ath9k: Get rid of unnecessary ATOMIC memory alloc during init time
[linux-2.6/mini2440.git] / drivers / net / wireless / ath9k / main.c
blob4bc43db9ab2296006ba30cd939b1cb3fdade951c
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
20 #define ATH_PCI_VERSION "0.1"
22 static char *dev_info = "ath9k";
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
29 static int modparam_nohwcrypt;
30 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
33 /* We use the hw_value as an index into our private channel structure */
35 #define CHAN2G(_freq, _idx) { \
36 .center_freq = (_freq), \
37 .hw_value = (_idx), \
38 .max_power = 30, \
41 #define CHAN5G(_freq, _idx) { \
42 .band = IEEE80211_BAND_5GHZ, \
43 .center_freq = (_freq), \
44 .hw_value = (_idx), \
45 .max_power = 30, \
48 /* Some 2 GHz radios are actually tunable on 2312-2732
49 * on 5 MHz steps, we support the channels which we know
50 * we have calibration data for all cards though to make
51 * this static */
52 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
53 CHAN2G(2412, 0), /* Channel 1 */
54 CHAN2G(2417, 1), /* Channel 2 */
55 CHAN2G(2422, 2), /* Channel 3 */
56 CHAN2G(2427, 3), /* Channel 4 */
57 CHAN2G(2432, 4), /* Channel 5 */
58 CHAN2G(2437, 5), /* Channel 6 */
59 CHAN2G(2442, 6), /* Channel 7 */
60 CHAN2G(2447, 7), /* Channel 8 */
61 CHAN2G(2452, 8), /* Channel 9 */
62 CHAN2G(2457, 9), /* Channel 10 */
63 CHAN2G(2462, 10), /* Channel 11 */
64 CHAN2G(2467, 11), /* Channel 12 */
65 CHAN2G(2472, 12), /* Channel 13 */
66 CHAN2G(2484, 13), /* Channel 14 */
69 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
70 * on 5 MHz steps, we support the channels which we know
71 * we have calibration data for all cards though to make
72 * this static */
73 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
74 /* _We_ call this UNII 1 */
75 CHAN5G(5180, 14), /* Channel 36 */
76 CHAN5G(5200, 15), /* Channel 40 */
77 CHAN5G(5220, 16), /* Channel 44 */
78 CHAN5G(5240, 17), /* Channel 48 */
79 /* _We_ call this UNII 2 */
80 CHAN5G(5260, 18), /* Channel 52 */
81 CHAN5G(5280, 19), /* Channel 56 */
82 CHAN5G(5300, 20), /* Channel 60 */
83 CHAN5G(5320, 21), /* Channel 64 */
84 /* _We_ call this "Middle band" */
85 CHAN5G(5500, 22), /* Channel 100 */
86 CHAN5G(5520, 23), /* Channel 104 */
87 CHAN5G(5540, 24), /* Channel 108 */
88 CHAN5G(5560, 25), /* Channel 112 */
89 CHAN5G(5580, 26), /* Channel 116 */
90 CHAN5G(5600, 27), /* Channel 120 */
91 CHAN5G(5620, 28), /* Channel 124 */
92 CHAN5G(5640, 29), /* Channel 128 */
93 CHAN5G(5660, 30), /* Channel 132 */
94 CHAN5G(5680, 31), /* Channel 136 */
95 CHAN5G(5700, 32), /* Channel 140 */
96 /* _We_ call this UNII 3 */
97 CHAN5G(5745, 33), /* Channel 149 */
98 CHAN5G(5765, 34), /* Channel 153 */
99 CHAN5G(5785, 35), /* Channel 157 */
100 CHAN5G(5805, 36), /* Channel 161 */
101 CHAN5G(5825, 37), /* Channel 165 */
104 static void ath_cache_conf_rate(struct ath_softc *sc,
105 struct ieee80211_conf *conf)
107 switch (conf->channel->band) {
108 case IEEE80211_BAND_2GHZ:
109 if (conf_is_ht20(conf))
110 sc->cur_rate_table =
111 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
112 else if (conf_is_ht40_minus(conf))
113 sc->cur_rate_table =
114 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
115 else if (conf_is_ht40_plus(conf))
116 sc->cur_rate_table =
117 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
118 else
119 sc->cur_rate_table =
120 sc->hw_rate_table[ATH9K_MODE_11G];
121 break;
122 case IEEE80211_BAND_5GHZ:
123 if (conf_is_ht20(conf))
124 sc->cur_rate_table =
125 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
126 else if (conf_is_ht40_minus(conf))
127 sc->cur_rate_table =
128 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
129 else if (conf_is_ht40_plus(conf))
130 sc->cur_rate_table =
131 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
132 else
133 sc->cur_rate_table =
134 sc->hw_rate_table[ATH9K_MODE_11A];
135 break;
136 default:
137 BUG_ON(1);
138 break;
142 static void ath_update_txpow(struct ath_softc *sc)
144 struct ath_hw *ah = sc->sc_ah;
145 u32 txpow;
147 if (sc->curtxpow != sc->config.txpowlimit) {
148 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
149 /* read back in case value is clamped */
150 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
151 sc->curtxpow = txpow;
155 static u8 parse_mpdudensity(u8 mpdudensity)
158 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
159 * 0 for no restriction
160 * 1 for 1/4 us
161 * 2 for 1/2 us
162 * 3 for 1 us
163 * 4 for 2 us
164 * 5 for 4 us
165 * 6 for 8 us
166 * 7 for 16 us
168 switch (mpdudensity) {
169 case 0:
170 return 0;
171 case 1:
172 case 2:
173 case 3:
174 /* Our lower layer calculations limit our precision to
175 1 microsecond */
176 return 1;
177 case 4:
178 return 2;
179 case 5:
180 return 4;
181 case 6:
182 return 8;
183 case 7:
184 return 16;
185 default:
186 return 0;
190 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
192 struct ath_rate_table *rate_table = NULL;
193 struct ieee80211_supported_band *sband;
194 struct ieee80211_rate *rate;
195 int i, maxrates;
197 switch (band) {
198 case IEEE80211_BAND_2GHZ:
199 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
200 break;
201 case IEEE80211_BAND_5GHZ:
202 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
203 break;
204 default:
205 break;
208 if (rate_table == NULL)
209 return;
211 sband = &sc->sbands[band];
212 rate = sc->rates[band];
214 if (rate_table->rate_cnt > ATH_RATE_MAX)
215 maxrates = ATH_RATE_MAX;
216 else
217 maxrates = rate_table->rate_cnt;
219 for (i = 0; i < maxrates; i++) {
220 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
221 rate[i].hw_value = rate_table->info[i].ratecode;
222 if (rate_table->info[i].short_preamble) {
223 rate[i].hw_value_short = rate_table->info[i].ratecode |
224 rate_table->info[i].short_preamble;
225 rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
227 sband->n_bitrates++;
229 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
230 rate[i].bitrate / 10, rate[i].hw_value);
235 * Set/change channels. If the channel is really being changed, it's done
236 * by reseting the chip. To accomplish this we must first cleanup any pending
237 * DMA, then restart stuff.
239 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
240 struct ath9k_channel *hchan)
242 struct ath_hw *ah = sc->sc_ah;
243 bool fastcc = true, stopped;
244 struct ieee80211_channel *channel = hw->conf.channel;
245 int r;
247 if (sc->sc_flags & SC_OP_INVALID)
248 return -EIO;
250 ath9k_ps_wakeup(sc);
253 * This is only performed if the channel settings have
254 * actually changed.
256 * To switch channels clear any pending DMA operations;
257 * wait long enough for the RX fifo to drain, reset the
258 * hardware at the new frequency, and then re-enable
259 * the relevant bits of the h/w.
261 ath9k_hw_set_interrupts(ah, 0);
262 ath_drain_all_txq(sc, false);
263 stopped = ath_stoprecv(sc);
265 /* XXX: do not flush receive queue here. We don't want
266 * to flush data frames already in queue because of
267 * changing channel. */
269 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
270 fastcc = false;
272 DPRINTF(sc, ATH_DBG_CONFIG,
273 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
274 sc->sc_ah->curchan->channel,
275 channel->center_freq, sc->tx_chan_width);
277 spin_lock_bh(&sc->sc_resetlock);
279 r = ath9k_hw_reset(ah, hchan, fastcc);
280 if (r) {
281 DPRINTF(sc, ATH_DBG_FATAL,
282 "Unable to reset channel (%u Mhz) "
283 "reset status %u\n",
284 channel->center_freq, r);
285 spin_unlock_bh(&sc->sc_resetlock);
286 return r;
288 spin_unlock_bh(&sc->sc_resetlock);
290 sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
291 sc->sc_flags &= ~SC_OP_FULL_RESET;
293 if (ath_startrecv(sc) != 0) {
294 DPRINTF(sc, ATH_DBG_FATAL,
295 "Unable to restart recv logic\n");
296 return -EIO;
299 ath_cache_conf_rate(sc, &hw->conf);
300 ath_update_txpow(sc);
301 ath9k_hw_set_interrupts(ah, sc->imask);
302 ath9k_ps_restore(sc);
303 return 0;
307 * This routine performs the periodic noise floor calibration function
308 * that is used to adjust and optimize the chip performance. This
309 * takes environmental changes (location, temperature) into account.
310 * When the task is complete, it reschedules itself depending on the
311 * appropriate interval that was calculated.
313 static void ath_ani_calibrate(unsigned long data)
315 struct ath_softc *sc = (struct ath_softc *)data;
316 struct ath_hw *ah = sc->sc_ah;
317 bool longcal = false;
318 bool shortcal = false;
319 bool aniflag = false;
320 unsigned int timestamp = jiffies_to_msecs(jiffies);
321 u32 cal_interval, short_cal_interval;
323 short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
324 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
327 * don't calibrate when we're scanning.
328 * we are most likely not on our home channel.
330 if (sc->sc_flags & SC_OP_SCANNING)
331 goto set_timer;
333 /* Long calibration runs independently of short calibration. */
334 if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
335 longcal = true;
336 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
337 sc->ani.longcal_timer = timestamp;
340 /* Short calibration applies only while caldone is false */
341 if (!sc->ani.caldone) {
342 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
343 shortcal = true;
344 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
345 sc->ani.shortcal_timer = timestamp;
346 sc->ani.resetcal_timer = timestamp;
348 } else {
349 if ((timestamp - sc->ani.resetcal_timer) >=
350 ATH_RESTART_CALINTERVAL) {
351 sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
352 if (sc->ani.caldone)
353 sc->ani.resetcal_timer = timestamp;
357 /* Verify whether we must check ANI */
358 if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
359 aniflag = true;
360 sc->ani.checkani_timer = timestamp;
363 /* Skip all processing if there's nothing to do. */
364 if (longcal || shortcal || aniflag) {
365 /* Call ANI routine if necessary */
366 if (aniflag)
367 ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
369 /* Perform calibration if necessary */
370 if (longcal || shortcal) {
371 bool iscaldone = false;
373 if (ath9k_hw_calibrate(ah, ah->curchan,
374 sc->rx_chainmask, longcal,
375 &iscaldone)) {
376 if (longcal)
377 sc->ani.noise_floor =
378 ath9k_hw_getchan_noise(ah,
379 ah->curchan);
381 DPRINTF(sc, ATH_DBG_ANI,
382 "calibrate chan %u/%x nf: %d\n",
383 ah->curchan->channel,
384 ah->curchan->channelFlags,
385 sc->ani.noise_floor);
386 } else {
387 DPRINTF(sc, ATH_DBG_ANY,
388 "calibrate chan %u/%x failed\n",
389 ah->curchan->channel,
390 ah->curchan->channelFlags);
392 sc->ani.caldone = iscaldone;
396 set_timer:
398 * Set timer interval based on previous results.
399 * The interval must be the shortest necessary to satisfy ANI,
400 * short calibration and long calibration.
402 cal_interval = ATH_LONG_CALINTERVAL;
403 if (sc->sc_ah->config.enable_ani)
404 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
405 if (!sc->ani.caldone)
406 cal_interval = min(cal_interval, (u32)short_cal_interval);
408 mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
412 * Update tx/rx chainmask. For legacy association,
413 * hard code chainmask to 1x1, for 11n association, use
414 * the chainmask configuration, for bt coexistence, use
415 * the chainmask configuration even in legacy mode.
417 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
419 sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
420 if (is_ht ||
421 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
422 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
423 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
424 } else {
425 sc->tx_chainmask = 1;
426 sc->rx_chainmask = 1;
429 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
430 sc->tx_chainmask, sc->rx_chainmask);
433 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
435 struct ath_node *an;
437 an = (struct ath_node *)sta->drv_priv;
439 if (sc->sc_flags & SC_OP_TXAGGR)
440 ath_tx_node_init(sc, an);
442 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
443 sta->ht_cap.ampdu_factor);
444 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
447 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
449 struct ath_node *an = (struct ath_node *)sta->drv_priv;
451 if (sc->sc_flags & SC_OP_TXAGGR)
452 ath_tx_node_cleanup(sc, an);
455 static void ath9k_tasklet(unsigned long data)
457 struct ath_softc *sc = (struct ath_softc *)data;
458 u32 status = sc->intrstatus;
460 if (status & ATH9K_INT_FATAL) {
461 /* need a chip reset */
462 ath_reset(sc, false);
463 return;
464 } else {
466 if (status &
467 (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
468 spin_lock_bh(&sc->rx.rxflushlock);
469 ath_rx_tasklet(sc, 0);
470 spin_unlock_bh(&sc->rx.rxflushlock);
472 /* XXX: optimize this */
473 if (status & ATH9K_INT_TX)
474 ath_tx_tasklet(sc);
477 /* re-enable hardware interrupt */
478 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
481 irqreturn_t ath_isr(int irq, void *dev)
483 struct ath_softc *sc = dev;
484 struct ath_hw *ah = sc->sc_ah;
485 enum ath9k_int status;
486 bool sched = false;
488 do {
489 if (sc->sc_flags & SC_OP_INVALID) {
491 * The hardware is not ready/present, don't
492 * touch anything. Note this can happen early
493 * on if the IRQ is shared.
495 return IRQ_NONE;
497 if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
498 return IRQ_NONE;
502 * Figure out the reason(s) for the interrupt. Note
503 * that the hal returns a pseudo-ISR that may include
504 * bits we haven't explicitly enabled so we mask the
505 * value to insure we only process bits we requested.
507 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
509 status &= sc->imask; /* discard unasked-for bits */
512 * If there are no status bits set, then this interrupt was not
513 * for me (should have been caught above).
515 if (!status)
516 return IRQ_NONE;
518 sc->intrstatus = status;
519 ath9k_ps_wakeup(sc);
521 if (status & ATH9K_INT_FATAL) {
522 /* need a chip reset */
523 sched = true;
524 } else if (status & ATH9K_INT_RXORN) {
525 /* need a chip reset */
526 sched = true;
527 } else {
528 if (status & ATH9K_INT_SWBA) {
529 /* schedule a tasklet for beacon handling */
530 tasklet_schedule(&sc->bcon_tasklet);
532 if (status & ATH9K_INT_RXEOL) {
534 * NB: the hardware should re-read the link when
535 * RXE bit is written, but it doesn't work
536 * at least on older hardware revs.
538 sched = true;
541 if (status & ATH9K_INT_TXURN)
542 /* bump tx trigger level */
543 ath9k_hw_updatetxtriglevel(ah, true);
544 /* XXX: optimize this */
545 if (status & ATH9K_INT_RX)
546 sched = true;
547 if (status & ATH9K_INT_TX)
548 sched = true;
549 if (status & ATH9K_INT_BMISS)
550 sched = true;
551 /* carrier sense timeout */
552 if (status & ATH9K_INT_CST)
553 sched = true;
554 if (status & ATH9K_INT_MIB) {
556 * Disable interrupts until we service the MIB
557 * interrupt; otherwise it will continue to
558 * fire.
560 ath9k_hw_set_interrupts(ah, 0);
562 * Let the hal handle the event. We assume
563 * it will clear whatever condition caused
564 * the interrupt.
566 ath9k_hw_procmibevent(ah, &sc->nodestats);
567 ath9k_hw_set_interrupts(ah, sc->imask);
569 if (status & ATH9K_INT_TIM_TIMER) {
570 if (!(ah->caps.hw_caps &
571 ATH9K_HW_CAP_AUTOSLEEP)) {
572 /* Clear RxAbort bit so that we can
573 * receive frames */
574 ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
575 ath9k_hw_setrxabort(ah, 0);
576 sched = true;
577 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
580 if (status & ATH9K_INT_TSFOOR) {
581 /* FIXME: Handle this interrupt for power save */
582 sched = true;
585 ath9k_ps_restore(sc);
586 } while (0);
588 ath_debug_stat_interrupt(sc, status);
590 if (sched) {
591 /* turn off every interrupt except SWBA */
592 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
593 tasklet_schedule(&sc->intr_tq);
596 return IRQ_HANDLED;
599 static u32 ath_get_extchanmode(struct ath_softc *sc,
600 struct ieee80211_channel *chan,
601 enum nl80211_channel_type channel_type)
603 u32 chanmode = 0;
605 switch (chan->band) {
606 case IEEE80211_BAND_2GHZ:
607 switch(channel_type) {
608 case NL80211_CHAN_NO_HT:
609 case NL80211_CHAN_HT20:
610 chanmode = CHANNEL_G_HT20;
611 break;
612 case NL80211_CHAN_HT40PLUS:
613 chanmode = CHANNEL_G_HT40PLUS;
614 break;
615 case NL80211_CHAN_HT40MINUS:
616 chanmode = CHANNEL_G_HT40MINUS;
617 break;
619 break;
620 case IEEE80211_BAND_5GHZ:
621 switch(channel_type) {
622 case NL80211_CHAN_NO_HT:
623 case NL80211_CHAN_HT20:
624 chanmode = CHANNEL_A_HT20;
625 break;
626 case NL80211_CHAN_HT40PLUS:
627 chanmode = CHANNEL_A_HT40PLUS;
628 break;
629 case NL80211_CHAN_HT40MINUS:
630 chanmode = CHANNEL_A_HT40MINUS;
631 break;
633 break;
634 default:
635 break;
638 return chanmode;
641 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
642 struct ath9k_keyval *hk, const u8 *addr,
643 bool authenticator)
645 const u8 *key_rxmic;
646 const u8 *key_txmic;
648 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
649 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
651 if (addr == NULL) {
653 * Group key installation - only two key cache entries are used
654 * regardless of splitmic capability since group key is only
655 * used either for TX or RX.
657 if (authenticator) {
658 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
659 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
660 } else {
661 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
662 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
664 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
666 if (!sc->splitmic) {
667 /* TX and RX keys share the same key cache entry. */
668 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
669 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
670 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
673 /* Separate key cache entries for TX and RX */
675 /* TX key goes at first index, RX key at +32. */
676 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
677 if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
678 /* TX MIC entry failed. No need to proceed further */
679 DPRINTF(sc, ATH_DBG_KEYCACHE,
680 "Setting TX MIC Key Failed\n");
681 return 0;
684 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
685 /* XXX delete tx key on failure? */
686 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
689 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
691 int i;
693 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
694 if (test_bit(i, sc->keymap) ||
695 test_bit(i + 64, sc->keymap))
696 continue; /* At least one part of TKIP key allocated */
697 if (sc->splitmic &&
698 (test_bit(i + 32, sc->keymap) ||
699 test_bit(i + 64 + 32, sc->keymap)))
700 continue; /* At least one part of TKIP key allocated */
702 /* Found a free slot for a TKIP key */
703 return i;
705 return -1;
708 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
710 int i;
712 /* First, try to find slots that would not be available for TKIP. */
713 if (sc->splitmic) {
714 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
715 if (!test_bit(i, sc->keymap) &&
716 (test_bit(i + 32, sc->keymap) ||
717 test_bit(i + 64, sc->keymap) ||
718 test_bit(i + 64 + 32, sc->keymap)))
719 return i;
720 if (!test_bit(i + 32, sc->keymap) &&
721 (test_bit(i, sc->keymap) ||
722 test_bit(i + 64, sc->keymap) ||
723 test_bit(i + 64 + 32, sc->keymap)))
724 return i + 32;
725 if (!test_bit(i + 64, sc->keymap) &&
726 (test_bit(i , sc->keymap) ||
727 test_bit(i + 32, sc->keymap) ||
728 test_bit(i + 64 + 32, sc->keymap)))
729 return i + 64;
730 if (!test_bit(i + 64 + 32, sc->keymap) &&
731 (test_bit(i, sc->keymap) ||
732 test_bit(i + 32, sc->keymap) ||
733 test_bit(i + 64, sc->keymap)))
734 return i + 64 + 32;
736 } else {
737 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
738 if (!test_bit(i, sc->keymap) &&
739 test_bit(i + 64, sc->keymap))
740 return i;
741 if (test_bit(i, sc->keymap) &&
742 !test_bit(i + 64, sc->keymap))
743 return i + 64;
747 /* No partially used TKIP slots, pick any available slot */
748 for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
749 /* Do not allow slots that could be needed for TKIP group keys
750 * to be used. This limitation could be removed if we know that
751 * TKIP will not be used. */
752 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
753 continue;
754 if (sc->splitmic) {
755 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
756 continue;
757 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
758 continue;
761 if (!test_bit(i, sc->keymap))
762 return i; /* Found a free slot for a key */
765 /* No free slot found */
766 return -1;
769 static int ath_key_config(struct ath_softc *sc,
770 struct ieee80211_vif *vif,
771 struct ieee80211_sta *sta,
772 struct ieee80211_key_conf *key)
774 struct ath9k_keyval hk;
775 const u8 *mac = NULL;
776 int ret = 0;
777 int idx;
779 memset(&hk, 0, sizeof(hk));
781 switch (key->alg) {
782 case ALG_WEP:
783 hk.kv_type = ATH9K_CIPHER_WEP;
784 break;
785 case ALG_TKIP:
786 hk.kv_type = ATH9K_CIPHER_TKIP;
787 break;
788 case ALG_CCMP:
789 hk.kv_type = ATH9K_CIPHER_AES_CCM;
790 break;
791 default:
792 return -EOPNOTSUPP;
795 hk.kv_len = key->keylen;
796 memcpy(hk.kv_val, key->key, key->keylen);
798 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
799 /* For now, use the default keys for broadcast keys. This may
800 * need to change with virtual interfaces. */
801 idx = key->keyidx;
802 } else if (key->keyidx) {
803 if (WARN_ON(!sta))
804 return -EOPNOTSUPP;
805 mac = sta->addr;
807 if (vif->type != NL80211_IFTYPE_AP) {
808 /* Only keyidx 0 should be used with unicast key, but
809 * allow this for client mode for now. */
810 idx = key->keyidx;
811 } else
812 return -EIO;
813 } else {
814 if (WARN_ON(!sta))
815 return -EOPNOTSUPP;
816 mac = sta->addr;
818 if (key->alg == ALG_TKIP)
819 idx = ath_reserve_key_cache_slot_tkip(sc);
820 else
821 idx = ath_reserve_key_cache_slot(sc);
822 if (idx < 0)
823 return -ENOSPC; /* no free key cache entries */
826 if (key->alg == ALG_TKIP)
827 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
828 vif->type == NL80211_IFTYPE_AP);
829 else
830 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
832 if (!ret)
833 return -EIO;
835 set_bit(idx, sc->keymap);
836 if (key->alg == ALG_TKIP) {
837 set_bit(idx + 64, sc->keymap);
838 if (sc->splitmic) {
839 set_bit(idx + 32, sc->keymap);
840 set_bit(idx + 64 + 32, sc->keymap);
844 return idx;
847 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
849 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
850 if (key->hw_key_idx < IEEE80211_WEP_NKID)
851 return;
853 clear_bit(key->hw_key_idx, sc->keymap);
854 if (key->alg != ALG_TKIP)
855 return;
857 clear_bit(key->hw_key_idx + 64, sc->keymap);
858 if (sc->splitmic) {
859 clear_bit(key->hw_key_idx + 32, sc->keymap);
860 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
864 static void setup_ht_cap(struct ath_softc *sc,
865 struct ieee80211_sta_ht_cap *ht_info)
867 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
868 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
870 ht_info->ht_supported = true;
871 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
872 IEEE80211_HT_CAP_SM_PS |
873 IEEE80211_HT_CAP_SGI_40 |
874 IEEE80211_HT_CAP_DSSSCCK40;
876 ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
877 ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
879 /* set up supported mcs set */
880 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
882 switch(sc->rx_chainmask) {
883 case 1:
884 ht_info->mcs.rx_mask[0] = 0xff;
885 break;
886 case 3:
887 case 5:
888 case 7:
889 default:
890 ht_info->mcs.rx_mask[0] = 0xff;
891 ht_info->mcs.rx_mask[1] = 0xff;
892 break;
895 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
898 static void ath9k_bss_assoc_info(struct ath_softc *sc,
899 struct ieee80211_vif *vif,
900 struct ieee80211_bss_conf *bss_conf)
902 struct ath_vif *avp = (void *)vif->drv_priv;
904 if (bss_conf->assoc) {
905 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
906 bss_conf->aid, sc->curbssid);
908 /* New association, store aid */
909 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
910 sc->curaid = bss_conf->aid;
911 ath9k_hw_write_associd(sc);
914 /* Configure the beacon */
915 ath_beacon_config(sc, vif);
917 /* Reset rssi stats */
918 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
919 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
920 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
921 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
923 /* Start ANI */
924 mod_timer(&sc->ani.timer,
925 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
926 } else {
927 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
928 sc->curaid = 0;
932 /********************************/
933 /* LED functions */
934 /********************************/
936 static void ath_led_blink_work(struct work_struct *work)
938 struct ath_softc *sc = container_of(work, struct ath_softc,
939 ath_led_blink_work.work);
941 if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
942 return;
943 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
944 (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
946 queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
947 (sc->sc_flags & SC_OP_LED_ON) ?
948 msecs_to_jiffies(sc->led_off_duration) :
949 msecs_to_jiffies(sc->led_on_duration));
951 sc->led_on_duration =
952 max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25);
953 sc->led_off_duration =
954 max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10);
955 sc->led_on_cnt = sc->led_off_cnt = 0;
956 if (sc->sc_flags & SC_OP_LED_ON)
957 sc->sc_flags &= ~SC_OP_LED_ON;
958 else
959 sc->sc_flags |= SC_OP_LED_ON;
962 static void ath_led_brightness(struct led_classdev *led_cdev,
963 enum led_brightness brightness)
965 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
966 struct ath_softc *sc = led->sc;
968 switch (brightness) {
969 case LED_OFF:
970 if (led->led_type == ATH_LED_ASSOC ||
971 led->led_type == ATH_LED_RADIO) {
972 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
973 (led->led_type == ATH_LED_RADIO));
974 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
975 if (led->led_type == ATH_LED_RADIO)
976 sc->sc_flags &= ~SC_OP_LED_ON;
977 } else {
978 sc->led_off_cnt++;
980 break;
981 case LED_FULL:
982 if (led->led_type == ATH_LED_ASSOC) {
983 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
984 queue_delayed_work(sc->hw->workqueue,
985 &sc->ath_led_blink_work, 0);
986 } else if (led->led_type == ATH_LED_RADIO) {
987 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
988 sc->sc_flags |= SC_OP_LED_ON;
989 } else {
990 sc->led_on_cnt++;
992 break;
993 default:
994 break;
998 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
999 char *trigger)
1001 int ret;
1003 led->sc = sc;
1004 led->led_cdev.name = led->name;
1005 led->led_cdev.default_trigger = trigger;
1006 led->led_cdev.brightness_set = ath_led_brightness;
1008 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1009 if (ret)
1010 DPRINTF(sc, ATH_DBG_FATAL,
1011 "Failed to register led:%s", led->name);
1012 else
1013 led->registered = 1;
1014 return ret;
1017 static void ath_unregister_led(struct ath_led *led)
1019 if (led->registered) {
1020 led_classdev_unregister(&led->led_cdev);
1021 led->registered = 0;
1025 static void ath_deinit_leds(struct ath_softc *sc)
1027 cancel_delayed_work_sync(&sc->ath_led_blink_work);
1028 ath_unregister_led(&sc->assoc_led);
1029 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1030 ath_unregister_led(&sc->tx_led);
1031 ath_unregister_led(&sc->rx_led);
1032 ath_unregister_led(&sc->radio_led);
1033 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1036 static void ath_init_leds(struct ath_softc *sc)
1038 char *trigger;
1039 int ret;
1041 /* Configure gpio 1 for output */
1042 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1043 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1044 /* LED off, active low */
1045 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1047 INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1049 trigger = ieee80211_get_radio_led_name(sc->hw);
1050 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1051 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1052 ret = ath_register_led(sc, &sc->radio_led, trigger);
1053 sc->radio_led.led_type = ATH_LED_RADIO;
1054 if (ret)
1055 goto fail;
1057 trigger = ieee80211_get_assoc_led_name(sc->hw);
1058 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1059 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1060 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1061 sc->assoc_led.led_type = ATH_LED_ASSOC;
1062 if (ret)
1063 goto fail;
1065 trigger = ieee80211_get_tx_led_name(sc->hw);
1066 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1067 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1068 ret = ath_register_led(sc, &sc->tx_led, trigger);
1069 sc->tx_led.led_type = ATH_LED_TX;
1070 if (ret)
1071 goto fail;
1073 trigger = ieee80211_get_rx_led_name(sc->hw);
1074 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1075 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1076 ret = ath_register_led(sc, &sc->rx_led, trigger);
1077 sc->rx_led.led_type = ATH_LED_RX;
1078 if (ret)
1079 goto fail;
1081 return;
1083 fail:
1084 ath_deinit_leds(sc);
1087 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1089 /*******************/
1090 /* Rfkill */
1091 /*******************/
1093 void ath_radio_enable(struct ath_softc *sc)
1095 struct ath_hw *ah = sc->sc_ah;
1096 struct ieee80211_channel *channel = sc->hw->conf.channel;
1097 int r;
1099 ath9k_ps_wakeup(sc);
1100 spin_lock_bh(&sc->sc_resetlock);
1102 r = ath9k_hw_reset(ah, ah->curchan, false);
1104 if (r) {
1105 DPRINTF(sc, ATH_DBG_FATAL,
1106 "Unable to reset channel %u (%uMhz) ",
1107 "reset status %u\n",
1108 channel->center_freq, r);
1110 spin_unlock_bh(&sc->sc_resetlock);
1112 ath_update_txpow(sc);
1113 if (ath_startrecv(sc) != 0) {
1114 DPRINTF(sc, ATH_DBG_FATAL,
1115 "Unable to restart recv logic\n");
1116 return;
1119 if (sc->sc_flags & SC_OP_BEACONS)
1120 ath_beacon_config(sc, NULL); /* restart beacons */
1122 /* Re-Enable interrupts */
1123 ath9k_hw_set_interrupts(ah, sc->imask);
1125 /* Enable LED */
1126 ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1127 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1128 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1130 ieee80211_wake_queues(sc->hw);
1131 ath9k_ps_restore(sc);
1134 void ath_radio_disable(struct ath_softc *sc)
1136 struct ath_hw *ah = sc->sc_ah;
1137 struct ieee80211_channel *channel = sc->hw->conf.channel;
1138 int r;
1140 ath9k_ps_wakeup(sc);
1141 ieee80211_stop_queues(sc->hw);
1143 /* Disable LED */
1144 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1145 ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1147 /* Disable interrupts */
1148 ath9k_hw_set_interrupts(ah, 0);
1150 ath_drain_all_txq(sc, false); /* clear pending tx frames */
1151 ath_stoprecv(sc); /* turn off frame recv */
1152 ath_flushrecv(sc); /* flush recv queue */
1154 spin_lock_bh(&sc->sc_resetlock);
1155 r = ath9k_hw_reset(ah, ah->curchan, false);
1156 if (r) {
1157 DPRINTF(sc, ATH_DBG_FATAL,
1158 "Unable to reset channel %u (%uMhz) "
1159 "reset status %u\n",
1160 channel->center_freq, r);
1162 spin_unlock_bh(&sc->sc_resetlock);
1164 ath9k_hw_phy_disable(ah);
1165 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1166 ath9k_ps_restore(sc);
1169 static bool ath_is_rfkill_set(struct ath_softc *sc)
1171 struct ath_hw *ah = sc->sc_ah;
1173 return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1174 ah->rfkill_polarity;
1177 /* h/w rfkill poll function */
1178 static void ath_rfkill_poll(struct work_struct *work)
1180 struct ath_softc *sc = container_of(work, struct ath_softc,
1181 rf_kill.rfkill_poll.work);
1182 bool radio_on;
1184 if (sc->sc_flags & SC_OP_INVALID)
1185 return;
1187 radio_on = !ath_is_rfkill_set(sc);
1190 * enable/disable radio only when there is a
1191 * state change in RF switch
1193 if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1194 enum rfkill_state state;
1196 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1197 state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1198 : RFKILL_STATE_HARD_BLOCKED;
1199 } else if (radio_on) {
1200 ath_radio_enable(sc);
1201 state = RFKILL_STATE_UNBLOCKED;
1202 } else {
1203 ath_radio_disable(sc);
1204 state = RFKILL_STATE_HARD_BLOCKED;
1207 if (state == RFKILL_STATE_HARD_BLOCKED)
1208 sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1209 else
1210 sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1212 rfkill_force_state(sc->rf_kill.rfkill, state);
1215 queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1216 msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1219 /* s/w rfkill handler */
1220 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1222 struct ath_softc *sc = data;
1224 switch (state) {
1225 case RFKILL_STATE_SOFT_BLOCKED:
1226 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1227 SC_OP_RFKILL_SW_BLOCKED)))
1228 ath_radio_disable(sc);
1229 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1230 return 0;
1231 case RFKILL_STATE_UNBLOCKED:
1232 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1233 sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1234 if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1235 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1236 "radio as it is disabled by h/w\n");
1237 return -EPERM;
1239 ath_radio_enable(sc);
1241 return 0;
1242 default:
1243 return -EINVAL;
1247 /* Init s/w rfkill */
1248 static int ath_init_sw_rfkill(struct ath_softc *sc)
1250 sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1251 RFKILL_TYPE_WLAN);
1252 if (!sc->rf_kill.rfkill) {
1253 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1254 return -ENOMEM;
1257 snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1258 "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
1259 sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1260 sc->rf_kill.rfkill->data = sc;
1261 sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1262 sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1263 sc->rf_kill.rfkill->user_claim_unsupported = 1;
1265 return 0;
1268 /* Deinitialize rfkill */
1269 static void ath_deinit_rfkill(struct ath_softc *sc)
1271 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1272 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1274 if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1275 rfkill_unregister(sc->rf_kill.rfkill);
1276 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1277 sc->rf_kill.rfkill = NULL;
1281 static int ath_start_rfkill_poll(struct ath_softc *sc)
1283 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1284 queue_delayed_work(sc->hw->workqueue,
1285 &sc->rf_kill.rfkill_poll, 0);
1287 if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1288 if (rfkill_register(sc->rf_kill.rfkill)) {
1289 DPRINTF(sc, ATH_DBG_FATAL,
1290 "Unable to register rfkill\n");
1291 rfkill_free(sc->rf_kill.rfkill);
1293 /* Deinitialize the device */
1294 ath_cleanup(sc);
1295 return -EIO;
1296 } else {
1297 sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1301 return 0;
1303 #endif /* CONFIG_RFKILL */
1305 void ath_cleanup(struct ath_softc *sc)
1307 ath_detach(sc);
1308 free_irq(sc->irq, sc);
1309 ath_bus_cleanup(sc);
1310 kfree(sc->sec_wiphy);
1311 ieee80211_free_hw(sc->hw);
1314 void ath_detach(struct ath_softc *sc)
1316 struct ieee80211_hw *hw = sc->hw;
1317 int i = 0;
1319 ath9k_ps_wakeup(sc);
1321 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1323 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1324 ath_deinit_rfkill(sc);
1325 #endif
1326 ath_deinit_leds(sc);
1327 cancel_work_sync(&sc->chan_work);
1328 cancel_delayed_work_sync(&sc->wiphy_work);
1330 for (i = 0; i < sc->num_sec_wiphy; i++) {
1331 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1332 if (aphy == NULL)
1333 continue;
1334 sc->sec_wiphy[i] = NULL;
1335 ieee80211_unregister_hw(aphy->hw);
1336 ieee80211_free_hw(aphy->hw);
1338 ieee80211_unregister_hw(hw);
1339 ath_rx_cleanup(sc);
1340 ath_tx_cleanup(sc);
1342 tasklet_kill(&sc->intr_tq);
1343 tasklet_kill(&sc->bcon_tasklet);
1345 if (!(sc->sc_flags & SC_OP_INVALID))
1346 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1348 /* cleanup tx queues */
1349 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1350 if (ATH_TXQ_SETUP(sc, i))
1351 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1353 ath9k_hw_detach(sc->sc_ah);
1354 ath9k_exit_debug(sc);
1355 ath9k_ps_restore(sc);
1358 static int ath_init(u16 devid, struct ath_softc *sc)
1360 struct ath_hw *ah = NULL;
1361 int status;
1362 int error = 0, i;
1363 int csz = 0;
1365 /* XXX: hardware will not be ready until ath_open() being called */
1366 sc->sc_flags |= SC_OP_INVALID;
1368 if (ath9k_init_debug(sc) < 0)
1369 printk(KERN_ERR "Unable to create debugfs files\n");
1371 spin_lock_init(&sc->wiphy_lock);
1372 spin_lock_init(&sc->sc_resetlock);
1373 mutex_init(&sc->mutex);
1374 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1375 tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1376 (unsigned long)sc);
1379 * Cache line size is used to size and align various
1380 * structures used to communicate with the hardware.
1382 ath_read_cachesize(sc, &csz);
1383 /* XXX assert csz is non-zero */
1384 sc->cachelsz = csz << 2; /* convert to bytes */
1386 ah = ath9k_hw_attach(devid, sc, &status);
1387 if (ah == NULL) {
1388 DPRINTF(sc, ATH_DBG_FATAL,
1389 "Unable to attach hardware; HAL status %d\n", status);
1390 error = -ENXIO;
1391 goto bad;
1393 sc->sc_ah = ah;
1395 /* Get the hardware key cache size. */
1396 sc->keymax = ah->caps.keycache_size;
1397 if (sc->keymax > ATH_KEYMAX) {
1398 DPRINTF(sc, ATH_DBG_KEYCACHE,
1399 "Warning, using only %u entries in %u key cache\n",
1400 ATH_KEYMAX, sc->keymax);
1401 sc->keymax = ATH_KEYMAX;
1405 * Reset the key cache since some parts do not
1406 * reset the contents on initial power up.
1408 for (i = 0; i < sc->keymax; i++)
1409 ath9k_hw_keyreset(ah, (u16) i);
1411 if (ath9k_regd_init(sc->sc_ah))
1412 goto bad;
1414 /* default to MONITOR mode */
1415 sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1417 /* Setup rate tables */
1419 ath_rate_attach(sc);
1420 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1421 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1424 * Allocate hardware transmit queues: one queue for
1425 * beacon frames and one data queue for each QoS
1426 * priority. Note that the hal handles reseting
1427 * these queues at the needed time.
1429 sc->beacon.beaconq = ath_beaconq_setup(ah);
1430 if (sc->beacon.beaconq == -1) {
1431 DPRINTF(sc, ATH_DBG_FATAL,
1432 "Unable to setup a beacon xmit queue\n");
1433 error = -EIO;
1434 goto bad2;
1436 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1437 if (sc->beacon.cabq == NULL) {
1438 DPRINTF(sc, ATH_DBG_FATAL,
1439 "Unable to setup CAB xmit queue\n");
1440 error = -EIO;
1441 goto bad2;
1444 sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1445 ath_cabq_update(sc);
1447 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1448 sc->tx.hwq_map[i] = -1;
1450 /* Setup data queues */
1451 /* NB: ensure BK queue is the lowest priority h/w queue */
1452 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1453 DPRINTF(sc, ATH_DBG_FATAL,
1454 "Unable to setup xmit queue for BK traffic\n");
1455 error = -EIO;
1456 goto bad2;
1459 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1460 DPRINTF(sc, ATH_DBG_FATAL,
1461 "Unable to setup xmit queue for BE traffic\n");
1462 error = -EIO;
1463 goto bad2;
1465 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1466 DPRINTF(sc, ATH_DBG_FATAL,
1467 "Unable to setup xmit queue for VI traffic\n");
1468 error = -EIO;
1469 goto bad2;
1471 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1472 DPRINTF(sc, ATH_DBG_FATAL,
1473 "Unable to setup xmit queue for VO traffic\n");
1474 error = -EIO;
1475 goto bad2;
1478 /* Initializes the noise floor to a reasonable default value.
1479 * Later on this will be updated during ANI processing. */
1481 sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1482 setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1484 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1485 ATH9K_CIPHER_TKIP, NULL)) {
1487 * Whether we should enable h/w TKIP MIC.
1488 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1489 * report WMM capable, so it's always safe to turn on
1490 * TKIP MIC in this case.
1492 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1493 0, 1, NULL);
1497 * Check whether the separate key cache entries
1498 * are required to handle both tx+rx MIC keys.
1499 * With split mic keys the number of stations is limited
1500 * to 27 otherwise 59.
1502 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1503 ATH9K_CIPHER_TKIP, NULL)
1504 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1505 ATH9K_CIPHER_MIC, NULL)
1506 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1507 0, NULL))
1508 sc->splitmic = 1;
1510 /* turn on mcast key search if possible */
1511 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1512 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1513 1, NULL);
1515 sc->config.txpowlimit = ATH_TXPOWER_MAX;
1517 /* 11n Capabilities */
1518 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1519 sc->sc_flags |= SC_OP_TXAGGR;
1520 sc->sc_flags |= SC_OP_RXAGGR;
1523 sc->tx_chainmask = ah->caps.tx_chainmask;
1524 sc->rx_chainmask = ah->caps.rx_chainmask;
1526 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1527 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1529 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1530 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1532 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1534 /* initialize beacon slots */
1535 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1536 sc->beacon.bslot[i] = NULL;
1537 sc->beacon.bslot_aphy[i] = NULL;
1540 /* save MISC configurations */
1541 sc->config.swBeaconProcess = 1;
1543 /* setup channels and rates */
1545 sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1546 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1547 sc->rates[IEEE80211_BAND_2GHZ];
1548 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1549 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1550 ARRAY_SIZE(ath9k_2ghz_chantable);
1552 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1553 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1554 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1555 sc->rates[IEEE80211_BAND_5GHZ];
1556 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1557 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1558 ARRAY_SIZE(ath9k_5ghz_chantable);
1561 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1562 ath9k_hw_btcoex_enable(sc->sc_ah);
1564 return 0;
1565 bad2:
1566 /* cleanup tx queues */
1567 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1568 if (ATH_TXQ_SETUP(sc, i))
1569 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1570 bad:
1571 if (ah)
1572 ath9k_hw_detach(ah);
1573 ath9k_exit_debug(sc);
1575 return error;
1578 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1580 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1581 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1582 IEEE80211_HW_SIGNAL_DBM |
1583 IEEE80211_HW_AMPDU_AGGREGATION |
1584 IEEE80211_HW_SUPPORTS_PS |
1585 IEEE80211_HW_PS_NULLFUNC_STACK;
1587 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1588 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1590 hw->wiphy->interface_modes =
1591 BIT(NL80211_IFTYPE_AP) |
1592 BIT(NL80211_IFTYPE_STATION) |
1593 BIT(NL80211_IFTYPE_ADHOC);
1595 hw->wiphy->reg_notifier = ath9k_reg_notifier;
1596 hw->wiphy->strict_regulatory = true;
1598 hw->queues = 4;
1599 hw->max_rates = 4;
1600 hw->channel_change_time = 5000;
1601 hw->max_listen_interval = 10;
1602 hw->max_rate_tries = ATH_11N_TXMAXTRY;
1603 hw->sta_data_size = sizeof(struct ath_node);
1604 hw->vif_data_size = sizeof(struct ath_vif);
1606 hw->rate_control_algorithm = "ath9k_rate_control";
1608 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1609 &sc->sbands[IEEE80211_BAND_2GHZ];
1610 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1611 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1612 &sc->sbands[IEEE80211_BAND_5GHZ];
1615 int ath_attach(u16 devid, struct ath_softc *sc)
1617 struct ieee80211_hw *hw = sc->hw;
1618 const struct ieee80211_regdomain *regd;
1619 int error = 0, i;
1621 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1623 error = ath_init(devid, sc);
1624 if (error != 0)
1625 return error;
1627 /* get mac address from hardware and set in mac80211 */
1629 SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1631 ath_set_hw_capab(sc, hw);
1633 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1634 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1635 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1636 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1639 /* initialize tx/rx engine */
1640 error = ath_tx_init(sc, ATH_TXBUF);
1641 if (error != 0)
1642 goto error_attach;
1644 error = ath_rx_init(sc, ATH_RXBUF);
1645 if (error != 0)
1646 goto error_attach;
1648 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1649 /* Initialze h/w Rfkill */
1650 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1651 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1653 /* Initialize s/w rfkill */
1654 error = ath_init_sw_rfkill(sc);
1655 if (error)
1656 goto error_attach;
1657 #endif
1659 if (ath9k_is_world_regd(sc->sc_ah)) {
1660 /* Anything applied here (prior to wiphy registration) gets
1661 * saved on the wiphy orig_* parameters */
1662 regd = ath9k_world_regdomain(sc->sc_ah);
1663 hw->wiphy->custom_regulatory = true;
1664 hw->wiphy->strict_regulatory = false;
1665 } else {
1666 /* This gets applied in the case of the absense of CRDA,
1667 * it's our own custom world regulatory domain, similar to
1668 * cfg80211's but we enable passive scanning */
1669 regd = ath9k_default_world_regdomain();
1671 wiphy_apply_custom_regulatory(hw->wiphy, regd);
1672 ath9k_reg_apply_radar_flags(hw->wiphy);
1673 ath9k_reg_apply_world_flags(hw->wiphy, REGDOM_SET_BY_INIT);
1675 INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1676 INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1677 sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1679 error = ieee80211_register_hw(hw);
1681 if (!ath9k_is_world_regd(sc->sc_ah)) {
1682 error = regulatory_hint(hw->wiphy,
1683 sc->sc_ah->regulatory.alpha2);
1684 if (error)
1685 goto error_attach;
1688 /* Initialize LED control */
1689 ath_init_leds(sc);
1692 return 0;
1694 error_attach:
1695 /* cleanup tx queues */
1696 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1697 if (ATH_TXQ_SETUP(sc, i))
1698 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1700 ath9k_hw_detach(sc->sc_ah);
1701 ath9k_exit_debug(sc);
1703 return error;
1706 int ath_reset(struct ath_softc *sc, bool retry_tx)
1708 struct ath_hw *ah = sc->sc_ah;
1709 struct ieee80211_hw *hw = sc->hw;
1710 int r;
1712 ath9k_hw_set_interrupts(ah, 0);
1713 ath_drain_all_txq(sc, retry_tx);
1714 ath_stoprecv(sc);
1715 ath_flushrecv(sc);
1717 spin_lock_bh(&sc->sc_resetlock);
1718 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1719 if (r)
1720 DPRINTF(sc, ATH_DBG_FATAL,
1721 "Unable to reset hardware; reset status %u\n", r);
1722 spin_unlock_bh(&sc->sc_resetlock);
1724 if (ath_startrecv(sc) != 0)
1725 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1728 * We may be doing a reset in response to a request
1729 * that changes the channel so update any state that
1730 * might change as a result.
1732 ath_cache_conf_rate(sc, &hw->conf);
1734 ath_update_txpow(sc);
1736 if (sc->sc_flags & SC_OP_BEACONS)
1737 ath_beacon_config(sc, NULL); /* restart beacons */
1739 ath9k_hw_set_interrupts(ah, sc->imask);
1741 if (retry_tx) {
1742 int i;
1743 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1744 if (ATH_TXQ_SETUP(sc, i)) {
1745 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1746 ath_txq_schedule(sc, &sc->tx.txq[i]);
1747 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1752 return r;
1756 * This function will allocate both the DMA descriptor structure, and the
1757 * buffers it contains. These are used to contain the descriptors used
1758 * by the system.
1760 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1761 struct list_head *head, const char *name,
1762 int nbuf, int ndesc)
1764 #define DS2PHYS(_dd, _ds) \
1765 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1766 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1767 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1769 struct ath_desc *ds;
1770 struct ath_buf *bf;
1771 int i, bsize, error;
1773 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1774 name, nbuf, ndesc);
1776 /* ath_desc must be a multiple of DWORDs */
1777 if ((sizeof(struct ath_desc) % 4) != 0) {
1778 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1779 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1780 error = -ENOMEM;
1781 goto fail;
1784 dd->dd_name = name;
1785 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1788 * Need additional DMA memory because we can't use
1789 * descriptors that cross the 4K page boundary. Assume
1790 * one skipped descriptor per 4K page.
1792 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1793 u32 ndesc_skipped =
1794 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1795 u32 dma_len;
1797 while (ndesc_skipped) {
1798 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1799 dd->dd_desc_len += dma_len;
1801 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1805 /* allocate descriptors */
1806 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1807 &dd->dd_desc_paddr, GFP_KERNEL);
1808 if (dd->dd_desc == NULL) {
1809 error = -ENOMEM;
1810 goto fail;
1812 ds = dd->dd_desc;
1813 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1814 dd->dd_name, ds, (u32) dd->dd_desc_len,
1815 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1817 /* allocate buffers */
1818 bsize = sizeof(struct ath_buf) * nbuf;
1819 bf = kzalloc(bsize, GFP_KERNEL);
1820 if (bf == NULL) {
1821 error = -ENOMEM;
1822 goto fail2;
1824 dd->dd_bufptr = bf;
1826 INIT_LIST_HEAD(head);
1827 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1828 bf->bf_desc = ds;
1829 bf->bf_daddr = DS2PHYS(dd, ds);
1831 if (!(sc->sc_ah->caps.hw_caps &
1832 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1834 * Skip descriptor addresses which can cause 4KB
1835 * boundary crossing (addr + length) with a 32 dword
1836 * descriptor fetch.
1838 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1839 ASSERT((caddr_t) bf->bf_desc <
1840 ((caddr_t) dd->dd_desc +
1841 dd->dd_desc_len));
1843 ds += ndesc;
1844 bf->bf_desc = ds;
1845 bf->bf_daddr = DS2PHYS(dd, ds);
1848 list_add_tail(&bf->list, head);
1850 return 0;
1851 fail2:
1852 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1853 dd->dd_desc_paddr);
1854 fail:
1855 memset(dd, 0, sizeof(*dd));
1856 return error;
1857 #undef ATH_DESC_4KB_BOUND_CHECK
1858 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1859 #undef DS2PHYS
1862 void ath_descdma_cleanup(struct ath_softc *sc,
1863 struct ath_descdma *dd,
1864 struct list_head *head)
1866 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1867 dd->dd_desc_paddr);
1869 INIT_LIST_HEAD(head);
1870 kfree(dd->dd_bufptr);
1871 memset(dd, 0, sizeof(*dd));
1874 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1876 int qnum;
1878 switch (queue) {
1879 case 0:
1880 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1881 break;
1882 case 1:
1883 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1884 break;
1885 case 2:
1886 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1887 break;
1888 case 3:
1889 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1890 break;
1891 default:
1892 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1893 break;
1896 return qnum;
1899 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1901 int qnum;
1903 switch (queue) {
1904 case ATH9K_WME_AC_VO:
1905 qnum = 0;
1906 break;
1907 case ATH9K_WME_AC_VI:
1908 qnum = 1;
1909 break;
1910 case ATH9K_WME_AC_BE:
1911 qnum = 2;
1912 break;
1913 case ATH9K_WME_AC_BK:
1914 qnum = 3;
1915 break;
1916 default:
1917 qnum = -1;
1918 break;
1921 return qnum;
1924 /* XXX: Remove me once we don't depend on ath9k_channel for all
1925 * this redundant data */
1926 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1927 struct ath9k_channel *ichan)
1929 struct ieee80211_channel *chan = hw->conf.channel;
1930 struct ieee80211_conf *conf = &hw->conf;
1932 ichan->channel = chan->center_freq;
1933 ichan->chan = chan;
1935 if (chan->band == IEEE80211_BAND_2GHZ) {
1936 ichan->chanmode = CHANNEL_G;
1937 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1938 } else {
1939 ichan->chanmode = CHANNEL_A;
1940 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1943 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1945 if (conf_is_ht(conf)) {
1946 if (conf_is_ht40(conf))
1947 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1949 ichan->chanmode = ath_get_extchanmode(sc, chan,
1950 conf->channel_type);
1954 /**********************/
1955 /* mac80211 callbacks */
1956 /**********************/
1958 static int ath9k_start(struct ieee80211_hw *hw)
1960 struct ath_wiphy *aphy = hw->priv;
1961 struct ath_softc *sc = aphy->sc;
1962 struct ieee80211_channel *curchan = hw->conf.channel;
1963 struct ath9k_channel *init_channel;
1964 int r, pos;
1966 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1967 "initial channel: %d MHz\n", curchan->center_freq);
1969 mutex_lock(&sc->mutex);
1971 if (ath9k_wiphy_started(sc)) {
1972 if (sc->chan_idx == curchan->hw_value) {
1974 * Already on the operational channel, the new wiphy
1975 * can be marked active.
1977 aphy->state = ATH_WIPHY_ACTIVE;
1978 ieee80211_wake_queues(hw);
1979 } else {
1981 * Another wiphy is on another channel, start the new
1982 * wiphy in paused state.
1984 aphy->state = ATH_WIPHY_PAUSED;
1985 ieee80211_stop_queues(hw);
1987 mutex_unlock(&sc->mutex);
1988 return 0;
1990 aphy->state = ATH_WIPHY_ACTIVE;
1992 /* setup initial channel */
1994 pos = curchan->hw_value;
1996 sc->chan_idx = pos;
1997 init_channel = &sc->sc_ah->channels[pos];
1998 ath9k_update_ichannel(sc, hw, init_channel);
2000 /* Reset SERDES registers */
2001 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
2004 * The basic interface to setting the hardware in a good
2005 * state is ``reset''. On return the hardware is known to
2006 * be powered up and with interrupts disabled. This must
2007 * be followed by initialization of the appropriate bits
2008 * and then setup of the interrupt mask.
2010 spin_lock_bh(&sc->sc_resetlock);
2011 r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
2012 if (r) {
2013 DPRINTF(sc, ATH_DBG_FATAL,
2014 "Unable to reset hardware; reset status %u "
2015 "(freq %u MHz)\n", r,
2016 curchan->center_freq);
2017 spin_unlock_bh(&sc->sc_resetlock);
2018 goto mutex_unlock;
2020 spin_unlock_bh(&sc->sc_resetlock);
2023 * This is needed only to setup initial state
2024 * but it's best done after a reset.
2026 ath_update_txpow(sc);
2029 * Setup the hardware after reset:
2030 * The receive engine is set going.
2031 * Frame transmit is handled entirely
2032 * in the frame output path; there's nothing to do
2033 * here except setup the interrupt mask.
2035 if (ath_startrecv(sc) != 0) {
2036 DPRINTF(sc, ATH_DBG_FATAL,
2037 "Unable to start recv logic\n");
2038 r = -EIO;
2039 goto mutex_unlock;
2042 /* Setup our intr mask. */
2043 sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2044 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2045 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2047 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2048 sc->imask |= ATH9K_INT_GTT;
2050 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2051 sc->imask |= ATH9K_INT_CST;
2053 ath_cache_conf_rate(sc, &hw->conf);
2055 sc->sc_flags &= ~SC_OP_INVALID;
2057 /* Disable BMISS interrupt when we're not associated */
2058 sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2059 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2061 ieee80211_wake_queues(hw);
2063 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2064 r = ath_start_rfkill_poll(sc);
2065 #endif
2067 mutex_unlock:
2068 mutex_unlock(&sc->mutex);
2070 return r;
2073 static int ath9k_tx(struct ieee80211_hw *hw,
2074 struct sk_buff *skb)
2076 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2077 struct ath_wiphy *aphy = hw->priv;
2078 struct ath_softc *sc = aphy->sc;
2079 struct ath_tx_control txctl;
2080 int hdrlen, padsize;
2082 if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2083 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2084 "%d\n", wiphy_name(hw->wiphy), aphy->state);
2085 goto exit;
2088 memset(&txctl, 0, sizeof(struct ath_tx_control));
2091 * As a temporary workaround, assign seq# here; this will likely need
2092 * to be cleaned up to work better with Beacon transmission and virtual
2093 * BSSes.
2095 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2096 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2097 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2098 sc->tx.seq_no += 0x10;
2099 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2100 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2103 /* Add the padding after the header if this is not already done */
2104 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2105 if (hdrlen & 3) {
2106 padsize = hdrlen % 4;
2107 if (skb_headroom(skb) < padsize)
2108 return -1;
2109 skb_push(skb, padsize);
2110 memmove(skb->data, skb->data + padsize, hdrlen);
2113 /* Check if a tx queue is available */
2115 txctl.txq = ath_test_get_txq(sc, skb);
2116 if (!txctl.txq)
2117 goto exit;
2119 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2121 if (ath_tx_start(hw, skb, &txctl) != 0) {
2122 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2123 goto exit;
2126 return 0;
2127 exit:
2128 dev_kfree_skb_any(skb);
2129 return 0;
2132 static void ath9k_stop(struct ieee80211_hw *hw)
2134 struct ath_wiphy *aphy = hw->priv;
2135 struct ath_softc *sc = aphy->sc;
2137 aphy->state = ATH_WIPHY_INACTIVE;
2139 if (sc->sc_flags & SC_OP_INVALID) {
2140 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2141 return;
2144 mutex_lock(&sc->mutex);
2146 ieee80211_stop_queues(hw);
2148 if (ath9k_wiphy_started(sc)) {
2149 mutex_unlock(&sc->mutex);
2150 return; /* another wiphy still in use */
2153 /* make sure h/w will not generate any interrupt
2154 * before setting the invalid flag. */
2155 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2157 if (!(sc->sc_flags & SC_OP_INVALID)) {
2158 ath_drain_all_txq(sc, false);
2159 ath_stoprecv(sc);
2160 ath9k_hw_phy_disable(sc->sc_ah);
2161 } else
2162 sc->rx.rxlink = NULL;
2164 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2165 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2166 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2167 #endif
2168 /* disable HAL and put h/w to sleep */
2169 ath9k_hw_disable(sc->sc_ah);
2170 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2172 sc->sc_flags |= SC_OP_INVALID;
2174 mutex_unlock(&sc->mutex);
2176 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2179 static int ath9k_add_interface(struct ieee80211_hw *hw,
2180 struct ieee80211_if_init_conf *conf)
2182 struct ath_wiphy *aphy = hw->priv;
2183 struct ath_softc *sc = aphy->sc;
2184 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2185 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2186 int ret = 0;
2188 mutex_lock(&sc->mutex);
2190 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2191 sc->nvifs > 0) {
2192 ret = -ENOBUFS;
2193 goto out;
2196 switch (conf->type) {
2197 case NL80211_IFTYPE_STATION:
2198 ic_opmode = NL80211_IFTYPE_STATION;
2199 break;
2200 case NL80211_IFTYPE_ADHOC:
2201 if (sc->nbcnvifs >= ATH_BCBUF) {
2202 ret = -ENOBUFS;
2203 goto out;
2205 ic_opmode = NL80211_IFTYPE_ADHOC;
2206 break;
2207 case NL80211_IFTYPE_AP:
2208 if (sc->nbcnvifs >= ATH_BCBUF) {
2209 ret = -ENOBUFS;
2210 goto out;
2212 ic_opmode = NL80211_IFTYPE_AP;
2213 break;
2214 default:
2215 DPRINTF(sc, ATH_DBG_FATAL,
2216 "Interface type %d not yet supported\n", conf->type);
2217 ret = -EOPNOTSUPP;
2218 goto out;
2221 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2223 /* Set the VIF opmode */
2224 avp->av_opmode = ic_opmode;
2225 avp->av_bslot = -1;
2227 sc->nvifs++;
2229 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2230 ath9k_set_bssid_mask(hw);
2232 if (sc->nvifs > 1)
2233 goto out; /* skip global settings for secondary vif */
2235 if (ic_opmode == NL80211_IFTYPE_AP) {
2236 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2237 sc->sc_flags |= SC_OP_TSF_RESET;
2240 /* Set the device opmode */
2241 sc->sc_ah->opmode = ic_opmode;
2244 * Enable MIB interrupts when there are hardware phy counters.
2245 * Note we only do this (at the moment) for station mode.
2247 if ((conf->type == NL80211_IFTYPE_STATION) ||
2248 (conf->type == NL80211_IFTYPE_ADHOC)) {
2249 if (ath9k_hw_phycounters(sc->sc_ah))
2250 sc->imask |= ATH9K_INT_MIB;
2251 sc->imask |= ATH9K_INT_TSFOOR;
2255 * Some hardware processes the TIM IE and fires an
2256 * interrupt when the TIM bit is set. For hardware
2257 * that does, if not overridden by configuration,
2258 * enable the TIM interrupt when operating as station.
2260 if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
2261 (conf->type == NL80211_IFTYPE_STATION) &&
2262 !sc->config.swBeaconProcess)
2263 sc->imask |= ATH9K_INT_TIM;
2265 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2267 if (conf->type == NL80211_IFTYPE_AP) {
2268 /* TODO: is this a suitable place to start ANI for AP mode? */
2269 /* Start ANI */
2270 mod_timer(&sc->ani.timer,
2271 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2274 out:
2275 mutex_unlock(&sc->mutex);
2276 return ret;
2279 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2280 struct ieee80211_if_init_conf *conf)
2282 struct ath_wiphy *aphy = hw->priv;
2283 struct ath_softc *sc = aphy->sc;
2284 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2285 int i;
2287 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2289 mutex_lock(&sc->mutex);
2291 /* Stop ANI */
2292 del_timer_sync(&sc->ani.timer);
2294 /* Reclaim beacon resources */
2295 if (sc->sc_ah->opmode == NL80211_IFTYPE_AP ||
2296 sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) {
2297 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2298 ath_beacon_return(sc, avp);
2301 sc->sc_flags &= ~SC_OP_BEACONS;
2303 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2304 if (sc->beacon.bslot[i] == conf->vif) {
2305 printk(KERN_DEBUG "%s: vif had allocated beacon "
2306 "slot\n", __func__);
2307 sc->beacon.bslot[i] = NULL;
2308 sc->beacon.bslot_aphy[i] = NULL;
2312 sc->nvifs--;
2314 mutex_unlock(&sc->mutex);
2317 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2319 struct ath_wiphy *aphy = hw->priv;
2320 struct ath_softc *sc = aphy->sc;
2321 struct ieee80211_conf *conf = &hw->conf;
2323 mutex_lock(&sc->mutex);
2325 if (changed & IEEE80211_CONF_CHANGE_PS) {
2326 if (conf->flags & IEEE80211_CONF_PS) {
2327 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2328 sc->imask |= ATH9K_INT_TIM_TIMER;
2329 ath9k_hw_set_interrupts(sc->sc_ah,
2330 sc->imask);
2332 ath9k_hw_setrxabort(sc->sc_ah, 1);
2333 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2334 } else {
2335 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2336 ath9k_hw_setrxabort(sc->sc_ah, 0);
2337 sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
2338 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2339 sc->imask &= ~ATH9K_INT_TIM_TIMER;
2340 ath9k_hw_set_interrupts(sc->sc_ah,
2341 sc->imask);
2346 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2347 struct ieee80211_channel *curchan = hw->conf.channel;
2348 int pos = curchan->hw_value;
2350 aphy->chan_idx = pos;
2351 aphy->chan_is_ht = conf_is_ht(conf);
2353 if (aphy->state == ATH_WIPHY_SCAN ||
2354 aphy->state == ATH_WIPHY_ACTIVE)
2355 ath9k_wiphy_pause_all_forced(sc, aphy);
2356 else {
2358 * Do not change operational channel based on a paused
2359 * wiphy changes.
2361 goto skip_chan_change;
2364 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2365 curchan->center_freq);
2367 /* XXX: remove me eventualy */
2368 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2370 ath_update_chainmask(sc, conf_is_ht(conf));
2372 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2373 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2374 mutex_unlock(&sc->mutex);
2375 return -EINVAL;
2379 skip_chan_change:
2380 if (changed & IEEE80211_CONF_CHANGE_POWER)
2381 sc->config.txpowlimit = 2 * conf->power_level;
2384 * The HW TSF has to be reset when the beacon interval changes.
2385 * We set the flag here, and ath_beacon_config_ap() would take this
2386 * into account when it gets called through the subsequent
2387 * config_interface() call - with IFCC_BEACON in the changed field.
2390 if (changed & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
2391 sc->sc_flags |= SC_OP_TSF_RESET;
2393 mutex_unlock(&sc->mutex);
2395 return 0;
2398 static int ath9k_config_interface(struct ieee80211_hw *hw,
2399 struct ieee80211_vif *vif,
2400 struct ieee80211_if_conf *conf)
2402 struct ath_wiphy *aphy = hw->priv;
2403 struct ath_softc *sc = aphy->sc;
2404 struct ath_hw *ah = sc->sc_ah;
2405 struct ath_vif *avp = (void *)vif->drv_priv;
2406 u32 rfilt = 0;
2407 int error, i;
2409 mutex_lock(&sc->mutex);
2411 /* TODO: Need to decide which hw opmode to use for multi-interface
2412 * cases */
2413 if (vif->type == NL80211_IFTYPE_AP &&
2414 ah->opmode != NL80211_IFTYPE_AP) {
2415 ah->opmode = NL80211_IFTYPE_STATION;
2416 ath9k_hw_setopmode(ah);
2417 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2418 sc->curaid = 0;
2419 ath9k_hw_write_associd(sc);
2420 /* Request full reset to get hw opmode changed properly */
2421 sc->sc_flags |= SC_OP_FULL_RESET;
2424 if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2425 !is_zero_ether_addr(conf->bssid)) {
2426 switch (vif->type) {
2427 case NL80211_IFTYPE_STATION:
2428 case NL80211_IFTYPE_ADHOC:
2429 /* Set BSSID */
2430 memcpy(sc->curbssid, conf->bssid, ETH_ALEN);
2431 memcpy(avp->bssid, conf->bssid, ETH_ALEN);
2432 sc->curaid = 0;
2433 ath9k_hw_write_associd(sc);
2435 /* Set aggregation protection mode parameters */
2436 sc->config.ath_aggr_prot = 0;
2438 DPRINTF(sc, ATH_DBG_CONFIG,
2439 "RX filter 0x%x bssid %pM aid 0x%x\n",
2440 rfilt, sc->curbssid, sc->curaid);
2442 /* need to reconfigure the beacon */
2443 sc->sc_flags &= ~SC_OP_BEACONS ;
2445 break;
2446 default:
2447 break;
2451 if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2452 (vif->type == NL80211_IFTYPE_AP)) {
2453 if ((conf->changed & IEEE80211_IFCC_BEACON) ||
2454 (conf->changed & IEEE80211_IFCC_BEACON_ENABLED &&
2455 conf->enable_beacon)) {
2457 * Allocate and setup the beacon frame.
2459 * Stop any previous beacon DMA. This may be
2460 * necessary, for example, when an ibss merge
2461 * causes reconfiguration; we may be called
2462 * with beacon transmission active.
2464 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2466 error = ath_beacon_alloc(aphy, vif);
2467 if (error != 0) {
2468 mutex_unlock(&sc->mutex);
2469 return error;
2472 ath_beacon_config(sc, vif);
2476 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2477 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2478 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2479 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2480 ath9k_hw_keysetmac(sc->sc_ah,
2481 (u16)i,
2482 sc->curbssid);
2485 /* Only legacy IBSS for now */
2486 if (vif->type == NL80211_IFTYPE_ADHOC)
2487 ath_update_chainmask(sc, 0);
2489 mutex_unlock(&sc->mutex);
2491 return 0;
2494 #define SUPPORTED_FILTERS \
2495 (FIF_PROMISC_IN_BSS | \
2496 FIF_ALLMULTI | \
2497 FIF_CONTROL | \
2498 FIF_OTHER_BSS | \
2499 FIF_BCN_PRBRESP_PROMISC | \
2500 FIF_FCSFAIL)
2502 /* FIXME: sc->sc_full_reset ? */
2503 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2504 unsigned int changed_flags,
2505 unsigned int *total_flags,
2506 int mc_count,
2507 struct dev_mc_list *mclist)
2509 struct ath_wiphy *aphy = hw->priv;
2510 struct ath_softc *sc = aphy->sc;
2511 u32 rfilt;
2513 changed_flags &= SUPPORTED_FILTERS;
2514 *total_flags &= SUPPORTED_FILTERS;
2516 sc->rx.rxfilter = *total_flags;
2517 rfilt = ath_calcrxfilter(sc);
2518 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2520 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2523 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2524 struct ieee80211_vif *vif,
2525 enum sta_notify_cmd cmd,
2526 struct ieee80211_sta *sta)
2528 struct ath_wiphy *aphy = hw->priv;
2529 struct ath_softc *sc = aphy->sc;
2531 switch (cmd) {
2532 case STA_NOTIFY_ADD:
2533 ath_node_attach(sc, sta);
2534 break;
2535 case STA_NOTIFY_REMOVE:
2536 ath_node_detach(sc, sta);
2537 break;
2538 default:
2539 break;
2543 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2544 const struct ieee80211_tx_queue_params *params)
2546 struct ath_wiphy *aphy = hw->priv;
2547 struct ath_softc *sc = aphy->sc;
2548 struct ath9k_tx_queue_info qi;
2549 int ret = 0, qnum;
2551 if (queue >= WME_NUM_AC)
2552 return 0;
2554 mutex_lock(&sc->mutex);
2556 qi.tqi_aifs = params->aifs;
2557 qi.tqi_cwmin = params->cw_min;
2558 qi.tqi_cwmax = params->cw_max;
2559 qi.tqi_burstTime = params->txop;
2560 qnum = ath_get_hal_qnum(queue, sc);
2562 DPRINTF(sc, ATH_DBG_CONFIG,
2563 "Configure tx [queue/halq] [%d/%d], "
2564 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2565 queue, qnum, params->aifs, params->cw_min,
2566 params->cw_max, params->txop);
2568 ret = ath_txq_update(sc, qnum, &qi);
2569 if (ret)
2570 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2572 mutex_unlock(&sc->mutex);
2574 return ret;
2577 static int ath9k_set_key(struct ieee80211_hw *hw,
2578 enum set_key_cmd cmd,
2579 struct ieee80211_vif *vif,
2580 struct ieee80211_sta *sta,
2581 struct ieee80211_key_conf *key)
2583 struct ath_wiphy *aphy = hw->priv;
2584 struct ath_softc *sc = aphy->sc;
2585 int ret = 0;
2587 if (modparam_nohwcrypt)
2588 return -ENOSPC;
2590 mutex_lock(&sc->mutex);
2591 ath9k_ps_wakeup(sc);
2592 DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2594 switch (cmd) {
2595 case SET_KEY:
2596 ret = ath_key_config(sc, vif, sta, key);
2597 if (ret >= 0) {
2598 key->hw_key_idx = ret;
2599 /* push IV and Michael MIC generation to stack */
2600 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2601 if (key->alg == ALG_TKIP)
2602 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2603 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2604 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2605 ret = 0;
2607 break;
2608 case DISABLE_KEY:
2609 ath_key_delete(sc, key);
2610 break;
2611 default:
2612 ret = -EINVAL;
2615 ath9k_ps_restore(sc);
2616 mutex_unlock(&sc->mutex);
2618 return ret;
2621 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2622 struct ieee80211_vif *vif,
2623 struct ieee80211_bss_conf *bss_conf,
2624 u32 changed)
2626 struct ath_wiphy *aphy = hw->priv;
2627 struct ath_softc *sc = aphy->sc;
2629 mutex_lock(&sc->mutex);
2631 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2632 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2633 bss_conf->use_short_preamble);
2634 if (bss_conf->use_short_preamble)
2635 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2636 else
2637 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2640 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2641 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2642 bss_conf->use_cts_prot);
2643 if (bss_conf->use_cts_prot &&
2644 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2645 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2646 else
2647 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2650 if (changed & BSS_CHANGED_ASSOC) {
2651 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2652 bss_conf->assoc);
2653 ath9k_bss_assoc_info(sc, vif, bss_conf);
2656 mutex_unlock(&sc->mutex);
2659 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2661 u64 tsf;
2662 struct ath_wiphy *aphy = hw->priv;
2663 struct ath_softc *sc = aphy->sc;
2665 mutex_lock(&sc->mutex);
2666 tsf = ath9k_hw_gettsf64(sc->sc_ah);
2667 mutex_unlock(&sc->mutex);
2669 return tsf;
2672 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2674 struct ath_wiphy *aphy = hw->priv;
2675 struct ath_softc *sc = aphy->sc;
2677 mutex_lock(&sc->mutex);
2678 ath9k_hw_settsf64(sc->sc_ah, tsf);
2679 mutex_unlock(&sc->mutex);
2682 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2684 struct ath_wiphy *aphy = hw->priv;
2685 struct ath_softc *sc = aphy->sc;
2687 mutex_lock(&sc->mutex);
2688 ath9k_hw_reset_tsf(sc->sc_ah);
2689 mutex_unlock(&sc->mutex);
2692 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2693 enum ieee80211_ampdu_mlme_action action,
2694 struct ieee80211_sta *sta,
2695 u16 tid, u16 *ssn)
2697 struct ath_wiphy *aphy = hw->priv;
2698 struct ath_softc *sc = aphy->sc;
2699 int ret = 0;
2701 switch (action) {
2702 case IEEE80211_AMPDU_RX_START:
2703 if (!(sc->sc_flags & SC_OP_RXAGGR))
2704 ret = -ENOTSUPP;
2705 break;
2706 case IEEE80211_AMPDU_RX_STOP:
2707 break;
2708 case IEEE80211_AMPDU_TX_START:
2709 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2710 if (ret < 0)
2711 DPRINTF(sc, ATH_DBG_FATAL,
2712 "Unable to start TX aggregation\n");
2713 else
2714 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2715 break;
2716 case IEEE80211_AMPDU_TX_STOP:
2717 ret = ath_tx_aggr_stop(sc, sta, tid);
2718 if (ret < 0)
2719 DPRINTF(sc, ATH_DBG_FATAL,
2720 "Unable to stop TX aggregation\n");
2722 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2723 break;
2724 case IEEE80211_AMPDU_TX_RESUME:
2725 ath_tx_aggr_resume(sc, sta, tid);
2726 break;
2727 default:
2728 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2731 return ret;
2734 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2736 struct ath_wiphy *aphy = hw->priv;
2737 struct ath_softc *sc = aphy->sc;
2739 if (ath9k_wiphy_scanning(sc)) {
2740 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2741 "same time\n");
2743 * Do not allow the concurrent scanning state for now. This
2744 * could be improved with scanning control moved into ath9k.
2746 return;
2749 aphy->state = ATH_WIPHY_SCAN;
2750 ath9k_wiphy_pause_all_forced(sc, aphy);
2752 mutex_lock(&sc->mutex);
2753 sc->sc_flags |= SC_OP_SCANNING;
2754 mutex_unlock(&sc->mutex);
2757 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2759 struct ath_wiphy *aphy = hw->priv;
2760 struct ath_softc *sc = aphy->sc;
2762 mutex_lock(&sc->mutex);
2763 aphy->state = ATH_WIPHY_ACTIVE;
2764 sc->sc_flags &= ~SC_OP_SCANNING;
2765 mutex_unlock(&sc->mutex);
2768 struct ieee80211_ops ath9k_ops = {
2769 .tx = ath9k_tx,
2770 .start = ath9k_start,
2771 .stop = ath9k_stop,
2772 .add_interface = ath9k_add_interface,
2773 .remove_interface = ath9k_remove_interface,
2774 .config = ath9k_config,
2775 .config_interface = ath9k_config_interface,
2776 .configure_filter = ath9k_configure_filter,
2777 .sta_notify = ath9k_sta_notify,
2778 .conf_tx = ath9k_conf_tx,
2779 .bss_info_changed = ath9k_bss_info_changed,
2780 .set_key = ath9k_set_key,
2781 .get_tsf = ath9k_get_tsf,
2782 .set_tsf = ath9k_set_tsf,
2783 .reset_tsf = ath9k_reset_tsf,
2784 .ampdu_action = ath9k_ampdu_action,
2785 .sw_scan_start = ath9k_sw_scan_start,
2786 .sw_scan_complete = ath9k_sw_scan_complete,
2789 static struct {
2790 u32 version;
2791 const char * name;
2792 } ath_mac_bb_names[] = {
2793 { AR_SREV_VERSION_5416_PCI, "5416" },
2794 { AR_SREV_VERSION_5416_PCIE, "5418" },
2795 { AR_SREV_VERSION_9100, "9100" },
2796 { AR_SREV_VERSION_9160, "9160" },
2797 { AR_SREV_VERSION_9280, "9280" },
2798 { AR_SREV_VERSION_9285, "9285" }
2801 static struct {
2802 u16 version;
2803 const char * name;
2804 } ath_rf_names[] = {
2805 { 0, "5133" },
2806 { AR_RAD5133_SREV_MAJOR, "5133" },
2807 { AR_RAD5122_SREV_MAJOR, "5122" },
2808 { AR_RAD2133_SREV_MAJOR, "2133" },
2809 { AR_RAD2122_SREV_MAJOR, "2122" }
2813 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2815 const char *
2816 ath_mac_bb_name(u32 mac_bb_version)
2818 int i;
2820 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2821 if (ath_mac_bb_names[i].version == mac_bb_version) {
2822 return ath_mac_bb_names[i].name;
2826 return "????";
2830 * Return the RF name. "????" is returned if the RF is unknown.
2832 const char *
2833 ath_rf_name(u16 rf_version)
2835 int i;
2837 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2838 if (ath_rf_names[i].version == rf_version) {
2839 return ath_rf_names[i].name;
2843 return "????";
2846 static int __init ath9k_init(void)
2848 int error;
2850 /* Register rate control algorithm */
2851 error = ath_rate_control_register();
2852 if (error != 0) {
2853 printk(KERN_ERR
2854 "ath9k: Unable to register rate control "
2855 "algorithm: %d\n",
2856 error);
2857 goto err_out;
2860 error = ath9k_debug_create_root();
2861 if (error) {
2862 printk(KERN_ERR
2863 "ath9k: Unable to create debugfs root: %d\n",
2864 error);
2865 goto err_rate_unregister;
2868 error = ath_pci_init();
2869 if (error < 0) {
2870 printk(KERN_ERR
2871 "ath9k: No PCI devices found, driver not installed.\n");
2872 error = -ENODEV;
2873 goto err_remove_root;
2876 error = ath_ahb_init();
2877 if (error < 0) {
2878 error = -ENODEV;
2879 goto err_pci_exit;
2882 return 0;
2884 err_pci_exit:
2885 ath_pci_exit();
2887 err_remove_root:
2888 ath9k_debug_remove_root();
2889 err_rate_unregister:
2890 ath_rate_control_unregister();
2891 err_out:
2892 return error;
2894 module_init(ath9k_init);
2896 static void __exit ath9k_exit(void)
2898 ath_ahb_exit();
2899 ath_pci_exit();
2900 ath9k_debug_remove_root();
2901 ath_rate_control_unregister();
2902 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2904 module_exit(ath9k_exit);