2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/pagevec.h>
23 #include <linux/rmap.h>
24 #include <linux/topology.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/writeback.h>
28 #include <linux/mempolicy.h>
29 #include <linux/vmalloc.h>
30 #include <linux/security.h>
34 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
37 * Isolate one page from the LRU lists. If successful put it onto
38 * the indicated list with elevated page count.
41 * -EBUSY: page not on LRU list
42 * 0: page removed from LRU list and added to the specified list.
44 int isolate_lru_page(struct page
*page
, struct list_head
*pagelist
)
49 struct zone
*zone
= page_zone(page
);
51 spin_lock_irq(&zone
->lru_lock
);
52 if (PageLRU(page
) && get_page_unless_zero(page
)) {
56 del_page_from_active_list(zone
, page
);
58 del_page_from_inactive_list(zone
, page
);
59 list_add_tail(&page
->lru
, pagelist
);
61 spin_unlock_irq(&zone
->lru_lock
);
67 * migrate_prep() needs to be called before we start compiling a list of pages
68 * to be migrated using isolate_lru_page().
70 int migrate_prep(void)
73 * Clear the LRU lists so pages can be isolated.
74 * Note that pages may be moved off the LRU after we have
75 * drained them. Those pages will fail to migrate like other
76 * pages that may be busy.
83 static inline void move_to_lru(struct page
*page
)
85 if (PageActive(page
)) {
87 * lru_cache_add_active checks that
88 * the PG_active bit is off.
90 ClearPageActive(page
);
91 lru_cache_add_active(page
);
99 * Add isolated pages on the list back to the LRU.
101 * returns the number of pages put back.
103 int putback_lru_pages(struct list_head
*l
)
109 list_for_each_entry_safe(page
, page2
, l
, lru
) {
110 list_del(&page
->lru
);
117 static inline int is_swap_pte(pte_t pte
)
119 return !pte_none(pte
) && !pte_present(pte
) && !pte_file(pte
);
123 * Restore a potential migration pte to a working pte entry
125 static void remove_migration_pte(struct vm_area_struct
*vma
,
126 struct page
*old
, struct page
*new)
128 struct mm_struct
*mm
= vma
->vm_mm
;
135 unsigned long addr
= page_address_in_vma(new, vma
);
140 pgd
= pgd_offset(mm
, addr
);
141 if (!pgd_present(*pgd
))
144 pud
= pud_offset(pgd
, addr
);
145 if (!pud_present(*pud
))
148 pmd
= pmd_offset(pud
, addr
);
149 if (!pmd_present(*pmd
))
152 ptep
= pte_offset_map(pmd
, addr
);
154 if (!is_swap_pte(*ptep
)) {
159 ptl
= pte_lockptr(mm
, pmd
);
162 if (!is_swap_pte(pte
))
165 entry
= pte_to_swp_entry(pte
);
167 if (!is_migration_entry(entry
) || migration_entry_to_page(entry
) != old
)
171 pte
= pte_mkold(mk_pte(new, vma
->vm_page_prot
));
172 if (is_write_migration_entry(entry
))
173 pte
= pte_mkwrite(pte
);
174 flush_cache_page(vma
, addr
, pte_pfn(pte
));
175 set_pte_at(mm
, addr
, ptep
, pte
);
178 page_add_anon_rmap(new, vma
, addr
);
180 page_add_file_rmap(new);
182 /* No need to invalidate - it was non-present before */
183 update_mmu_cache(vma
, addr
, pte
);
186 pte_unmap_unlock(ptep
, ptl
);
190 * Note that remove_file_migration_ptes will only work on regular mappings,
191 * Nonlinear mappings do not use migration entries.
193 static void remove_file_migration_ptes(struct page
*old
, struct page
*new)
195 struct vm_area_struct
*vma
;
196 struct address_space
*mapping
= page_mapping(new);
197 struct prio_tree_iter iter
;
198 pgoff_t pgoff
= new->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
203 spin_lock(&mapping
->i_mmap_lock
);
205 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
)
206 remove_migration_pte(vma
, old
, new);
208 spin_unlock(&mapping
->i_mmap_lock
);
212 * Must hold mmap_sem lock on at least one of the vmas containing
213 * the page so that the anon_vma cannot vanish.
215 static void remove_anon_migration_ptes(struct page
*old
, struct page
*new)
217 struct anon_vma
*anon_vma
;
218 struct vm_area_struct
*vma
;
219 unsigned long mapping
;
221 mapping
= (unsigned long)new->mapping
;
223 if (!mapping
|| (mapping
& PAGE_MAPPING_ANON
) == 0)
227 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
229 anon_vma
= (struct anon_vma
*) (mapping
- PAGE_MAPPING_ANON
);
230 spin_lock(&anon_vma
->lock
);
232 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
)
233 remove_migration_pte(vma
, old
, new);
235 spin_unlock(&anon_vma
->lock
);
239 * Get rid of all migration entries and replace them by
240 * references to the indicated page.
242 static void remove_migration_ptes(struct page
*old
, struct page
*new)
245 remove_anon_migration_ptes(old
, new);
247 remove_file_migration_ptes(old
, new);
251 * Something used the pte of a page under migration. We need to
252 * get to the page and wait until migration is finished.
253 * When we return from this function the fault will be retried.
255 * This function is called from do_swap_page().
257 void migration_entry_wait(struct mm_struct
*mm
, pmd_t
*pmd
,
258 unsigned long address
)
265 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
267 if (!is_swap_pte(pte
))
270 entry
= pte_to_swp_entry(pte
);
271 if (!is_migration_entry(entry
))
274 page
= migration_entry_to_page(entry
);
277 pte_unmap_unlock(ptep
, ptl
);
278 wait_on_page_locked(page
);
282 pte_unmap_unlock(ptep
, ptl
);
286 * Replace the page in the mapping.
288 * The number of remaining references must be:
289 * 1 for anonymous pages without a mapping
290 * 2 for pages with a mapping
291 * 3 for pages with a mapping and PagePrivate set.
293 static int migrate_page_move_mapping(struct address_space
*mapping
,
294 struct page
*newpage
, struct page
*page
)
299 /* Anonymous page without mapping */
300 if (page_count(page
) != 1)
305 write_lock_irq(&mapping
->tree_lock
);
307 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
310 if (page_count(page
) != 2 + !!PagePrivate(page
) ||
311 (struct page
*)radix_tree_deref_slot(pslot
) != page
) {
312 write_unlock_irq(&mapping
->tree_lock
);
317 * Now we know that no one else is looking at the page.
319 get_page(newpage
); /* add cache reference */
321 if (PageSwapCache(page
)) {
322 SetPageSwapCache(newpage
);
323 set_page_private(newpage
, page_private(page
));
327 radix_tree_replace_slot(pslot
, newpage
);
330 * Drop cache reference from old page.
331 * We know this isn't the last reference.
336 * If moved to a different zone then also account
337 * the page for that zone. Other VM counters will be
338 * taken care of when we establish references to the
339 * new page and drop references to the old page.
341 * Note that anonymous pages are accounted for
342 * via NR_FILE_PAGES and NR_ANON_PAGES if they
343 * are mapped to swap space.
345 __dec_zone_page_state(page
, NR_FILE_PAGES
);
346 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
348 write_unlock_irq(&mapping
->tree_lock
);
354 * Copy the page to its new location
356 static void migrate_page_copy(struct page
*newpage
, struct page
*page
)
358 copy_highpage(newpage
, page
);
361 SetPageError(newpage
);
362 if (PageReferenced(page
))
363 SetPageReferenced(newpage
);
364 if (PageUptodate(page
))
365 SetPageUptodate(newpage
);
366 if (PageActive(page
))
367 SetPageActive(newpage
);
368 if (PageChecked(page
))
369 SetPageChecked(newpage
);
370 if (PageMappedToDisk(page
))
371 SetPageMappedToDisk(newpage
);
373 if (PageDirty(page
)) {
374 clear_page_dirty_for_io(page
);
375 set_page_dirty(newpage
);
379 ClearPageSwapCache(page
);
381 ClearPageActive(page
);
382 ClearPagePrivate(page
);
383 set_page_private(page
, 0);
384 page
->mapping
= NULL
;
387 * If any waiters have accumulated on the new page then
390 if (PageWriteback(newpage
))
391 end_page_writeback(newpage
);
394 /************************************************************
395 * Migration functions
396 ***********************************************************/
398 /* Always fail migration. Used for mappings that are not movable */
399 int fail_migrate_page(struct address_space
*mapping
,
400 struct page
*newpage
, struct page
*page
)
404 EXPORT_SYMBOL(fail_migrate_page
);
407 * Common logic to directly migrate a single page suitable for
408 * pages that do not use PagePrivate.
410 * Pages are locked upon entry and exit.
412 int migrate_page(struct address_space
*mapping
,
413 struct page
*newpage
, struct page
*page
)
417 BUG_ON(PageWriteback(page
)); /* Writeback must be complete */
419 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
424 migrate_page_copy(newpage
, page
);
427 EXPORT_SYMBOL(migrate_page
);
431 * Migration function for pages with buffers. This function can only be used
432 * if the underlying filesystem guarantees that no other references to "page"
435 int buffer_migrate_page(struct address_space
*mapping
,
436 struct page
*newpage
, struct page
*page
)
438 struct buffer_head
*bh
, *head
;
441 if (!page_has_buffers(page
))
442 return migrate_page(mapping
, newpage
, page
);
444 head
= page_buffers(page
);
446 rc
= migrate_page_move_mapping(mapping
, newpage
, page
);
455 bh
= bh
->b_this_page
;
457 } while (bh
!= head
);
459 ClearPagePrivate(page
);
460 set_page_private(newpage
, page_private(page
));
461 set_page_private(page
, 0);
467 set_bh_page(bh
, newpage
, bh_offset(bh
));
468 bh
= bh
->b_this_page
;
470 } while (bh
!= head
);
472 SetPagePrivate(newpage
);
474 migrate_page_copy(newpage
, page
);
480 bh
= bh
->b_this_page
;
482 } while (bh
!= head
);
486 EXPORT_SYMBOL(buffer_migrate_page
);
490 * Writeback a page to clean the dirty state
492 static int writeout(struct address_space
*mapping
, struct page
*page
)
494 struct writeback_control wbc
= {
495 .sync_mode
= WB_SYNC_NONE
,
498 .range_end
= LLONG_MAX
,
504 if (!mapping
->a_ops
->writepage
)
505 /* No write method for the address space */
508 if (!clear_page_dirty_for_io(page
))
509 /* Someone else already triggered a write */
513 * A dirty page may imply that the underlying filesystem has
514 * the page on some queue. So the page must be clean for
515 * migration. Writeout may mean we loose the lock and the
516 * page state is no longer what we checked for earlier.
517 * At this point we know that the migration attempt cannot
520 remove_migration_ptes(page
, page
);
522 rc
= mapping
->a_ops
->writepage(page
, &wbc
);
524 /* I/O Error writing */
527 if (rc
!= AOP_WRITEPAGE_ACTIVATE
)
528 /* unlocked. Relock */
535 * Default handling if a filesystem does not provide a migration function.
537 static int fallback_migrate_page(struct address_space
*mapping
,
538 struct page
*newpage
, struct page
*page
)
541 return writeout(mapping
, page
);
544 * Buffers may be managed in a filesystem specific way.
545 * We must have no buffers or drop them.
547 if (PagePrivate(page
) &&
548 !try_to_release_page(page
, GFP_KERNEL
))
551 return migrate_page(mapping
, newpage
, page
);
555 * Move a page to a newly allocated page
556 * The page is locked and all ptes have been successfully removed.
558 * The new page will have replaced the old page if this function
561 static int move_to_new_page(struct page
*newpage
, struct page
*page
)
563 struct address_space
*mapping
;
567 * Block others from accessing the page when we get around to
568 * establishing additional references. We are the only one
569 * holding a reference to the new page at this point.
571 if (TestSetPageLocked(newpage
))
574 /* Prepare mapping for the new page.*/
575 newpage
->index
= page
->index
;
576 newpage
->mapping
= page
->mapping
;
578 mapping
= page_mapping(page
);
580 rc
= migrate_page(mapping
, newpage
, page
);
581 else if (mapping
->a_ops
->migratepage
)
583 * Most pages have a mapping and most filesystems
584 * should provide a migration function. Anonymous
585 * pages are part of swap space which also has its
586 * own migration function. This is the most common
587 * path for page migration.
589 rc
= mapping
->a_ops
->migratepage(mapping
,
592 rc
= fallback_migrate_page(mapping
, newpage
, page
);
595 remove_migration_ptes(page
, newpage
);
597 newpage
->mapping
= NULL
;
599 unlock_page(newpage
);
605 * Obtain the lock on page, remove all ptes and migrate the page
606 * to the newly allocated page in newpage.
608 static int unmap_and_move(new_page_t get_new_page
, unsigned long private,
609 struct page
*page
, int force
)
613 struct page
*newpage
= get_new_page(page
, private, &result
);
619 if (page_count(page
) == 1)
620 /* page was freed from under us. So we are done. */
624 if (TestSetPageLocked(page
)) {
630 if (PageWriteback(page
)) {
633 wait_on_page_writeback(page
);
636 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
637 * we cannot notice that anon_vma is freed while we migrates a page.
638 * This rcu_read_lock() delays freeing anon_vma pointer until the end
639 * of migration. File cache pages are no problem because of page_lock()
640 * File Caches may use write_page() or lock_page() in migration, then,
641 * just care Anon page here.
643 if (PageAnon(page
)) {
648 * This is a corner case handling.
649 * When a new swap-cache is read into, it is linked to LRU
650 * and treated as swapcache but has no rmap yet.
651 * Calling try_to_unmap() against a page->mapping==NULL page is
652 * BUG. So handle it here.
656 /* Establish migration ptes or remove ptes */
657 try_to_unmap(page
, 1);
659 if (!page_mapped(page
))
660 rc
= move_to_new_page(newpage
, page
);
663 remove_migration_ptes(page
, page
);
674 * A page that has been migrated has all references
675 * removed and will be freed. A page that has not been
676 * migrated will have kepts its references and be
679 list_del(&page
->lru
);
685 * Move the new page to the LRU. If migration was not successful
686 * then this will free the page.
688 move_to_lru(newpage
);
693 *result
= page_to_nid(newpage
);
701 * The function takes one list of pages to migrate and a function
702 * that determines from the page to be migrated and the private data
703 * the target of the move and allocates the page.
705 * The function returns after 10 attempts or if no pages
706 * are movable anymore because to has become empty
707 * or no retryable pages exist anymore. All pages will be
708 * retruned to the LRU or freed.
710 * Return: Number of pages not migrated or error code.
712 int migrate_pages(struct list_head
*from
,
713 new_page_t get_new_page
, unsigned long private)
720 int swapwrite
= current
->flags
& PF_SWAPWRITE
;
724 current
->flags
|= PF_SWAPWRITE
;
726 for(pass
= 0; pass
< 10 && retry
; pass
++) {
729 list_for_each_entry_safe(page
, page2
, from
, lru
) {
732 rc
= unmap_and_move(get_new_page
, private,
744 /* Permanent failure */
753 current
->flags
&= ~PF_SWAPWRITE
;
755 putback_lru_pages(from
);
760 return nr_failed
+ retry
;
765 * Move a list of individual pages
767 struct page_to_node
{
774 static struct page
*new_page_node(struct page
*p
, unsigned long private,
777 struct page_to_node
*pm
= (struct page_to_node
*)private;
779 while (pm
->node
!= MAX_NUMNODES
&& pm
->page
!= p
)
782 if (pm
->node
== MAX_NUMNODES
)
785 *result
= &pm
->status
;
787 return alloc_pages_node(pm
->node
,
788 GFP_HIGHUSER_MOVABLE
| GFP_THISNODE
, 0);
792 * Move a set of pages as indicated in the pm array. The addr
793 * field must be set to the virtual address of the page to be moved
794 * and the node number must contain a valid target node.
796 static int do_move_pages(struct mm_struct
*mm
, struct page_to_node
*pm
,
800 struct page_to_node
*pp
;
803 down_read(&mm
->mmap_sem
);
806 * Build a list of pages to migrate
809 for (pp
= pm
; pp
->node
!= MAX_NUMNODES
; pp
++) {
810 struct vm_area_struct
*vma
;
814 * A valid page pointer that will not match any of the
815 * pages that will be moved.
817 pp
->page
= ZERO_PAGE(0);
820 vma
= find_vma(mm
, pp
->addr
);
821 if (!vma
|| !vma_migratable(vma
))
824 page
= follow_page(vma
, pp
->addr
, FOLL_GET
);
829 if (PageReserved(page
)) /* Check for zero page */
833 err
= page_to_nid(page
);
837 * Node already in the right place
842 if (page_mapcount(page
) > 1 &&
846 err
= isolate_lru_page(page
, &pagelist
);
849 * Either remove the duplicate refcount from
850 * isolate_lru_page() or drop the page ref if it was
858 if (!list_empty(&pagelist
))
859 err
= migrate_pages(&pagelist
, new_page_node
,
864 up_read(&mm
->mmap_sem
);
869 * Determine the nodes of a list of pages. The addr in the pm array
870 * must have been set to the virtual address of which we want to determine
873 static int do_pages_stat(struct mm_struct
*mm
, struct page_to_node
*pm
)
875 down_read(&mm
->mmap_sem
);
877 for ( ; pm
->node
!= MAX_NUMNODES
; pm
++) {
878 struct vm_area_struct
*vma
;
883 vma
= find_vma(mm
, pm
->addr
);
887 page
= follow_page(vma
, pm
->addr
, 0);
889 /* Use PageReserved to check for zero page */
890 if (!page
|| PageReserved(page
))
893 err
= page_to_nid(page
);
898 up_read(&mm
->mmap_sem
);
903 * Move a list of pages in the address space of the currently executing
906 asmlinkage
long sys_move_pages(pid_t pid
, unsigned long nr_pages
,
907 const void __user
* __user
*pages
,
908 const int __user
*nodes
,
909 int __user
*status
, int flags
)
913 struct task_struct
*task
;
914 nodemask_t task_nodes
;
915 struct mm_struct
*mm
;
916 struct page_to_node
*pm
= NULL
;
919 if (flags
& ~(MPOL_MF_MOVE
|MPOL_MF_MOVE_ALL
))
922 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
925 /* Find the mm_struct */
926 read_lock(&tasklist_lock
);
927 task
= pid
? find_task_by_pid(pid
) : current
;
929 read_unlock(&tasklist_lock
);
932 mm
= get_task_mm(task
);
933 read_unlock(&tasklist_lock
);
939 * Check if this process has the right to modify the specified
940 * process. The right exists if the process has administrative
941 * capabilities, superuser privileges or the same
942 * userid as the target process.
944 if ((current
->euid
!= task
->suid
) && (current
->euid
!= task
->uid
) &&
945 (current
->uid
!= task
->suid
) && (current
->uid
!= task
->uid
) &&
946 !capable(CAP_SYS_NICE
)) {
951 err
= security_task_movememory(task
);
956 task_nodes
= cpuset_mems_allowed(task
);
958 /* Limit nr_pages so that the multiplication may not overflow */
959 if (nr_pages
>= ULONG_MAX
/ sizeof(struct page_to_node
) - 1) {
964 pm
= vmalloc((nr_pages
+ 1) * sizeof(struct page_to_node
));
971 * Get parameters from user space and initialize the pm
972 * array. Return various errors if the user did something wrong.
974 for (i
= 0; i
< nr_pages
; i
++) {
975 const void __user
*p
;
978 if (get_user(p
, pages
+ i
))
981 pm
[i
].addr
= (unsigned long)p
;
985 if (get_user(node
, nodes
+ i
))
989 if (!node_state(node
, N_HIGH_MEMORY
))
993 if (!node_isset(node
, task_nodes
))
998 pm
[i
].node
= 0; /* anything to not match MAX_NUMNODES */
1001 pm
[nr_pages
].node
= MAX_NUMNODES
;
1004 err
= do_move_pages(mm
, pm
, flags
& MPOL_MF_MOVE_ALL
);
1006 err
= do_pages_stat(mm
, pm
);
1009 /* Return status information */
1010 for (i
= 0; i
< nr_pages
; i
++)
1011 if (put_user(pm
[i
].status
, status
+ i
))
1023 * Call migration functions in the vma_ops that may prepare
1024 * memory in a vm for migration. migration functions may perform
1025 * the migration for vmas that do not have an underlying page struct.
1027 int migrate_vmas(struct mm_struct
*mm
, const nodemask_t
*to
,
1028 const nodemask_t
*from
, unsigned long flags
)
1030 struct vm_area_struct
*vma
;
1033 for(vma
= mm
->mmap
; vma
->vm_next
&& !err
; vma
= vma
->vm_next
) {
1034 if (vma
->vm_ops
&& vma
->vm_ops
->migrate
) {
1035 err
= vma
->vm_ops
->migrate(vma
, to
, from
, flags
);