bytes */
3965 if (write_data)
3966 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
3967 else
3968 ioread16_rep(ap->ioaddr.data_addr, buf, words);
3970 /* Transfer trailing 1 byte, if any. */
3971 if (unlikely(buflen & 0x01)) {
3972 u16 align_buf[1] = { 0 };
3973 unsigned char *trailing_buf = buf + buflen - 1;
3975 if (write_data) {
3976 memcpy(align_buf, trailing_buf, 1);
3977 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3978 } else {
3979 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
3980 memcpy(trailing_buf, align_buf, 1);
3986 * ata_data_xfer_noirq - Transfer data by PIO
3987 * @adev: device to target
3988 * @buf: data buffer
3989 * @buflen: buffer length
3990 * @write_data: read/write
3992 * Transfer data from/to the device data register by PIO. Do the
3993 * transfer with interrupts disabled.
3995 * LOCKING:
3996 * Inherited from caller.
3998 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3999 unsigned int buflen, int write_data)
4001 unsigned long flags;
4002 local_irq_save(flags);
4003 ata_data_xfer(adev, buf, buflen, write_data);
4004 local_irq_restore(flags);
4009 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
4010 * @qc: Command on going
4012 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
4014 * LOCKING:
4015 * Inherited from caller.
4018 static void ata_pio_sector(struct ata_queued_cmd *qc)
4020 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4021 struct scatterlist *sg = qc->__sg;
4022 struct ata_port *ap = qc->ap;
4023 struct page *page;
4024 unsigned int offset;
4025 unsigned char *buf;
4027 if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
4028 ap->hsm_task_state = HSM_ST_LAST;
4030 page = sg[qc->cursg].page;
4031 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4033 /* get the current page and offset */
4034 page = nth_page(page, (offset >> PAGE_SHIFT));
4035 offset %= PAGE_SIZE;
4037 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4039 if (PageHighMem(page)) {
4040 unsigned long flags;
4042 /* FIXME: use a bounce buffer */
4043 local_irq_save(flags);
4044 buf = kmap_atomic(page, KM_IRQ0);
4046 /* do the actual data transfer */
4047 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4049 kunmap_atomic(buf, KM_IRQ0);
4050 local_irq_restore(flags);
4051 } else {
4052 buf = page_address(page);
4053 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
4056 qc->curbytes += ATA_SECT_SIZE;
4057 qc->cursg_ofs += ATA_SECT_SIZE;
4059 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4060 qc->cursg++;
4061 qc->cursg_ofs = 0;
4066 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4067 * @qc: Command on going
4069 * Transfer one or many ATA_SECT_SIZE of data from/to the
4070 * ATA device for the DRQ request.
4072 * LOCKING:
4073 * Inherited from caller.
4076 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4078 if (is_multi_taskfile(&qc->tf)) {
4079 /* READ/WRITE MULTIPLE */
4080 unsigned int nsect;
4082 WARN_ON(qc->dev->multi_count == 0);
4084 nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
4085 qc->dev->multi_count);
4086 while (nsect--)
4087 ata_pio_sector(qc);
4088 } else
4089 ata_pio_sector(qc);
4093 * atapi_send_cdb - Write CDB bytes to hardware
4094 * @ap: Port to which ATAPI device is attached.
4095 * @qc: Taskfile currently active
4097 * When device has indicated its readiness to accept
4098 * a CDB, this function is called. Send the CDB.
4100 * LOCKING:
4101 * caller.
4104 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4106 /* send SCSI cdb */
4107 DPRINTK("send cdb\n");
4108 WARN_ON(qc->dev->cdb_len < 12);
4110 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4111 ata_altstatus(ap); /* flush */
4113 switch (qc->tf.protocol) {
4114 case ATA_PROT_ATAPI:
4115 ap->hsm_task_state = HSM_ST;
4116 break;
4117 case ATA_PROT_ATAPI_NODATA:
4118 ap->hsm_task_state = HSM_ST_LAST;
4119 break;
4120 case ATA_PROT_ATAPI_DMA:
4121 ap->hsm_task_state = HSM_ST_LAST;
4122 /* initiate bmdma */
4123 ap->ops->bmdma_start(qc);
4124 break;
4129 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4130 * @qc: Command on going
4131 * @bytes: number of bytes
4133 * Transfer Transfer data from/to the ATAPI device.
4135 * LOCKING:
4136 * Inherited from caller.
4140 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4142 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4143 struct scatterlist *sg = qc->__sg;
4144 struct ata_port *ap = qc->ap;
4145 struct page *page;
4146 unsigned char *buf;
4147 unsigned int offset, count;
4149 if (qc->curbytes + bytes >= qc->nbytes)
4150 ap->hsm_task_state = HSM_ST_LAST;
4152 next_sg:
4153 if (unlikely(qc->cursg >= qc->n_elem)) {
4155 * The end of qc->sg is reached and the device expects
4156 * more data to transfer. In order not to overrun qc->sg
4157 * and fulfill length specified in the byte count register,
4158 * - for read case, discard trailing data from the device
4159 * - for write case, padding zero data to the device
4161 u16 pad_buf[1] = { 0 };
4162 unsigned int words = bytes >> 1;
4163 unsigned int i;
4165 if (words) /* warning if bytes > 1 */
4166 ata_dev_printk(qc->dev, KERN_WARNING,
4167 "%u bytes trailing data\n", bytes);
4169 for (i = 0; i < words; i++)
4170 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4172 ap->hsm_task_state = HSM_ST_LAST;
4173 return;
4176 sg = &qc->__sg[qc->cursg];
4178 page = sg->page;
4179 offset = sg->offset + qc->cursg_ofs;
4181 /* get the current page and offset */
4182 page = nth_page(page, (offset >> PAGE_SHIFT));
4183 offset %= PAGE_SIZE;
4185 /* don't overrun current sg */
4186 count = min(sg->length - qc->cursg_ofs, bytes);
4188 /* don't cross page boundaries */
4189 count = min(count, (unsigned int)PAGE_SIZE - offset);
4191 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4193 if (PageHighMem(page)) {
4194 unsigned long flags;
4196 /* FIXME: use bounce buffer */
4197 local_irq_save(flags);
4198 buf = kmap_atomic(page, KM_IRQ0);
4200 /* do the actual data transfer */
4201 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4203 kunmap_atomic(buf, KM_IRQ0);
4204 local_irq_restore(flags);
4205 } else {
4206 buf = page_address(page);
4207 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4210 bytes -= count;
4211 qc->curbytes += count;
4212 qc->cursg_ofs += count;
4214 if (qc->cursg_ofs == sg->length) {
4215 qc->cursg++;
4216 qc->cursg_ofs = 0;
4219 if (bytes)
4220 goto next_sg;
4224 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4225 * @qc: Command on going
4227 * Transfer Transfer data from/to the ATAPI device.
4229 * LOCKING:
4230 * Inherited from caller.
4233 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4235 struct ata_port *ap = qc->ap;
4236 struct ata_device *dev = qc->dev;
4237 unsigned int ireason, bc_lo, bc_hi, bytes;
4238 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4240 /* Abuse qc->result_tf for temp storage of intermediate TF
4241 * here to save some kernel stack usage.
4242 * For normal completion, qc->result_tf is not relevant. For
4243 * error, qc->result_tf is later overwritten by ata_qc_complete().
4244 * So, the correctness of qc->result_tf is not affected.
4246 ap->ops->tf_read(ap, &qc->result_tf);
4247 ireason = qc->result_tf.nsect;
4248 bc_lo = qc->result_tf.lbam;
4249 bc_hi = qc->result_tf.lbah;
4250 bytes = (bc_hi << 8) | bc_lo;
4252 /* shall be cleared to zero, indicating xfer of data */
4253 if (ireason & (1 << 0))
4254 goto err_out;
4256 /* make sure transfer direction matches expected */
4257 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4258 if (do_write != i_write)
4259 goto err_out;
4261 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4263 __atapi_pio_bytes(qc, bytes);
4265 return;
4267 err_out:
4268 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4269 qc->err_mask |= AC_ERR_HSM;
4270 ap->hsm_task_state = HSM_ST_ERR;
4274 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4275 * @ap: the target ata_port
4276 * @qc: qc on going
4278 * RETURNS:
4279 * 1 if ok in workqueue, 0 otherwise.
4282 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4284 if (qc->tf.flags & ATA_TFLAG_POLLING)
4285 return 1;
4287 if (ap->hsm_task_state == HSM_ST_FIRST) {
4288 if (qc->tf.protocol == ATA_PROT_PIO &&
4289 (qc->tf.flags & ATA_TFLAG_WRITE))
4290 return 1;
4292 if (is_atapi_taskfile(&qc->tf) &&
4293 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4294 return 1;
4297 return 0;
4301 * ata_hsm_qc_complete - finish a qc running on standard HSM
4302 * @qc: Command to complete
4303 * @in_wq: 1 if called from workqueue, 0 otherwise
4305 * Finish @qc which is running on standard HSM.
4307 * LOCKING:
4308 * If @in_wq is zero, spin_lock_irqsave(host lock).
4309 * Otherwise, none on entry and grabs host lock.
4311 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4313 struct ata_port *ap = qc->ap;
4314 unsigned long flags;
4316 if (ap->ops->error_handler) {
4317 if (in_wq) {
4318 spin_lock_irqsave(ap->lock, flags);
4320 /* EH might have kicked in while host lock is
4321 * released.
4323 qc = ata_qc_from_tag(ap, qc->tag);
4324 if (qc) {
4325 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4326 ap->ops->irq_on(ap);
4327 ata_qc_complete(qc);
4328 } else
4329 ata_port_freeze(ap);
4332 spin_unlock_irqrestore(ap->lock, flags);
4333 } else {
4334 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4335 ata_qc_complete(qc);
4336 else
4337 ata_port_freeze(ap);
4339 } else {
4340 if (in_wq) {
4341 spin_lock_irqsave(ap->lock, flags);
4342 ap->ops->irq_on(ap);
4343 ata_qc_complete(qc);
4344 spin_unlock_irqrestore(ap->lock, flags);
4345 } else
4346 ata_qc_complete(qc);
4349 ata_altstatus(ap); /* flush */
4353 * ata_hsm_move - move the HSM to the next state.
4354 * @ap: the target ata_port
4355 * @qc: qc on going
4356 * @status: current device status
4357 * @in_wq: 1 if called from workqueue, 0 otherwise
4359 * RETURNS:
4360 * 1 when poll next status needed, 0 otherwise.
4362 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4363 u8 status, int in_wq)
4365 unsigned long flags = 0;
4366 int poll_next;
4368 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4370 /* Make sure ata_qc_issue_prot() does not throw things
4371 * like DMA polling into the workqueue. Notice that
4372 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4374 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4376 fsm_start:
4377 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4378 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4380 switch (ap->hsm_task_state) {
4381 case HSM_ST_FIRST:
4382 /* Send first data block or PACKET CDB */
4384 /* If polling, we will stay in the work queue after
4385 * sending the data. Otherwise, interrupt handler
4386 * takes over after sending the data.
4388 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4390 /* check device status */
4391 if (unlikely((status & ATA_DRQ) == 0)) {
4392 /* handle BSY=0, DRQ=0 as error */
4393 if (likely(status & (ATA_ERR | ATA_DF)))
4394 /* device stops HSM for abort/error */
4395 qc->err_mask |= AC_ERR_DEV;
4396 else
4397 /* HSM violation. Let EH handle this */
4398 qc->err_mask |= AC_ERR_HSM;
4400 ap->hsm_task_state = HSM_ST_ERR;
4401 goto fsm_start;
4404 /* Device should not ask for data transfer (DRQ=1)
4405 * when it finds something wrong.
4406 * We ignore DRQ here and stop the HSM by
4407 * changing hsm_task_state to HSM_ST_ERR and
4408 * let the EH abort the command or reset the device.
4410 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4411 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4412 "error, dev_stat 0x%X\n", status);
4413 qc->err_mask |= AC_ERR_HSM;
4414 ap->hsm_task_state = HSM_ST_ERR;
4415 goto fsm_start;
4418 /* Send the CDB (atapi) or the first data block (ata pio out).
4419 * During the state transition, interrupt handler shouldn't
4420 * be invoked before the data transfer is complete and
4421 * hsm_task_state is changed. Hence, the following locking.
4423 if (in_wq)
4424 spin_lock_irqsave(ap->lock, flags);
4426 if (qc->tf.protocol == ATA_PROT_PIO) {
4427 /* PIO data out protocol.
4428 * send first data block.
4431 /* ata_pio_sectors() might change the state
4432 * to HSM_ST_LAST. so, the state is changed here
4433 * before ata_pio_sectors().
4435 ap->hsm_task_state = HSM_ST;
4436 ata_pio_sectors(qc);
4437 ata_altstatus(ap); /* flush */
4438 } else
4439 /* send CDB */
4440 atapi_send_cdb(ap, qc);
4442 if (in_wq)
4443 spin_unlock_irqrestore(ap->lock, flags);
4445 /* if polling, ata_pio_task() handles the rest.
4446 * otherwise, interrupt handler takes over from here.
4448 break;
4450 case HSM_ST:
4451 /* complete command or read/write the data register */
4452 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4453 /* ATAPI PIO protocol */
4454 if ((status & ATA_DRQ) == 0) {
4455 /* No more data to transfer or device error.
4456 * Device error will be tagged in HSM_ST_LAST.
4458 ap->hsm_task_state = HSM_ST_LAST;
4459 goto fsm_start;
4462 /* Device should not ask for data transfer (DRQ=1)
4463 * when it finds something wrong.
4464 * We ignore DRQ here and stop the HSM by
4465 * changing hsm_task_state to HSM_ST_ERR and
4466 * let the EH abort the command or reset the device.
4468 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4469 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4470 "device error, dev_stat 0x%X\n",
4471 status);
4472 qc->err_mask |= AC_ERR_HSM;
4473 ap->hsm_task_state = HSM_ST_ERR;
4474 goto fsm_start;
4477 atapi_pio_bytes(qc);
4479 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4480 /* bad ireason reported by device */
4481 goto fsm_start;
4483 } else {
4484 /* ATA PIO protocol */
4485 if (unlikely((status & ATA_DRQ) == 0)) {
4486 /* handle BSY=0, DRQ=0 as error */
4487 if (likely(status & (ATA_ERR | ATA_DF)))
4488 /* device stops HSM for abort/error */
4489 qc->err_mask |= AC_ERR_DEV;
4490 else
4491 /* HSM violation. Let EH handle this.
4492 * Phantom devices also trigger this
4493 * condition. Mark hint.
4495 qc->err_mask |= AC_ERR_HSM |
4496 AC_ERR_NODEV_HINT;
4498 ap->hsm_task_state = HSM_ST_ERR;
4499 goto fsm_start;
4502 /* For PIO reads, some devices may ask for
4503 * data transfer (DRQ=1) alone with ERR=1.
4504 * We respect DRQ here and transfer one
4505 * block of junk data before changing the
4506 * hsm_task_state to HSM_ST_ERR.
4508 * For PIO writes, ERR=1 DRQ=1 doesn't make
4509 * sense since the data block has been
4510 * transferred to the device.
4512 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4513 /* data might be corrputed */
4514 qc->err_mask |= AC_ERR_DEV;
4516 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4517 ata_pio_sectors(qc);
4518 ata_altstatus(ap);
4519 status = ata_wait_idle(ap);
4522 if (status & (ATA_BUSY | ATA_DRQ))
4523 qc->err_mask |= AC_ERR_HSM;
4525 /* ata_pio_sectors() might change the
4526 * state to HSM_ST_LAST. so, the state
4527 * is changed after ata_pio_sectors().
4529 ap->hsm_task_state = HSM_ST_ERR;
4530 goto fsm_start;
4533 ata_pio_sectors(qc);
4535 if (ap->hsm_task_state == HSM_ST_LAST &&
4536 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4537 /* all data read */
4538 ata_altstatus(ap);
4539 status = ata_wait_idle(ap);
4540 goto fsm_start;
4544 ata_altstatus(ap); /* flush */
4545 poll_next = 1;
4546 break;
4548 case HSM_ST_LAST:
4549 if (unlikely(!ata_ok(status))) {
4550 qc->err_mask |= __ac_err_mask(status);
4551 ap->hsm_task_state = HSM_ST_ERR;
4552 goto fsm_start;
4555 /* no more data to transfer */
4556 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4557 ap->print_id, qc->dev->devno, status);
4559 WARN_ON(qc->err_mask);
4561 ap->hsm_task_state = HSM_ST_IDLE;
4563 /* complete taskfile transaction */
4564 ata_hsm_qc_complete(qc, in_wq);
4566 poll_next = 0;
4567 break;
4569 case HSM_ST_ERR:
4570 /* make sure qc->err_mask is available to
4571 * know what's wrong and recover
4573 WARN_ON(qc->err_mask == 0);
4575 ap->hsm_task_state = HSM_ST_IDLE;
4577 /* complete taskfile transaction */
4578 ata_hsm_qc_complete(qc, in_wq);
4580 poll_next = 0;
4581 break;
4582 default:
4583 poll_next = 0;
4584 BUG();
4587 return poll_next;
4590 static void ata_pio_task(struct work_struct *work)
4592 struct ata_port *ap =
4593 container_of(work, struct ata_port, port_task.work);
4594 struct ata_queued_cmd *qc = ap->port_task_data;
4595 u8 status;
4596 int poll_next;
4598 fsm_start:
4599 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4602 * This is purely heuristic. This is a fast path.
4603 * Sometimes when we enter, BSY will be cleared in
4604 * a chk-status or two. If not, the drive is probably seeking
4605 * or something. Snooze for a couple msecs, then
4606 * chk-status again. If still busy, queue delayed work.
4608 status = ata_busy_wait(ap, ATA_BUSY, 5);
4609 if (status & ATA_BUSY) {
4610 msleep(2);
4611 status = ata_busy_wait(ap, ATA_BUSY, 10);
4612 if (status & ATA_BUSY) {
4613 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4614 return;
4618 /* move the HSM */
4619 poll_next = ata_hsm_move(ap, qc, status, 1);
4621 /* another command or interrupt handler
4622 * may be running at this point.
4624 if (poll_next)
4625 goto fsm_start;
4629 * ata_qc_new - Request an available ATA command, for queueing
4630 * @ap: Port associated with device @dev
4631 * @dev: Device from whom we request an available command structure
4633 * LOCKING:
4634 * None.
4637 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4639 struct ata_queued_cmd *qc = NULL;
4640 unsigned int i;
4642 /* no command while frozen */
4643 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4644 return NULL;
4646 /* the last tag is reserved for internal command. */
4647 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4648 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4649 qc = __ata_qc_from_tag(ap, i);
4650 break;
4653 if (qc)
4654 qc->tag = i;
4656 return qc;
4660 * ata_qc_new_init - Request an available ATA command, and initialize it
4661 * @dev: Device from whom we request an available command structure
4663 * LOCKING:
4664 * None.
4667 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4669 struct ata_port *ap = dev->ap;
4670 struct ata_queued_cmd *qc;
4672 qc = ata_qc_new(ap);
4673 if (qc) {
4674 qc->scsicmd = NULL;
4675 qc->ap = ap;
4676 qc->dev = dev;
4678 ata_qc_reinit(qc);
4681 return qc;
4685 * ata_qc_free - free unused ata_queued_cmd
4686 * @qc: Command to complete
4688 * Designed to free unused ata_queued_cmd object
4689 * in case something prevents using it.
4691 * LOCKING:
4692 * spin_lock_irqsave(host lock)
4694 void ata_qc_free(struct ata_queued_cmd *qc)
4696 struct ata_port *ap = qc->ap;
4697 unsigned int tag;
4699 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4701 qc->flags = 0;
4702 tag = qc->tag;
4703 if (likely(ata_tag_valid(tag))) {
4704 qc->tag = ATA_TAG_POISON;
4705 clear_bit(tag, &ap->qc_allocated);
4709 void __ata_qc_complete(struct ata_queued_cmd *qc)
4711 struct ata_port *ap = qc->ap;
4713 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4714 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4716 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4717 ata_sg_clean(qc);
4719 /* command should be marked inactive atomically with qc completion */
4720 if (qc->tf.protocol == ATA_PROT_NCQ)
4721 ap->sactive &= ~(1 << qc->tag);
4722 else
4723 ap->active_tag = ATA_TAG_POISON;
4725 /* atapi: mark qc as inactive to prevent the interrupt handler
4726 * from completing the command twice later, before the error handler
4727 * is called. (when rc != 0 and atapi request sense is needed)
4729 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4730 ap->qc_active &= ~(1 << qc->tag);
4732 /* call completion callback */
4733 qc->complete_fn(qc);
4736 static void fill_result_tf(struct ata_queued_cmd *qc)
4738 struct ata_port *ap = qc->ap;
4740 qc->result_tf.flags = qc->tf.flags;
4741 ap->ops->tf_read(ap, &qc->result_tf);
4745 * ata_qc_complete - Complete an active ATA command
4746 * @qc: Command to complete
4747 * @err_mask: ATA Status register contents
4749 * Indicate to the mid and upper layers that an ATA
4750 * command has completed, with either an ok or not-ok status.
4752 * LOCKING:
4753 * spin_lock_irqsave(host lock)
4755 void ata_qc_complete(struct ata_queued_cmd *qc)
4757 struct ata_port *ap = qc->ap;
4759 /* XXX: New EH and old EH use different mechanisms to
4760 * synchronize EH with regular execution path.
4762 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4763 * Normal execution path is responsible for not accessing a
4764 * failed qc. libata core enforces the rule by returning NULL
4765 * from ata_qc_from_tag() for failed qcs.
4767 * Old EH depends on ata_qc_complete() nullifying completion
4768 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4769 * not synchronize with interrupt handler. Only PIO task is
4770 * taken care of.
4772 if (ap->ops->error_handler) {
4773 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4775 if (unlikely(qc->err_mask))
4776 qc->flags |= ATA_QCFLAG_FAILED;
4778 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4779 if (!ata_tag_internal(qc->tag)) {
4780 /* always fill result TF for failed qc */
4781 fill_result_tf(qc);
4782 ata_qc_schedule_eh(qc);
4783 return;
4787 /* read result TF if requested */
4788 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4789 fill_result_tf(qc);
4791 __ata_qc_complete(qc);
4792 } else {
4793 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4794 return;
4796 /* read result TF if failed or requested */
4797 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4798 fill_result_tf(qc);
4800 __ata_qc_complete(qc);
4805 * ata_qc_complete_multiple - Complete multiple qcs successfully
4806 * @ap: port in question
4807 * @qc_active: new qc_active mask
4808 * @finish_qc: LLDD callback invoked before completing a qc
4810 * Complete in-flight commands. This functions is meant to be
4811 * called from low-level driver's interrupt routine to complete
4812 * requests normally. ap->qc_active and @qc_active is compared
4813 * and commands are completed accordingly.
4815 * LOCKING:
4816 * spin_lock_irqsave(host lock)
4818 * RETURNS:
4819 * Number of completed commands on success, -errno otherwise.
4821 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4822 void (*finish_qc)(struct ata_queued_cmd *))
4824 int nr_done = 0;
4825 u32 done_mask;
4826 int i;
4828 done_mask = ap->qc_active ^ qc_active;
4830 if (unlikely(done_mask & qc_active)) {
4831 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4832 "(%08x->%08x)\n", ap->qc_active, qc_active);
4833 return -EINVAL;
4836 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4837 struct ata_queued_cmd *qc;
4839 if (!(done_mask & (1 << i)))
4840 continue;
4842 if ((qc = ata_qc_from_tag(ap, i))) {
4843 if (finish_qc)
4844 finish_qc(qc);
4845 ata_qc_complete(qc);
4846 nr_done++;
4850 return nr_done;
4853 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4855 struct ata_port *ap = qc->ap;
4857 switch (qc->tf.protocol) {
4858 case ATA_PROT_NCQ:
4859 case ATA_PROT_DMA:
4860 case ATA_PROT_ATAPI_DMA:
4861 return 1;
4863 case ATA_PROT_ATAPI:
4864 case ATA_PROT_PIO:
4865 if (ap->flags & ATA_FLAG_PIO_DMA)
4866 return 1;
4868 /* fall through */
4870 default:
4871 return 0;
4874 /* never reached */
4878 * ata_qc_issue - issue taskfile to device
4879 * @qc: command to issue to device
4881 * Prepare an ATA command to submission to device.
4882 * This includes mapping the data into a DMA-able
4883 * area, filling in the S/G table, and finally
4884 * writing the taskfile to hardware, starting the command.
4886 * LOCKING:
4887 * spin_lock_irqsave(host lock)
4889 void ata_qc_issue(struct ata_queued_cmd *qc)
4891 struct ata_port *ap = qc->ap;
4893 /* Make sure only one non-NCQ command is outstanding. The
4894 * check is skipped for old EH because it reuses active qc to
4895 * request ATAPI sense.
4897 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4899 if (qc->tf.protocol == ATA_PROT_NCQ) {
4900 WARN_ON(ap->sactive & (1 << qc->tag));
4901 ap->sactive |= 1 << qc->tag;
4902 } else {
4903 WARN_ON(ap->sactive);
4904 ap->active_tag = qc->tag;
4907 qc->flags |= ATA_QCFLAG_ACTIVE;
4908 ap->qc_active |= 1 << qc->tag;
4910 if (ata_should_dma_map(qc)) {
4911 if (qc->flags & ATA_QCFLAG_SG) {
4912 if (ata_sg_setup(qc))
4913 goto sg_err;
4914 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4915 if (ata_sg_setup_one(qc))
4916 goto sg_err;
4918 } else {
4919 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4922 ap->ops->qc_prep(qc);
4924 qc->err_mask |= ap->ops->qc_issue(qc);
4925 if (unlikely(qc->err_mask))
4926 goto err;
4927 return;
4929 sg_err:
4930 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4931 qc->err_mask |= AC_ERR_SYSTEM;
4932 err:
4933 ata_qc_complete(qc);
4937 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4938 * @qc: command to issue to device
4940 * Using various libata functions and hooks, this function
4941 * starts an ATA command. ATA commands are grouped into
4942 * classes called "protocols", and issuing each type of protocol
4943 * is slightly different.
4945 * May be used as the qc_issue() entry in ata_port_operations.
4947 * LOCKING:
4948 * spin_lock_irqsave(host lock)
4950 * RETURNS:
4951 * Zero on success, AC_ERR_* mask on failure
4954 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4956 struct ata_port *ap = qc->ap;
4958 /* Use polling pio if the LLD doesn't handle
4959 * interrupt driven pio and atapi CDB interrupt.
4961 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4962 switch (qc->tf.protocol) {
4963 case ATA_PROT_PIO:
4964 case ATA_PROT_NODATA:
4965 case ATA_PROT_ATAPI:
4966 case ATA_PROT_ATAPI_NODATA:
4967 qc->tf.flags |= ATA_TFLAG_POLLING;
4968 break;
4969 case ATA_PROT_ATAPI_DMA:
4970 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4971 /* see ata_dma_blacklisted() */
4972 BUG();
4973 break;
4974 default:
4975 break;
4979 /* Some controllers show flaky interrupt behavior after
4980 * setting xfer mode. Use polling instead.
4982 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4983 qc->tf.feature == SETFEATURES_XFER) &&
4984 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4985 qc->tf.flags |= ATA_TFLAG_POLLING;
4987 /* select the device */
4988 ata_dev_select(ap, qc->dev->devno, 1, 0);
4990 /* start the command */
4991 switch (qc->tf.protocol) {
4992 case ATA_PROT_NODATA:
4993 if (qc->tf.flags & ATA_TFLAG_POLLING)
4994 ata_qc_set_polling(qc);
4996 ata_tf_to_host(ap, &qc->tf);
4997 ap->hsm_task_state = HSM_ST_LAST;
4999 if (qc->tf.flags & ATA_TFLAG_POLLING)
5000 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5002 break;
5004 case ATA_PROT_DMA:
5005 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5007 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5008 ap->ops->bmdma_setup(qc); /* set up bmdma */
5009 ap->ops->bmdma_start(qc); /* initiate bmdma */
5010 ap->hsm_task_state = HSM_ST_LAST;
5011 break;
5013 case ATA_PROT_PIO:
5014 if (qc->tf.flags & ATA_TFLAG_POLLING)
5015 ata_qc_set_polling(qc);
5017 ata_tf_to_host(ap, &qc->tf);
5019 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5020 /* PIO data out protocol */
5021 ap->hsm_task_state = HSM_ST_FIRST;
5022 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5024 /* always send first data block using
5025 * the ata_pio_task() codepath.
5027 } else {
5028 /* PIO data in protocol */
5029 ap->hsm_task_state = HSM_ST;
5031 if (qc->tf.flags & ATA_TFLAG_POLLING)
5032 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5034 /* if polling, ata_pio_task() handles the rest.
5035 * otherwise, interrupt handler takes over from here.
5039 break;
5041 case ATA_PROT_ATAPI:
5042 case ATA_PROT_ATAPI_NODATA:
5043 if (qc->tf.flags & ATA_TFLAG_POLLING)
5044 ata_qc_set_polling(qc);
5046 ata_tf_to_host(ap, &qc->tf);
5048 ap->hsm_task_state = HSM_ST_FIRST;
5050 /* send cdb by polling if no cdb interrupt */
5051 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5052 (qc->tf.flags & ATA_TFLAG_POLLING))
5053 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5054 break;
5056 case ATA_PROT_ATAPI_DMA:
5057 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5059 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5060 ap->ops->bmdma_setup(qc); /* set up bmdma */
5061 ap->hsm_task_state = HSM_ST_FIRST;
5063 /* send cdb by polling if no cdb interrupt */
5064 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5065 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5066 break;
5068 default:
5069 WARN_ON(1);
5070 return AC_ERR_SYSTEM;
5073 return 0;
5077 * ata_host_intr - Handle host interrupt for given (port, task)
5078 * @ap: Port on which interrupt arrived (possibly...)
5079 * @qc: Taskfile currently active in engine
5081 * Handle host interrupt for given queued command. Currently,
5082 * only DMA interrupts are handled. All other commands are
5083 * handled via polling with interrupts disabled (nIEN bit).
5085 * LOCKING:
5086 * spin_lock_irqsave(host lock)
5088 * RETURNS:
5089 * One if interrupt was handled, zero if not (shared irq).
5092 inline unsigned int ata_host_intr (struct ata_port *ap,
5093 struct ata_queued_cmd *qc)
5095 struct ata_eh_info *ehi = &ap->eh_info;
5096 u8 status, host_stat = 0;
5098 VPRINTK("ata%u: protocol %d task_state %d\n",
5099 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5101 /* Check whether we are expecting interrupt in this state */
5102 switch (ap->hsm_task_state) {
5103 case HSM_ST_FIRST:
5104 /* Some pre-ATAPI-4 devices assert INTRQ
5105 * at this state when ready to receive CDB.
5108 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5109 * The flag was turned on only for atapi devices.
5110 * No need to check is_atapi_taskfile(&qc->tf) again.
5112 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5113 goto idle_irq;
5114 break;
5115 case HSM_ST_LAST:
5116 if (qc->tf.protocol == ATA_PROT_DMA ||
5117 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5118 /* check status of DMA engine */
5119 host_stat = ap->ops->bmdma_status(ap);
5120 VPRINTK("ata%u: host_stat 0x%X\n",
5121 ap->print_id, host_stat);
5123 /* if it's not our irq... */
5124 if (!(host_stat & ATA_DMA_INTR))
5125 goto idle_irq;
5127 /* before we do anything else, clear DMA-Start bit */
5128 ap->ops->bmdma_stop(qc);
5130 if (unlikely(host_stat & ATA_DMA_ERR)) {
5131 /* error when transfering data to/from memory */
5132 qc->err_mask |= AC_ERR_HOST_BUS;
5133 ap->hsm_task_state = HSM_ST_ERR;
5136 break;
5137 case HSM_ST:
5138 break;
5139 default:
5140 goto idle_irq;
5143 /* check altstatus */
5144 status = ata_altstatus(ap);
5145 if (status & ATA_BUSY)
5146 goto idle_irq;
5148 /* check main status, clearing INTRQ */
5149 status = ata_chk_status(ap);
5150 if (unlikely(status & ATA_BUSY))
5151 goto idle_irq;
5153 /* ack bmdma irq events */
5154 ap->ops->irq_clear(ap);
5156 ata_hsm_move(ap, qc, status, 0);
5158 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5159 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5160 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5162 return 1; /* irq handled */
5164 idle_irq:
5165 ap->stats.idle_irq++;
5167 #ifdef ATA_IRQ_TRAP
5168 if ((ap->stats.idle_irq % 1000) == 0) {
5169 ap->ops->irq_ack(ap, 0); /* debug trap */
5170 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5171 return 1;
5173 #endif
5174 return 0; /* irq not handled */
5178 * ata_interrupt - Default ATA host interrupt handler
5179 * @irq: irq line (unused)
5180 * @dev_instance: pointer to our ata_host information structure
5182 * Default interrupt handler for PCI IDE devices. Calls
5183 * ata_host_intr() for each port that is not disabled.
5185 * LOCKING:
5186 * Obtains host lock during operation.
5188 * RETURNS:
5189 * IRQ_NONE or IRQ_HANDLED.
5192 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5194 struct ata_host *host = dev_instance;
5195 unsigned int i;
5196 unsigned int handled = 0;
5197 unsigned long flags;
5199 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5200 spin_lock_irqsave(&host->lock, flags);
5202 for (i = 0; i < host->n_ports; i++) {
5203 struct ata_port *ap;
5205 ap = host->ports[i];
5206 if (ap &&
5207 !(ap->flags & ATA_FLAG_DISABLED)) {
5208 struct ata_queued_cmd *qc;
5210 qc = ata_qc_from_tag(ap, ap->active_tag);
5211 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5212 (qc->flags & ATA_QCFLAG_ACTIVE))
5213 handled |= ata_host_intr(ap, qc);
5217 spin_unlock_irqrestore(&host->lock, flags);
5219 return IRQ_RETVAL(handled);
5223 * sata_scr_valid - test whether SCRs are accessible
5224 * @ap: ATA port to test SCR accessibility for
5226 * Test whether SCRs are accessible for @ap.
5228 * LOCKING:
5229 * None.
5231 * RETURNS:
5232 * 1 if SCRs are accessible, 0 otherwise.
5234 int sata_scr_valid(struct ata_port *ap)
5236 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5240 * sata_scr_read - read SCR register of the specified port
5241 * @ap: ATA port to read SCR for
5242 * @reg: SCR to read
5243 * @val: Place to store read value
5245 * Read SCR register @reg of @ap into *@val. This function is
5246 * guaranteed to succeed if the cable type of the port is SATA
5247 * and the port implements ->scr_read.
5249 * LOCKING:
5250 * None.
5252 * RETURNS:
5253 * 0 on success, negative errno on failure.
5255 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5257 if (sata_scr_valid(ap)) {
5258 *val = ap->ops->scr_read(ap, reg);
5259 return 0;
5261 return -EOPNOTSUPP;
5265 * sata_scr_write - write SCR register of the specified port
5266 * @ap: ATA port to write SCR for
5267 * @reg: SCR to write
5268 * @val: value to write
5270 * Write @val to SCR register @reg of @ap. This function is
5271 * guaranteed to succeed if the cable type of the port is SATA
5272 * and the port implements ->scr_read.
5274 * LOCKING:
5275 * None.
5277 * RETURNS:
5278 * 0 on success, negative errno on failure.
5280 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5282 if (sata_scr_valid(ap)) {
5283 ap->ops->scr_write(ap, reg, val);
5284 return 0;
5286 return -EOPNOTSUPP;
5290 * sata_scr_write_flush - write SCR register of the specified port and flush
5291 * @ap: ATA port to write SCR for
5292 * @reg: SCR to write
5293 * @val: value to write
5295 * This function is identical to sata_scr_write() except that this
5296 * function performs flush after writing to the register.
5298 * LOCKING:
5299 * None.
5301 * RETURNS:
5302 * 0 on success, negative errno on failure.
5304 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5306 if (sata_scr_valid(ap)) {
5307 ap->ops->scr_write(ap, reg, val);
5308 ap->ops->scr_read(ap, reg);
5309 return 0;
5311 return -EOPNOTSUPP;
5315 * ata_port_online - test whether the given port is online
5316 * @ap: ATA port to test
5318 * Test whether @ap is online. Note that this function returns 0
5319 * if online status of @ap cannot be obtained, so
5320 * ata_port_online(ap) != !ata_port_offline(ap).
5322 * LOCKING:
5323 * None.
5325 * RETURNS:
5326 * 1 if the port online status is available and online.
5328 int ata_port_online(struct ata_port *ap)
5330 u32 sstatus;
5332 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5333 return 1;
5334 return 0;
5338 * ata_port_offline - test whether the given port is offline
5339 * @ap: ATA port to test
5341 * Test whether @ap is offline. Note that this function returns
5342 * 0 if offline status of @ap cannot be obtained, so
5343 * ata_port_online(ap) != !ata_port_offline(ap).
5345 * LOCKING:
5346 * None.
5348 * RETURNS:
5349 * 1 if the port offline status is available and offline.
5351 int ata_port_offline(struct ata_port *ap)
5353 u32 sstatus;
5355 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5356 return 1;
5357 return 0;
5360 int ata_flush_cache(struct ata_device *dev)
5362 unsigned int err_mask;
5363 u8 cmd;
5365 if (!ata_try_flush_cache(dev))
5366 return 0;
5368 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5369 cmd = ATA_CMD_FLUSH_EXT;
5370 else
5371 cmd = ATA_CMD_FLUSH;
5373 err_mask = ata_do_simple_cmd(dev, cmd);
5374 if (err_mask) {
5375 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5376 return -EIO;
5379 return 0;
5382 #ifdef CONFIG_PM
5383 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5384 unsigned int action, unsigned int ehi_flags,
5385 int wait)
5387 unsigned long flags;
5388 int i, rc;
5390 for (i = 0; i < host->n_ports; i++) {
5391 struct ata_port *ap = host->ports[i];
5393 /* Previous resume operation might still be in
5394 * progress. Wait for PM_PENDING to clear.
5396 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5397 ata_port_wait_eh(ap);
5398 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5401 /* request PM ops to EH */
5402 spin_lock_irqsave(ap->lock, flags);
5404 ap->pm_mesg = mesg;
5405 if (wait) {
5406 rc = 0;
5407 ap->pm_result = &rc;
5410 ap->pflags |= ATA_PFLAG_PM_PENDING;
5411 ap->eh_info.action |= action;
5412 ap->eh_info.flags |= ehi_flags;
5414 ata_port_schedule_eh(ap);
5416 spin_unlock_irqrestore(ap->lock, flags);
5418 /* wait and check result */
5419 if (wait) {
5420 ata_port_wait_eh(ap);
5421 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5422 if (rc)
5423 return rc;
5427 return 0;
5431 * ata_host_suspend - suspend host
5432 * @host: host to suspend
5433 * @mesg: PM message
5435 * Suspend @host. Actual operation is performed by EH. This
5436 * function requests EH to perform PM operations and waits for EH
5437 * to finish.
5439 * LOCKING:
5440 * Kernel thread context (may sleep).
5442 * RETURNS:
5443 * 0 on success, -errno on failure.
5445 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5447 int i, j, rc;
5449 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5450 if (rc)
5451 goto fail;
5453 /* EH is quiescent now. Fail if we have any ready device.
5454 * This happens if hotplug occurs between completion of device
5455 * suspension and here.
5457 for (i = 0; i < host->n_ports; i++) {
5458 struct ata_port *ap = host->ports[i];
5460 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5461 struct ata_device *dev = &ap->device[j];
5463 if (ata_dev_ready(dev)) {
5464 ata_port_printk(ap, KERN_WARNING,
5465 "suspend failed, device %d "
5466 "still active\n", dev->devno);
5467 rc = -EBUSY;
5468 goto fail;
5473 host->dev->power.power_state = mesg;
5474 return 0;
5476 fail:
5477 ata_host_resume(host);
5478 return rc;
5482 * ata_host_resume - resume host
5483 * @host: host to resume
5485 * Resume @host. Actual operation is performed by EH. This
5486 * function requests EH to perform PM operations and returns.
5487 * Note that all resume operations are performed parallely.
5489 * LOCKING:
5490 * Kernel thread context (may sleep).
5492 void ata_host_resume(struct ata_host *host)
5494 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5495 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5496 host->dev->power.power_state = PMSG_ON;
5498 #endif
5501 * ata_port_start - Set port up for dma.
5502 * @ap: Port to initialize
5504 * Called just after data structures for each port are
5505 * initialized. Allocates space for PRD table.
5507 * May be used as the port_start() entry in ata_port_operations.
5509 * LOCKING:
5510 * Inherited from caller.
5512 int ata_port_start(struct ata_port *ap)
5514 struct device *dev = ap->dev;
5515 int rc;
5517 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5518 GFP_KERNEL);
5519 if (!ap->prd)
5520 return -ENOMEM;
5522 rc = ata_pad_alloc(ap, dev);
5523 if (rc)
5524 return rc;
5526 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5527 (unsigned long long)ap->prd_dma);
5528 return 0;
5532 * ata_dev_init - Initialize an ata_device structure
5533 * @dev: Device structure to initialize
5535 * Initialize @dev in preparation for probing.
5537 * LOCKING:
5538 * Inherited from caller.
5540 void ata_dev_init(struct ata_device *dev)
5542 struct ata_port *ap = dev->ap;
5543 unsigned long flags;
5545 /* SATA spd limit is bound to the first device */
5546 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5548 /* High bits of dev->flags are used to record warm plug
5549 * requests which occur asynchronously. Synchronize using
5550 * host lock.
5552 spin_lock_irqsave(ap->lock, flags);
5553 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5554 spin_unlock_irqrestore(ap->lock, flags);
5556 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5557 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5558 dev->pio_mask = UINT_MAX;
5559 dev->mwdma_mask = UINT_MAX;
5560 dev->udma_mask = UINT_MAX;
5564 * ata_port_init - Initialize an ata_port structure
5565 * @ap: Structure to initialize
5566 * @host: Collection of hosts to which @ap belongs
5567 * @ent: Probe information provided by low-level driver
5568 * @port_no: Port number associated with this ata_port
5570 * Initialize a new ata_port structure.
5572 * LOCKING:
5573 * Inherited from caller.
5575 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5576 const struct ata_probe_ent *ent, unsigned int port_no)
5578 unsigned int i;
5580 ap->lock = &host->lock;
5581 ap->flags = ATA_FLAG_DISABLED;
5582 ap->print_id = ata_print_id++;
5583 ap->ctl = ATA_DEVCTL_OBS;
5584 ap->host = host;
5585 ap->dev = ent->dev;
5586 ap->port_no = port_no;
5587 if (port_no == 1 && ent->pinfo2) {
5588 ap->pio_mask = ent->pinfo2->pio_mask;
5589 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5590 ap->udma_mask = ent->pinfo2->udma_mask;
5591 ap->flags |= ent->pinfo2->flags;
5592 ap->ops = ent->pinfo2->port_ops;
5593 } else {
5594 ap->pio_mask = ent->pio_mask;
5595 ap->mwdma_mask = ent->mwdma_mask;
5596 ap->udma_mask = ent->udma_mask;
5597 ap->flags |= ent->port_flags;
5598 ap->ops = ent->port_ops;
5600 ap->hw_sata_spd_limit = UINT_MAX;
5601 ap->active_tag = ATA_TAG_POISON;
5602 ap->last_ctl = 0xFF;
5604 #if defined(ATA_VERBOSE_DEBUG)
5605 /* turn on all debugging levels */
5606 ap->msg_enable = 0x00FF;
5607 #elif defined(ATA_DEBUG)
5608 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5609 #else
5610 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5611 #endif
5613 INIT_DELAYED_WORK(&ap->port_task, NULL);
5614 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5615 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5616 INIT_LIST_HEAD(&ap->eh_done_q);
5617 init_waitqueue_head(&ap->eh_wait_q);
5619 /* set cable type */
5620 ap->cbl = ATA_CBL_NONE;
5621 if (ap->flags & ATA_FLAG_SATA)
5622 ap->cbl = ATA_CBL_SATA;
5624 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5625 struct ata_device *dev = &ap->device[i];
5626 dev->ap = ap;
5627 dev->devno = i;
5628 ata_dev_init(dev);
5631 #ifdef ATA_IRQ_TRAP
5632 ap->stats.unhandled_irq = 1;
5633 ap->stats.idle_irq = 1;
5634 #endif
5636 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5640 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5641 * @ap: ATA port to initialize SCSI host for
5642 * @shost: SCSI host associated with @ap
5644 * Initialize SCSI host @shost associated with ATA port @ap.
5646 * LOCKING:
5647 * Inherited from caller.
5649 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5651 ap->scsi_host = shost;
5653 shost->unique_id = ap->print_id;
5654 shost->max_id = 16;
5655 shost->max_lun = 1;
5656 shost->max_channel = 1;
5657 shost->max_cmd_len = 16;
5661 * ata_port_add - Attach low-level ATA driver to system
5662 * @ent: Information provided by low-level driver
5663 * @host: Collections of ports to which we add
5664 * @port_no: Port number associated with this host
5666 * Attach low-level ATA driver to system.
5668 * LOCKING:
5669 * PCI/etc. bus probe sem.
5671 * RETURNS:
5672 * New ata_port on success, for NULL on error.
5674 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5675 struct ata_host *host,
5676 unsigned int port_no)
5678 struct Scsi_Host *shost;
5679 struct ata_port *ap;
5681 DPRINTK("ENTER\n");
5683 if (!ent->port_ops->error_handler &&
5684 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5685 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5686 port_no);
5687 return NULL;
5690 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5691 if (!shost)
5692 return NULL;
5694 shost->transportt = &ata_scsi_transport_template;
5696 ap = ata_shost_to_port(shost);
5698 ata_port_init(ap, host, ent, port_no);
5699 ata_port_init_shost(ap, shost);
5701 return ap;
5704 static void ata_host_release(struct device *gendev, void *res)
5706 struct ata_host *host = dev_get_drvdata(gendev);
5707 int i;
5709 for (i = 0; i < host->n_ports; i++) {
5710 struct ata_port *ap = host->ports[i];
5712 if (ap && ap->ops->port_stop)
5713 ap->ops->port_stop(ap);
5716 if (host->ops->host_stop)
5717 host->ops->host_stop(host);
5719 for (i = 0; i < host->n_ports; i++) {
5720 struct ata_port *ap = host->ports[i];
5722 if (ap)
5723 scsi_host_put(ap->scsi_host);
5725 host->ports[i] = NULL;
5728 dev_set_drvdata(gendev, NULL);
5732 * ata_sas_host_init - Initialize a host struct
5733 * @host: host to initialize
5734 * @dev: device host is attached to
5735 * @flags: host flags
5736 * @ops: port_ops
5738 * LOCKING:
5739 * PCI/etc. bus probe sem.
5743 void ata_host_init(struct ata_host *host, struct device *dev,
5744 unsigned long flags, const struct ata_port_operations *ops)
5746 spin_lock_init(&host->lock);
5747 host->dev = dev;
5748 host->flags = flags;
5749 host->ops = ops;
5753 * ata_device_add - Register hardware device with ATA and SCSI layers
5754 * @ent: Probe information describing hardware device to be registered
5756 * This function processes the information provided in the probe
5757 * information struct @ent, allocates the necessary ATA and SCSI
5758 * host information structures, initializes them, and registers
5759 * everything with requisite kernel subsystems.
5761 * This function requests irqs, probes the ATA bus, and probes
5762 * the SCSI bus.
5764 * LOCKING:
5765 * PCI/etc. bus probe sem.
5767 * RETURNS:
5768 * Number of ports registered. Zero on error (no ports registered).
5770 int ata_device_add(const struct ata_probe_ent *ent)
5772 unsigned int i;
5773 struct device *dev = ent->dev;
5774 struct ata_host *host;
5775 int rc;
5777 DPRINTK("ENTER\n");
5779 if (ent->irq == 0) {
5780 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5781 return 0;
5784 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5785 return 0;
5787 /* alloc a container for our list of ATA ports (buses) */
5788 host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5789 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5790 if (!host)
5791 goto err_out;
5792 devres_add(dev, host);
5793 dev_set_drvdata(dev, host);
5795 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5796 host->n_ports = ent->n_ports;
5797 host->irq = ent->irq;
5798 host->irq2 = ent->irq2;
5799 host->iomap = ent->iomap;
5800 host->private_data = ent->private_data;
5802 /* register each port bound to this device */
5803 for (i = 0; i < host->n_ports; i++) {
5804 struct ata_port *ap;
5805 unsigned long xfer_mode_mask;
5806 int irq_line = ent->irq;
5808 ap = ata_port_add(ent, host, i);
5809 host->ports[i] = ap;
5810 if (!ap)
5811 goto err_out;
5813 /* dummy? */
5814 if (ent->dummy_port_mask & (1 << i)) {
5815 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5816 ap->ops = &ata_dummy_port_ops;
5817 continue;
5820 /* start port */
5821 rc = ap->ops->port_start(ap);
5822 if (rc) {
5823 host->ports[i] = NULL;
5824 scsi_host_put(ap->scsi_host);
5825 goto err_out;
5828 /* Report the secondary IRQ for second channel legacy */
5829 if (i == 1 && ent->irq2)
5830 irq_line = ent->irq2;
5832 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5833 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5834 (ap->pio_mask << ATA_SHIFT_PIO);
5836 /* print per-port info to dmesg */
5837 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5838 "ctl 0x%p bmdma 0x%p irq %d\n",
5839 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5840 ata_mode_string(xfer_mode_mask),
5841 ap->ioaddr.cmd_addr,
5842 ap->ioaddr.ctl_addr,
5843 ap->ioaddr.bmdma_addr,
5844 irq_line);
5846 /* freeze port before requesting IRQ */
5847 ata_eh_freeze_port(ap);
5850 /* obtain irq, that may be shared between channels */
5851 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5852 ent->irq_flags, DRV_NAME, host);
5853 if (rc) {
5854 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5855 ent->irq, rc);
5856 goto err_out;
5859 /* do we have a second IRQ for the other channel, eg legacy mode */
5860 if (ent->irq2) {
5861 /* We will get weird core code crashes later if this is true
5862 so trap it now */
5863 BUG_ON(ent->irq == ent->irq2);
5865 rc = devm_request_irq(dev, ent->irq2,
5866 ent->port_ops->irq_handler, ent->irq_flags,
5867 DRV_NAME, host);
5868 if (rc) {
5869 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5870 ent->irq2, rc);
5871 goto err_out;
5875 /* resource acquisition complete */
5876 devres_remove_group(dev, ata_device_add);
5878 /* perform each probe synchronously */
5879 DPRINTK("probe begin\n");
5880 for (i = 0; i < host->n_ports; i++) {
5881 struct ata_port *ap = host->ports[i];
5882 u32 scontrol;
5883 int rc;
5885 /* init sata_spd_limit to the current value */
5886 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5887 int spd = (scontrol >> 4) & 0xf;
5888 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5890 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5892 rc = scsi_add_host(ap->scsi_host, dev);
5893 if (rc) {
5894 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5895 /* FIXME: do something useful here */
5896 /* FIXME: handle unconditional calls to
5897 * scsi_scan_host and ata_host_remove, below,
5898 * at the very least
5902 if (ap->ops->error_handler) {
5903 struct ata_eh_info *ehi = &ap->eh_info;
5904 unsigned long flags;
5906 ata_port_probe(ap);
5908 /* kick EH for boot probing */
5909 spin_lock_irqsave(ap->lock, flags);
5911 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5912 ehi->action |= ATA_EH_SOFTRESET;
5913 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5915 ap->pflags |= ATA_PFLAG_LOADING;
5916 ata_port_schedule_eh(ap);
5918 spin_unlock_irqrestore(ap->lock, flags);
5920 /* wait for EH to finish */
5921 ata_port_wait_eh(ap);
5922 } else {
5923 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5924 rc = ata_bus_probe(ap);
5925 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5927 if (rc) {
5928 /* FIXME: do something useful here?
5929 * Current libata behavior will
5930 * tear down everything when
5931 * the module is removed
5932 * or the h/w is unplugged.
5938 /* probes are done, now scan each port's disk(s) */
5939 DPRINTK("host probe begin\n");
5940 for (i = 0; i < host->n_ports; i++) {
5941 struct ata_port *ap = host->ports[i];
5943 ata_scsi_scan_host(ap);
5946 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5947 return ent->n_ports; /* success */
5949 err_out:
5950 devres_release_group(dev, ata_device_add);
5951 VPRINTK("EXIT, returning %d\n", rc);
5952 return 0;
5956 * ata_port_detach - Detach ATA port in prepration of device removal
5957 * @ap: ATA port to be detached
5959 * Detach all ATA devices and the associated SCSI devices of @ap;
5960 * then, remove the associated SCSI host. @ap is guaranteed to
5961 * be quiescent on return from this function.
5963 * LOCKING:
5964 * Kernel thread context (may sleep).
5966 void ata_port_detach(struct ata_port *ap)
5968 unsigned long flags;
5969 int i;
5971 if (!ap->ops->error_handler)
5972 goto skip_eh;
5974 /* tell EH we're leaving & flush EH */
5975 spin_lock_irqsave(ap->lock, flags);
5976 ap->pflags |= ATA_PFLAG_UNLOADING;
5977 spin_unlock_irqrestore(ap->lock, flags);
5979 ata_port_wait_eh(ap);
5981 /* EH is now guaranteed to see UNLOADING, so no new device
5982 * will be attached. Disable all existing devices.
5984 spin_lock_irqsave(ap->lock, flags);
5986 for (i = 0; i < ATA_MAX_DEVICES; i++)
5987 ata_dev_disable(&ap->device[i]);
5989 spin_unlock_irqrestore(ap->lock, flags);
5991 /* Final freeze & EH. All in-flight commands are aborted. EH
5992 * will be skipped and retrials will be terminated with bad
5993 * target.
5995 spin_lock_irqsave(ap->lock, flags);
5996 ata_port_freeze(ap); /* won't be thawed */
5997 spin_unlock_irqrestore(ap->lock, flags);
5999 ata_port_wait_eh(ap);
6001 /* Flush hotplug task. The sequence is similar to
6002 * ata_port_flush_task().
6004 flush_workqueue(ata_aux_wq);
6005 cancel_delayed_work(&ap->hotplug_task);
6006 flush_workqueue(ata_aux_wq);
6008 skip_eh:
6009 /* remove the associated SCSI host */
6010 scsi_remove_host(ap->scsi_host);
6014 * ata_host_detach - Detach all ports of an ATA host
6015 * @host: Host to detach
6017 * Detach all ports of @host.
6019 * LOCKING:
6020 * Kernel thread context (may sleep).
6022 void ata_host_detach(struct ata_host *host)
6024 int i;
6026 for (i = 0; i < host->n_ports; i++)
6027 ata_port_detach(host->ports[i]);
6030 struct ata_probe_ent *
6031 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6033 struct ata_probe_ent *probe_ent;
6035 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
6036 if (!probe_ent) {
6037 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6038 kobject_name(&(dev->kobj)));
6039 return NULL;
6042 INIT_LIST_HEAD(&probe_ent->node);
6043 probe_ent->dev = dev;
6045 probe_ent->sht = port->sht;
6046 probe_ent->port_flags = port->flags;
6047 probe_ent->pio_mask = port->pio_mask;
6048 probe_ent->mwdma_mask = port->mwdma_mask;
6049 probe_ent->udma_mask = port->udma_mask;
6050 probe_ent->port_ops = port->port_ops;
6051 probe_ent->private_data = port->private_data;
6053 return probe_ent;
6057 * ata_std_ports - initialize ioaddr with standard port offsets.
6058 * @ioaddr: IO address structure to be initialized
6060 * Utility function which initializes data_addr, error_addr,
6061 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6062 * device_addr, status_addr, and command_addr to standard offsets
6063 * relative to cmd_addr.
6065 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6068 void ata_std_ports(struct ata_ioports *ioaddr)
6070 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6071 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6072 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6073 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6074 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6075 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6076 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6077 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6078 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6079 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6083 #ifdef CONFIG_PCI
6086 * ata_pci_remove_one - PCI layer callback for device removal
6087 * @pdev: PCI device that was removed
6089 * PCI layer indicates to libata via this hook that hot-unplug or
6090 * module unload event has occurred. Detach all ports. Resource
6091 * release is handled via devres.
6093 * LOCKING:
6094 * Inherited from PCI layer (may sleep).
6096 void ata_pci_remove_one(struct pci_dev *pdev)
6098 struct device *dev = pci_dev_to_dev(pdev);
6099 struct ata_host *host = dev_get_drvdata(dev);
6101 ata_host_detach(host);
6104 /* move to PCI subsystem */
6105 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6107 unsigned long tmp = 0;
6109 switch (bits->width) {
6110 case 1: {
6111 u8 tmp8 = 0;
6112 pci_read_config_byte(pdev, bits->reg, &tmp8);
6113 tmp = tmp8;
6114 break;
6116 case 2: {
6117 u16 tmp16 = 0;
6118 pci_read_config_word(pdev, bits->reg, &tmp16);
6119 tmp = tmp16;
6120 break;
6122 case 4: {
6123 u32 tmp32 = 0;
6124 pci_read_config_dword(pdev, bits->reg, &tmp32);
6125 tmp = tmp32;
6126 break;
6129 default:
6130 return -EINVAL;
6133 tmp &= bits->mask;
6135 return (tmp == bits->val) ? 1 : 0;
6138 #ifdef CONFIG_PM
6139 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6141 pci_save_state(pdev);
6142 pci_disable_device(pdev);
6144 if (mesg.event == PM_EVENT_SUSPEND)
6145 pci_set_power_state(pdev, PCI_D3hot);
6148 int ata_pci_device_do_resume(struct pci_dev *pdev)
6150 int rc;
6152 pci_set_power_state(pdev, PCI_D0);
6153 pci_restore_state(pdev);
6155 rc = pcim_enable_device(pdev);
6156 if (rc) {
6157 dev_printk(KERN_ERR, &pdev->dev,
6158 "failed to enable device after resume (%d)\n", rc);
6159 return rc;
6162 pci_set_master(pdev);
6163 return 0;
6166 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6168 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6169 int rc = 0;
6171 rc = ata_host_suspend(host, mesg);
6172 if (rc)
6173 return rc;
6175 ata_pci_device_do_suspend(pdev, mesg);
6177 return 0;
6180 int ata_pci_device_resume(struct pci_dev *pdev)
6182 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6183 int rc;
6185 rc = ata_pci_device_do_resume(pdev);
6186 if (rc == 0)
6187 ata_host_resume(host);
6188 return rc;
6190 #endif /* CONFIG_PM */
6192 #endif /* CONFIG_PCI */
6195 static int __init ata_init(void)
6197 ata_probe_timeout *= HZ;
6198 ata_wq = create_workqueue("ata");
6199 if (!ata_wq)
6200 return -ENOMEM;
6202 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6203 if (!ata_aux_wq) {
6204 destroy_workqueue(ata_wq);
6205 return -ENOMEM;
6208 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6209 return 0;
6212 static void __exit ata_exit(void)
6214 destroy_workqueue(ata_wq);
6215 destroy_workqueue(ata_aux_wq);
6218 subsys_initcall(ata_init);
6219 module_exit(ata_exit);
6221 static unsigned long ratelimit_time;
6222 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6224 int ata_ratelimit(void)
6226 int rc;
6227 unsigned long flags;
6229 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6231 if (time_after(jiffies, ratelimit_time)) {
6232 rc = 1;
6233 ratelimit_time = jiffies + (HZ/5);
6234 } else
6235 rc = 0;
6237 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6239 return rc;
6243 * ata_wait_register - wait until register value changes
6244 * @reg: IO-mapped register
6245 * @mask: Mask to apply to read register value
6246 * @val: Wait condition
6247 * @interval_msec: polling interval in milliseconds
6248 * @timeout_msec: timeout in milliseconds
6250 * Waiting for some bits of register to change is a common
6251 * operation for ATA controllers. This function reads 32bit LE
6252 * IO-mapped register @reg and tests for the following condition.
6254 * (*@reg & mask) != val
6256 * If the condition is met, it returns; otherwise, the process is
6257 * repeated after @interval_msec until timeout.
6259 * LOCKING:
6260 * Kernel thread context (may sleep)
6262 * RETURNS:
6263 * The final register value.
6265 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6266 unsigned long interval_msec,
6267 unsigned long timeout_msec)
6269 unsigned long timeout;
6270 u32 tmp;
6272 tmp = ioread32(reg);
6274 /* Calculate timeout _after_ the first read to make sure
6275 * preceding writes reach the controller before starting to
6276 * eat away the timeout.
6278 timeout = jiffies + (timeout_msec * HZ) / 1000;
6280 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6281 msleep(interval_msec);
6282 tmp = ioread32(reg);
6285 return tmp;
6289 * Dummy port_ops
6291 static void ata_dummy_noret(struct ata_port *ap) { }
6292 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6293 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6295 static u8 ata_dummy_check_status(struct ata_port *ap)
6297 return ATA_DRDY;
6300 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6302 return AC_ERR_SYSTEM;
6305 const struct ata_port_operations ata_dummy_port_ops = {
6306 .port_disable = ata_port_disable,
6307 .check_status = ata_dummy_check_status,
6308 .check_altstatus = ata_dummy_check_status,
6309 .dev_select = ata_noop_dev_select,
6310 .qc_prep = ata_noop_qc_prep,
6311 .qc_issue = ata_dummy_qc_issue,
6312 .freeze = ata_dummy_noret,
6313 .thaw = ata_dummy_noret,
6314 .error_handler = ata_dummy_noret,
6315 .post_internal_cmd = ata_dummy_qc_noret,
6316 .irq_clear = ata_dummy_noret,
6317 .port_start = ata_dummy_ret0,
6318 .port_stop = ata_dummy_noret,
6322 * libata is essentially a library of internal helper functions for
6323 * low-level ATA host controller drivers. As such, the API/ABI is
6324 * likely to change as new drivers are added and updated.
6325 * Do not depend on ABI/API stability.
6328 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6329 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6330 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6331 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6332 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6333 EXPORT_SYMBOL_GPL(ata_std_ports);
6334 EXPORT_SYMBOL_GPL(ata_host_init);
6335 EXPORT_SYMBOL_GPL(ata_device_add);
6336 EXPORT_SYMBOL_GPL(ata_host_detach);
6337 EXPORT_SYMBOL_GPL(ata_sg_init);
6338 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6339 EXPORT_SYMBOL_GPL(ata_hsm_move);
6340 EXPORT_SYMBOL_GPL(ata_qc_complete);
6341 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6342 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6343 EXPORT_SYMBOL_GPL(ata_tf_load);
6344 EXPORT_SYMBOL_GPL(ata_tf_read);
6345 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6346 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6347 EXPORT_SYMBOL_GPL(sata_print_link_status);
6348 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6349 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6350 EXPORT_SYMBOL_GPL(ata_check_status);
6351 EXPORT_SYMBOL_GPL(ata_altstatus);
6352 EXPORT_SYMBOL_GPL(ata_exec_command);
6353 EXPORT_SYMBOL_GPL(ata_port_start);
6354 EXPORT_SYMBOL_GPL(ata_interrupt);
6355 EXPORT_SYMBOL_GPL(ata_data_xfer);
6356 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6357 EXPORT_SYMBOL_GPL(ata_qc_prep);
6358 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6359 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6360 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6361 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6362 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6363 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6364 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6365 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6366 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6367 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6368 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6369 EXPORT_SYMBOL_GPL(ata_port_probe);
6370 EXPORT_SYMBOL_GPL(ata_dev_disable);
6371 EXPORT_SYMBOL_GPL(sata_set_spd);
6372 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6373 EXPORT_SYMBOL_GPL(sata_phy_resume);
6374 EXPORT_SYMBOL_GPL(sata_phy_reset);
6375 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6376 EXPORT_SYMBOL_GPL(ata_bus_reset);
6377 EXPORT_SYMBOL_GPL(ata_std_prereset);
6378 EXPORT_SYMBOL_GPL(ata_std_softreset);
6379 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6380 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6381 EXPORT_SYMBOL_GPL(ata_std_postreset);
6382 EXPORT_SYMBOL_GPL(ata_dev_classify);
6383 EXPORT_SYMBOL_GPL(ata_dev_pair);
6384 EXPORT_SYMBOL_GPL(ata_port_disable);
6385 EXPORT_SYMBOL_GPL(ata_ratelimit);
6386 EXPORT_SYMBOL_GPL(ata_wait_register);
6387 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6388 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6389 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6390 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6391 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6392 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6393 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6394 EXPORT_SYMBOL_GPL(ata_host_intr);
6395 EXPORT_SYMBOL_GPL(sata_scr_valid);
6396 EXPORT_SYMBOL_GPL(sata_scr_read);
6397 EXPORT_SYMBOL_GPL(sata_scr_write);
6398 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6399 EXPORT_SYMBOL_GPL(ata_port_online);
6400 EXPORT_SYMBOL_GPL(ata_port_offline);
6401 #ifdef CONFIG_PM
6402 EXPORT_SYMBOL_GPL(ata_host_suspend);
6403 EXPORT_SYMBOL_GPL(ata_host_resume);
6404 #endif /* CONFIG_PM */
6405 EXPORT_SYMBOL_GPL(ata_id_string);
6406 EXPORT_SYMBOL_GPL(ata_id_c_string);
6407 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6408 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6409 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6411 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6412 EXPORT_SYMBOL_GPL(ata_timing_compute);
6413 EXPORT_SYMBOL_GPL(ata_timing_merge);
6415 #ifdef CONFIG_PCI
6416 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6417 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6418 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6419 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6420 #ifdef CONFIG_PM
6421 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6422 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6423 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6424 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6425 #endif /* CONFIG_PM */
6426 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6427 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6428 #endif /* CONFIG_PCI */
6430 #ifdef CONFIG_PM
6431 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6432 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6433 #endif /* CONFIG_PM */
6435 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6436 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6437 EXPORT_SYMBOL_GPL(ata_port_abort);
6438 EXPORT_SYMBOL_GPL(ata_port_freeze);
6439 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6440 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6441 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6442 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6443 EXPORT_SYMBOL_GPL(ata_do_eh);
6444 EXPORT_SYMBOL_GPL(ata_irq_on);
6445 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6446 EXPORT_SYMBOL_GPL(ata_irq_ack);
6447 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6448 EXPORT_SYMBOL_GPL(ata_dev_try_classify);