x86: PAT phys_mem_access_prot_allowed for dev/mem mmap
[linux-2.6/mini2440.git] / fs / pnode.c
blobf968e35d9785fde2d333dfff431d693b7a4bb50d
1 /*
2 * linux/fs/pnode.c
4 * (C) Copyright IBM Corporation 2005.
5 * Released under GPL v2.
6 * Author : Ram Pai (linuxram@us.ibm.com)
8 */
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
11 #include <linux/fs.h>
12 #include "internal.h"
13 #include "pnode.h"
15 /* return the next shared peer mount of @p */
16 static inline struct vfsmount *next_peer(struct vfsmount *p)
18 return list_entry(p->mnt_share.next, struct vfsmount, mnt_share);
21 static inline struct vfsmount *first_slave(struct vfsmount *p)
23 return list_entry(p->mnt_slave_list.next, struct vfsmount, mnt_slave);
26 static inline struct vfsmount *next_slave(struct vfsmount *p)
28 return list_entry(p->mnt_slave.next, struct vfsmount, mnt_slave);
31 static int do_make_slave(struct vfsmount *mnt)
33 struct vfsmount *peer_mnt = mnt, *master = mnt->mnt_master;
34 struct vfsmount *slave_mnt;
37 * slave 'mnt' to a peer mount that has the
38 * same root dentry. If none is available than
39 * slave it to anything that is available.
41 while ((peer_mnt = next_peer(peer_mnt)) != mnt &&
42 peer_mnt->mnt_root != mnt->mnt_root) ;
44 if (peer_mnt == mnt) {
45 peer_mnt = next_peer(mnt);
46 if (peer_mnt == mnt)
47 peer_mnt = NULL;
49 list_del_init(&mnt->mnt_share);
51 if (peer_mnt)
52 master = peer_mnt;
54 if (master) {
55 list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
56 slave_mnt->mnt_master = master;
57 list_move(&mnt->mnt_slave, &master->mnt_slave_list);
58 list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
59 INIT_LIST_HEAD(&mnt->mnt_slave_list);
60 } else {
61 struct list_head *p = &mnt->mnt_slave_list;
62 while (!list_empty(p)) {
63 slave_mnt = list_first_entry(p,
64 struct vfsmount, mnt_slave);
65 list_del_init(&slave_mnt->mnt_slave);
66 slave_mnt->mnt_master = NULL;
69 mnt->mnt_master = master;
70 CLEAR_MNT_SHARED(mnt);
71 INIT_LIST_HEAD(&mnt->mnt_slave_list);
72 return 0;
75 void change_mnt_propagation(struct vfsmount *mnt, int type)
77 if (type == MS_SHARED) {
78 set_mnt_shared(mnt);
79 return;
81 do_make_slave(mnt);
82 if (type != MS_SLAVE) {
83 list_del_init(&mnt->mnt_slave);
84 mnt->mnt_master = NULL;
85 if (type == MS_UNBINDABLE)
86 mnt->mnt_flags |= MNT_UNBINDABLE;
87 else
88 mnt->mnt_flags &= ~MNT_UNBINDABLE;
93 * get the next mount in the propagation tree.
94 * @m: the mount seen last
95 * @origin: the original mount from where the tree walk initiated
97 static struct vfsmount *propagation_next(struct vfsmount *m,
98 struct vfsmount *origin)
100 /* are there any slaves of this mount? */
101 if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
102 return first_slave(m);
104 while (1) {
105 struct vfsmount *next;
106 struct vfsmount *master = m->mnt_master;
108 if (master == origin->mnt_master) {
109 next = next_peer(m);
110 return ((next == origin) ? NULL : next);
111 } else if (m->mnt_slave.next != &master->mnt_slave_list)
112 return next_slave(m);
114 /* back at master */
115 m = master;
120 * return the source mount to be used for cloning
122 * @dest the current destination mount
123 * @last_dest the last seen destination mount
124 * @last_src the last seen source mount
125 * @type return CL_SLAVE if the new mount has to be
126 * cloned as a slave.
128 static struct vfsmount *get_source(struct vfsmount *dest,
129 struct vfsmount *last_dest,
130 struct vfsmount *last_src,
131 int *type)
133 struct vfsmount *p_last_src = NULL;
134 struct vfsmount *p_last_dest = NULL;
135 *type = CL_PROPAGATION;
137 if (IS_MNT_SHARED(dest))
138 *type |= CL_MAKE_SHARED;
140 while (last_dest != dest->mnt_master) {
141 p_last_dest = last_dest;
142 p_last_src = last_src;
143 last_dest = last_dest->mnt_master;
144 last_src = last_src->mnt_master;
147 if (p_last_dest) {
148 do {
149 p_last_dest = next_peer(p_last_dest);
150 } while (IS_MNT_NEW(p_last_dest));
153 if (dest != p_last_dest) {
154 *type |= CL_SLAVE;
155 return last_src;
156 } else
157 return p_last_src;
161 * mount 'source_mnt' under the destination 'dest_mnt' at
162 * dentry 'dest_dentry'. And propagate that mount to
163 * all the peer and slave mounts of 'dest_mnt'.
164 * Link all the new mounts into a propagation tree headed at
165 * source_mnt. Also link all the new mounts using ->mnt_list
166 * headed at source_mnt's ->mnt_list
168 * @dest_mnt: destination mount.
169 * @dest_dentry: destination dentry.
170 * @source_mnt: source mount.
171 * @tree_list : list of heads of trees to be attached.
173 int propagate_mnt(struct vfsmount *dest_mnt, struct dentry *dest_dentry,
174 struct vfsmount *source_mnt, struct list_head *tree_list)
176 struct vfsmount *m, *child;
177 int ret = 0;
178 struct vfsmount *prev_dest_mnt = dest_mnt;
179 struct vfsmount *prev_src_mnt = source_mnt;
180 LIST_HEAD(tmp_list);
181 LIST_HEAD(umount_list);
183 for (m = propagation_next(dest_mnt, dest_mnt); m;
184 m = propagation_next(m, dest_mnt)) {
185 int type;
186 struct vfsmount *source;
188 if (IS_MNT_NEW(m))
189 continue;
191 source = get_source(m, prev_dest_mnt, prev_src_mnt, &type);
193 if (!(child = copy_tree(source, source->mnt_root, type))) {
194 ret = -ENOMEM;
195 list_splice(tree_list, tmp_list.prev);
196 goto out;
199 if (is_subdir(dest_dentry, m->mnt_root)) {
200 mnt_set_mountpoint(m, dest_dentry, child);
201 list_add_tail(&child->mnt_hash, tree_list);
202 } else {
204 * This can happen if the parent mount was bind mounted
205 * on some subdirectory of a shared/slave mount.
207 list_add_tail(&child->mnt_hash, &tmp_list);
209 prev_dest_mnt = m;
210 prev_src_mnt = child;
212 out:
213 spin_lock(&vfsmount_lock);
214 while (!list_empty(&tmp_list)) {
215 child = list_first_entry(&tmp_list, struct vfsmount, mnt_hash);
216 umount_tree(child, 0, &umount_list);
218 spin_unlock(&vfsmount_lock);
219 release_mounts(&umount_list);
220 return ret;
224 * return true if the refcount is greater than count
226 static inline int do_refcount_check(struct vfsmount *mnt, int count)
228 int mycount = atomic_read(&mnt->mnt_count) - mnt->mnt_ghosts;
229 return (mycount > count);
233 * check if the mount 'mnt' can be unmounted successfully.
234 * @mnt: the mount to be checked for unmount
235 * NOTE: unmounting 'mnt' would naturally propagate to all
236 * other mounts its parent propagates to.
237 * Check if any of these mounts that **do not have submounts**
238 * have more references than 'refcnt'. If so return busy.
240 int propagate_mount_busy(struct vfsmount *mnt, int refcnt)
242 struct vfsmount *m, *child;
243 struct vfsmount *parent = mnt->mnt_parent;
244 int ret = 0;
246 if (mnt == parent)
247 return do_refcount_check(mnt, refcnt);
250 * quickly check if the current mount can be unmounted.
251 * If not, we don't have to go checking for all other
252 * mounts
254 if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
255 return 1;
257 for (m = propagation_next(parent, parent); m;
258 m = propagation_next(m, parent)) {
259 child = __lookup_mnt(m, mnt->mnt_mountpoint, 0);
260 if (child && list_empty(&child->mnt_mounts) &&
261 (ret = do_refcount_check(child, 1)))
262 break;
264 return ret;
268 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
269 * parent propagates to.
271 static void __propagate_umount(struct vfsmount *mnt)
273 struct vfsmount *parent = mnt->mnt_parent;
274 struct vfsmount *m;
276 BUG_ON(parent == mnt);
278 for (m = propagation_next(parent, parent); m;
279 m = propagation_next(m, parent)) {
281 struct vfsmount *child = __lookup_mnt(m,
282 mnt->mnt_mountpoint, 0);
284 * umount the child only if the child has no
285 * other children
287 if (child && list_empty(&child->mnt_mounts))
288 list_move_tail(&child->mnt_hash, &mnt->mnt_hash);
293 * collect all mounts that receive propagation from the mount in @list,
294 * and return these additional mounts in the same list.
295 * @list: the list of mounts to be unmounted.
297 int propagate_umount(struct list_head *list)
299 struct vfsmount *mnt;
301 list_for_each_entry(mnt, list, mnt_hash)
302 __propagate_umount(mnt);
303 return 0;