4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
75 #include <asm/irq_regs.h>
78 * Scheduler clock - returns current time in nanosec units.
79 * This is default implementation.
80 * Architectures and sub-architectures can override this.
82 unsigned long long __attribute__((weak
)) sched_clock(void)
84 return (unsigned long long)jiffies
* (NSEC_PER_SEC
/ HZ
);
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
101 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106 * Helpers for converting nanosecond timing to jiffy resolution
108 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
110 #define NICE_0_LOAD SCHED_LOAD_SCALE
111 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
114 * These are the 'tuning knobs' of the scheduler:
116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
117 * Timeslices get refilled after they expire.
119 #define DEF_TIMESLICE (100 * HZ / 1000)
122 * single value that denotes runtime == period, ie unlimited time.
124 #define RUNTIME_INF ((u64)~0ULL)
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
133 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
140 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
142 sg
->__cpu_power
+= val
;
143 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
147 static inline int rt_policy(int policy
)
149 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
154 static inline int task_has_rt_policy(struct task_struct
*p
)
156 return rt_policy(p
->policy
);
160 * This is the priority-queue data structure of the RT scheduling class:
162 struct rt_prio_array
{
163 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
164 struct list_head queue
[MAX_RT_PRIO
];
167 struct rt_bandwidth
{
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock
;
172 struct hrtimer rt_period_timer
;
175 static struct rt_bandwidth def_rt_bandwidth
;
177 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
179 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
181 struct rt_bandwidth
*rt_b
=
182 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
188 now
= hrtimer_cb_get_time(timer
);
189 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
194 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
197 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
201 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
203 rt_b
->rt_period
= ns_to_ktime(period
);
204 rt_b
->rt_runtime
= runtime
;
206 spin_lock_init(&rt_b
->rt_runtime_lock
);
208 hrtimer_init(&rt_b
->rt_period_timer
,
209 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
210 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
211 rt_b
->rt_period_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
214 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
218 if (rt_b
->rt_runtime
== RUNTIME_INF
)
221 if (hrtimer_active(&rt_b
->rt_period_timer
))
224 spin_lock(&rt_b
->rt_runtime_lock
);
226 if (hrtimer_active(&rt_b
->rt_period_timer
))
229 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
230 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
231 hrtimer_start(&rt_b
->rt_period_timer
,
232 rt_b
->rt_period_timer
.expires
,
235 spin_unlock(&rt_b
->rt_runtime_lock
);
238 #ifdef CONFIG_RT_GROUP_SCHED
239 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
241 hrtimer_cancel(&rt_b
->rt_period_timer
);
245 #ifdef CONFIG_GROUP_SCHED
247 #include <linux/cgroup.h>
251 static LIST_HEAD(task_groups
);
253 /* task group related information */
255 #ifdef CONFIG_CGROUP_SCHED
256 struct cgroup_subsys_state css
;
259 #ifdef CONFIG_FAIR_GROUP_SCHED
260 /* schedulable entities of this group on each cpu */
261 struct sched_entity
**se
;
262 /* runqueue "owned" by this group on each cpu */
263 struct cfs_rq
**cfs_rq
;
264 unsigned long shares
;
267 #ifdef CONFIG_RT_GROUP_SCHED
268 struct sched_rt_entity
**rt_se
;
269 struct rt_rq
**rt_rq
;
271 struct rt_bandwidth rt_bandwidth
;
275 struct list_head list
;
277 struct task_group
*parent
;
278 struct list_head siblings
;
279 struct list_head children
;
282 #ifdef CONFIG_USER_SCHED
286 * Every UID task group (including init_task_group aka UID-0) will
287 * be a child to this group.
289 struct task_group root_task_group
;
291 #ifdef CONFIG_FAIR_GROUP_SCHED
292 /* Default task group's sched entity on each cpu */
293 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
294 /* Default task group's cfs_rq on each cpu */
295 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
298 #ifdef CONFIG_RT_GROUP_SCHED
299 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
300 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
303 #define root_task_group init_task_group
306 /* task_group_lock serializes add/remove of task groups and also changes to
307 * a task group's cpu shares.
309 static DEFINE_SPINLOCK(task_group_lock
);
311 /* doms_cur_mutex serializes access to doms_cur[] array */
312 static DEFINE_MUTEX(doms_cur_mutex
);
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 #ifdef CONFIG_USER_SCHED
316 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
318 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
323 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
326 /* Default task group.
327 * Every task in system belong to this group at bootup.
329 struct task_group init_task_group
;
331 /* return group to which a task belongs */
332 static inline struct task_group
*task_group(struct task_struct
*p
)
334 struct task_group
*tg
;
336 #ifdef CONFIG_USER_SCHED
338 #elif defined(CONFIG_CGROUP_SCHED)
339 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
340 struct task_group
, css
);
342 tg
= &init_task_group
;
347 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
348 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
350 #ifdef CONFIG_FAIR_GROUP_SCHED
351 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
352 p
->se
.parent
= task_group(p
)->se
[cpu
];
355 #ifdef CONFIG_RT_GROUP_SCHED
356 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
357 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
361 static inline void lock_doms_cur(void)
363 mutex_lock(&doms_cur_mutex
);
366 static inline void unlock_doms_cur(void)
368 mutex_unlock(&doms_cur_mutex
);
373 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
374 static inline void lock_doms_cur(void) { }
375 static inline void unlock_doms_cur(void) { }
377 #endif /* CONFIG_GROUP_SCHED */
379 /* CFS-related fields in a runqueue */
381 struct load_weight load
;
382 unsigned long nr_running
;
387 struct rb_root tasks_timeline
;
388 struct rb_node
*rb_leftmost
;
390 struct list_head tasks
;
391 struct list_head
*balance_iterator
;
394 * 'curr' points to currently running entity on this cfs_rq.
395 * It is set to NULL otherwise (i.e when none are currently running).
397 struct sched_entity
*curr
, *next
;
399 unsigned long nr_spread_over
;
401 #ifdef CONFIG_FAIR_GROUP_SCHED
402 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
405 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
406 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
407 * (like users, containers etc.)
409 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
410 * list is used during load balance.
412 struct list_head leaf_cfs_rq_list
;
413 struct task_group
*tg
; /* group that "owns" this runqueue */
416 unsigned long task_weight
;
417 unsigned long shares
;
419 * We need space to build a sched_domain wide view of the full task
420 * group tree, in order to avoid depending on dynamic memory allocation
421 * during the load balancing we place this in the per cpu task group
422 * hierarchy. This limits the load balancing to one instance per cpu,
423 * but more should not be needed anyway.
425 struct aggregate_struct
{
427 * load = weight(cpus) * f(tg)
429 * Where f(tg) is the recursive weight fraction assigned to
435 * part of the group weight distributed to this span.
437 unsigned long shares
;
440 * The sum of all runqueue weights within this span.
442 unsigned long rq_weight
;
445 * Weight contributed by tasks; this is the part we can
446 * influence by moving tasks around.
448 unsigned long task_weight
;
454 /* Real-Time classes' related field in a runqueue: */
456 struct rt_prio_array active
;
457 unsigned long rt_nr_running
;
458 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
459 int highest_prio
; /* highest queued rt task prio */
462 unsigned long rt_nr_migratory
;
468 /* Nests inside the rq lock: */
469 spinlock_t rt_runtime_lock
;
471 #ifdef CONFIG_RT_GROUP_SCHED
472 unsigned long rt_nr_boosted
;
475 struct list_head leaf_rt_rq_list
;
476 struct task_group
*tg
;
477 struct sched_rt_entity
*rt_se
;
484 * We add the notion of a root-domain which will be used to define per-domain
485 * variables. Each exclusive cpuset essentially defines an island domain by
486 * fully partitioning the member cpus from any other cpuset. Whenever a new
487 * exclusive cpuset is created, we also create and attach a new root-domain
497 * The "RT overload" flag: it gets set if a CPU has more than
498 * one runnable RT task.
505 * By default the system creates a single root-domain with all cpus as
506 * members (mimicking the global state we have today).
508 static struct root_domain def_root_domain
;
513 * This is the main, per-CPU runqueue data structure.
515 * Locking rule: those places that want to lock multiple runqueues
516 * (such as the load balancing or the thread migration code), lock
517 * acquire operations must be ordered by ascending &runqueue.
524 * nr_running and cpu_load should be in the same cacheline because
525 * remote CPUs use both these fields when doing load calculation.
527 unsigned long nr_running
;
528 #define CPU_LOAD_IDX_MAX 5
529 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
530 unsigned char idle_at_tick
;
532 unsigned long last_tick_seen
;
533 unsigned char in_nohz_recently
;
535 /* capture load from *all* tasks on this cpu: */
536 struct load_weight load
;
537 unsigned long nr_load_updates
;
543 #ifdef CONFIG_FAIR_GROUP_SCHED
544 /* list of leaf cfs_rq on this cpu: */
545 struct list_head leaf_cfs_rq_list
;
547 #ifdef CONFIG_RT_GROUP_SCHED
548 struct list_head leaf_rt_rq_list
;
552 * This is part of a global counter where only the total sum
553 * over all CPUs matters. A task can increase this counter on
554 * one CPU and if it got migrated afterwards it may decrease
555 * it on another CPU. Always updated under the runqueue lock:
557 unsigned long nr_uninterruptible
;
559 struct task_struct
*curr
, *idle
;
560 unsigned long next_balance
;
561 struct mm_struct
*prev_mm
;
563 u64 clock
, prev_clock_raw
;
566 unsigned int clock_warps
, clock_overflows
, clock_underflows
;
568 unsigned int clock_deep_idle_events
;
574 struct root_domain
*rd
;
575 struct sched_domain
*sd
;
577 /* For active balancing */
580 /* cpu of this runqueue: */
583 struct task_struct
*migration_thread
;
584 struct list_head migration_queue
;
587 #ifdef CONFIG_SCHED_HRTICK
588 unsigned long hrtick_flags
;
589 ktime_t hrtick_expire
;
590 struct hrtimer hrtick_timer
;
593 #ifdef CONFIG_SCHEDSTATS
595 struct sched_info rq_sched_info
;
597 /* sys_sched_yield() stats */
598 unsigned int yld_exp_empty
;
599 unsigned int yld_act_empty
;
600 unsigned int yld_both_empty
;
601 unsigned int yld_count
;
603 /* schedule() stats */
604 unsigned int sched_switch
;
605 unsigned int sched_count
;
606 unsigned int sched_goidle
;
608 /* try_to_wake_up() stats */
609 unsigned int ttwu_count
;
610 unsigned int ttwu_local
;
613 unsigned int bkl_count
;
615 struct lock_class_key rq_lock_key
;
618 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
620 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
622 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
625 static inline int cpu_of(struct rq
*rq
)
635 static inline bool nohz_on(int cpu
)
637 return tick_get_tick_sched(cpu
)->nohz_mode
!= NOHZ_MODE_INACTIVE
;
640 static inline u64
max_skipped_ticks(struct rq
*rq
)
642 return nohz_on(cpu_of(rq
)) ? jiffies
- rq
->last_tick_seen
+ 2 : 1;
645 static inline void update_last_tick_seen(struct rq
*rq
)
647 rq
->last_tick_seen
= jiffies
;
650 static inline u64
max_skipped_ticks(struct rq
*rq
)
655 static inline void update_last_tick_seen(struct rq
*rq
)
661 * Update the per-runqueue clock, as finegrained as the platform can give
662 * us, but without assuming monotonicity, etc.:
664 static void __update_rq_clock(struct rq
*rq
)
666 u64 prev_raw
= rq
->prev_clock_raw
;
667 u64 now
= sched_clock();
668 s64 delta
= now
- prev_raw
;
669 u64 clock
= rq
->clock
;
671 #ifdef CONFIG_SCHED_DEBUG
672 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
675 * Protect against sched_clock() occasionally going backwards:
677 if (unlikely(delta
< 0)) {
682 * Catch too large forward jumps too:
684 u64 max_jump
= max_skipped_ticks(rq
) * TICK_NSEC
;
685 u64 max_time
= rq
->tick_timestamp
+ max_jump
;
687 if (unlikely(clock
+ delta
> max_time
)) {
688 if (clock
< max_time
)
692 rq
->clock_overflows
++;
694 if (unlikely(delta
> rq
->clock_max_delta
))
695 rq
->clock_max_delta
= delta
;
700 rq
->prev_clock_raw
= now
;
704 static void update_rq_clock(struct rq
*rq
)
706 if (likely(smp_processor_id() == cpu_of(rq
)))
707 __update_rq_clock(rq
);
711 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
712 * See detach_destroy_domains: synchronize_sched for details.
714 * The domain tree of any CPU may only be accessed from within
715 * preempt-disabled sections.
717 #define for_each_domain(cpu, __sd) \
718 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
720 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
721 #define this_rq() (&__get_cpu_var(runqueues))
722 #define task_rq(p) cpu_rq(task_cpu(p))
723 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
726 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
728 #ifdef CONFIG_SCHED_DEBUG
729 # define const_debug __read_mostly
731 # define const_debug static const
735 * Debugging: various feature bits
738 #define SCHED_FEAT(name, enabled) \
739 __SCHED_FEAT_##name ,
742 #include "sched_features.h"
747 #define SCHED_FEAT(name, enabled) \
748 (1UL << __SCHED_FEAT_##name) * enabled |
750 const_debug
unsigned int sysctl_sched_features
=
751 #include "sched_features.h"
756 #ifdef CONFIG_SCHED_DEBUG
757 #define SCHED_FEAT(name, enabled) \
760 __read_mostly
char *sched_feat_names
[] = {
761 #include "sched_features.h"
767 int sched_feat_open(struct inode
*inode
, struct file
*filp
)
769 filp
->private_data
= inode
->i_private
;
774 sched_feat_read(struct file
*filp
, char __user
*ubuf
,
775 size_t cnt
, loff_t
*ppos
)
782 for (i
= 0; sched_feat_names
[i
]; i
++) {
783 len
+= strlen(sched_feat_names
[i
]);
787 buf
= kmalloc(len
+ 2, GFP_KERNEL
);
791 for (i
= 0; sched_feat_names
[i
]; i
++) {
792 if (sysctl_sched_features
& (1UL << i
))
793 r
+= sprintf(buf
+ r
, "%s ", sched_feat_names
[i
]);
795 r
+= sprintf(buf
+ r
, "no_%s ", sched_feat_names
[i
]);
798 r
+= sprintf(buf
+ r
, "\n");
799 WARN_ON(r
>= len
+ 2);
801 r
= simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
809 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
810 size_t cnt
, loff_t
*ppos
)
820 if (copy_from_user(&buf
, ubuf
, cnt
))
825 if (strncmp(buf
, "no_", 3) == 0) {
830 for (i
= 0; sched_feat_names
[i
]; i
++) {
831 int len
= strlen(sched_feat_names
[i
]);
833 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
835 sysctl_sched_features
&= ~(1UL << i
);
837 sysctl_sched_features
|= (1UL << i
);
842 if (!sched_feat_names
[i
])
850 static struct file_operations sched_feat_fops
= {
851 .open
= sched_feat_open
,
852 .read
= sched_feat_read
,
853 .write
= sched_feat_write
,
856 static __init
int sched_init_debug(void)
860 for (i
= 0; sched_feat_names
[i
]; i
++) {
861 len
= strlen(sched_feat_names
[i
]);
863 for (j
= 0; j
< len
; j
++) {
864 sched_feat_names
[i
][j
] =
865 tolower(sched_feat_names
[i
][j
]);
869 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
874 late_initcall(sched_init_debug
);
878 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
881 * Number of tasks to iterate in a single balance run.
882 * Limited because this is done with IRQs disabled.
884 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
887 * period over which we measure -rt task cpu usage in us.
890 unsigned int sysctl_sched_rt_period
= 1000000;
892 static __read_mostly
int scheduler_running
;
895 * part of the period that we allow rt tasks to run in us.
898 int sysctl_sched_rt_runtime
= 950000;
900 static inline u64
global_rt_period(void)
902 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
905 static inline u64
global_rt_runtime(void)
907 if (sysctl_sched_rt_period
< 0)
910 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
913 static const unsigned long long time_sync_thresh
= 100000;
915 static DEFINE_PER_CPU(unsigned long long, time_offset
);
916 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time
);
919 * Global lock which we take every now and then to synchronize
920 * the CPUs time. This method is not warp-safe, but it's good
921 * enough to synchronize slowly diverging time sources and thus
922 * it's good enough for tracing:
924 static DEFINE_SPINLOCK(time_sync_lock
);
925 static unsigned long long prev_global_time
;
927 static unsigned long long __sync_cpu_clock(cycles_t time
, int cpu
)
931 spin_lock_irqsave(&time_sync_lock
, flags
);
933 if (time
< prev_global_time
) {
934 per_cpu(time_offset
, cpu
) += prev_global_time
- time
;
935 time
= prev_global_time
;
937 prev_global_time
= time
;
940 spin_unlock_irqrestore(&time_sync_lock
, flags
);
945 static unsigned long long __cpu_clock(int cpu
)
947 unsigned long long now
;
952 * Only call sched_clock() if the scheduler has already been
953 * initialized (some code might call cpu_clock() very early):
955 if (unlikely(!scheduler_running
))
958 local_irq_save(flags
);
962 local_irq_restore(flags
);
968 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
969 * clock constructed from sched_clock():
971 unsigned long long cpu_clock(int cpu
)
973 unsigned long long prev_cpu_time
, time
, delta_time
;
975 prev_cpu_time
= per_cpu(prev_cpu_time
, cpu
);
976 time
= __cpu_clock(cpu
) + per_cpu(time_offset
, cpu
);
977 delta_time
= time
-prev_cpu_time
;
979 if (unlikely(delta_time
> time_sync_thresh
))
980 time
= __sync_cpu_clock(time
, cpu
);
984 EXPORT_SYMBOL_GPL(cpu_clock
);
986 #ifndef prepare_arch_switch
987 # define prepare_arch_switch(next) do { } while (0)
989 #ifndef finish_arch_switch
990 # define finish_arch_switch(prev) do { } while (0)
993 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
995 return rq
->curr
== p
;
998 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
999 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
1001 return task_current(rq
, p
);
1004 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
1008 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
1010 #ifdef CONFIG_DEBUG_SPINLOCK
1011 /* this is a valid case when another task releases the spinlock */
1012 rq
->lock
.owner
= current
;
1015 * If we are tracking spinlock dependencies then we have to
1016 * fix up the runqueue lock - which gets 'carried over' from
1017 * prev into current:
1019 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
1021 spin_unlock_irq(&rq
->lock
);
1024 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1025 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
1030 return task_current(rq
, p
);
1034 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
1038 * We can optimise this out completely for !SMP, because the
1039 * SMP rebalancing from interrupt is the only thing that cares
1044 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1045 spin_unlock_irq(&rq
->lock
);
1047 spin_unlock(&rq
->lock
);
1051 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
1055 * After ->oncpu is cleared, the task can be moved to a different CPU.
1056 * We must ensure this doesn't happen until the switch is completely
1062 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1066 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1069 * __task_rq_lock - lock the runqueue a given task resides on.
1070 * Must be called interrupts disabled.
1072 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
1073 __acquires(rq
->lock
)
1076 struct rq
*rq
= task_rq(p
);
1077 spin_lock(&rq
->lock
);
1078 if (likely(rq
== task_rq(p
)))
1080 spin_unlock(&rq
->lock
);
1085 * task_rq_lock - lock the runqueue a given task resides on and disable
1086 * interrupts. Note the ordering: we can safely lookup the task_rq without
1087 * explicitly disabling preemption.
1089 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
1090 __acquires(rq
->lock
)
1095 local_irq_save(*flags
);
1097 spin_lock(&rq
->lock
);
1098 if (likely(rq
== task_rq(p
)))
1100 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1104 static void __task_rq_unlock(struct rq
*rq
)
1105 __releases(rq
->lock
)
1107 spin_unlock(&rq
->lock
);
1110 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
1111 __releases(rq
->lock
)
1113 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1117 * this_rq_lock - lock this runqueue and disable interrupts.
1119 static struct rq
*this_rq_lock(void)
1120 __acquires(rq
->lock
)
1124 local_irq_disable();
1126 spin_lock(&rq
->lock
);
1132 * We are going deep-idle (irqs are disabled):
1134 void sched_clock_idle_sleep_event(void)
1136 struct rq
*rq
= cpu_rq(smp_processor_id());
1138 spin_lock(&rq
->lock
);
1139 __update_rq_clock(rq
);
1140 spin_unlock(&rq
->lock
);
1141 rq
->clock_deep_idle_events
++;
1143 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
1146 * We just idled delta nanoseconds (called with irqs disabled):
1148 void sched_clock_idle_wakeup_event(u64 delta_ns
)
1150 struct rq
*rq
= cpu_rq(smp_processor_id());
1151 u64 now
= sched_clock();
1153 rq
->idle_clock
+= delta_ns
;
1155 * Override the previous timestamp and ignore all
1156 * sched_clock() deltas that occured while we idled,
1157 * and use the PM-provided delta_ns to advance the
1160 spin_lock(&rq
->lock
);
1161 rq
->prev_clock_raw
= now
;
1162 rq
->clock
+= delta_ns
;
1163 spin_unlock(&rq
->lock
);
1164 touch_softlockup_watchdog();
1166 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
1168 static void __resched_task(struct task_struct
*p
, int tif_bit
);
1170 static inline void resched_task(struct task_struct
*p
)
1172 __resched_task(p
, TIF_NEED_RESCHED
);
1175 #ifdef CONFIG_SCHED_HRTICK
1177 * Use HR-timers to deliver accurate preemption points.
1179 * Its all a bit involved since we cannot program an hrt while holding the
1180 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1183 * When we get rescheduled we reprogram the hrtick_timer outside of the
1186 static inline void resched_hrt(struct task_struct
*p
)
1188 __resched_task(p
, TIF_HRTICK_RESCHED
);
1191 static inline void resched_rq(struct rq
*rq
)
1193 unsigned long flags
;
1195 spin_lock_irqsave(&rq
->lock
, flags
);
1196 resched_task(rq
->curr
);
1197 spin_unlock_irqrestore(&rq
->lock
, flags
);
1201 HRTICK_SET
, /* re-programm hrtick_timer */
1202 HRTICK_RESET
, /* not a new slice */
1207 * - enabled by features
1208 * - hrtimer is actually high res
1210 static inline int hrtick_enabled(struct rq
*rq
)
1212 if (!sched_feat(HRTICK
))
1214 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1218 * Called to set the hrtick timer state.
1220 * called with rq->lock held and irqs disabled
1222 static void hrtick_start(struct rq
*rq
, u64 delay
, int reset
)
1224 assert_spin_locked(&rq
->lock
);
1227 * preempt at: now + delay
1230 ktime_add_ns(rq
->hrtick_timer
.base
->get_time(), delay
);
1232 * indicate we need to program the timer
1234 __set_bit(HRTICK_SET
, &rq
->hrtick_flags
);
1236 __set_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
1239 * New slices are called from the schedule path and don't need a
1240 * forced reschedule.
1243 resched_hrt(rq
->curr
);
1246 static void hrtick_clear(struct rq
*rq
)
1248 if (hrtimer_active(&rq
->hrtick_timer
))
1249 hrtimer_cancel(&rq
->hrtick_timer
);
1253 * Update the timer from the possible pending state.
1255 static void hrtick_set(struct rq
*rq
)
1259 unsigned long flags
;
1261 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1263 spin_lock_irqsave(&rq
->lock
, flags
);
1264 set
= __test_and_clear_bit(HRTICK_SET
, &rq
->hrtick_flags
);
1265 reset
= __test_and_clear_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
1266 time
= rq
->hrtick_expire
;
1267 clear_thread_flag(TIF_HRTICK_RESCHED
);
1268 spin_unlock_irqrestore(&rq
->lock
, flags
);
1271 hrtimer_start(&rq
->hrtick_timer
, time
, HRTIMER_MODE_ABS
);
1272 if (reset
&& !hrtimer_active(&rq
->hrtick_timer
))
1279 * High-resolution timer tick.
1280 * Runs from hardirq context with interrupts disabled.
1282 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1284 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1286 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1288 spin_lock(&rq
->lock
);
1289 __update_rq_clock(rq
);
1290 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1291 spin_unlock(&rq
->lock
);
1293 return HRTIMER_NORESTART
;
1296 static inline void init_rq_hrtick(struct rq
*rq
)
1298 rq
->hrtick_flags
= 0;
1299 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1300 rq
->hrtick_timer
.function
= hrtick
;
1301 rq
->hrtick_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
1304 void hrtick_resched(void)
1307 unsigned long flags
;
1309 if (!test_thread_flag(TIF_HRTICK_RESCHED
))
1312 local_irq_save(flags
);
1313 rq
= cpu_rq(smp_processor_id());
1315 local_irq_restore(flags
);
1318 static inline void hrtick_clear(struct rq
*rq
)
1322 static inline void hrtick_set(struct rq
*rq
)
1326 static inline void init_rq_hrtick(struct rq
*rq
)
1330 void hrtick_resched(void)
1336 * resched_task - mark a task 'to be rescheduled now'.
1338 * On UP this means the setting of the need_resched flag, on SMP it
1339 * might also involve a cross-CPU call to trigger the scheduler on
1344 #ifndef tsk_is_polling
1345 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1348 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1352 assert_spin_locked(&task_rq(p
)->lock
);
1354 if (unlikely(test_tsk_thread_flag(p
, tif_bit
)))
1357 set_tsk_thread_flag(p
, tif_bit
);
1360 if (cpu
== smp_processor_id())
1363 /* NEED_RESCHED must be visible before we test polling */
1365 if (!tsk_is_polling(p
))
1366 smp_send_reschedule(cpu
);
1369 static void resched_cpu(int cpu
)
1371 struct rq
*rq
= cpu_rq(cpu
);
1372 unsigned long flags
;
1374 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1376 resched_task(cpu_curr(cpu
));
1377 spin_unlock_irqrestore(&rq
->lock
, flags
);
1382 * When add_timer_on() enqueues a timer into the timer wheel of an
1383 * idle CPU then this timer might expire before the next timer event
1384 * which is scheduled to wake up that CPU. In case of a completely
1385 * idle system the next event might even be infinite time into the
1386 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1387 * leaves the inner idle loop so the newly added timer is taken into
1388 * account when the CPU goes back to idle and evaluates the timer
1389 * wheel for the next timer event.
1391 void wake_up_idle_cpu(int cpu
)
1393 struct rq
*rq
= cpu_rq(cpu
);
1395 if (cpu
== smp_processor_id())
1399 * This is safe, as this function is called with the timer
1400 * wheel base lock of (cpu) held. When the CPU is on the way
1401 * to idle and has not yet set rq->curr to idle then it will
1402 * be serialized on the timer wheel base lock and take the new
1403 * timer into account automatically.
1405 if (rq
->curr
!= rq
->idle
)
1409 * We can set TIF_RESCHED on the idle task of the other CPU
1410 * lockless. The worst case is that the other CPU runs the
1411 * idle task through an additional NOOP schedule()
1413 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1415 /* NEED_RESCHED must be visible before we test polling */
1417 if (!tsk_is_polling(rq
->idle
))
1418 smp_send_reschedule(cpu
);
1423 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1425 assert_spin_locked(&task_rq(p
)->lock
);
1426 set_tsk_thread_flag(p
, tif_bit
);
1430 #if BITS_PER_LONG == 32
1431 # define WMULT_CONST (~0UL)
1433 # define WMULT_CONST (1UL << 32)
1436 #define WMULT_SHIFT 32
1439 * Shift right and round:
1441 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1444 * delta *= weight / lw
1446 static unsigned long
1447 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1448 struct load_weight
*lw
)
1452 if (unlikely(!lw
->inv_weight
))
1453 lw
->inv_weight
= (WMULT_CONST
-lw
->weight
/2) / (lw
->weight
+1);
1455 tmp
= (u64
)delta_exec
* weight
;
1457 * Check whether we'd overflow the 64-bit multiplication:
1459 if (unlikely(tmp
> WMULT_CONST
))
1460 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1463 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1465 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1468 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1474 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1481 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1482 * of tasks with abnormal "nice" values across CPUs the contribution that
1483 * each task makes to its run queue's load is weighted according to its
1484 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1485 * scaled version of the new time slice allocation that they receive on time
1489 #define WEIGHT_IDLEPRIO 2
1490 #define WMULT_IDLEPRIO (1 << 31)
1493 * Nice levels are multiplicative, with a gentle 10% change for every
1494 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1495 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1496 * that remained on nice 0.
1498 * The "10% effect" is relative and cumulative: from _any_ nice level,
1499 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1500 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1501 * If a task goes up by ~10% and another task goes down by ~10% then
1502 * the relative distance between them is ~25%.)
1504 static const int prio_to_weight
[40] = {
1505 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1506 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1507 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1508 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1509 /* 0 */ 1024, 820, 655, 526, 423,
1510 /* 5 */ 335, 272, 215, 172, 137,
1511 /* 10 */ 110, 87, 70, 56, 45,
1512 /* 15 */ 36, 29, 23, 18, 15,
1516 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1518 * In cases where the weight does not change often, we can use the
1519 * precalculated inverse to speed up arithmetics by turning divisions
1520 * into multiplications:
1522 static const u32 prio_to_wmult
[40] = {
1523 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1524 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1525 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1526 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1527 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1528 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1529 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1530 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1533 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1536 * runqueue iterator, to support SMP load-balancing between different
1537 * scheduling classes, without having to expose their internal data
1538 * structures to the load-balancing proper:
1540 struct rq_iterator
{
1542 struct task_struct
*(*start
)(void *);
1543 struct task_struct
*(*next
)(void *);
1547 static unsigned long
1548 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1549 unsigned long max_load_move
, struct sched_domain
*sd
,
1550 enum cpu_idle_type idle
, int *all_pinned
,
1551 int *this_best_prio
, struct rq_iterator
*iterator
);
1554 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1555 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1556 struct rq_iterator
*iterator
);
1559 #ifdef CONFIG_CGROUP_CPUACCT
1560 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1562 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1565 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1567 update_load_add(&rq
->load
, load
);
1570 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1572 update_load_sub(&rq
->load
, load
);
1576 static unsigned long source_load(int cpu
, int type
);
1577 static unsigned long target_load(int cpu
, int type
);
1578 static unsigned long cpu_avg_load_per_task(int cpu
);
1579 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1581 #ifdef CONFIG_FAIR_GROUP_SCHED
1584 * Group load balancing.
1586 * We calculate a few balance domain wide aggregate numbers; load and weight.
1587 * Given the pictures below, and assuming each item has equal weight:
1598 * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
1599 * which equals 1/9-th of the total load.
1602 * The weight of this group on the selected cpus.
1605 * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
1609 * Part of the rq_weight contributed by tasks; all groups except B would
1613 static inline struct aggregate_struct
*
1614 aggregate(struct task_group
*tg
, struct sched_domain
*sd
)
1616 return &tg
->cfs_rq
[sd
->first_cpu
]->aggregate
;
1619 typedef void (*aggregate_func
)(struct task_group
*, struct sched_domain
*);
1622 * Iterate the full tree, calling @down when first entering a node and @up when
1623 * leaving it for the final time.
1626 void aggregate_walk_tree(aggregate_func down
, aggregate_func up
,
1627 struct sched_domain
*sd
)
1629 struct task_group
*parent
, *child
;
1632 parent
= &root_task_group
;
1634 (*down
)(parent
, sd
);
1635 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1645 parent
= parent
->parent
;
1652 * Calculate the aggregate runqueue weight.
1655 void aggregate_group_weight(struct task_group
*tg
, struct sched_domain
*sd
)
1657 unsigned long rq_weight
= 0;
1658 unsigned long task_weight
= 0;
1661 for_each_cpu_mask(i
, sd
->span
) {
1662 rq_weight
+= tg
->cfs_rq
[i
]->load
.weight
;
1663 task_weight
+= tg
->cfs_rq
[i
]->task_weight
;
1666 aggregate(tg
, sd
)->rq_weight
= rq_weight
;
1667 aggregate(tg
, sd
)->task_weight
= task_weight
;
1671 * Redistribute tg->shares amongst all tg->cfs_rq[]s.
1673 static void __aggregate_redistribute_shares(struct task_group
*tg
)
1675 int i
, max_cpu
= smp_processor_id();
1676 unsigned long rq_weight
= 0;
1677 unsigned long shares
, max_shares
= 0, shares_rem
= tg
->shares
;
1679 for_each_possible_cpu(i
)
1680 rq_weight
+= tg
->cfs_rq
[i
]->load
.weight
;
1682 for_each_possible_cpu(i
) {
1684 * divide shares proportional to the rq_weights.
1686 shares
= tg
->shares
* tg
->cfs_rq
[i
]->load
.weight
;
1687 shares
/= rq_weight
+ 1;
1689 tg
->cfs_rq
[i
]->shares
= shares
;
1691 if (shares
> max_shares
) {
1692 max_shares
= shares
;
1695 shares_rem
-= shares
;
1699 * Ensure it all adds up to tg->shares; we can loose a few
1700 * due to rounding down when computing the per-cpu shares.
1703 tg
->cfs_rq
[max_cpu
]->shares
+= shares_rem
;
1707 * Compute the weight of this group on the given cpus.
1710 void aggregate_group_shares(struct task_group
*tg
, struct sched_domain
*sd
)
1712 unsigned long shares
= 0;
1716 for_each_cpu_mask(i
, sd
->span
)
1717 shares
+= tg
->cfs_rq
[i
]->shares
;
1720 * When the span doesn't have any shares assigned, but does have
1721 * tasks to run do a machine wide rebalance (should be rare).
1723 if (unlikely(!shares
&& aggregate(tg
, sd
)->rq_weight
)) {
1724 __aggregate_redistribute_shares(tg
);
1728 aggregate(tg
, sd
)->shares
= shares
;
1732 * Compute the load fraction assigned to this group, relies on the aggregate
1733 * weight and this group's parent's load, i.e. top-down.
1736 void aggregate_group_load(struct task_group
*tg
, struct sched_domain
*sd
)
1744 for_each_cpu_mask(i
, sd
->span
)
1745 load
+= cpu_rq(i
)->load
.weight
;
1748 load
= aggregate(tg
->parent
, sd
)->load
;
1751 * shares is our weight in the parent's rq so
1752 * shares/parent->rq_weight gives our fraction of the load
1754 load
*= aggregate(tg
, sd
)->shares
;
1755 load
/= aggregate(tg
->parent
, sd
)->rq_weight
+ 1;
1758 aggregate(tg
, sd
)->load
= load
;
1761 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1764 * Calculate and set the cpu's group shares.
1767 __update_group_shares_cpu(struct task_group
*tg
, struct sched_domain
*sd
,
1771 unsigned long shares
;
1772 unsigned long rq_weight
;
1777 rq_weight
= tg
->cfs_rq
[tcpu
]->load
.weight
;
1780 * If there are currently no tasks on the cpu pretend there is one of
1781 * average load so that when a new task gets to run here it will not
1782 * get delayed by group starvation.
1786 rq_weight
= NICE_0_LOAD
;
1790 * \Sum shares * rq_weight
1791 * shares = -----------------------
1795 shares
= aggregate(tg
, sd
)->shares
* rq_weight
;
1796 shares
/= aggregate(tg
, sd
)->rq_weight
+ 1;
1799 * record the actual number of shares, not the boosted amount.
1801 tg
->cfs_rq
[tcpu
]->shares
= boost
? 0 : shares
;
1803 if (shares
< MIN_SHARES
)
1804 shares
= MIN_SHARES
;
1806 __set_se_shares(tg
->se
[tcpu
], shares
);
1810 * Re-adjust the weights on the cpu the task came from and on the cpu the
1814 __move_group_shares(struct task_group
*tg
, struct sched_domain
*sd
,
1817 unsigned long shares
;
1819 shares
= tg
->cfs_rq
[scpu
]->shares
+ tg
->cfs_rq
[dcpu
]->shares
;
1821 __update_group_shares_cpu(tg
, sd
, scpu
);
1822 __update_group_shares_cpu(tg
, sd
, dcpu
);
1825 * ensure we never loose shares due to rounding errors in the
1826 * above redistribution.
1828 shares
-= tg
->cfs_rq
[scpu
]->shares
+ tg
->cfs_rq
[dcpu
]->shares
;
1830 tg
->cfs_rq
[dcpu
]->shares
+= shares
;
1834 * Because changing a group's shares changes the weight of the super-group
1835 * we need to walk up the tree and change all shares until we hit the root.
1838 move_group_shares(struct task_group
*tg
, struct sched_domain
*sd
,
1842 __move_group_shares(tg
, sd
, scpu
, dcpu
);
1848 void aggregate_group_set_shares(struct task_group
*tg
, struct sched_domain
*sd
)
1850 unsigned long shares
= aggregate(tg
, sd
)->shares
;
1853 for_each_cpu_mask(i
, sd
->span
) {
1854 struct rq
*rq
= cpu_rq(i
);
1855 unsigned long flags
;
1857 spin_lock_irqsave(&rq
->lock
, flags
);
1858 __update_group_shares_cpu(tg
, sd
, i
);
1859 spin_unlock_irqrestore(&rq
->lock
, flags
);
1862 aggregate_group_shares(tg
, sd
);
1865 * ensure we never loose shares due to rounding errors in the
1866 * above redistribution.
1868 shares
-= aggregate(tg
, sd
)->shares
;
1870 tg
->cfs_rq
[sd
->first_cpu
]->shares
+= shares
;
1871 aggregate(tg
, sd
)->shares
+= shares
;
1876 * Calculate the accumulative weight and recursive load of each task group
1877 * while walking down the tree.
1880 void aggregate_get_down(struct task_group
*tg
, struct sched_domain
*sd
)
1882 aggregate_group_weight(tg
, sd
);
1883 aggregate_group_shares(tg
, sd
);
1884 aggregate_group_load(tg
, sd
);
1888 * Rebalance the cpu shares while walking back up the tree.
1891 void aggregate_get_up(struct task_group
*tg
, struct sched_domain
*sd
)
1893 aggregate_group_set_shares(tg
, sd
);
1896 static DEFINE_PER_CPU(spinlock_t
, aggregate_lock
);
1898 static void __init
init_aggregate(void)
1902 for_each_possible_cpu(i
)
1903 spin_lock_init(&per_cpu(aggregate_lock
, i
));
1906 static int get_aggregate(struct sched_domain
*sd
)
1908 if (!spin_trylock(&per_cpu(aggregate_lock
, sd
->first_cpu
)))
1911 aggregate_walk_tree(aggregate_get_down
, aggregate_get_up
, sd
);
1915 static void put_aggregate(struct sched_domain
*sd
)
1917 spin_unlock(&per_cpu(aggregate_lock
, sd
->first_cpu
));
1920 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1922 cfs_rq
->shares
= shares
;
1927 static inline void init_aggregate(void)
1931 static inline int get_aggregate(struct sched_domain
*sd
)
1936 static inline void put_aggregate(struct sched_domain
*sd
)
1941 #else /* CONFIG_SMP */
1943 #ifdef CONFIG_FAIR_GROUP_SCHED
1944 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1949 #endif /* CONFIG_SMP */
1951 #include "sched_stats.h"
1952 #include "sched_idletask.c"
1953 #include "sched_fair.c"
1954 #include "sched_rt.c"
1955 #ifdef CONFIG_SCHED_DEBUG
1956 # include "sched_debug.c"
1959 #define sched_class_highest (&rt_sched_class)
1961 static void inc_nr_running(struct rq
*rq
)
1966 static void dec_nr_running(struct rq
*rq
)
1971 static void set_load_weight(struct task_struct
*p
)
1973 if (task_has_rt_policy(p
)) {
1974 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1975 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1980 * SCHED_IDLE tasks get minimal weight:
1982 if (p
->policy
== SCHED_IDLE
) {
1983 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1984 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1988 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1989 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1992 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1994 sched_info_queued(p
);
1995 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1999 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
2001 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
2006 * __normal_prio - return the priority that is based on the static prio
2008 static inline int __normal_prio(struct task_struct
*p
)
2010 return p
->static_prio
;
2014 * Calculate the expected normal priority: i.e. priority
2015 * without taking RT-inheritance into account. Might be
2016 * boosted by interactivity modifiers. Changes upon fork,
2017 * setprio syscalls, and whenever the interactivity
2018 * estimator recalculates.
2020 static inline int normal_prio(struct task_struct
*p
)
2024 if (task_has_rt_policy(p
))
2025 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
2027 prio
= __normal_prio(p
);
2032 * Calculate the current priority, i.e. the priority
2033 * taken into account by the scheduler. This value might
2034 * be boosted by RT tasks, or might be boosted by
2035 * interactivity modifiers. Will be RT if the task got
2036 * RT-boosted. If not then it returns p->normal_prio.
2038 static int effective_prio(struct task_struct
*p
)
2040 p
->normal_prio
= normal_prio(p
);
2042 * If we are RT tasks or we were boosted to RT priority,
2043 * keep the priority unchanged. Otherwise, update priority
2044 * to the normal priority:
2046 if (!rt_prio(p
->prio
))
2047 return p
->normal_prio
;
2052 * activate_task - move a task to the runqueue.
2054 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
2056 if (task_contributes_to_load(p
))
2057 rq
->nr_uninterruptible
--;
2059 enqueue_task(rq
, p
, wakeup
);
2064 * deactivate_task - remove a task from the runqueue.
2066 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
2068 if (task_contributes_to_load(p
))
2069 rq
->nr_uninterruptible
++;
2071 dequeue_task(rq
, p
, sleep
);
2076 * task_curr - is this task currently executing on a CPU?
2077 * @p: the task in question.
2079 inline int task_curr(const struct task_struct
*p
)
2081 return cpu_curr(task_cpu(p
)) == p
;
2084 /* Used instead of source_load when we know the type == 0 */
2085 unsigned long weighted_cpuload(const int cpu
)
2087 return cpu_rq(cpu
)->load
.weight
;
2090 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
2092 set_task_rq(p
, cpu
);
2095 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2096 * successfuly executed on another CPU. We must ensure that updates of
2097 * per-task data have been completed by this moment.
2100 task_thread_info(p
)->cpu
= cpu
;
2104 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2105 const struct sched_class
*prev_class
,
2106 int oldprio
, int running
)
2108 if (prev_class
!= p
->sched_class
) {
2109 if (prev_class
->switched_from
)
2110 prev_class
->switched_from(rq
, p
, running
);
2111 p
->sched_class
->switched_to(rq
, p
, running
);
2113 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
2119 * Is this task likely cache-hot:
2122 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2127 * Buddy candidates are cache hot:
2129 if (sched_feat(CACHE_HOT_BUDDY
) && (&p
->se
== cfs_rq_of(&p
->se
)->next
))
2132 if (p
->sched_class
!= &fair_sched_class
)
2135 if (sysctl_sched_migration_cost
== -1)
2137 if (sysctl_sched_migration_cost
== 0)
2140 delta
= now
- p
->se
.exec_start
;
2142 return delta
< (s64
)sysctl_sched_migration_cost
;
2146 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2148 int old_cpu
= task_cpu(p
);
2149 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
2150 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
2151 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
2154 clock_offset
= old_rq
->clock
- new_rq
->clock
;
2156 #ifdef CONFIG_SCHEDSTATS
2157 if (p
->se
.wait_start
)
2158 p
->se
.wait_start
-= clock_offset
;
2159 if (p
->se
.sleep_start
)
2160 p
->se
.sleep_start
-= clock_offset
;
2161 if (p
->se
.block_start
)
2162 p
->se
.block_start
-= clock_offset
;
2163 if (old_cpu
!= new_cpu
) {
2164 schedstat_inc(p
, se
.nr_migrations
);
2165 if (task_hot(p
, old_rq
->clock
, NULL
))
2166 schedstat_inc(p
, se
.nr_forced2_migrations
);
2169 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
2170 new_cfsrq
->min_vruntime
;
2172 __set_task_cpu(p
, new_cpu
);
2175 struct migration_req
{
2176 struct list_head list
;
2178 struct task_struct
*task
;
2181 struct completion done
;
2185 * The task's runqueue lock must be held.
2186 * Returns true if you have to wait for migration thread.
2189 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
2191 struct rq
*rq
= task_rq(p
);
2194 * If the task is not on a runqueue (and not running), then
2195 * it is sufficient to simply update the task's cpu field.
2197 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
2198 set_task_cpu(p
, dest_cpu
);
2202 init_completion(&req
->done
);
2204 req
->dest_cpu
= dest_cpu
;
2205 list_add(&req
->list
, &rq
->migration_queue
);
2211 * wait_task_inactive - wait for a thread to unschedule.
2213 * The caller must ensure that the task *will* unschedule sometime soon,
2214 * else this function might spin for a *long* time. This function can't
2215 * be called with interrupts off, or it may introduce deadlock with
2216 * smp_call_function() if an IPI is sent by the same process we are
2217 * waiting to become inactive.
2219 void wait_task_inactive(struct task_struct
*p
)
2221 unsigned long flags
;
2227 * We do the initial early heuristics without holding
2228 * any task-queue locks at all. We'll only try to get
2229 * the runqueue lock when things look like they will
2235 * If the task is actively running on another CPU
2236 * still, just relax and busy-wait without holding
2239 * NOTE! Since we don't hold any locks, it's not
2240 * even sure that "rq" stays as the right runqueue!
2241 * But we don't care, since "task_running()" will
2242 * return false if the runqueue has changed and p
2243 * is actually now running somewhere else!
2245 while (task_running(rq
, p
))
2249 * Ok, time to look more closely! We need the rq
2250 * lock now, to be *sure*. If we're wrong, we'll
2251 * just go back and repeat.
2253 rq
= task_rq_lock(p
, &flags
);
2254 running
= task_running(rq
, p
);
2255 on_rq
= p
->se
.on_rq
;
2256 task_rq_unlock(rq
, &flags
);
2259 * Was it really running after all now that we
2260 * checked with the proper locks actually held?
2262 * Oops. Go back and try again..
2264 if (unlikely(running
)) {
2270 * It's not enough that it's not actively running,
2271 * it must be off the runqueue _entirely_, and not
2274 * So if it wa still runnable (but just not actively
2275 * running right now), it's preempted, and we should
2276 * yield - it could be a while.
2278 if (unlikely(on_rq
)) {
2279 schedule_timeout_uninterruptible(1);
2284 * Ahh, all good. It wasn't running, and it wasn't
2285 * runnable, which means that it will never become
2286 * running in the future either. We're all done!
2293 * kick_process - kick a running thread to enter/exit the kernel
2294 * @p: the to-be-kicked thread
2296 * Cause a process which is running on another CPU to enter
2297 * kernel-mode, without any delay. (to get signals handled.)
2299 * NOTE: this function doesnt have to take the runqueue lock,
2300 * because all it wants to ensure is that the remote task enters
2301 * the kernel. If the IPI races and the task has been migrated
2302 * to another CPU then no harm is done and the purpose has been
2305 void kick_process(struct task_struct
*p
)
2311 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2312 smp_send_reschedule(cpu
);
2317 * Return a low guess at the load of a migration-source cpu weighted
2318 * according to the scheduling class and "nice" value.
2320 * We want to under-estimate the load of migration sources, to
2321 * balance conservatively.
2323 static unsigned long source_load(int cpu
, int type
)
2325 struct rq
*rq
= cpu_rq(cpu
);
2326 unsigned long total
= weighted_cpuload(cpu
);
2331 return min(rq
->cpu_load
[type
-1], total
);
2335 * Return a high guess at the load of a migration-target cpu weighted
2336 * according to the scheduling class and "nice" value.
2338 static unsigned long target_load(int cpu
, int type
)
2340 struct rq
*rq
= cpu_rq(cpu
);
2341 unsigned long total
= weighted_cpuload(cpu
);
2346 return max(rq
->cpu_load
[type
-1], total
);
2350 * Return the average load per task on the cpu's run queue
2352 static unsigned long cpu_avg_load_per_task(int cpu
)
2354 struct rq
*rq
= cpu_rq(cpu
);
2355 unsigned long total
= weighted_cpuload(cpu
);
2356 unsigned long n
= rq
->nr_running
;
2358 return n
? total
/ n
: SCHED_LOAD_SCALE
;
2362 * find_idlest_group finds and returns the least busy CPU group within the
2365 static struct sched_group
*
2366 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2368 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2369 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2370 int load_idx
= sd
->forkexec_idx
;
2371 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2374 unsigned long load
, avg_load
;
2378 /* Skip over this group if it has no CPUs allowed */
2379 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
2382 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2384 /* Tally up the load of all CPUs in the group */
2387 for_each_cpu_mask(i
, group
->cpumask
) {
2388 /* Bias balancing toward cpus of our domain */
2390 load
= source_load(i
, load_idx
);
2392 load
= target_load(i
, load_idx
);
2397 /* Adjust by relative CPU power of the group */
2398 avg_load
= sg_div_cpu_power(group
,
2399 avg_load
* SCHED_LOAD_SCALE
);
2402 this_load
= avg_load
;
2404 } else if (avg_load
< min_load
) {
2405 min_load
= avg_load
;
2408 } while (group
= group
->next
, group
!= sd
->groups
);
2410 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2416 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2419 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
,
2422 unsigned long load
, min_load
= ULONG_MAX
;
2426 /* Traverse only the allowed CPUs */
2427 cpus_and(*tmp
, group
->cpumask
, p
->cpus_allowed
);
2429 for_each_cpu_mask(i
, *tmp
) {
2430 load
= weighted_cpuload(i
);
2432 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2442 * sched_balance_self: balance the current task (running on cpu) in domains
2443 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2446 * Balance, ie. select the least loaded group.
2448 * Returns the target CPU number, or the same CPU if no balancing is needed.
2450 * preempt must be disabled.
2452 static int sched_balance_self(int cpu
, int flag
)
2454 struct task_struct
*t
= current
;
2455 struct sched_domain
*tmp
, *sd
= NULL
;
2457 for_each_domain(cpu
, tmp
) {
2459 * If power savings logic is enabled for a domain, stop there.
2461 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2463 if (tmp
->flags
& flag
)
2468 cpumask_t span
, tmpmask
;
2469 struct sched_group
*group
;
2470 int new_cpu
, weight
;
2472 if (!(sd
->flags
& flag
)) {
2478 group
= find_idlest_group(sd
, t
, cpu
);
2484 new_cpu
= find_idlest_cpu(group
, t
, cpu
, &tmpmask
);
2485 if (new_cpu
== -1 || new_cpu
== cpu
) {
2486 /* Now try balancing at a lower domain level of cpu */
2491 /* Now try balancing at a lower domain level of new_cpu */
2494 weight
= cpus_weight(span
);
2495 for_each_domain(cpu
, tmp
) {
2496 if (weight
<= cpus_weight(tmp
->span
))
2498 if (tmp
->flags
& flag
)
2501 /* while loop will break here if sd == NULL */
2507 #endif /* CONFIG_SMP */
2510 * try_to_wake_up - wake up a thread
2511 * @p: the to-be-woken-up thread
2512 * @state: the mask of task states that can be woken
2513 * @sync: do a synchronous wakeup?
2515 * Put it on the run-queue if it's not already there. The "current"
2516 * thread is always on the run-queue (except when the actual
2517 * re-schedule is in progress), and as such you're allowed to do
2518 * the simpler "current->state = TASK_RUNNING" to mark yourself
2519 * runnable without the overhead of this.
2521 * returns failure only if the task is already active.
2523 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2525 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2526 unsigned long flags
;
2530 if (!sched_feat(SYNC_WAKEUPS
))
2534 rq
= task_rq_lock(p
, &flags
);
2535 old_state
= p
->state
;
2536 if (!(old_state
& state
))
2544 this_cpu
= smp_processor_id();
2547 if (unlikely(task_running(rq
, p
)))
2550 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2551 if (cpu
!= orig_cpu
) {
2552 set_task_cpu(p
, cpu
);
2553 task_rq_unlock(rq
, &flags
);
2554 /* might preempt at this point */
2555 rq
= task_rq_lock(p
, &flags
);
2556 old_state
= p
->state
;
2557 if (!(old_state
& state
))
2562 this_cpu
= smp_processor_id();
2566 #ifdef CONFIG_SCHEDSTATS
2567 schedstat_inc(rq
, ttwu_count
);
2568 if (cpu
== this_cpu
)
2569 schedstat_inc(rq
, ttwu_local
);
2571 struct sched_domain
*sd
;
2572 for_each_domain(this_cpu
, sd
) {
2573 if (cpu_isset(cpu
, sd
->span
)) {
2574 schedstat_inc(sd
, ttwu_wake_remote
);
2582 #endif /* CONFIG_SMP */
2583 schedstat_inc(p
, se
.nr_wakeups
);
2585 schedstat_inc(p
, se
.nr_wakeups_sync
);
2586 if (orig_cpu
!= cpu
)
2587 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2588 if (cpu
== this_cpu
)
2589 schedstat_inc(p
, se
.nr_wakeups_local
);
2591 schedstat_inc(p
, se
.nr_wakeups_remote
);
2592 update_rq_clock(rq
);
2593 activate_task(rq
, p
, 1);
2597 check_preempt_curr(rq
, p
);
2599 p
->state
= TASK_RUNNING
;
2601 if (p
->sched_class
->task_wake_up
)
2602 p
->sched_class
->task_wake_up(rq
, p
);
2605 task_rq_unlock(rq
, &flags
);
2610 int wake_up_process(struct task_struct
*p
)
2612 return try_to_wake_up(p
, TASK_ALL
, 0);
2614 EXPORT_SYMBOL(wake_up_process
);
2616 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2618 return try_to_wake_up(p
, state
, 0);
2622 * Perform scheduler related setup for a newly forked process p.
2623 * p is forked by current.
2625 * __sched_fork() is basic setup used by init_idle() too:
2627 static void __sched_fork(struct task_struct
*p
)
2629 p
->se
.exec_start
= 0;
2630 p
->se
.sum_exec_runtime
= 0;
2631 p
->se
.prev_sum_exec_runtime
= 0;
2632 p
->se
.last_wakeup
= 0;
2633 p
->se
.avg_overlap
= 0;
2635 #ifdef CONFIG_SCHEDSTATS
2636 p
->se
.wait_start
= 0;
2637 p
->se
.sum_sleep_runtime
= 0;
2638 p
->se
.sleep_start
= 0;
2639 p
->se
.block_start
= 0;
2640 p
->se
.sleep_max
= 0;
2641 p
->se
.block_max
= 0;
2643 p
->se
.slice_max
= 0;
2647 INIT_LIST_HEAD(&p
->rt
.run_list
);
2649 INIT_LIST_HEAD(&p
->se
.group_node
);
2651 #ifdef CONFIG_PREEMPT_NOTIFIERS
2652 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2656 * We mark the process as running here, but have not actually
2657 * inserted it onto the runqueue yet. This guarantees that
2658 * nobody will actually run it, and a signal or other external
2659 * event cannot wake it up and insert it on the runqueue either.
2661 p
->state
= TASK_RUNNING
;
2665 * fork()/clone()-time setup:
2667 void sched_fork(struct task_struct
*p
, int clone_flags
)
2669 int cpu
= get_cpu();
2674 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2676 set_task_cpu(p
, cpu
);
2679 * Make sure we do not leak PI boosting priority to the child:
2681 p
->prio
= current
->normal_prio
;
2682 if (!rt_prio(p
->prio
))
2683 p
->sched_class
= &fair_sched_class
;
2685 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2686 if (likely(sched_info_on()))
2687 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2689 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2692 #ifdef CONFIG_PREEMPT
2693 /* Want to start with kernel preemption disabled. */
2694 task_thread_info(p
)->preempt_count
= 1;
2700 * wake_up_new_task - wake up a newly created task for the first time.
2702 * This function will do some initial scheduler statistics housekeeping
2703 * that must be done for every newly created context, then puts the task
2704 * on the runqueue and wakes it.
2706 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2708 unsigned long flags
;
2711 rq
= task_rq_lock(p
, &flags
);
2712 BUG_ON(p
->state
!= TASK_RUNNING
);
2713 update_rq_clock(rq
);
2715 p
->prio
= effective_prio(p
);
2717 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2718 activate_task(rq
, p
, 0);
2721 * Let the scheduling class do new task startup
2722 * management (if any):
2724 p
->sched_class
->task_new(rq
, p
);
2727 check_preempt_curr(rq
, p
);
2729 if (p
->sched_class
->task_wake_up
)
2730 p
->sched_class
->task_wake_up(rq
, p
);
2732 task_rq_unlock(rq
, &flags
);
2735 #ifdef CONFIG_PREEMPT_NOTIFIERS
2738 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2739 * @notifier: notifier struct to register
2741 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2743 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2745 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2748 * preempt_notifier_unregister - no longer interested in preemption notifications
2749 * @notifier: notifier struct to unregister
2751 * This is safe to call from within a preemption notifier.
2753 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2755 hlist_del(¬ifier
->link
);
2757 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2759 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2761 struct preempt_notifier
*notifier
;
2762 struct hlist_node
*node
;
2764 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2765 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2769 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2770 struct task_struct
*next
)
2772 struct preempt_notifier
*notifier
;
2773 struct hlist_node
*node
;
2775 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2776 notifier
->ops
->sched_out(notifier
, next
);
2781 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2786 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2787 struct task_struct
*next
)
2794 * prepare_task_switch - prepare to switch tasks
2795 * @rq: the runqueue preparing to switch
2796 * @prev: the current task that is being switched out
2797 * @next: the task we are going to switch to.
2799 * This is called with the rq lock held and interrupts off. It must
2800 * be paired with a subsequent finish_task_switch after the context
2803 * prepare_task_switch sets up locking and calls architecture specific
2807 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2808 struct task_struct
*next
)
2810 fire_sched_out_preempt_notifiers(prev
, next
);
2811 prepare_lock_switch(rq
, next
);
2812 prepare_arch_switch(next
);
2816 * finish_task_switch - clean up after a task-switch
2817 * @rq: runqueue associated with task-switch
2818 * @prev: the thread we just switched away from.
2820 * finish_task_switch must be called after the context switch, paired
2821 * with a prepare_task_switch call before the context switch.
2822 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2823 * and do any other architecture-specific cleanup actions.
2825 * Note that we may have delayed dropping an mm in context_switch(). If
2826 * so, we finish that here outside of the runqueue lock. (Doing it
2827 * with the lock held can cause deadlocks; see schedule() for
2830 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2831 __releases(rq
->lock
)
2833 struct mm_struct
*mm
= rq
->prev_mm
;
2839 * A task struct has one reference for the use as "current".
2840 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2841 * schedule one last time. The schedule call will never return, and
2842 * the scheduled task must drop that reference.
2843 * The test for TASK_DEAD must occur while the runqueue locks are
2844 * still held, otherwise prev could be scheduled on another cpu, die
2845 * there before we look at prev->state, and then the reference would
2847 * Manfred Spraul <manfred@colorfullife.com>
2849 prev_state
= prev
->state
;
2850 finish_arch_switch(prev
);
2851 finish_lock_switch(rq
, prev
);
2853 if (current
->sched_class
->post_schedule
)
2854 current
->sched_class
->post_schedule(rq
);
2857 fire_sched_in_preempt_notifiers(current
);
2860 if (unlikely(prev_state
== TASK_DEAD
)) {
2862 * Remove function-return probe instances associated with this
2863 * task and put them back on the free list.
2865 kprobe_flush_task(prev
);
2866 put_task_struct(prev
);
2871 * schedule_tail - first thing a freshly forked thread must call.
2872 * @prev: the thread we just switched away from.
2874 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2875 __releases(rq
->lock
)
2877 struct rq
*rq
= this_rq();
2879 finish_task_switch(rq
, prev
);
2880 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2881 /* In this case, finish_task_switch does not reenable preemption */
2884 if (current
->set_child_tid
)
2885 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2889 * context_switch - switch to the new MM and the new
2890 * thread's register state.
2893 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2894 struct task_struct
*next
)
2896 struct mm_struct
*mm
, *oldmm
;
2898 prepare_task_switch(rq
, prev
, next
);
2900 oldmm
= prev
->active_mm
;
2902 * For paravirt, this is coupled with an exit in switch_to to
2903 * combine the page table reload and the switch backend into
2906 arch_enter_lazy_cpu_mode();
2908 if (unlikely(!mm
)) {
2909 next
->active_mm
= oldmm
;
2910 atomic_inc(&oldmm
->mm_count
);
2911 enter_lazy_tlb(oldmm
, next
);
2913 switch_mm(oldmm
, mm
, next
);
2915 if (unlikely(!prev
->mm
)) {
2916 prev
->active_mm
= NULL
;
2917 rq
->prev_mm
= oldmm
;
2920 * Since the runqueue lock will be released by the next
2921 * task (which is an invalid locking op but in the case
2922 * of the scheduler it's an obvious special-case), so we
2923 * do an early lockdep release here:
2925 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2926 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2929 /* Here we just switch the register state and the stack. */
2930 switch_to(prev
, next
, prev
);
2934 * this_rq must be evaluated again because prev may have moved
2935 * CPUs since it called schedule(), thus the 'rq' on its stack
2936 * frame will be invalid.
2938 finish_task_switch(this_rq(), prev
);
2942 * nr_running, nr_uninterruptible and nr_context_switches:
2944 * externally visible scheduler statistics: current number of runnable
2945 * threads, current number of uninterruptible-sleeping threads, total
2946 * number of context switches performed since bootup.
2948 unsigned long nr_running(void)
2950 unsigned long i
, sum
= 0;
2952 for_each_online_cpu(i
)
2953 sum
+= cpu_rq(i
)->nr_running
;
2958 unsigned long nr_uninterruptible(void)
2960 unsigned long i
, sum
= 0;
2962 for_each_possible_cpu(i
)
2963 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2966 * Since we read the counters lockless, it might be slightly
2967 * inaccurate. Do not allow it to go below zero though:
2969 if (unlikely((long)sum
< 0))
2975 unsigned long long nr_context_switches(void)
2978 unsigned long long sum
= 0;
2980 for_each_possible_cpu(i
)
2981 sum
+= cpu_rq(i
)->nr_switches
;
2986 unsigned long nr_iowait(void)
2988 unsigned long i
, sum
= 0;
2990 for_each_possible_cpu(i
)
2991 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2996 unsigned long nr_active(void)
2998 unsigned long i
, running
= 0, uninterruptible
= 0;
3000 for_each_online_cpu(i
) {
3001 running
+= cpu_rq(i
)->nr_running
;
3002 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
3005 if (unlikely((long)uninterruptible
< 0))
3006 uninterruptible
= 0;
3008 return running
+ uninterruptible
;
3012 * Update rq->cpu_load[] statistics. This function is usually called every
3013 * scheduler tick (TICK_NSEC).
3015 static void update_cpu_load(struct rq
*this_rq
)
3017 unsigned long this_load
= this_rq
->load
.weight
;
3020 this_rq
->nr_load_updates
++;
3022 /* Update our load: */
3023 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3024 unsigned long old_load
, new_load
;
3026 /* scale is effectively 1 << i now, and >> i divides by scale */
3028 old_load
= this_rq
->cpu_load
[i
];
3029 new_load
= this_load
;
3031 * Round up the averaging division if load is increasing. This
3032 * prevents us from getting stuck on 9 if the load is 10, for
3035 if (new_load
> old_load
)
3036 new_load
+= scale
-1;
3037 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3044 * double_rq_lock - safely lock two runqueues
3046 * Note this does not disable interrupts like task_rq_lock,
3047 * you need to do so manually before calling.
3049 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
3050 __acquires(rq1
->lock
)
3051 __acquires(rq2
->lock
)
3053 BUG_ON(!irqs_disabled());
3055 spin_lock(&rq1
->lock
);
3056 __acquire(rq2
->lock
); /* Fake it out ;) */
3059 spin_lock(&rq1
->lock
);
3060 spin_lock(&rq2
->lock
);
3062 spin_lock(&rq2
->lock
);
3063 spin_lock(&rq1
->lock
);
3066 update_rq_clock(rq1
);
3067 update_rq_clock(rq2
);
3071 * double_rq_unlock - safely unlock two runqueues
3073 * Note this does not restore interrupts like task_rq_unlock,
3074 * you need to do so manually after calling.
3076 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
3077 __releases(rq1
->lock
)
3078 __releases(rq2
->lock
)
3080 spin_unlock(&rq1
->lock
);
3082 spin_unlock(&rq2
->lock
);
3084 __release(rq2
->lock
);
3088 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
3090 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
3091 __releases(this_rq
->lock
)
3092 __acquires(busiest
->lock
)
3093 __acquires(this_rq
->lock
)
3097 if (unlikely(!irqs_disabled())) {
3098 /* printk() doesn't work good under rq->lock */
3099 spin_unlock(&this_rq
->lock
);
3102 if (unlikely(!spin_trylock(&busiest
->lock
))) {
3103 if (busiest
< this_rq
) {
3104 spin_unlock(&this_rq
->lock
);
3105 spin_lock(&busiest
->lock
);
3106 spin_lock(&this_rq
->lock
);
3109 spin_lock(&busiest
->lock
);
3115 * If dest_cpu is allowed for this process, migrate the task to it.
3116 * This is accomplished by forcing the cpu_allowed mask to only
3117 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3118 * the cpu_allowed mask is restored.
3120 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
3122 struct migration_req req
;
3123 unsigned long flags
;
3126 rq
= task_rq_lock(p
, &flags
);
3127 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
3128 || unlikely(cpu_is_offline(dest_cpu
)))
3131 /* force the process onto the specified CPU */
3132 if (migrate_task(p
, dest_cpu
, &req
)) {
3133 /* Need to wait for migration thread (might exit: take ref). */
3134 struct task_struct
*mt
= rq
->migration_thread
;
3136 get_task_struct(mt
);
3137 task_rq_unlock(rq
, &flags
);
3138 wake_up_process(mt
);
3139 put_task_struct(mt
);
3140 wait_for_completion(&req
.done
);
3145 task_rq_unlock(rq
, &flags
);
3149 * sched_exec - execve() is a valuable balancing opportunity, because at
3150 * this point the task has the smallest effective memory and cache footprint.
3152 void sched_exec(void)
3154 int new_cpu
, this_cpu
= get_cpu();
3155 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
3157 if (new_cpu
!= this_cpu
)
3158 sched_migrate_task(current
, new_cpu
);
3162 * pull_task - move a task from a remote runqueue to the local runqueue.
3163 * Both runqueues must be locked.
3165 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
3166 struct rq
*this_rq
, int this_cpu
)
3168 deactivate_task(src_rq
, p
, 0);
3169 set_task_cpu(p
, this_cpu
);
3170 activate_task(this_rq
, p
, 0);
3172 * Note that idle threads have a prio of MAX_PRIO, for this test
3173 * to be always true for them.
3175 check_preempt_curr(this_rq
, p
);
3179 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3182 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
3183 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3187 * We do not migrate tasks that are:
3188 * 1) running (obviously), or
3189 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3190 * 3) are cache-hot on their current CPU.
3192 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
3193 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
3198 if (task_running(rq
, p
)) {
3199 schedstat_inc(p
, se
.nr_failed_migrations_running
);
3204 * Aggressive migration if:
3205 * 1) task is cache cold, or
3206 * 2) too many balance attempts have failed.
3209 if (!task_hot(p
, rq
->clock
, sd
) ||
3210 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
3211 #ifdef CONFIG_SCHEDSTATS
3212 if (task_hot(p
, rq
->clock
, sd
)) {
3213 schedstat_inc(sd
, lb_hot_gained
[idle
]);
3214 schedstat_inc(p
, se
.nr_forced_migrations
);
3220 if (task_hot(p
, rq
->clock
, sd
)) {
3221 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
3227 static unsigned long
3228 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3229 unsigned long max_load_move
, struct sched_domain
*sd
,
3230 enum cpu_idle_type idle
, int *all_pinned
,
3231 int *this_best_prio
, struct rq_iterator
*iterator
)
3233 int loops
= 0, pulled
= 0, pinned
= 0, skip_for_load
;
3234 struct task_struct
*p
;
3235 long rem_load_move
= max_load_move
;
3237 if (max_load_move
== 0)
3243 * Start the load-balancing iterator:
3245 p
= iterator
->start(iterator
->arg
);
3247 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
3250 * To help distribute high priority tasks across CPUs we don't
3251 * skip a task if it will be the highest priority task (i.e. smallest
3252 * prio value) on its new queue regardless of its load weight
3254 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
3255 SCHED_LOAD_SCALE_FUZZ
;
3256 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
3257 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3258 p
= iterator
->next(iterator
->arg
);
3262 pull_task(busiest
, p
, this_rq
, this_cpu
);
3264 rem_load_move
-= p
->se
.load
.weight
;
3267 * We only want to steal up to the prescribed amount of weighted load.
3269 if (rem_load_move
> 0) {
3270 if (p
->prio
< *this_best_prio
)
3271 *this_best_prio
= p
->prio
;
3272 p
= iterator
->next(iterator
->arg
);
3277 * Right now, this is one of only two places pull_task() is called,
3278 * so we can safely collect pull_task() stats here rather than
3279 * inside pull_task().
3281 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3284 *all_pinned
= pinned
;
3286 return max_load_move
- rem_load_move
;
3290 * move_tasks tries to move up to max_load_move weighted load from busiest to
3291 * this_rq, as part of a balancing operation within domain "sd".
3292 * Returns 1 if successful and 0 otherwise.
3294 * Called with both runqueues locked.
3296 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3297 unsigned long max_load_move
,
3298 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3301 const struct sched_class
*class = sched_class_highest
;
3302 unsigned long total_load_moved
= 0;
3303 int this_best_prio
= this_rq
->curr
->prio
;
3307 class->load_balance(this_rq
, this_cpu
, busiest
,
3308 max_load_move
- total_load_moved
,
3309 sd
, idle
, all_pinned
, &this_best_prio
);
3310 class = class->next
;
3311 } while (class && max_load_move
> total_load_moved
);
3313 return total_load_moved
> 0;
3317 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3318 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3319 struct rq_iterator
*iterator
)
3321 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3325 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3326 pull_task(busiest
, p
, this_rq
, this_cpu
);
3328 * Right now, this is only the second place pull_task()
3329 * is called, so we can safely collect pull_task()
3330 * stats here rather than inside pull_task().
3332 schedstat_inc(sd
, lb_gained
[idle
]);
3336 p
= iterator
->next(iterator
->arg
);
3343 * move_one_task tries to move exactly one task from busiest to this_rq, as
3344 * part of active balancing operations within "domain".
3345 * Returns 1 if successful and 0 otherwise.
3347 * Called with both runqueues locked.
3349 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3350 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3352 const struct sched_class
*class;
3354 for (class = sched_class_highest
; class; class = class->next
)
3355 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3362 * find_busiest_group finds and returns the busiest CPU group within the
3363 * domain. It calculates and returns the amount of weighted load which
3364 * should be moved to restore balance via the imbalance parameter.
3366 static struct sched_group
*
3367 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3368 unsigned long *imbalance
, enum cpu_idle_type idle
,
3369 int *sd_idle
, const cpumask_t
*cpus
, int *balance
)
3371 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
3372 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
3373 unsigned long max_pull
;
3374 unsigned long busiest_load_per_task
, busiest_nr_running
;
3375 unsigned long this_load_per_task
, this_nr_running
;
3376 int load_idx
, group_imb
= 0;
3377 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3378 int power_savings_balance
= 1;
3379 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
3380 unsigned long min_nr_running
= ULONG_MAX
;
3381 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
3384 max_load
= this_load
= total_load
= total_pwr
= 0;
3385 busiest_load_per_task
= busiest_nr_running
= 0;
3386 this_load_per_task
= this_nr_running
= 0;
3387 if (idle
== CPU_NOT_IDLE
)
3388 load_idx
= sd
->busy_idx
;
3389 else if (idle
== CPU_NEWLY_IDLE
)
3390 load_idx
= sd
->newidle_idx
;
3392 load_idx
= sd
->idle_idx
;
3395 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
3398 int __group_imb
= 0;
3399 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3400 unsigned long sum_nr_running
, sum_weighted_load
;
3402 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
3405 balance_cpu
= first_cpu(group
->cpumask
);
3407 /* Tally up the load of all CPUs in the group */
3408 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
3410 min_cpu_load
= ~0UL;
3412 for_each_cpu_mask(i
, group
->cpumask
) {
3415 if (!cpu_isset(i
, *cpus
))
3420 if (*sd_idle
&& rq
->nr_running
)
3423 /* Bias balancing toward cpus of our domain */
3425 if (idle_cpu(i
) && !first_idle_cpu
) {
3430 load
= target_load(i
, load_idx
);
3432 load
= source_load(i
, load_idx
);
3433 if (load
> max_cpu_load
)
3434 max_cpu_load
= load
;
3435 if (min_cpu_load
> load
)
3436 min_cpu_load
= load
;
3440 sum_nr_running
+= rq
->nr_running
;
3441 sum_weighted_load
+= weighted_cpuload(i
);
3445 * First idle cpu or the first cpu(busiest) in this sched group
3446 * is eligible for doing load balancing at this and above
3447 * domains. In the newly idle case, we will allow all the cpu's
3448 * to do the newly idle load balance.
3450 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3451 balance_cpu
!= this_cpu
&& balance
) {
3456 total_load
+= avg_load
;
3457 total_pwr
+= group
->__cpu_power
;
3459 /* Adjust by relative CPU power of the group */
3460 avg_load
= sg_div_cpu_power(group
,
3461 avg_load
* SCHED_LOAD_SCALE
);
3463 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
3466 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3469 this_load
= avg_load
;
3471 this_nr_running
= sum_nr_running
;
3472 this_load_per_task
= sum_weighted_load
;
3473 } else if (avg_load
> max_load
&&
3474 (sum_nr_running
> group_capacity
|| __group_imb
)) {
3475 max_load
= avg_load
;
3477 busiest_nr_running
= sum_nr_running
;
3478 busiest_load_per_task
= sum_weighted_load
;
3479 group_imb
= __group_imb
;
3482 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3484 * Busy processors will not participate in power savings
3487 if (idle
== CPU_NOT_IDLE
||
3488 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3492 * If the local group is idle or completely loaded
3493 * no need to do power savings balance at this domain
3495 if (local_group
&& (this_nr_running
>= group_capacity
||
3497 power_savings_balance
= 0;
3500 * If a group is already running at full capacity or idle,
3501 * don't include that group in power savings calculations
3503 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
3508 * Calculate the group which has the least non-idle load.
3509 * This is the group from where we need to pick up the load
3512 if ((sum_nr_running
< min_nr_running
) ||
3513 (sum_nr_running
== min_nr_running
&&
3514 first_cpu(group
->cpumask
) <
3515 first_cpu(group_min
->cpumask
))) {
3517 min_nr_running
= sum_nr_running
;
3518 min_load_per_task
= sum_weighted_load
/
3523 * Calculate the group which is almost near its
3524 * capacity but still has some space to pick up some load
3525 * from other group and save more power
3527 if (sum_nr_running
<= group_capacity
- 1) {
3528 if (sum_nr_running
> leader_nr_running
||
3529 (sum_nr_running
== leader_nr_running
&&
3530 first_cpu(group
->cpumask
) >
3531 first_cpu(group_leader
->cpumask
))) {
3532 group_leader
= group
;
3533 leader_nr_running
= sum_nr_running
;
3538 group
= group
->next
;
3539 } while (group
!= sd
->groups
);
3541 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3544 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3546 if (this_load
>= avg_load
||
3547 100*max_load
<= sd
->imbalance_pct
*this_load
)
3550 busiest_load_per_task
/= busiest_nr_running
;
3552 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3555 * We're trying to get all the cpus to the average_load, so we don't
3556 * want to push ourselves above the average load, nor do we wish to
3557 * reduce the max loaded cpu below the average load, as either of these
3558 * actions would just result in more rebalancing later, and ping-pong
3559 * tasks around. Thus we look for the minimum possible imbalance.
3560 * Negative imbalances (*we* are more loaded than anyone else) will
3561 * be counted as no imbalance for these purposes -- we can't fix that
3562 * by pulling tasks to us. Be careful of negative numbers as they'll
3563 * appear as very large values with unsigned longs.
3565 if (max_load
<= busiest_load_per_task
)
3569 * In the presence of smp nice balancing, certain scenarios can have
3570 * max load less than avg load(as we skip the groups at or below
3571 * its cpu_power, while calculating max_load..)
3573 if (max_load
< avg_load
) {
3575 goto small_imbalance
;
3578 /* Don't want to pull so many tasks that a group would go idle */
3579 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3581 /* How much load to actually move to equalise the imbalance */
3582 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3583 (avg_load
- this_load
) * this->__cpu_power
)
3587 * if *imbalance is less than the average load per runnable task
3588 * there is no gaurantee that any tasks will be moved so we'll have
3589 * a think about bumping its value to force at least one task to be
3592 if (*imbalance
< busiest_load_per_task
) {
3593 unsigned long tmp
, pwr_now
, pwr_move
;
3597 pwr_move
= pwr_now
= 0;
3599 if (this_nr_running
) {
3600 this_load_per_task
/= this_nr_running
;
3601 if (busiest_load_per_task
> this_load_per_task
)
3604 this_load_per_task
= SCHED_LOAD_SCALE
;
3606 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
3607 busiest_load_per_task
* imbn
) {
3608 *imbalance
= busiest_load_per_task
;
3613 * OK, we don't have enough imbalance to justify moving tasks,
3614 * however we may be able to increase total CPU power used by
3618 pwr_now
+= busiest
->__cpu_power
*
3619 min(busiest_load_per_task
, max_load
);
3620 pwr_now
+= this->__cpu_power
*
3621 min(this_load_per_task
, this_load
);
3622 pwr_now
/= SCHED_LOAD_SCALE
;
3624 /* Amount of load we'd subtract */
3625 tmp
= sg_div_cpu_power(busiest
,
3626 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3628 pwr_move
+= busiest
->__cpu_power
*
3629 min(busiest_load_per_task
, max_load
- tmp
);
3631 /* Amount of load we'd add */
3632 if (max_load
* busiest
->__cpu_power
<
3633 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3634 tmp
= sg_div_cpu_power(this,
3635 max_load
* busiest
->__cpu_power
);
3637 tmp
= sg_div_cpu_power(this,
3638 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3639 pwr_move
+= this->__cpu_power
*
3640 min(this_load_per_task
, this_load
+ tmp
);
3641 pwr_move
/= SCHED_LOAD_SCALE
;
3643 /* Move if we gain throughput */
3644 if (pwr_move
> pwr_now
)
3645 *imbalance
= busiest_load_per_task
;
3651 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3652 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3655 if (this == group_leader
&& group_leader
!= group_min
) {
3656 *imbalance
= min_load_per_task
;
3666 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3669 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3670 unsigned long imbalance
, const cpumask_t
*cpus
)
3672 struct rq
*busiest
= NULL
, *rq
;
3673 unsigned long max_load
= 0;
3676 for_each_cpu_mask(i
, group
->cpumask
) {
3679 if (!cpu_isset(i
, *cpus
))
3683 wl
= weighted_cpuload(i
);
3685 if (rq
->nr_running
== 1 && wl
> imbalance
)
3688 if (wl
> max_load
) {
3698 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3699 * so long as it is large enough.
3701 #define MAX_PINNED_INTERVAL 512
3704 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3705 * tasks if there is an imbalance.
3707 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3708 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3709 int *balance
, cpumask_t
*cpus
)
3711 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3712 struct sched_group
*group
;
3713 unsigned long imbalance
;
3715 unsigned long flags
;
3716 int unlock_aggregate
;
3720 unlock_aggregate
= get_aggregate(sd
);
3723 * When power savings policy is enabled for the parent domain, idle
3724 * sibling can pick up load irrespective of busy siblings. In this case,
3725 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3726 * portraying it as CPU_NOT_IDLE.
3728 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3729 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3732 schedstat_inc(sd
, lb_count
[idle
]);
3735 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3742 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3746 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3748 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3752 BUG_ON(busiest
== this_rq
);
3754 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3757 if (busiest
->nr_running
> 1) {
3759 * Attempt to move tasks. If find_busiest_group has found
3760 * an imbalance but busiest->nr_running <= 1, the group is
3761 * still unbalanced. ld_moved simply stays zero, so it is
3762 * correctly treated as an imbalance.
3764 local_irq_save(flags
);
3765 double_rq_lock(this_rq
, busiest
);
3766 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3767 imbalance
, sd
, idle
, &all_pinned
);
3768 double_rq_unlock(this_rq
, busiest
);
3769 local_irq_restore(flags
);
3772 * some other cpu did the load balance for us.
3774 if (ld_moved
&& this_cpu
!= smp_processor_id())
3775 resched_cpu(this_cpu
);
3777 /* All tasks on this runqueue were pinned by CPU affinity */
3778 if (unlikely(all_pinned
)) {
3779 cpu_clear(cpu_of(busiest
), *cpus
);
3780 if (!cpus_empty(*cpus
))
3787 schedstat_inc(sd
, lb_failed
[idle
]);
3788 sd
->nr_balance_failed
++;
3790 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3792 spin_lock_irqsave(&busiest
->lock
, flags
);
3794 /* don't kick the migration_thread, if the curr
3795 * task on busiest cpu can't be moved to this_cpu
3797 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3798 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3800 goto out_one_pinned
;
3803 if (!busiest
->active_balance
) {
3804 busiest
->active_balance
= 1;
3805 busiest
->push_cpu
= this_cpu
;
3808 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3810 wake_up_process(busiest
->migration_thread
);
3813 * We've kicked active balancing, reset the failure
3816 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3819 sd
->nr_balance_failed
= 0;
3821 if (likely(!active_balance
)) {
3822 /* We were unbalanced, so reset the balancing interval */
3823 sd
->balance_interval
= sd
->min_interval
;
3826 * If we've begun active balancing, start to back off. This
3827 * case may not be covered by the all_pinned logic if there
3828 * is only 1 task on the busy runqueue (because we don't call
3831 if (sd
->balance_interval
< sd
->max_interval
)
3832 sd
->balance_interval
*= 2;
3835 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3836 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3842 schedstat_inc(sd
, lb_balanced
[idle
]);
3844 sd
->nr_balance_failed
= 0;
3847 /* tune up the balancing interval */
3848 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3849 (sd
->balance_interval
< sd
->max_interval
))
3850 sd
->balance_interval
*= 2;
3852 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3853 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3858 if (unlock_aggregate
)
3864 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3865 * tasks if there is an imbalance.
3867 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3868 * this_rq is locked.
3871 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3874 struct sched_group
*group
;
3875 struct rq
*busiest
= NULL
;
3876 unsigned long imbalance
;
3884 * When power savings policy is enabled for the parent domain, idle
3885 * sibling can pick up load irrespective of busy siblings. In this case,
3886 * let the state of idle sibling percolate up as IDLE, instead of
3887 * portraying it as CPU_NOT_IDLE.
3889 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3890 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3893 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3895 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3896 &sd_idle
, cpus
, NULL
);
3898 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3902 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3904 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3908 BUG_ON(busiest
== this_rq
);
3910 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3913 if (busiest
->nr_running
> 1) {
3914 /* Attempt to move tasks */
3915 double_lock_balance(this_rq
, busiest
);
3916 /* this_rq->clock is already updated */
3917 update_rq_clock(busiest
);
3918 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3919 imbalance
, sd
, CPU_NEWLY_IDLE
,
3921 spin_unlock(&busiest
->lock
);
3923 if (unlikely(all_pinned
)) {
3924 cpu_clear(cpu_of(busiest
), *cpus
);
3925 if (!cpus_empty(*cpus
))
3931 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3932 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3933 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3936 sd
->nr_balance_failed
= 0;
3941 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3942 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3943 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3945 sd
->nr_balance_failed
= 0;
3951 * idle_balance is called by schedule() if this_cpu is about to become
3952 * idle. Attempts to pull tasks from other CPUs.
3954 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3956 struct sched_domain
*sd
;
3957 int pulled_task
= -1;
3958 unsigned long next_balance
= jiffies
+ HZ
;
3961 for_each_domain(this_cpu
, sd
) {
3962 unsigned long interval
;
3964 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3967 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3968 /* If we've pulled tasks over stop searching: */
3969 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3972 interval
= msecs_to_jiffies(sd
->balance_interval
);
3973 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3974 next_balance
= sd
->last_balance
+ interval
;
3978 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3980 * We are going idle. next_balance may be set based on
3981 * a busy processor. So reset next_balance.
3983 this_rq
->next_balance
= next_balance
;
3988 * active_load_balance is run by migration threads. It pushes running tasks
3989 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3990 * running on each physical CPU where possible, and avoids physical /
3991 * logical imbalances.
3993 * Called with busiest_rq locked.
3995 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3997 int target_cpu
= busiest_rq
->push_cpu
;
3998 struct sched_domain
*sd
;
3999 struct rq
*target_rq
;
4001 /* Is there any task to move? */
4002 if (busiest_rq
->nr_running
<= 1)
4005 target_rq
= cpu_rq(target_cpu
);
4008 * This condition is "impossible", if it occurs
4009 * we need to fix it. Originally reported by
4010 * Bjorn Helgaas on a 128-cpu setup.
4012 BUG_ON(busiest_rq
== target_rq
);
4014 /* move a task from busiest_rq to target_rq */
4015 double_lock_balance(busiest_rq
, target_rq
);
4016 update_rq_clock(busiest_rq
);
4017 update_rq_clock(target_rq
);
4019 /* Search for an sd spanning us and the target CPU. */
4020 for_each_domain(target_cpu
, sd
) {
4021 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
4022 cpu_isset(busiest_cpu
, sd
->span
))
4027 schedstat_inc(sd
, alb_count
);
4029 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
4031 schedstat_inc(sd
, alb_pushed
);
4033 schedstat_inc(sd
, alb_failed
);
4035 spin_unlock(&target_rq
->lock
);
4040 atomic_t load_balancer
;
4042 } nohz ____cacheline_aligned
= {
4043 .load_balancer
= ATOMIC_INIT(-1),
4044 .cpu_mask
= CPU_MASK_NONE
,
4048 * This routine will try to nominate the ilb (idle load balancing)
4049 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4050 * load balancing on behalf of all those cpus. If all the cpus in the system
4051 * go into this tickless mode, then there will be no ilb owner (as there is
4052 * no need for one) and all the cpus will sleep till the next wakeup event
4055 * For the ilb owner, tick is not stopped. And this tick will be used
4056 * for idle load balancing. ilb owner will still be part of
4059 * While stopping the tick, this cpu will become the ilb owner if there
4060 * is no other owner. And will be the owner till that cpu becomes busy
4061 * or if all cpus in the system stop their ticks at which point
4062 * there is no need for ilb owner.
4064 * When the ilb owner becomes busy, it nominates another owner, during the
4065 * next busy scheduler_tick()
4067 int select_nohz_load_balancer(int stop_tick
)
4069 int cpu
= smp_processor_id();
4072 cpu_set(cpu
, nohz
.cpu_mask
);
4073 cpu_rq(cpu
)->in_nohz_recently
= 1;
4076 * If we are going offline and still the leader, give up!
4078 if (cpu_is_offline(cpu
) &&
4079 atomic_read(&nohz
.load_balancer
) == cpu
) {
4080 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4085 /* time for ilb owner also to sleep */
4086 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4087 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4088 atomic_set(&nohz
.load_balancer
, -1);
4092 if (atomic_read(&nohz
.load_balancer
) == -1) {
4093 /* make me the ilb owner */
4094 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
4096 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
4099 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
4102 cpu_clear(cpu
, nohz
.cpu_mask
);
4104 if (atomic_read(&nohz
.load_balancer
) == cpu
)
4105 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4112 static DEFINE_SPINLOCK(balancing
);
4115 * It checks each scheduling domain to see if it is due to be balanced,
4116 * and initiates a balancing operation if so.
4118 * Balancing parameters are set up in arch_init_sched_domains.
4120 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4123 struct rq
*rq
= cpu_rq(cpu
);
4124 unsigned long interval
;
4125 struct sched_domain
*sd
;
4126 /* Earliest time when we have to do rebalance again */
4127 unsigned long next_balance
= jiffies
+ 60*HZ
;
4128 int update_next_balance
= 0;
4131 for_each_domain(cpu
, sd
) {
4132 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4135 interval
= sd
->balance_interval
;
4136 if (idle
!= CPU_IDLE
)
4137 interval
*= sd
->busy_factor
;
4139 /* scale ms to jiffies */
4140 interval
= msecs_to_jiffies(interval
);
4141 if (unlikely(!interval
))
4143 if (interval
> HZ
*NR_CPUS
/10)
4144 interval
= HZ
*NR_CPUS
/10;
4147 if (sd
->flags
& SD_SERIALIZE
) {
4148 if (!spin_trylock(&balancing
))
4152 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
4153 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, &tmp
)) {
4155 * We've pulled tasks over so either we're no
4156 * longer idle, or one of our SMT siblings is
4159 idle
= CPU_NOT_IDLE
;
4161 sd
->last_balance
= jiffies
;
4163 if (sd
->flags
& SD_SERIALIZE
)
4164 spin_unlock(&balancing
);
4166 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
4167 next_balance
= sd
->last_balance
+ interval
;
4168 update_next_balance
= 1;
4172 * Stop the load balance at this level. There is another
4173 * CPU in our sched group which is doing load balancing more
4181 * next_balance will be updated only when there is a need.
4182 * When the cpu is attached to null domain for ex, it will not be
4185 if (likely(update_next_balance
))
4186 rq
->next_balance
= next_balance
;
4190 * run_rebalance_domains is triggered when needed from the scheduler tick.
4191 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4192 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4194 static void run_rebalance_domains(struct softirq_action
*h
)
4196 int this_cpu
= smp_processor_id();
4197 struct rq
*this_rq
= cpu_rq(this_cpu
);
4198 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4199 CPU_IDLE
: CPU_NOT_IDLE
;
4201 rebalance_domains(this_cpu
, idle
);
4205 * If this cpu is the owner for idle load balancing, then do the
4206 * balancing on behalf of the other idle cpus whose ticks are
4209 if (this_rq
->idle_at_tick
&&
4210 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4211 cpumask_t cpus
= nohz
.cpu_mask
;
4215 cpu_clear(this_cpu
, cpus
);
4216 for_each_cpu_mask(balance_cpu
, cpus
) {
4218 * If this cpu gets work to do, stop the load balancing
4219 * work being done for other cpus. Next load
4220 * balancing owner will pick it up.
4225 rebalance_domains(balance_cpu
, CPU_IDLE
);
4227 rq
= cpu_rq(balance_cpu
);
4228 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4229 this_rq
->next_balance
= rq
->next_balance
;
4236 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4238 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4239 * idle load balancing owner or decide to stop the periodic load balancing,
4240 * if the whole system is idle.
4242 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4246 * If we were in the nohz mode recently and busy at the current
4247 * scheduler tick, then check if we need to nominate new idle
4250 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4251 rq
->in_nohz_recently
= 0;
4253 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4254 cpu_clear(cpu
, nohz
.cpu_mask
);
4255 atomic_set(&nohz
.load_balancer
, -1);
4258 if (atomic_read(&nohz
.load_balancer
) == -1) {
4260 * simple selection for now: Nominate the
4261 * first cpu in the nohz list to be the next
4264 * TBD: Traverse the sched domains and nominate
4265 * the nearest cpu in the nohz.cpu_mask.
4267 int ilb
= first_cpu(nohz
.cpu_mask
);
4269 if (ilb
< nr_cpu_ids
)
4275 * If this cpu is idle and doing idle load balancing for all the
4276 * cpus with ticks stopped, is it time for that to stop?
4278 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4279 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4285 * If this cpu is idle and the idle load balancing is done by
4286 * someone else, then no need raise the SCHED_SOFTIRQ
4288 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4289 cpu_isset(cpu
, nohz
.cpu_mask
))
4292 if (time_after_eq(jiffies
, rq
->next_balance
))
4293 raise_softirq(SCHED_SOFTIRQ
);
4296 #else /* CONFIG_SMP */
4299 * on UP we do not need to balance between CPUs:
4301 static inline void idle_balance(int cpu
, struct rq
*rq
)
4307 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4309 EXPORT_PER_CPU_SYMBOL(kstat
);
4312 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4313 * that have not yet been banked in case the task is currently running.
4315 unsigned long long task_sched_runtime(struct task_struct
*p
)
4317 unsigned long flags
;
4321 rq
= task_rq_lock(p
, &flags
);
4322 ns
= p
->se
.sum_exec_runtime
;
4323 if (task_current(rq
, p
)) {
4324 update_rq_clock(rq
);
4325 delta_exec
= rq
->clock
- p
->se
.exec_start
;
4326 if ((s64
)delta_exec
> 0)
4329 task_rq_unlock(rq
, &flags
);
4335 * Account user cpu time to a process.
4336 * @p: the process that the cpu time gets accounted to
4337 * @cputime: the cpu time spent in user space since the last update
4339 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
4341 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4344 p
->utime
= cputime_add(p
->utime
, cputime
);
4346 /* Add user time to cpustat. */
4347 tmp
= cputime_to_cputime64(cputime
);
4348 if (TASK_NICE(p
) > 0)
4349 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4351 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4355 * Account guest cpu time to a process.
4356 * @p: the process that the cpu time gets accounted to
4357 * @cputime: the cpu time spent in virtual machine since the last update
4359 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
4362 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4364 tmp
= cputime_to_cputime64(cputime
);
4366 p
->utime
= cputime_add(p
->utime
, cputime
);
4367 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4369 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4370 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4374 * Account scaled user cpu time to a process.
4375 * @p: the process that the cpu time gets accounted to
4376 * @cputime: the cpu time spent in user space since the last update
4378 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4380 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
4384 * Account system cpu time to a process.
4385 * @p: the process that the cpu time gets accounted to
4386 * @hardirq_offset: the offset to subtract from hardirq_count()
4387 * @cputime: the cpu time spent in kernel space since the last update
4389 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4392 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4393 struct rq
*rq
= this_rq();
4396 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0))
4397 return account_guest_time(p
, cputime
);
4399 p
->stime
= cputime_add(p
->stime
, cputime
);
4401 /* Add system time to cpustat. */
4402 tmp
= cputime_to_cputime64(cputime
);
4403 if (hardirq_count() - hardirq_offset
)
4404 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4405 else if (softirq_count())
4406 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4407 else if (p
!= rq
->idle
)
4408 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4409 else if (atomic_read(&rq
->nr_iowait
) > 0)
4410 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4412 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4413 /* Account for system time used */
4414 acct_update_integrals(p
);
4418 * Account scaled system cpu time to a process.
4419 * @p: the process that the cpu time gets accounted to
4420 * @hardirq_offset: the offset to subtract from hardirq_count()
4421 * @cputime: the cpu time spent in kernel space since the last update
4423 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4425 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
4429 * Account for involuntary wait time.
4430 * @p: the process from which the cpu time has been stolen
4431 * @steal: the cpu time spent in involuntary wait
4433 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
4435 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4436 cputime64_t tmp
= cputime_to_cputime64(steal
);
4437 struct rq
*rq
= this_rq();
4439 if (p
== rq
->idle
) {
4440 p
->stime
= cputime_add(p
->stime
, steal
);
4441 if (atomic_read(&rq
->nr_iowait
) > 0)
4442 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4444 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4446 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
4450 * This function gets called by the timer code, with HZ frequency.
4451 * We call it with interrupts disabled.
4453 * It also gets called by the fork code, when changing the parent's
4456 void scheduler_tick(void)
4458 int cpu
= smp_processor_id();
4459 struct rq
*rq
= cpu_rq(cpu
);
4460 struct task_struct
*curr
= rq
->curr
;
4461 u64 next_tick
= rq
->tick_timestamp
+ TICK_NSEC
;
4463 spin_lock(&rq
->lock
);
4464 __update_rq_clock(rq
);
4466 * Let rq->clock advance by at least TICK_NSEC:
4468 if (unlikely(rq
->clock
< next_tick
)) {
4469 rq
->clock
= next_tick
;
4470 rq
->clock_underflows
++;
4472 rq
->tick_timestamp
= rq
->clock
;
4473 update_last_tick_seen(rq
);
4474 update_cpu_load(rq
);
4475 curr
->sched_class
->task_tick(rq
, curr
, 0);
4476 spin_unlock(&rq
->lock
);
4479 rq
->idle_at_tick
= idle_cpu(cpu
);
4480 trigger_load_balance(rq
, cpu
);
4484 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4486 void __kprobes
add_preempt_count(int val
)
4491 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4493 preempt_count() += val
;
4495 * Spinlock count overflowing soon?
4497 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4500 EXPORT_SYMBOL(add_preempt_count
);
4502 void __kprobes
sub_preempt_count(int val
)
4507 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4510 * Is the spinlock portion underflowing?
4512 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4513 !(preempt_count() & PREEMPT_MASK
)))
4516 preempt_count() -= val
;
4518 EXPORT_SYMBOL(sub_preempt_count
);
4523 * Print scheduling while atomic bug:
4525 static noinline
void __schedule_bug(struct task_struct
*prev
)
4527 struct pt_regs
*regs
= get_irq_regs();
4529 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4530 prev
->comm
, prev
->pid
, preempt_count());
4532 debug_show_held_locks(prev
);
4533 if (irqs_disabled())
4534 print_irqtrace_events(prev
);
4543 * Various schedule()-time debugging checks and statistics:
4545 static inline void schedule_debug(struct task_struct
*prev
)
4548 * Test if we are atomic. Since do_exit() needs to call into
4549 * schedule() atomically, we ignore that path for now.
4550 * Otherwise, whine if we are scheduling when we should not be.
4552 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
4553 __schedule_bug(prev
);
4555 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4557 schedstat_inc(this_rq(), sched_count
);
4558 #ifdef CONFIG_SCHEDSTATS
4559 if (unlikely(prev
->lock_depth
>= 0)) {
4560 schedstat_inc(this_rq(), bkl_count
);
4561 schedstat_inc(prev
, sched_info
.bkl_count
);
4567 * Pick up the highest-prio task:
4569 static inline struct task_struct
*
4570 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
4572 const struct sched_class
*class;
4573 struct task_struct
*p
;
4576 * Optimization: we know that if all tasks are in
4577 * the fair class we can call that function directly:
4579 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4580 p
= fair_sched_class
.pick_next_task(rq
);
4585 class = sched_class_highest
;
4587 p
= class->pick_next_task(rq
);
4591 * Will never be NULL as the idle class always
4592 * returns a non-NULL p:
4594 class = class->next
;
4599 * schedule() is the main scheduler function.
4601 asmlinkage
void __sched
schedule(void)
4603 struct task_struct
*prev
, *next
;
4604 unsigned long *switch_count
;
4610 cpu
= smp_processor_id();
4614 switch_count
= &prev
->nivcsw
;
4616 release_kernel_lock(prev
);
4617 need_resched_nonpreemptible
:
4619 schedule_debug(prev
);
4624 * Do the rq-clock update outside the rq lock:
4626 local_irq_disable();
4627 __update_rq_clock(rq
);
4628 spin_lock(&rq
->lock
);
4629 clear_tsk_need_resched(prev
);
4631 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4632 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
4633 signal_pending(prev
))) {
4634 prev
->state
= TASK_RUNNING
;
4636 deactivate_task(rq
, prev
, 1);
4638 switch_count
= &prev
->nvcsw
;
4642 if (prev
->sched_class
->pre_schedule
)
4643 prev
->sched_class
->pre_schedule(rq
, prev
);
4646 if (unlikely(!rq
->nr_running
))
4647 idle_balance(cpu
, rq
);
4649 prev
->sched_class
->put_prev_task(rq
, prev
);
4650 next
= pick_next_task(rq
, prev
);
4652 sched_info_switch(prev
, next
);
4654 if (likely(prev
!= next
)) {
4659 context_switch(rq
, prev
, next
); /* unlocks the rq */
4661 * the context switch might have flipped the stack from under
4662 * us, hence refresh the local variables.
4664 cpu
= smp_processor_id();
4667 spin_unlock_irq(&rq
->lock
);
4671 if (unlikely(reacquire_kernel_lock(current
) < 0))
4672 goto need_resched_nonpreemptible
;
4674 preempt_enable_no_resched();
4675 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4678 EXPORT_SYMBOL(schedule
);
4680 #ifdef CONFIG_PREEMPT
4682 * this is the entry point to schedule() from in-kernel preemption
4683 * off of preempt_enable. Kernel preemptions off return from interrupt
4684 * occur there and call schedule directly.
4686 asmlinkage
void __sched
preempt_schedule(void)
4688 struct thread_info
*ti
= current_thread_info();
4689 struct task_struct
*task
= current
;
4690 int saved_lock_depth
;
4693 * If there is a non-zero preempt_count or interrupts are disabled,
4694 * we do not want to preempt the current task. Just return..
4696 if (likely(ti
->preempt_count
|| irqs_disabled()))
4700 add_preempt_count(PREEMPT_ACTIVE
);
4703 * We keep the big kernel semaphore locked, but we
4704 * clear ->lock_depth so that schedule() doesnt
4705 * auto-release the semaphore:
4707 saved_lock_depth
= task
->lock_depth
;
4708 task
->lock_depth
= -1;
4710 task
->lock_depth
= saved_lock_depth
;
4711 sub_preempt_count(PREEMPT_ACTIVE
);
4714 * Check again in case we missed a preemption opportunity
4715 * between schedule and now.
4718 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4720 EXPORT_SYMBOL(preempt_schedule
);
4723 * this is the entry point to schedule() from kernel preemption
4724 * off of irq context.
4725 * Note, that this is called and return with irqs disabled. This will
4726 * protect us against recursive calling from irq.
4728 asmlinkage
void __sched
preempt_schedule_irq(void)
4730 struct thread_info
*ti
= current_thread_info();
4731 struct task_struct
*task
= current
;
4732 int saved_lock_depth
;
4734 /* Catch callers which need to be fixed */
4735 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4738 add_preempt_count(PREEMPT_ACTIVE
);
4741 * We keep the big kernel semaphore locked, but we
4742 * clear ->lock_depth so that schedule() doesnt
4743 * auto-release the semaphore:
4745 saved_lock_depth
= task
->lock_depth
;
4746 task
->lock_depth
= -1;
4749 local_irq_disable();
4750 task
->lock_depth
= saved_lock_depth
;
4751 sub_preempt_count(PREEMPT_ACTIVE
);
4754 * Check again in case we missed a preemption opportunity
4755 * between schedule and now.
4758 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4761 #endif /* CONFIG_PREEMPT */
4763 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4766 return try_to_wake_up(curr
->private, mode
, sync
);
4768 EXPORT_SYMBOL(default_wake_function
);
4771 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4772 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4773 * number) then we wake all the non-exclusive tasks and one exclusive task.
4775 * There are circumstances in which we can try to wake a task which has already
4776 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4777 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4779 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4780 int nr_exclusive
, int sync
, void *key
)
4782 wait_queue_t
*curr
, *next
;
4784 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4785 unsigned flags
= curr
->flags
;
4787 if (curr
->func(curr
, mode
, sync
, key
) &&
4788 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4794 * __wake_up - wake up threads blocked on a waitqueue.
4796 * @mode: which threads
4797 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4798 * @key: is directly passed to the wakeup function
4800 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4801 int nr_exclusive
, void *key
)
4803 unsigned long flags
;
4805 spin_lock_irqsave(&q
->lock
, flags
);
4806 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4807 spin_unlock_irqrestore(&q
->lock
, flags
);
4809 EXPORT_SYMBOL(__wake_up
);
4812 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4814 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4816 __wake_up_common(q
, mode
, 1, 0, NULL
);
4820 * __wake_up_sync - wake up threads blocked on a waitqueue.
4822 * @mode: which threads
4823 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4825 * The sync wakeup differs that the waker knows that it will schedule
4826 * away soon, so while the target thread will be woken up, it will not
4827 * be migrated to another CPU - ie. the two threads are 'synchronized'
4828 * with each other. This can prevent needless bouncing between CPUs.
4830 * On UP it can prevent extra preemption.
4833 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4835 unsigned long flags
;
4841 if (unlikely(!nr_exclusive
))
4844 spin_lock_irqsave(&q
->lock
, flags
);
4845 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4846 spin_unlock_irqrestore(&q
->lock
, flags
);
4848 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4850 void complete(struct completion
*x
)
4852 unsigned long flags
;
4854 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4856 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4857 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4859 EXPORT_SYMBOL(complete
);
4861 void complete_all(struct completion
*x
)
4863 unsigned long flags
;
4865 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4866 x
->done
+= UINT_MAX
/2;
4867 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4868 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4870 EXPORT_SYMBOL(complete_all
);
4872 static inline long __sched
4873 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4876 DECLARE_WAITQUEUE(wait
, current
);
4878 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4879 __add_wait_queue_tail(&x
->wait
, &wait
);
4881 if ((state
== TASK_INTERRUPTIBLE
&&
4882 signal_pending(current
)) ||
4883 (state
== TASK_KILLABLE
&&
4884 fatal_signal_pending(current
))) {
4885 __remove_wait_queue(&x
->wait
, &wait
);
4886 return -ERESTARTSYS
;
4888 __set_current_state(state
);
4889 spin_unlock_irq(&x
->wait
.lock
);
4890 timeout
= schedule_timeout(timeout
);
4891 spin_lock_irq(&x
->wait
.lock
);
4893 __remove_wait_queue(&x
->wait
, &wait
);
4897 __remove_wait_queue(&x
->wait
, &wait
);
4904 wait_for_common(struct completion
*x
, long timeout
, int state
)
4908 spin_lock_irq(&x
->wait
.lock
);
4909 timeout
= do_wait_for_common(x
, timeout
, state
);
4910 spin_unlock_irq(&x
->wait
.lock
);
4914 void __sched
wait_for_completion(struct completion
*x
)
4916 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4918 EXPORT_SYMBOL(wait_for_completion
);
4920 unsigned long __sched
4921 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4923 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4925 EXPORT_SYMBOL(wait_for_completion_timeout
);
4927 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4929 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4930 if (t
== -ERESTARTSYS
)
4934 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4936 unsigned long __sched
4937 wait_for_completion_interruptible_timeout(struct completion
*x
,
4938 unsigned long timeout
)
4940 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4942 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4944 int __sched
wait_for_completion_killable(struct completion
*x
)
4946 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4947 if (t
== -ERESTARTSYS
)
4951 EXPORT_SYMBOL(wait_for_completion_killable
);
4954 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4956 unsigned long flags
;
4959 init_waitqueue_entry(&wait
, current
);
4961 __set_current_state(state
);
4963 spin_lock_irqsave(&q
->lock
, flags
);
4964 __add_wait_queue(q
, &wait
);
4965 spin_unlock(&q
->lock
);
4966 timeout
= schedule_timeout(timeout
);
4967 spin_lock_irq(&q
->lock
);
4968 __remove_wait_queue(q
, &wait
);
4969 spin_unlock_irqrestore(&q
->lock
, flags
);
4974 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4976 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4978 EXPORT_SYMBOL(interruptible_sleep_on
);
4981 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4983 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4985 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4987 void __sched
sleep_on(wait_queue_head_t
*q
)
4989 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4991 EXPORT_SYMBOL(sleep_on
);
4993 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4995 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4997 EXPORT_SYMBOL(sleep_on_timeout
);
4999 #ifdef CONFIG_RT_MUTEXES
5002 * rt_mutex_setprio - set the current priority of a task
5004 * @prio: prio value (kernel-internal form)
5006 * This function changes the 'effective' priority of a task. It does
5007 * not touch ->normal_prio like __setscheduler().
5009 * Used by the rt_mutex code to implement priority inheritance logic.
5011 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
5013 unsigned long flags
;
5014 int oldprio
, on_rq
, running
;
5016 const struct sched_class
*prev_class
= p
->sched_class
;
5018 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
5020 rq
= task_rq_lock(p
, &flags
);
5021 update_rq_clock(rq
);
5024 on_rq
= p
->se
.on_rq
;
5025 running
= task_current(rq
, p
);
5027 dequeue_task(rq
, p
, 0);
5029 p
->sched_class
->put_prev_task(rq
, p
);
5032 p
->sched_class
= &rt_sched_class
;
5034 p
->sched_class
= &fair_sched_class
;
5039 p
->sched_class
->set_curr_task(rq
);
5041 enqueue_task(rq
, p
, 0);
5043 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5045 task_rq_unlock(rq
, &flags
);
5050 void set_user_nice(struct task_struct
*p
, long nice
)
5052 int old_prio
, delta
, on_rq
;
5053 unsigned long flags
;
5056 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
5059 * We have to be careful, if called from sys_setpriority(),
5060 * the task might be in the middle of scheduling on another CPU.
5062 rq
= task_rq_lock(p
, &flags
);
5063 update_rq_clock(rq
);
5065 * The RT priorities are set via sched_setscheduler(), but we still
5066 * allow the 'normal' nice value to be set - but as expected
5067 * it wont have any effect on scheduling until the task is
5068 * SCHED_FIFO/SCHED_RR:
5070 if (task_has_rt_policy(p
)) {
5071 p
->static_prio
= NICE_TO_PRIO(nice
);
5074 on_rq
= p
->se
.on_rq
;
5076 dequeue_task(rq
, p
, 0);
5078 p
->static_prio
= NICE_TO_PRIO(nice
);
5081 p
->prio
= effective_prio(p
);
5082 delta
= p
->prio
- old_prio
;
5085 enqueue_task(rq
, p
, 0);
5087 * If the task increased its priority or is running and
5088 * lowered its priority, then reschedule its CPU:
5090 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
5091 resched_task(rq
->curr
);
5094 task_rq_unlock(rq
, &flags
);
5096 EXPORT_SYMBOL(set_user_nice
);
5099 * can_nice - check if a task can reduce its nice value
5103 int can_nice(const struct task_struct
*p
, const int nice
)
5105 /* convert nice value [19,-20] to rlimit style value [1,40] */
5106 int nice_rlim
= 20 - nice
;
5108 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
5109 capable(CAP_SYS_NICE
));
5112 #ifdef __ARCH_WANT_SYS_NICE
5115 * sys_nice - change the priority of the current process.
5116 * @increment: priority increment
5118 * sys_setpriority is a more generic, but much slower function that
5119 * does similar things.
5121 asmlinkage
long sys_nice(int increment
)
5126 * Setpriority might change our priority at the same moment.
5127 * We don't have to worry. Conceptually one call occurs first
5128 * and we have a single winner.
5130 if (increment
< -40)
5135 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
5141 if (increment
< 0 && !can_nice(current
, nice
))
5144 retval
= security_task_setnice(current
, nice
);
5148 set_user_nice(current
, nice
);
5155 * task_prio - return the priority value of a given task.
5156 * @p: the task in question.
5158 * This is the priority value as seen by users in /proc.
5159 * RT tasks are offset by -200. Normal tasks are centered
5160 * around 0, value goes from -16 to +15.
5162 int task_prio(const struct task_struct
*p
)
5164 return p
->prio
- MAX_RT_PRIO
;
5168 * task_nice - return the nice value of a given task.
5169 * @p: the task in question.
5171 int task_nice(const struct task_struct
*p
)
5173 return TASK_NICE(p
);
5175 EXPORT_SYMBOL(task_nice
);
5178 * idle_cpu - is a given cpu idle currently?
5179 * @cpu: the processor in question.
5181 int idle_cpu(int cpu
)
5183 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
5187 * idle_task - return the idle task for a given cpu.
5188 * @cpu: the processor in question.
5190 struct task_struct
*idle_task(int cpu
)
5192 return cpu_rq(cpu
)->idle
;
5196 * find_process_by_pid - find a process with a matching PID value.
5197 * @pid: the pid in question.
5199 static struct task_struct
*find_process_by_pid(pid_t pid
)
5201 return pid
? find_task_by_vpid(pid
) : current
;
5204 /* Actually do priority change: must hold rq lock. */
5206 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5208 BUG_ON(p
->se
.on_rq
);
5211 switch (p
->policy
) {
5215 p
->sched_class
= &fair_sched_class
;
5219 p
->sched_class
= &rt_sched_class
;
5223 p
->rt_priority
= prio
;
5224 p
->normal_prio
= normal_prio(p
);
5225 /* we are holding p->pi_lock already */
5226 p
->prio
= rt_mutex_getprio(p
);
5231 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5232 * @p: the task in question.
5233 * @policy: new policy.
5234 * @param: structure containing the new RT priority.
5236 * NOTE that the task may be already dead.
5238 int sched_setscheduler(struct task_struct
*p
, int policy
,
5239 struct sched_param
*param
)
5241 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5242 unsigned long flags
;
5243 const struct sched_class
*prev_class
= p
->sched_class
;
5246 /* may grab non-irq protected spin_locks */
5247 BUG_ON(in_interrupt());
5249 /* double check policy once rq lock held */
5251 policy
= oldpolicy
= p
->policy
;
5252 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5253 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5254 policy
!= SCHED_IDLE
)
5257 * Valid priorities for SCHED_FIFO and SCHED_RR are
5258 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5259 * SCHED_BATCH and SCHED_IDLE is 0.
5261 if (param
->sched_priority
< 0 ||
5262 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5263 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5265 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5269 * Allow unprivileged RT tasks to decrease priority:
5271 if (!capable(CAP_SYS_NICE
)) {
5272 if (rt_policy(policy
)) {
5273 unsigned long rlim_rtprio
;
5275 if (!lock_task_sighand(p
, &flags
))
5277 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
5278 unlock_task_sighand(p
, &flags
);
5280 /* can't set/change the rt policy */
5281 if (policy
!= p
->policy
&& !rlim_rtprio
)
5284 /* can't increase priority */
5285 if (param
->sched_priority
> p
->rt_priority
&&
5286 param
->sched_priority
> rlim_rtprio
)
5290 * Like positive nice levels, dont allow tasks to
5291 * move out of SCHED_IDLE either:
5293 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
5296 /* can't change other user's priorities */
5297 if ((current
->euid
!= p
->euid
) &&
5298 (current
->euid
!= p
->uid
))
5302 #ifdef CONFIG_RT_GROUP_SCHED
5304 * Do not allow realtime tasks into groups that have no runtime
5307 if (rt_policy(policy
) && task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
5311 retval
= security_task_setscheduler(p
, policy
, param
);
5315 * make sure no PI-waiters arrive (or leave) while we are
5316 * changing the priority of the task:
5318 spin_lock_irqsave(&p
->pi_lock
, flags
);
5320 * To be able to change p->policy safely, the apropriate
5321 * runqueue lock must be held.
5323 rq
= __task_rq_lock(p
);
5324 /* recheck policy now with rq lock held */
5325 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5326 policy
= oldpolicy
= -1;
5327 __task_rq_unlock(rq
);
5328 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5331 update_rq_clock(rq
);
5332 on_rq
= p
->se
.on_rq
;
5333 running
= task_current(rq
, p
);
5335 deactivate_task(rq
, p
, 0);
5337 p
->sched_class
->put_prev_task(rq
, p
);
5340 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5343 p
->sched_class
->set_curr_task(rq
);
5345 activate_task(rq
, p
, 0);
5347 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5349 __task_rq_unlock(rq
);
5350 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5352 rt_mutex_adjust_pi(p
);
5356 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5359 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5361 struct sched_param lparam
;
5362 struct task_struct
*p
;
5365 if (!param
|| pid
< 0)
5367 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5372 p
= find_process_by_pid(pid
);
5374 retval
= sched_setscheduler(p
, policy
, &lparam
);
5381 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5382 * @pid: the pid in question.
5383 * @policy: new policy.
5384 * @param: structure containing the new RT priority.
5387 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5389 /* negative values for policy are not valid */
5393 return do_sched_setscheduler(pid
, policy
, param
);
5397 * sys_sched_setparam - set/change the RT priority of a thread
5398 * @pid: the pid in question.
5399 * @param: structure containing the new RT priority.
5401 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
5403 return do_sched_setscheduler(pid
, -1, param
);
5407 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5408 * @pid: the pid in question.
5410 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
5412 struct task_struct
*p
;
5419 read_lock(&tasklist_lock
);
5420 p
= find_process_by_pid(pid
);
5422 retval
= security_task_getscheduler(p
);
5426 read_unlock(&tasklist_lock
);
5431 * sys_sched_getscheduler - get the RT priority of a thread
5432 * @pid: the pid in question.
5433 * @param: structure containing the RT priority.
5435 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
5437 struct sched_param lp
;
5438 struct task_struct
*p
;
5441 if (!param
|| pid
< 0)
5444 read_lock(&tasklist_lock
);
5445 p
= find_process_by_pid(pid
);
5450 retval
= security_task_getscheduler(p
);
5454 lp
.sched_priority
= p
->rt_priority
;
5455 read_unlock(&tasklist_lock
);
5458 * This one might sleep, we cannot do it with a spinlock held ...
5460 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5465 read_unlock(&tasklist_lock
);
5469 long sched_setaffinity(pid_t pid
, const cpumask_t
*in_mask
)
5471 cpumask_t cpus_allowed
;
5472 cpumask_t new_mask
= *in_mask
;
5473 struct task_struct
*p
;
5477 read_lock(&tasklist_lock
);
5479 p
= find_process_by_pid(pid
);
5481 read_unlock(&tasklist_lock
);
5487 * It is not safe to call set_cpus_allowed with the
5488 * tasklist_lock held. We will bump the task_struct's
5489 * usage count and then drop tasklist_lock.
5492 read_unlock(&tasklist_lock
);
5495 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
5496 !capable(CAP_SYS_NICE
))
5499 retval
= security_task_setscheduler(p
, 0, NULL
);
5503 cpuset_cpus_allowed(p
, &cpus_allowed
);
5504 cpus_and(new_mask
, new_mask
, cpus_allowed
);
5506 retval
= set_cpus_allowed_ptr(p
, &new_mask
);
5509 cpuset_cpus_allowed(p
, &cpus_allowed
);
5510 if (!cpus_subset(new_mask
, cpus_allowed
)) {
5512 * We must have raced with a concurrent cpuset
5513 * update. Just reset the cpus_allowed to the
5514 * cpuset's cpus_allowed
5516 new_mask
= cpus_allowed
;
5526 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5527 cpumask_t
*new_mask
)
5529 if (len
< sizeof(cpumask_t
)) {
5530 memset(new_mask
, 0, sizeof(cpumask_t
));
5531 } else if (len
> sizeof(cpumask_t
)) {
5532 len
= sizeof(cpumask_t
);
5534 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5538 * sys_sched_setaffinity - set the cpu affinity of a process
5539 * @pid: pid of the process
5540 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5541 * @user_mask_ptr: user-space pointer to the new cpu mask
5543 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
5544 unsigned long __user
*user_mask_ptr
)
5549 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
5553 return sched_setaffinity(pid
, &new_mask
);
5557 * Represents all cpu's present in the system
5558 * In systems capable of hotplug, this map could dynamically grow
5559 * as new cpu's are detected in the system via any platform specific
5560 * method, such as ACPI for e.g.
5563 cpumask_t cpu_present_map __read_mostly
;
5564 EXPORT_SYMBOL(cpu_present_map
);
5567 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
5568 EXPORT_SYMBOL(cpu_online_map
);
5570 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
5571 EXPORT_SYMBOL(cpu_possible_map
);
5574 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
5576 struct task_struct
*p
;
5580 read_lock(&tasklist_lock
);
5583 p
= find_process_by_pid(pid
);
5587 retval
= security_task_getscheduler(p
);
5591 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
5594 read_unlock(&tasklist_lock
);
5601 * sys_sched_getaffinity - get the cpu affinity of a process
5602 * @pid: pid of the process
5603 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5604 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5606 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
5607 unsigned long __user
*user_mask_ptr
)
5612 if (len
< sizeof(cpumask_t
))
5615 ret
= sched_getaffinity(pid
, &mask
);
5619 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
5622 return sizeof(cpumask_t
);
5626 * sys_sched_yield - yield the current processor to other threads.
5628 * This function yields the current CPU to other tasks. If there are no
5629 * other threads running on this CPU then this function will return.
5631 asmlinkage
long sys_sched_yield(void)
5633 struct rq
*rq
= this_rq_lock();
5635 schedstat_inc(rq
, yld_count
);
5636 current
->sched_class
->yield_task(rq
);
5639 * Since we are going to call schedule() anyway, there's
5640 * no need to preempt or enable interrupts:
5642 __release(rq
->lock
);
5643 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5644 _raw_spin_unlock(&rq
->lock
);
5645 preempt_enable_no_resched();
5652 static void __cond_resched(void)
5654 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5655 __might_sleep(__FILE__
, __LINE__
);
5658 * The BKS might be reacquired before we have dropped
5659 * PREEMPT_ACTIVE, which could trigger a second
5660 * cond_resched() call.
5663 add_preempt_count(PREEMPT_ACTIVE
);
5665 sub_preempt_count(PREEMPT_ACTIVE
);
5666 } while (need_resched());
5669 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5670 int __sched
_cond_resched(void)
5672 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5673 system_state
== SYSTEM_RUNNING
) {
5679 EXPORT_SYMBOL(_cond_resched
);
5683 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5684 * call schedule, and on return reacquire the lock.
5686 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5687 * operations here to prevent schedule() from being called twice (once via
5688 * spin_unlock(), once by hand).
5690 int cond_resched_lock(spinlock_t
*lock
)
5692 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5695 if (spin_needbreak(lock
) || resched
) {
5697 if (resched
&& need_resched())
5706 EXPORT_SYMBOL(cond_resched_lock
);
5708 int __sched
cond_resched_softirq(void)
5710 BUG_ON(!in_softirq());
5712 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5720 EXPORT_SYMBOL(cond_resched_softirq
);
5723 * yield - yield the current processor to other threads.
5725 * This is a shortcut for kernel-space yielding - it marks the
5726 * thread runnable and calls sys_sched_yield().
5728 void __sched
yield(void)
5730 set_current_state(TASK_RUNNING
);
5733 EXPORT_SYMBOL(yield
);
5736 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5737 * that process accounting knows that this is a task in IO wait state.
5739 * But don't do that if it is a deliberate, throttling IO wait (this task
5740 * has set its backing_dev_info: the queue against which it should throttle)
5742 void __sched
io_schedule(void)
5744 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5746 delayacct_blkio_start();
5747 atomic_inc(&rq
->nr_iowait
);
5749 atomic_dec(&rq
->nr_iowait
);
5750 delayacct_blkio_end();
5752 EXPORT_SYMBOL(io_schedule
);
5754 long __sched
io_schedule_timeout(long timeout
)
5756 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5759 delayacct_blkio_start();
5760 atomic_inc(&rq
->nr_iowait
);
5761 ret
= schedule_timeout(timeout
);
5762 atomic_dec(&rq
->nr_iowait
);
5763 delayacct_blkio_end();
5768 * sys_sched_get_priority_max - return maximum RT priority.
5769 * @policy: scheduling class.
5771 * this syscall returns the maximum rt_priority that can be used
5772 * by a given scheduling class.
5774 asmlinkage
long sys_sched_get_priority_max(int policy
)
5781 ret
= MAX_USER_RT_PRIO
-1;
5793 * sys_sched_get_priority_min - return minimum RT priority.
5794 * @policy: scheduling class.
5796 * this syscall returns the minimum rt_priority that can be used
5797 * by a given scheduling class.
5799 asmlinkage
long sys_sched_get_priority_min(int policy
)
5817 * sys_sched_rr_get_interval - return the default timeslice of a process.
5818 * @pid: pid of the process.
5819 * @interval: userspace pointer to the timeslice value.
5821 * this syscall writes the default timeslice value of a given process
5822 * into the user-space timespec buffer. A value of '0' means infinity.
5825 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5827 struct task_struct
*p
;
5828 unsigned int time_slice
;
5836 read_lock(&tasklist_lock
);
5837 p
= find_process_by_pid(pid
);
5841 retval
= security_task_getscheduler(p
);
5846 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5847 * tasks that are on an otherwise idle runqueue:
5850 if (p
->policy
== SCHED_RR
) {
5851 time_slice
= DEF_TIMESLICE
;
5852 } else if (p
->policy
!= SCHED_FIFO
) {
5853 struct sched_entity
*se
= &p
->se
;
5854 unsigned long flags
;
5857 rq
= task_rq_lock(p
, &flags
);
5858 if (rq
->cfs
.load
.weight
)
5859 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5860 task_rq_unlock(rq
, &flags
);
5862 read_unlock(&tasklist_lock
);
5863 jiffies_to_timespec(time_slice
, &t
);
5864 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5868 read_unlock(&tasklist_lock
);
5872 static const char stat_nam
[] = "RSDTtZX";
5874 void sched_show_task(struct task_struct
*p
)
5876 unsigned long free
= 0;
5879 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5880 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5881 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5882 #if BITS_PER_LONG == 32
5883 if (state
== TASK_RUNNING
)
5884 printk(KERN_CONT
" running ");
5886 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5888 if (state
== TASK_RUNNING
)
5889 printk(KERN_CONT
" running task ");
5891 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5893 #ifdef CONFIG_DEBUG_STACK_USAGE
5895 unsigned long *n
= end_of_stack(p
);
5898 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5901 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5902 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5904 show_stack(p
, NULL
);
5907 void show_state_filter(unsigned long state_filter
)
5909 struct task_struct
*g
, *p
;
5911 #if BITS_PER_LONG == 32
5913 " task PC stack pid father\n");
5916 " task PC stack pid father\n");
5918 read_lock(&tasklist_lock
);
5919 do_each_thread(g
, p
) {
5921 * reset the NMI-timeout, listing all files on a slow
5922 * console might take alot of time:
5924 touch_nmi_watchdog();
5925 if (!state_filter
|| (p
->state
& state_filter
))
5927 } while_each_thread(g
, p
);
5929 touch_all_softlockup_watchdogs();
5931 #ifdef CONFIG_SCHED_DEBUG
5932 sysrq_sched_debug_show();
5934 read_unlock(&tasklist_lock
);
5936 * Only show locks if all tasks are dumped:
5938 if (state_filter
== -1)
5939 debug_show_all_locks();
5942 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5944 idle
->sched_class
= &idle_sched_class
;
5948 * init_idle - set up an idle thread for a given CPU
5949 * @idle: task in question
5950 * @cpu: cpu the idle task belongs to
5952 * NOTE: this function does not set the idle thread's NEED_RESCHED
5953 * flag, to make booting more robust.
5955 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5957 struct rq
*rq
= cpu_rq(cpu
);
5958 unsigned long flags
;
5961 idle
->se
.exec_start
= sched_clock();
5963 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5964 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5965 __set_task_cpu(idle
, cpu
);
5967 spin_lock_irqsave(&rq
->lock
, flags
);
5968 rq
->curr
= rq
->idle
= idle
;
5969 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5972 spin_unlock_irqrestore(&rq
->lock
, flags
);
5974 /* Set the preempt count _outside_ the spinlocks! */
5975 task_thread_info(idle
)->preempt_count
= 0;
5978 * The idle tasks have their own, simple scheduling class:
5980 idle
->sched_class
= &idle_sched_class
;
5984 * In a system that switches off the HZ timer nohz_cpu_mask
5985 * indicates which cpus entered this state. This is used
5986 * in the rcu update to wait only for active cpus. For system
5987 * which do not switch off the HZ timer nohz_cpu_mask should
5988 * always be CPU_MASK_NONE.
5990 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5993 * Increase the granularity value when there are more CPUs,
5994 * because with more CPUs the 'effective latency' as visible
5995 * to users decreases. But the relationship is not linear,
5996 * so pick a second-best guess by going with the log2 of the
5999 * This idea comes from the SD scheduler of Con Kolivas:
6001 static inline void sched_init_granularity(void)
6003 unsigned int factor
= 1 + ilog2(num_online_cpus());
6004 const unsigned long limit
= 200000000;
6006 sysctl_sched_min_granularity
*= factor
;
6007 if (sysctl_sched_min_granularity
> limit
)
6008 sysctl_sched_min_granularity
= limit
;
6010 sysctl_sched_latency
*= factor
;
6011 if (sysctl_sched_latency
> limit
)
6012 sysctl_sched_latency
= limit
;
6014 sysctl_sched_wakeup_granularity
*= factor
;
6019 * This is how migration works:
6021 * 1) we queue a struct migration_req structure in the source CPU's
6022 * runqueue and wake up that CPU's migration thread.
6023 * 2) we down() the locked semaphore => thread blocks.
6024 * 3) migration thread wakes up (implicitly it forces the migrated
6025 * thread off the CPU)
6026 * 4) it gets the migration request and checks whether the migrated
6027 * task is still in the wrong runqueue.
6028 * 5) if it's in the wrong runqueue then the migration thread removes
6029 * it and puts it into the right queue.
6030 * 6) migration thread up()s the semaphore.
6031 * 7) we wake up and the migration is done.
6035 * Change a given task's CPU affinity. Migrate the thread to a
6036 * proper CPU and schedule it away if the CPU it's executing on
6037 * is removed from the allowed bitmask.
6039 * NOTE: the caller must have a valid reference to the task, the
6040 * task must not exit() & deallocate itself prematurely. The
6041 * call is not atomic; no spinlocks may be held.
6043 int set_cpus_allowed_ptr(struct task_struct
*p
, const cpumask_t
*new_mask
)
6045 struct migration_req req
;
6046 unsigned long flags
;
6050 rq
= task_rq_lock(p
, &flags
);
6051 if (!cpus_intersects(*new_mask
, cpu_online_map
)) {
6056 if (p
->sched_class
->set_cpus_allowed
)
6057 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
6059 p
->cpus_allowed
= *new_mask
;
6060 p
->rt
.nr_cpus_allowed
= cpus_weight(*new_mask
);
6063 /* Can the task run on the task's current CPU? If so, we're done */
6064 if (cpu_isset(task_cpu(p
), *new_mask
))
6067 if (migrate_task(p
, any_online_cpu(*new_mask
), &req
)) {
6068 /* Need help from migration thread: drop lock and wait. */
6069 task_rq_unlock(rq
, &flags
);
6070 wake_up_process(rq
->migration_thread
);
6071 wait_for_completion(&req
.done
);
6072 tlb_migrate_finish(p
->mm
);
6076 task_rq_unlock(rq
, &flags
);
6080 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6083 * Move (not current) task off this cpu, onto dest cpu. We're doing
6084 * this because either it can't run here any more (set_cpus_allowed()
6085 * away from this CPU, or CPU going down), or because we're
6086 * attempting to rebalance this task on exec (sched_exec).
6088 * So we race with normal scheduler movements, but that's OK, as long
6089 * as the task is no longer on this CPU.
6091 * Returns non-zero if task was successfully migrated.
6093 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6095 struct rq
*rq_dest
, *rq_src
;
6098 if (unlikely(cpu_is_offline(dest_cpu
)))
6101 rq_src
= cpu_rq(src_cpu
);
6102 rq_dest
= cpu_rq(dest_cpu
);
6104 double_rq_lock(rq_src
, rq_dest
);
6105 /* Already moved. */
6106 if (task_cpu(p
) != src_cpu
)
6108 /* Affinity changed (again). */
6109 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
6112 on_rq
= p
->se
.on_rq
;
6114 deactivate_task(rq_src
, p
, 0);
6116 set_task_cpu(p
, dest_cpu
);
6118 activate_task(rq_dest
, p
, 0);
6119 check_preempt_curr(rq_dest
, p
);
6123 double_rq_unlock(rq_src
, rq_dest
);
6128 * migration_thread - this is a highprio system thread that performs
6129 * thread migration by bumping thread off CPU then 'pushing' onto
6132 static int migration_thread(void *data
)
6134 int cpu
= (long)data
;
6138 BUG_ON(rq
->migration_thread
!= current
);
6140 set_current_state(TASK_INTERRUPTIBLE
);
6141 while (!kthread_should_stop()) {
6142 struct migration_req
*req
;
6143 struct list_head
*head
;
6145 spin_lock_irq(&rq
->lock
);
6147 if (cpu_is_offline(cpu
)) {
6148 spin_unlock_irq(&rq
->lock
);
6152 if (rq
->active_balance
) {
6153 active_load_balance(rq
, cpu
);
6154 rq
->active_balance
= 0;
6157 head
= &rq
->migration_queue
;
6159 if (list_empty(head
)) {
6160 spin_unlock_irq(&rq
->lock
);
6162 set_current_state(TASK_INTERRUPTIBLE
);
6165 req
= list_entry(head
->next
, struct migration_req
, list
);
6166 list_del_init(head
->next
);
6168 spin_unlock(&rq
->lock
);
6169 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
6172 complete(&req
->done
);
6174 __set_current_state(TASK_RUNNING
);
6178 /* Wait for kthread_stop */
6179 set_current_state(TASK_INTERRUPTIBLE
);
6180 while (!kthread_should_stop()) {
6182 set_current_state(TASK_INTERRUPTIBLE
);
6184 __set_current_state(TASK_RUNNING
);
6188 #ifdef CONFIG_HOTPLUG_CPU
6190 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6194 local_irq_disable();
6195 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
6201 * Figure out where task on dead CPU should go, use force if necessary.
6202 * NOTE: interrupts should be disabled by the caller
6204 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
6206 unsigned long flags
;
6213 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
6214 cpus_and(mask
, mask
, p
->cpus_allowed
);
6215 dest_cpu
= any_online_cpu(mask
);
6217 /* On any allowed CPU? */
6218 if (dest_cpu
>= nr_cpu_ids
)
6219 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
6221 /* No more Mr. Nice Guy. */
6222 if (dest_cpu
>= nr_cpu_ids
) {
6223 cpumask_t cpus_allowed
;
6225 cpuset_cpus_allowed_locked(p
, &cpus_allowed
);
6227 * Try to stay on the same cpuset, where the
6228 * current cpuset may be a subset of all cpus.
6229 * The cpuset_cpus_allowed_locked() variant of
6230 * cpuset_cpus_allowed() will not block. It must be
6231 * called within calls to cpuset_lock/cpuset_unlock.
6233 rq
= task_rq_lock(p
, &flags
);
6234 p
->cpus_allowed
= cpus_allowed
;
6235 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
6236 task_rq_unlock(rq
, &flags
);
6239 * Don't tell them about moving exiting tasks or
6240 * kernel threads (both mm NULL), since they never
6243 if (p
->mm
&& printk_ratelimit()) {
6244 printk(KERN_INFO
"process %d (%s) no "
6245 "longer affine to cpu%d\n",
6246 task_pid_nr(p
), p
->comm
, dead_cpu
);
6249 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
6253 * While a dead CPU has no uninterruptible tasks queued at this point,
6254 * it might still have a nonzero ->nr_uninterruptible counter, because
6255 * for performance reasons the counter is not stricly tracking tasks to
6256 * their home CPUs. So we just add the counter to another CPU's counter,
6257 * to keep the global sum constant after CPU-down:
6259 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6261 struct rq
*rq_dest
= cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR
));
6262 unsigned long flags
;
6264 local_irq_save(flags
);
6265 double_rq_lock(rq_src
, rq_dest
);
6266 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6267 rq_src
->nr_uninterruptible
= 0;
6268 double_rq_unlock(rq_src
, rq_dest
);
6269 local_irq_restore(flags
);
6272 /* Run through task list and migrate tasks from the dead cpu. */
6273 static void migrate_live_tasks(int src_cpu
)
6275 struct task_struct
*p
, *t
;
6277 read_lock(&tasklist_lock
);
6279 do_each_thread(t
, p
) {
6283 if (task_cpu(p
) == src_cpu
)
6284 move_task_off_dead_cpu(src_cpu
, p
);
6285 } while_each_thread(t
, p
);
6287 read_unlock(&tasklist_lock
);
6291 * Schedules idle task to be the next runnable task on current CPU.
6292 * It does so by boosting its priority to highest possible.
6293 * Used by CPU offline code.
6295 void sched_idle_next(void)
6297 int this_cpu
= smp_processor_id();
6298 struct rq
*rq
= cpu_rq(this_cpu
);
6299 struct task_struct
*p
= rq
->idle
;
6300 unsigned long flags
;
6302 /* cpu has to be offline */
6303 BUG_ON(cpu_online(this_cpu
));
6306 * Strictly not necessary since rest of the CPUs are stopped by now
6307 * and interrupts disabled on the current cpu.
6309 spin_lock_irqsave(&rq
->lock
, flags
);
6311 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6313 update_rq_clock(rq
);
6314 activate_task(rq
, p
, 0);
6316 spin_unlock_irqrestore(&rq
->lock
, flags
);
6320 * Ensures that the idle task is using init_mm right before its cpu goes
6323 void idle_task_exit(void)
6325 struct mm_struct
*mm
= current
->active_mm
;
6327 BUG_ON(cpu_online(smp_processor_id()));
6330 switch_mm(mm
, &init_mm
, current
);
6334 /* called under rq->lock with disabled interrupts */
6335 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
6337 struct rq
*rq
= cpu_rq(dead_cpu
);
6339 /* Must be exiting, otherwise would be on tasklist. */
6340 BUG_ON(!p
->exit_state
);
6342 /* Cannot have done final schedule yet: would have vanished. */
6343 BUG_ON(p
->state
== TASK_DEAD
);
6348 * Drop lock around migration; if someone else moves it,
6349 * that's OK. No task can be added to this CPU, so iteration is
6352 spin_unlock_irq(&rq
->lock
);
6353 move_task_off_dead_cpu(dead_cpu
, p
);
6354 spin_lock_irq(&rq
->lock
);
6359 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6360 static void migrate_dead_tasks(unsigned int dead_cpu
)
6362 struct rq
*rq
= cpu_rq(dead_cpu
);
6363 struct task_struct
*next
;
6366 if (!rq
->nr_running
)
6368 update_rq_clock(rq
);
6369 next
= pick_next_task(rq
, rq
->curr
);
6372 migrate_dead(dead_cpu
, next
);
6376 #endif /* CONFIG_HOTPLUG_CPU */
6378 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6380 static struct ctl_table sd_ctl_dir
[] = {
6382 .procname
= "sched_domain",
6388 static struct ctl_table sd_ctl_root
[] = {
6390 .ctl_name
= CTL_KERN
,
6391 .procname
= "kernel",
6393 .child
= sd_ctl_dir
,
6398 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6400 struct ctl_table
*entry
=
6401 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6406 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6408 struct ctl_table
*entry
;
6411 * In the intermediate directories, both the child directory and
6412 * procname are dynamically allocated and could fail but the mode
6413 * will always be set. In the lowest directory the names are
6414 * static strings and all have proc handlers.
6416 for (entry
= *tablep
; entry
->mode
; entry
++) {
6418 sd_free_ctl_entry(&entry
->child
);
6419 if (entry
->proc_handler
== NULL
)
6420 kfree(entry
->procname
);
6428 set_table_entry(struct ctl_table
*entry
,
6429 const char *procname
, void *data
, int maxlen
,
6430 mode_t mode
, proc_handler
*proc_handler
)
6432 entry
->procname
= procname
;
6434 entry
->maxlen
= maxlen
;
6436 entry
->proc_handler
= proc_handler
;
6439 static struct ctl_table
*
6440 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6442 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
6447 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6448 sizeof(long), 0644, proc_doulongvec_minmax
);
6449 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6450 sizeof(long), 0644, proc_doulongvec_minmax
);
6451 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6452 sizeof(int), 0644, proc_dointvec_minmax
);
6453 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6454 sizeof(int), 0644, proc_dointvec_minmax
);
6455 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6456 sizeof(int), 0644, proc_dointvec_minmax
);
6457 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6458 sizeof(int), 0644, proc_dointvec_minmax
);
6459 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6460 sizeof(int), 0644, proc_dointvec_minmax
);
6461 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6462 sizeof(int), 0644, proc_dointvec_minmax
);
6463 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6464 sizeof(int), 0644, proc_dointvec_minmax
);
6465 set_table_entry(&table
[9], "cache_nice_tries",
6466 &sd
->cache_nice_tries
,
6467 sizeof(int), 0644, proc_dointvec_minmax
);
6468 set_table_entry(&table
[10], "flags", &sd
->flags
,
6469 sizeof(int), 0644, proc_dointvec_minmax
);
6470 /* &table[11] is terminator */
6475 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6477 struct ctl_table
*entry
, *table
;
6478 struct sched_domain
*sd
;
6479 int domain_num
= 0, i
;
6482 for_each_domain(cpu
, sd
)
6484 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6489 for_each_domain(cpu
, sd
) {
6490 snprintf(buf
, 32, "domain%d", i
);
6491 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6493 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6500 static struct ctl_table_header
*sd_sysctl_header
;
6501 static void register_sched_domain_sysctl(void)
6503 int i
, cpu_num
= num_online_cpus();
6504 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6507 WARN_ON(sd_ctl_dir
[0].child
);
6508 sd_ctl_dir
[0].child
= entry
;
6513 for_each_online_cpu(i
) {
6514 snprintf(buf
, 32, "cpu%d", i
);
6515 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6517 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6521 WARN_ON(sd_sysctl_header
);
6522 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6525 /* may be called multiple times per register */
6526 static void unregister_sched_domain_sysctl(void)
6528 if (sd_sysctl_header
)
6529 unregister_sysctl_table(sd_sysctl_header
);
6530 sd_sysctl_header
= NULL
;
6531 if (sd_ctl_dir
[0].child
)
6532 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6535 static void register_sched_domain_sysctl(void)
6538 static void unregister_sched_domain_sysctl(void)
6544 * migration_call - callback that gets triggered when a CPU is added.
6545 * Here we can start up the necessary migration thread for the new CPU.
6547 static int __cpuinit
6548 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6550 struct task_struct
*p
;
6551 int cpu
= (long)hcpu
;
6552 unsigned long flags
;
6557 case CPU_UP_PREPARE
:
6558 case CPU_UP_PREPARE_FROZEN
:
6559 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6562 kthread_bind(p
, cpu
);
6563 /* Must be high prio: stop_machine expects to yield to it. */
6564 rq
= task_rq_lock(p
, &flags
);
6565 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6566 task_rq_unlock(rq
, &flags
);
6567 cpu_rq(cpu
)->migration_thread
= p
;
6571 case CPU_ONLINE_FROZEN
:
6572 /* Strictly unnecessary, as first user will wake it. */
6573 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6575 /* Update our root-domain */
6577 spin_lock_irqsave(&rq
->lock
, flags
);
6579 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6580 cpu_set(cpu
, rq
->rd
->online
);
6582 spin_unlock_irqrestore(&rq
->lock
, flags
);
6585 #ifdef CONFIG_HOTPLUG_CPU
6586 case CPU_UP_CANCELED
:
6587 case CPU_UP_CANCELED_FROZEN
:
6588 if (!cpu_rq(cpu
)->migration_thread
)
6590 /* Unbind it from offline cpu so it can run. Fall thru. */
6591 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6592 any_online_cpu(cpu_online_map
));
6593 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6594 cpu_rq(cpu
)->migration_thread
= NULL
;
6598 case CPU_DEAD_FROZEN
:
6599 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6600 migrate_live_tasks(cpu
);
6602 kthread_stop(rq
->migration_thread
);
6603 rq
->migration_thread
= NULL
;
6604 /* Idle task back to normal (off runqueue, low prio) */
6605 spin_lock_irq(&rq
->lock
);
6606 update_rq_clock(rq
);
6607 deactivate_task(rq
, rq
->idle
, 0);
6608 rq
->idle
->static_prio
= MAX_PRIO
;
6609 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6610 rq
->idle
->sched_class
= &idle_sched_class
;
6611 migrate_dead_tasks(cpu
);
6612 spin_unlock_irq(&rq
->lock
);
6614 migrate_nr_uninterruptible(rq
);
6615 BUG_ON(rq
->nr_running
!= 0);
6618 * No need to migrate the tasks: it was best-effort if
6619 * they didn't take sched_hotcpu_mutex. Just wake up
6622 spin_lock_irq(&rq
->lock
);
6623 while (!list_empty(&rq
->migration_queue
)) {
6624 struct migration_req
*req
;
6626 req
= list_entry(rq
->migration_queue
.next
,
6627 struct migration_req
, list
);
6628 list_del_init(&req
->list
);
6629 complete(&req
->done
);
6631 spin_unlock_irq(&rq
->lock
);
6635 case CPU_DYING_FROZEN
:
6636 /* Update our root-domain */
6638 spin_lock_irqsave(&rq
->lock
, flags
);
6640 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6641 cpu_clear(cpu
, rq
->rd
->online
);
6643 spin_unlock_irqrestore(&rq
->lock
, flags
);
6650 /* Register at highest priority so that task migration (migrate_all_tasks)
6651 * happens before everything else.
6653 static struct notifier_block __cpuinitdata migration_notifier
= {
6654 .notifier_call
= migration_call
,
6658 void __init
migration_init(void)
6660 void *cpu
= (void *)(long)smp_processor_id();
6663 /* Start one for the boot CPU: */
6664 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6665 BUG_ON(err
== NOTIFY_BAD
);
6666 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6667 register_cpu_notifier(&migration_notifier
);
6673 #ifdef CONFIG_SCHED_DEBUG
6675 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6676 cpumask_t
*groupmask
)
6678 struct sched_group
*group
= sd
->groups
;
6681 cpulist_scnprintf(str
, sizeof(str
), sd
->span
);
6682 cpus_clear(*groupmask
);
6684 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6686 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6687 printk("does not load-balance\n");
6689 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6694 printk(KERN_CONT
"span %s\n", str
);
6696 if (!cpu_isset(cpu
, sd
->span
)) {
6697 printk(KERN_ERR
"ERROR: domain->span does not contain "
6700 if (!cpu_isset(cpu
, group
->cpumask
)) {
6701 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6705 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6709 printk(KERN_ERR
"ERROR: group is NULL\n");
6713 if (!group
->__cpu_power
) {
6714 printk(KERN_CONT
"\n");
6715 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6720 if (!cpus_weight(group
->cpumask
)) {
6721 printk(KERN_CONT
"\n");
6722 printk(KERN_ERR
"ERROR: empty group\n");
6726 if (cpus_intersects(*groupmask
, group
->cpumask
)) {
6727 printk(KERN_CONT
"\n");
6728 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6732 cpus_or(*groupmask
, *groupmask
, group
->cpumask
);
6734 cpulist_scnprintf(str
, sizeof(str
), group
->cpumask
);
6735 printk(KERN_CONT
" %s", str
);
6737 group
= group
->next
;
6738 } while (group
!= sd
->groups
);
6739 printk(KERN_CONT
"\n");
6741 if (!cpus_equal(sd
->span
, *groupmask
))
6742 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6744 if (sd
->parent
&& !cpus_subset(*groupmask
, sd
->parent
->span
))
6745 printk(KERN_ERR
"ERROR: parent span is not a superset "
6746 "of domain->span\n");
6750 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6752 cpumask_t
*groupmask
;
6756 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6760 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6762 groupmask
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6764 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6769 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6779 # define sched_domain_debug(sd, cpu) do { } while (0)
6782 static int sd_degenerate(struct sched_domain
*sd
)
6784 if (cpus_weight(sd
->span
) == 1)
6787 /* Following flags need at least 2 groups */
6788 if (sd
->flags
& (SD_LOAD_BALANCE
|
6789 SD_BALANCE_NEWIDLE
|
6793 SD_SHARE_PKG_RESOURCES
)) {
6794 if (sd
->groups
!= sd
->groups
->next
)
6798 /* Following flags don't use groups */
6799 if (sd
->flags
& (SD_WAKE_IDLE
|
6808 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6810 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6812 if (sd_degenerate(parent
))
6815 if (!cpus_equal(sd
->span
, parent
->span
))
6818 /* Does parent contain flags not in child? */
6819 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6820 if (cflags
& SD_WAKE_AFFINE
)
6821 pflags
&= ~SD_WAKE_BALANCE
;
6822 /* Flags needing groups don't count if only 1 group in parent */
6823 if (parent
->groups
== parent
->groups
->next
) {
6824 pflags
&= ~(SD_LOAD_BALANCE
|
6825 SD_BALANCE_NEWIDLE
|
6829 SD_SHARE_PKG_RESOURCES
);
6831 if (~cflags
& pflags
)
6837 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6839 unsigned long flags
;
6840 const struct sched_class
*class;
6842 spin_lock_irqsave(&rq
->lock
, flags
);
6845 struct root_domain
*old_rd
= rq
->rd
;
6847 for (class = sched_class_highest
; class; class = class->next
) {
6848 if (class->leave_domain
)
6849 class->leave_domain(rq
);
6852 cpu_clear(rq
->cpu
, old_rd
->span
);
6853 cpu_clear(rq
->cpu
, old_rd
->online
);
6855 if (atomic_dec_and_test(&old_rd
->refcount
))
6859 atomic_inc(&rd
->refcount
);
6862 cpu_set(rq
->cpu
, rd
->span
);
6863 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6864 cpu_set(rq
->cpu
, rd
->online
);
6866 for (class = sched_class_highest
; class; class = class->next
) {
6867 if (class->join_domain
)
6868 class->join_domain(rq
);
6871 spin_unlock_irqrestore(&rq
->lock
, flags
);
6874 static void init_rootdomain(struct root_domain
*rd
)
6876 memset(rd
, 0, sizeof(*rd
));
6878 cpus_clear(rd
->span
);
6879 cpus_clear(rd
->online
);
6882 static void init_defrootdomain(void)
6884 init_rootdomain(&def_root_domain
);
6885 atomic_set(&def_root_domain
.refcount
, 1);
6888 static struct root_domain
*alloc_rootdomain(void)
6890 struct root_domain
*rd
;
6892 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6896 init_rootdomain(rd
);
6902 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6903 * hold the hotplug lock.
6906 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6908 struct rq
*rq
= cpu_rq(cpu
);
6909 struct sched_domain
*tmp
;
6911 /* Remove the sched domains which do not contribute to scheduling. */
6912 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
6913 struct sched_domain
*parent
= tmp
->parent
;
6916 if (sd_parent_degenerate(tmp
, parent
)) {
6917 tmp
->parent
= parent
->parent
;
6919 parent
->parent
->child
= tmp
;
6923 if (sd
&& sd_degenerate(sd
)) {
6929 sched_domain_debug(sd
, cpu
);
6931 rq_attach_root(rq
, rd
);
6932 rcu_assign_pointer(rq
->sd
, sd
);
6935 /* cpus with isolated domains */
6936 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6938 /* Setup the mask of cpus configured for isolated domains */
6939 static int __init
isolated_cpu_setup(char *str
)
6941 int ints
[NR_CPUS
], i
;
6943 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6944 cpus_clear(cpu_isolated_map
);
6945 for (i
= 1; i
<= ints
[0]; i
++)
6946 if (ints
[i
] < NR_CPUS
)
6947 cpu_set(ints
[i
], cpu_isolated_map
);
6951 __setup("isolcpus=", isolated_cpu_setup
);
6954 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6955 * to a function which identifies what group(along with sched group) a CPU
6956 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6957 * (due to the fact that we keep track of groups covered with a cpumask_t).
6959 * init_sched_build_groups will build a circular linked list of the groups
6960 * covered by the given span, and will set each group's ->cpumask correctly,
6961 * and ->cpu_power to 0.
6964 init_sched_build_groups(const cpumask_t
*span
, const cpumask_t
*cpu_map
,
6965 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6966 struct sched_group
**sg
,
6967 cpumask_t
*tmpmask
),
6968 cpumask_t
*covered
, cpumask_t
*tmpmask
)
6970 struct sched_group
*first
= NULL
, *last
= NULL
;
6973 cpus_clear(*covered
);
6975 for_each_cpu_mask(i
, *span
) {
6976 struct sched_group
*sg
;
6977 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6980 if (cpu_isset(i
, *covered
))
6983 cpus_clear(sg
->cpumask
);
6984 sg
->__cpu_power
= 0;
6986 for_each_cpu_mask(j
, *span
) {
6987 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6990 cpu_set(j
, *covered
);
6991 cpu_set(j
, sg
->cpumask
);
7002 #define SD_NODES_PER_DOMAIN 16
7007 * find_next_best_node - find the next node to include in a sched_domain
7008 * @node: node whose sched_domain we're building
7009 * @used_nodes: nodes already in the sched_domain
7011 * Find the next node to include in a given scheduling domain. Simply
7012 * finds the closest node not already in the @used_nodes map.
7014 * Should use nodemask_t.
7016 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
7018 int i
, n
, val
, min_val
, best_node
= 0;
7022 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7023 /* Start at @node */
7024 n
= (node
+ i
) % MAX_NUMNODES
;
7026 if (!nr_cpus_node(n
))
7029 /* Skip already used nodes */
7030 if (node_isset(n
, *used_nodes
))
7033 /* Simple min distance search */
7034 val
= node_distance(node
, n
);
7036 if (val
< min_val
) {
7042 node_set(best_node
, *used_nodes
);
7047 * sched_domain_node_span - get a cpumask for a node's sched_domain
7048 * @node: node whose cpumask we're constructing
7050 * Given a node, construct a good cpumask for its sched_domain to span. It
7051 * should be one that prevents unnecessary balancing, but also spreads tasks
7054 static void sched_domain_node_span(int node
, cpumask_t
*span
)
7056 nodemask_t used_nodes
;
7057 node_to_cpumask_ptr(nodemask
, node
);
7061 nodes_clear(used_nodes
);
7063 cpus_or(*span
, *span
, *nodemask
);
7064 node_set(node
, used_nodes
);
7066 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
7067 int next_node
= find_next_best_node(node
, &used_nodes
);
7069 node_to_cpumask_ptr_next(nodemask
, next_node
);
7070 cpus_or(*span
, *span
, *nodemask
);
7075 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
7078 * SMT sched-domains:
7080 #ifdef CONFIG_SCHED_SMT
7081 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
7082 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
7085 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7089 *sg
= &per_cpu(sched_group_cpus
, cpu
);
7095 * multi-core sched-domains:
7097 #ifdef CONFIG_SCHED_MC
7098 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
7099 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
7102 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7104 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7109 *mask
= per_cpu(cpu_sibling_map
, cpu
);
7110 cpus_and(*mask
, *mask
, *cpu_map
);
7111 group
= first_cpu(*mask
);
7113 *sg
= &per_cpu(sched_group_core
, group
);
7116 #elif defined(CONFIG_SCHED_MC)
7118 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7122 *sg
= &per_cpu(sched_group_core
, cpu
);
7127 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
7128 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
7131 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
7135 #ifdef CONFIG_SCHED_MC
7136 *mask
= cpu_coregroup_map(cpu
);
7137 cpus_and(*mask
, *mask
, *cpu_map
);
7138 group
= first_cpu(*mask
);
7139 #elif defined(CONFIG_SCHED_SMT)
7140 *mask
= per_cpu(cpu_sibling_map
, cpu
);
7141 cpus_and(*mask
, *mask
, *cpu_map
);
7142 group
= first_cpu(*mask
);
7147 *sg
= &per_cpu(sched_group_phys
, group
);
7153 * The init_sched_build_groups can't handle what we want to do with node
7154 * groups, so roll our own. Now each node has its own list of groups which
7155 * gets dynamically allocated.
7157 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
7158 static struct sched_group
***sched_group_nodes_bycpu
;
7160 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
7161 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
7163 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
7164 struct sched_group
**sg
, cpumask_t
*nodemask
)
7168 *nodemask
= node_to_cpumask(cpu_to_node(cpu
));
7169 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7170 group
= first_cpu(*nodemask
);
7173 *sg
= &per_cpu(sched_group_allnodes
, group
);
7177 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
7179 struct sched_group
*sg
= group_head
;
7185 for_each_cpu_mask(j
, sg
->cpumask
) {
7186 struct sched_domain
*sd
;
7188 sd
= &per_cpu(phys_domains
, j
);
7189 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
7191 * Only add "power" once for each
7197 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
7200 } while (sg
!= group_head
);
7205 /* Free memory allocated for various sched_group structures */
7206 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
7210 for_each_cpu_mask(cpu
, *cpu_map
) {
7211 struct sched_group
**sched_group_nodes
7212 = sched_group_nodes_bycpu
[cpu
];
7214 if (!sched_group_nodes
)
7217 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7218 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7220 *nodemask
= node_to_cpumask(i
);
7221 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7222 if (cpus_empty(*nodemask
))
7232 if (oldsg
!= sched_group_nodes
[i
])
7235 kfree(sched_group_nodes
);
7236 sched_group_nodes_bycpu
[cpu
] = NULL
;
7240 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
7246 * Initialize sched groups cpu_power.
7248 * cpu_power indicates the capacity of sched group, which is used while
7249 * distributing the load between different sched groups in a sched domain.
7250 * Typically cpu_power for all the groups in a sched domain will be same unless
7251 * there are asymmetries in the topology. If there are asymmetries, group
7252 * having more cpu_power will pickup more load compared to the group having
7255 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7256 * the maximum number of tasks a group can handle in the presence of other idle
7257 * or lightly loaded groups in the same sched domain.
7259 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7261 struct sched_domain
*child
;
7262 struct sched_group
*group
;
7264 WARN_ON(!sd
|| !sd
->groups
);
7266 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
7271 sd
->groups
->__cpu_power
= 0;
7274 * For perf policy, if the groups in child domain share resources
7275 * (for example cores sharing some portions of the cache hierarchy
7276 * or SMT), then set this domain groups cpu_power such that each group
7277 * can handle only one task, when there are other idle groups in the
7278 * same sched domain.
7280 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
7282 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
7283 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
7288 * add cpu_power of each child group to this groups cpu_power
7290 group
= child
->groups
;
7292 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
7293 group
= group
->next
;
7294 } while (group
!= child
->groups
);
7298 * Initializers for schedule domains
7299 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7302 #define SD_INIT(sd, type) sd_init_##type(sd)
7303 #define SD_INIT_FUNC(type) \
7304 static noinline void sd_init_##type(struct sched_domain *sd) \
7306 memset(sd, 0, sizeof(*sd)); \
7307 *sd = SD_##type##_INIT; \
7308 sd->level = SD_LV_##type; \
7313 SD_INIT_FUNC(ALLNODES
)
7316 #ifdef CONFIG_SCHED_SMT
7317 SD_INIT_FUNC(SIBLING
)
7319 #ifdef CONFIG_SCHED_MC
7324 * To minimize stack usage kmalloc room for cpumasks and share the
7325 * space as the usage in build_sched_domains() dictates. Used only
7326 * if the amount of space is significant.
7329 cpumask_t tmpmask
; /* make this one first */
7332 cpumask_t this_sibling_map
;
7333 cpumask_t this_core_map
;
7335 cpumask_t send_covered
;
7338 cpumask_t domainspan
;
7340 cpumask_t notcovered
;
7345 #define SCHED_CPUMASK_ALLOC 1
7346 #define SCHED_CPUMASK_FREE(v) kfree(v)
7347 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7349 #define SCHED_CPUMASK_ALLOC 0
7350 #define SCHED_CPUMASK_FREE(v)
7351 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7354 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7355 ((unsigned long)(a) + offsetof(struct allmasks, v))
7357 static int default_relax_domain_level
= -1;
7359 static int __init
setup_relax_domain_level(char *str
)
7361 default_relax_domain_level
= simple_strtoul(str
, NULL
, 0);
7364 __setup("relax_domain_level=", setup_relax_domain_level
);
7366 static void set_domain_attribute(struct sched_domain
*sd
,
7367 struct sched_domain_attr
*attr
)
7371 if (!attr
|| attr
->relax_domain_level
< 0) {
7372 if (default_relax_domain_level
< 0)
7375 request
= default_relax_domain_level
;
7377 request
= attr
->relax_domain_level
;
7378 if (request
< sd
->level
) {
7379 /* turn off idle balance on this domain */
7380 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
7382 /* turn on idle balance on this domain */
7383 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
7388 * Build sched domains for a given set of cpus and attach the sched domains
7389 * to the individual cpus
7391 static int __build_sched_domains(const cpumask_t
*cpu_map
,
7392 struct sched_domain_attr
*attr
)
7395 struct root_domain
*rd
;
7396 SCHED_CPUMASK_DECLARE(allmasks
);
7399 struct sched_group
**sched_group_nodes
= NULL
;
7400 int sd_allnodes
= 0;
7403 * Allocate the per-node list of sched groups
7405 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
7407 if (!sched_group_nodes
) {
7408 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7413 rd
= alloc_rootdomain();
7415 printk(KERN_WARNING
"Cannot alloc root domain\n");
7417 kfree(sched_group_nodes
);
7422 #if SCHED_CPUMASK_ALLOC
7423 /* get space for all scratch cpumask variables */
7424 allmasks
= kmalloc(sizeof(*allmasks
), GFP_KERNEL
);
7426 printk(KERN_WARNING
"Cannot alloc cpumask array\n");
7429 kfree(sched_group_nodes
);
7434 tmpmask
= (cpumask_t
*)allmasks
;
7438 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
7442 * Set up domains for cpus specified by the cpu_map.
7444 for_each_cpu_mask(i
, *cpu_map
) {
7445 struct sched_domain
*sd
= NULL
, *p
;
7446 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7448 *nodemask
= node_to_cpumask(cpu_to_node(i
));
7449 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7452 if (cpus_weight(*cpu_map
) >
7453 SD_NODES_PER_DOMAIN
*cpus_weight(*nodemask
)) {
7454 sd
= &per_cpu(allnodes_domains
, i
);
7455 SD_INIT(sd
, ALLNODES
);
7456 set_domain_attribute(sd
, attr
);
7457 sd
->span
= *cpu_map
;
7458 sd
->first_cpu
= first_cpu(sd
->span
);
7459 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7465 sd
= &per_cpu(node_domains
, i
);
7467 set_domain_attribute(sd
, attr
);
7468 sched_domain_node_span(cpu_to_node(i
), &sd
->span
);
7469 sd
->first_cpu
= first_cpu(sd
->span
);
7473 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7477 sd
= &per_cpu(phys_domains
, i
);
7479 set_domain_attribute(sd
, attr
);
7480 sd
->span
= *nodemask
;
7481 sd
->first_cpu
= first_cpu(sd
->span
);
7485 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7487 #ifdef CONFIG_SCHED_MC
7489 sd
= &per_cpu(core_domains
, i
);
7491 set_domain_attribute(sd
, attr
);
7492 sd
->span
= cpu_coregroup_map(i
);
7493 sd
->first_cpu
= first_cpu(sd
->span
);
7494 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7497 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7500 #ifdef CONFIG_SCHED_SMT
7502 sd
= &per_cpu(cpu_domains
, i
);
7503 SD_INIT(sd
, SIBLING
);
7504 set_domain_attribute(sd
, attr
);
7505 sd
->span
= per_cpu(cpu_sibling_map
, i
);
7506 sd
->first_cpu
= first_cpu(sd
->span
);
7507 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7510 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7514 #ifdef CONFIG_SCHED_SMT
7515 /* Set up CPU (sibling) groups */
7516 for_each_cpu_mask(i
, *cpu_map
) {
7517 SCHED_CPUMASK_VAR(this_sibling_map
, allmasks
);
7518 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7520 *this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
7521 cpus_and(*this_sibling_map
, *this_sibling_map
, *cpu_map
);
7522 if (i
!= first_cpu(*this_sibling_map
))
7525 init_sched_build_groups(this_sibling_map
, cpu_map
,
7527 send_covered
, tmpmask
);
7531 #ifdef CONFIG_SCHED_MC
7532 /* Set up multi-core groups */
7533 for_each_cpu_mask(i
, *cpu_map
) {
7534 SCHED_CPUMASK_VAR(this_core_map
, allmasks
);
7535 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7537 *this_core_map
= cpu_coregroup_map(i
);
7538 cpus_and(*this_core_map
, *this_core_map
, *cpu_map
);
7539 if (i
!= first_cpu(*this_core_map
))
7542 init_sched_build_groups(this_core_map
, cpu_map
,
7544 send_covered
, tmpmask
);
7548 /* Set up physical groups */
7549 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7550 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7551 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7553 *nodemask
= node_to_cpumask(i
);
7554 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7555 if (cpus_empty(*nodemask
))
7558 init_sched_build_groups(nodemask
, cpu_map
,
7560 send_covered
, tmpmask
);
7564 /* Set up node groups */
7566 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7568 init_sched_build_groups(cpu_map
, cpu_map
,
7569 &cpu_to_allnodes_group
,
7570 send_covered
, tmpmask
);
7573 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7574 /* Set up node groups */
7575 struct sched_group
*sg
, *prev
;
7576 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7577 SCHED_CPUMASK_VAR(domainspan
, allmasks
);
7578 SCHED_CPUMASK_VAR(covered
, allmasks
);
7581 *nodemask
= node_to_cpumask(i
);
7582 cpus_clear(*covered
);
7584 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7585 if (cpus_empty(*nodemask
)) {
7586 sched_group_nodes
[i
] = NULL
;
7590 sched_domain_node_span(i
, domainspan
);
7591 cpus_and(*domainspan
, *domainspan
, *cpu_map
);
7593 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
7595 printk(KERN_WARNING
"Can not alloc domain group for "
7599 sched_group_nodes
[i
] = sg
;
7600 for_each_cpu_mask(j
, *nodemask
) {
7601 struct sched_domain
*sd
;
7603 sd
= &per_cpu(node_domains
, j
);
7606 sg
->__cpu_power
= 0;
7607 sg
->cpumask
= *nodemask
;
7609 cpus_or(*covered
, *covered
, *nodemask
);
7612 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
7613 SCHED_CPUMASK_VAR(notcovered
, allmasks
);
7614 int n
= (i
+ j
) % MAX_NUMNODES
;
7615 node_to_cpumask_ptr(pnodemask
, n
);
7617 cpus_complement(*notcovered
, *covered
);
7618 cpus_and(*tmpmask
, *notcovered
, *cpu_map
);
7619 cpus_and(*tmpmask
, *tmpmask
, *domainspan
);
7620 if (cpus_empty(*tmpmask
))
7623 cpus_and(*tmpmask
, *tmpmask
, *pnodemask
);
7624 if (cpus_empty(*tmpmask
))
7627 sg
= kmalloc_node(sizeof(struct sched_group
),
7631 "Can not alloc domain group for node %d\n", j
);
7634 sg
->__cpu_power
= 0;
7635 sg
->cpumask
= *tmpmask
;
7636 sg
->next
= prev
->next
;
7637 cpus_or(*covered
, *covered
, *tmpmask
);
7644 /* Calculate CPU power for physical packages and nodes */
7645 #ifdef CONFIG_SCHED_SMT
7646 for_each_cpu_mask(i
, *cpu_map
) {
7647 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
7649 init_sched_groups_power(i
, sd
);
7652 #ifdef CONFIG_SCHED_MC
7653 for_each_cpu_mask(i
, *cpu_map
) {
7654 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
7656 init_sched_groups_power(i
, sd
);
7660 for_each_cpu_mask(i
, *cpu_map
) {
7661 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
7663 init_sched_groups_power(i
, sd
);
7667 for (i
= 0; i
< MAX_NUMNODES
; i
++)
7668 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7671 struct sched_group
*sg
;
7673 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
,
7675 init_numa_sched_groups_power(sg
);
7679 /* Attach the domains */
7680 for_each_cpu_mask(i
, *cpu_map
) {
7681 struct sched_domain
*sd
;
7682 #ifdef CONFIG_SCHED_SMT
7683 sd
= &per_cpu(cpu_domains
, i
);
7684 #elif defined(CONFIG_SCHED_MC)
7685 sd
= &per_cpu(core_domains
, i
);
7687 sd
= &per_cpu(phys_domains
, i
);
7689 cpu_attach_domain(sd
, rd
, i
);
7692 SCHED_CPUMASK_FREE((void *)allmasks
);
7697 free_sched_groups(cpu_map
, tmpmask
);
7698 SCHED_CPUMASK_FREE((void *)allmasks
);
7703 static int build_sched_domains(const cpumask_t
*cpu_map
)
7705 return __build_sched_domains(cpu_map
, NULL
);
7708 static cpumask_t
*doms_cur
; /* current sched domains */
7709 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7710 static struct sched_domain_attr
*dattr_cur
; /* attribues of custom domains
7714 * Special case: If a kmalloc of a doms_cur partition (array of
7715 * cpumask_t) fails, then fallback to a single sched domain,
7716 * as determined by the single cpumask_t fallback_doms.
7718 static cpumask_t fallback_doms
;
7720 void __attribute__((weak
)) arch_update_cpu_topology(void)
7725 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7726 * For now this just excludes isolated cpus, but could be used to
7727 * exclude other special cases in the future.
7729 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
7733 arch_update_cpu_topology();
7735 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
7737 doms_cur
= &fallback_doms
;
7738 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
7740 err
= build_sched_domains(doms_cur
);
7741 register_sched_domain_sysctl();
7746 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
,
7749 free_sched_groups(cpu_map
, tmpmask
);
7753 * Detach sched domains from a group of cpus specified in cpu_map
7754 * These cpus will now be attached to the NULL domain
7756 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
7761 unregister_sched_domain_sysctl();
7763 for_each_cpu_mask(i
, *cpu_map
)
7764 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7765 synchronize_sched();
7766 arch_destroy_sched_domains(cpu_map
, &tmpmask
);
7769 /* handle null as "default" */
7770 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7771 struct sched_domain_attr
*new, int idx_new
)
7773 struct sched_domain_attr tmp
;
7780 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7781 new ? (new + idx_new
) : &tmp
,
7782 sizeof(struct sched_domain_attr
));
7786 * Partition sched domains as specified by the 'ndoms_new'
7787 * cpumasks in the array doms_new[] of cpumasks. This compares
7788 * doms_new[] to the current sched domain partitioning, doms_cur[].
7789 * It destroys each deleted domain and builds each new domain.
7791 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7792 * The masks don't intersect (don't overlap.) We should setup one
7793 * sched domain for each mask. CPUs not in any of the cpumasks will
7794 * not be load balanced. If the same cpumask appears both in the
7795 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7798 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7799 * ownership of it and will kfree it when done with it. If the caller
7800 * failed the kmalloc call, then it can pass in doms_new == NULL,
7801 * and partition_sched_domains() will fallback to the single partition
7804 * Call with hotplug lock held
7806 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
,
7807 struct sched_domain_attr
*dattr_new
)
7813 /* always unregister in case we don't destroy any domains */
7814 unregister_sched_domain_sysctl();
7816 if (doms_new
== NULL
) {
7818 doms_new
= &fallback_doms
;
7819 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
7823 /* Destroy deleted domains */
7824 for (i
= 0; i
< ndoms_cur
; i
++) {
7825 for (j
= 0; j
< ndoms_new
; j
++) {
7826 if (cpus_equal(doms_cur
[i
], doms_new
[j
])
7827 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7830 /* no match - a current sched domain not in new doms_new[] */
7831 detach_destroy_domains(doms_cur
+ i
);
7836 /* Build new domains */
7837 for (i
= 0; i
< ndoms_new
; i
++) {
7838 for (j
= 0; j
< ndoms_cur
; j
++) {
7839 if (cpus_equal(doms_new
[i
], doms_cur
[j
])
7840 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7843 /* no match - add a new doms_new */
7844 __build_sched_domains(doms_new
+ i
,
7845 dattr_new
? dattr_new
+ i
: NULL
);
7850 /* Remember the new sched domains */
7851 if (doms_cur
!= &fallback_doms
)
7853 kfree(dattr_cur
); /* kfree(NULL) is safe */
7854 doms_cur
= doms_new
;
7855 dattr_cur
= dattr_new
;
7856 ndoms_cur
= ndoms_new
;
7858 register_sched_domain_sysctl();
7863 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7864 int arch_reinit_sched_domains(void)
7869 detach_destroy_domains(&cpu_online_map
);
7870 err
= arch_init_sched_domains(&cpu_online_map
);
7876 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7880 if (buf
[0] != '0' && buf
[0] != '1')
7884 sched_smt_power_savings
= (buf
[0] == '1');
7886 sched_mc_power_savings
= (buf
[0] == '1');
7888 ret
= arch_reinit_sched_domains();
7890 return ret
? ret
: count
;
7893 #ifdef CONFIG_SCHED_MC
7894 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
7896 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7898 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
7899 const char *buf
, size_t count
)
7901 return sched_power_savings_store(buf
, count
, 0);
7903 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
7904 sched_mc_power_savings_store
);
7907 #ifdef CONFIG_SCHED_SMT
7908 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
7910 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7912 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
7913 const char *buf
, size_t count
)
7915 return sched_power_savings_store(buf
, count
, 1);
7917 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
7918 sched_smt_power_savings_store
);
7921 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7925 #ifdef CONFIG_SCHED_SMT
7927 err
= sysfs_create_file(&cls
->kset
.kobj
,
7928 &attr_sched_smt_power_savings
.attr
);
7930 #ifdef CONFIG_SCHED_MC
7931 if (!err
&& mc_capable())
7932 err
= sysfs_create_file(&cls
->kset
.kobj
,
7933 &attr_sched_mc_power_savings
.attr
);
7940 * Force a reinitialization of the sched domains hierarchy. The domains
7941 * and groups cannot be updated in place without racing with the balancing
7942 * code, so we temporarily attach all running cpus to the NULL domain
7943 * which will prevent rebalancing while the sched domains are recalculated.
7945 static int update_sched_domains(struct notifier_block
*nfb
,
7946 unsigned long action
, void *hcpu
)
7949 case CPU_UP_PREPARE
:
7950 case CPU_UP_PREPARE_FROZEN
:
7951 case CPU_DOWN_PREPARE
:
7952 case CPU_DOWN_PREPARE_FROZEN
:
7953 detach_destroy_domains(&cpu_online_map
);
7956 case CPU_UP_CANCELED
:
7957 case CPU_UP_CANCELED_FROZEN
:
7958 case CPU_DOWN_FAILED
:
7959 case CPU_DOWN_FAILED_FROZEN
:
7961 case CPU_ONLINE_FROZEN
:
7963 case CPU_DEAD_FROZEN
:
7965 * Fall through and re-initialise the domains.
7972 /* The hotplug lock is already held by cpu_up/cpu_down */
7973 arch_init_sched_domains(&cpu_online_map
);
7978 void __init
sched_init_smp(void)
7980 cpumask_t non_isolated_cpus
;
7982 #if defined(CONFIG_NUMA)
7983 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7985 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7988 arch_init_sched_domains(&cpu_online_map
);
7989 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
7990 if (cpus_empty(non_isolated_cpus
))
7991 cpu_set(smp_processor_id(), non_isolated_cpus
);
7993 /* XXX: Theoretical race here - CPU may be hotplugged now */
7994 hotcpu_notifier(update_sched_domains
, 0);
7996 /* Move init over to a non-isolated CPU */
7997 if (set_cpus_allowed_ptr(current
, &non_isolated_cpus
) < 0)
7999 sched_init_granularity();
8002 void __init
sched_init_smp(void)
8004 #if defined(CONFIG_NUMA)
8005 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
8007 BUG_ON(sched_group_nodes_bycpu
== NULL
);
8009 sched_init_granularity();
8011 #endif /* CONFIG_SMP */
8013 int in_sched_functions(unsigned long addr
)
8015 return in_lock_functions(addr
) ||
8016 (addr
>= (unsigned long)__sched_text_start
8017 && addr
< (unsigned long)__sched_text_end
);
8020 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
8022 cfs_rq
->tasks_timeline
= RB_ROOT
;
8023 INIT_LIST_HEAD(&cfs_rq
->tasks
);
8024 #ifdef CONFIG_FAIR_GROUP_SCHED
8027 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8030 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
8032 struct rt_prio_array
*array
;
8035 array
= &rt_rq
->active
;
8036 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
8037 INIT_LIST_HEAD(array
->queue
+ i
);
8038 __clear_bit(i
, array
->bitmap
);
8040 /* delimiter for bitsearch: */
8041 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
8043 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8044 rt_rq
->highest_prio
= MAX_RT_PRIO
;
8047 rt_rq
->rt_nr_migratory
= 0;
8048 rt_rq
->overloaded
= 0;
8052 rt_rq
->rt_throttled
= 0;
8053 rt_rq
->rt_runtime
= 0;
8054 spin_lock_init(&rt_rq
->rt_runtime_lock
);
8056 #ifdef CONFIG_RT_GROUP_SCHED
8057 rt_rq
->rt_nr_boosted
= 0;
8062 #ifdef CONFIG_FAIR_GROUP_SCHED
8063 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8064 struct sched_entity
*se
, int cpu
, int add
,
8065 struct sched_entity
*parent
)
8067 struct rq
*rq
= cpu_rq(cpu
);
8068 tg
->cfs_rq
[cpu
] = cfs_rq
;
8069 init_cfs_rq(cfs_rq
, rq
);
8072 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
8075 /* se could be NULL for init_task_group */
8080 se
->cfs_rq
= &rq
->cfs
;
8082 se
->cfs_rq
= parent
->my_q
;
8085 se
->load
.weight
= tg
->shares
;
8086 se
->load
.inv_weight
= div64_64(1ULL<<32, se
->load
.weight
);
8087 se
->parent
= parent
;
8091 #ifdef CONFIG_RT_GROUP_SCHED
8092 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8093 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
8094 struct sched_rt_entity
*parent
)
8096 struct rq
*rq
= cpu_rq(cpu
);
8098 tg
->rt_rq
[cpu
] = rt_rq
;
8099 init_rt_rq(rt_rq
, rq
);
8101 rt_rq
->rt_se
= rt_se
;
8102 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8104 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
8106 tg
->rt_se
[cpu
] = rt_se
;
8111 rt_se
->rt_rq
= &rq
->rt
;
8113 rt_se
->rt_rq
= parent
->my_q
;
8115 rt_se
->rt_rq
= &rq
->rt
;
8116 rt_se
->my_q
= rt_rq
;
8117 rt_se
->parent
= parent
;
8118 INIT_LIST_HEAD(&rt_se
->run_list
);
8122 void __init
sched_init(void)
8125 unsigned long alloc_size
= 0, ptr
;
8127 #ifdef CONFIG_FAIR_GROUP_SCHED
8128 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8130 #ifdef CONFIG_RT_GROUP_SCHED
8131 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8133 #ifdef CONFIG_USER_SCHED
8137 * As sched_init() is called before page_alloc is setup,
8138 * we use alloc_bootmem().
8141 ptr
= (unsigned long)alloc_bootmem_low(alloc_size
);
8143 #ifdef CONFIG_FAIR_GROUP_SCHED
8144 init_task_group
.se
= (struct sched_entity
**)ptr
;
8145 ptr
+= nr_cpu_ids
* sizeof(void **);
8147 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8148 ptr
+= nr_cpu_ids
* sizeof(void **);
8150 #ifdef CONFIG_USER_SCHED
8151 root_task_group
.se
= (struct sched_entity
**)ptr
;
8152 ptr
+= nr_cpu_ids
* sizeof(void **);
8154 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8155 ptr
+= nr_cpu_ids
* sizeof(void **);
8158 #ifdef CONFIG_RT_GROUP_SCHED
8159 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8160 ptr
+= nr_cpu_ids
* sizeof(void **);
8162 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8163 ptr
+= nr_cpu_ids
* sizeof(void **);
8165 #ifdef CONFIG_USER_SCHED
8166 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8167 ptr
+= nr_cpu_ids
* sizeof(void **);
8169 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8170 ptr
+= nr_cpu_ids
* sizeof(void **);
8177 init_defrootdomain();
8180 init_rt_bandwidth(&def_rt_bandwidth
,
8181 global_rt_period(), global_rt_runtime());
8183 #ifdef CONFIG_RT_GROUP_SCHED
8184 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
8185 global_rt_period(), global_rt_runtime());
8186 #ifdef CONFIG_USER_SCHED
8187 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8188 global_rt_period(), RUNTIME_INF
);
8192 #ifdef CONFIG_GROUP_SCHED
8193 list_add(&init_task_group
.list
, &task_groups
);
8194 INIT_LIST_HEAD(&init_task_group
.children
);
8196 #ifdef CONFIG_USER_SCHED
8197 INIT_LIST_HEAD(&root_task_group
.children
);
8198 init_task_group
.parent
= &root_task_group
;
8199 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
8203 for_each_possible_cpu(i
) {
8207 spin_lock_init(&rq
->lock
);
8208 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
8211 update_last_tick_seen(rq
);
8212 init_cfs_rq(&rq
->cfs
, rq
);
8213 init_rt_rq(&rq
->rt
, rq
);
8214 #ifdef CONFIG_FAIR_GROUP_SCHED
8215 init_task_group
.shares
= init_task_group_load
;
8216 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8217 #ifdef CONFIG_CGROUP_SCHED
8219 * How much cpu bandwidth does init_task_group get?
8221 * In case of task-groups formed thr' the cgroup filesystem, it
8222 * gets 100% of the cpu resources in the system. This overall
8223 * system cpu resource is divided among the tasks of
8224 * init_task_group and its child task-groups in a fair manner,
8225 * based on each entity's (task or task-group's) weight
8226 * (se->load.weight).
8228 * In other words, if init_task_group has 10 tasks of weight
8229 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8230 * then A0's share of the cpu resource is:
8232 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8234 * We achieve this by letting init_task_group's tasks sit
8235 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8237 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8238 #elif defined CONFIG_USER_SCHED
8239 root_task_group
.shares
= NICE_0_LOAD
;
8240 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
8242 * In case of task-groups formed thr' the user id of tasks,
8243 * init_task_group represents tasks belonging to root user.
8244 * Hence it forms a sibling of all subsequent groups formed.
8245 * In this case, init_task_group gets only a fraction of overall
8246 * system cpu resource, based on the weight assigned to root
8247 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8248 * by letting tasks of init_task_group sit in a separate cfs_rq
8249 * (init_cfs_rq) and having one entity represent this group of
8250 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8252 init_tg_cfs_entry(&init_task_group
,
8253 &per_cpu(init_cfs_rq
, i
),
8254 &per_cpu(init_sched_entity
, i
), i
, 1,
8255 root_task_group
.se
[i
]);
8258 #endif /* CONFIG_FAIR_GROUP_SCHED */
8260 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8261 #ifdef CONFIG_RT_GROUP_SCHED
8262 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8263 #ifdef CONFIG_CGROUP_SCHED
8264 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8265 #elif defined CONFIG_USER_SCHED
8266 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
8267 init_tg_rt_entry(&init_task_group
,
8268 &per_cpu(init_rt_rq
, i
),
8269 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
8270 root_task_group
.rt_se
[i
]);
8274 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8275 rq
->cpu_load
[j
] = 0;
8279 rq
->active_balance
= 0;
8280 rq
->next_balance
= jiffies
;
8283 rq
->migration_thread
= NULL
;
8284 INIT_LIST_HEAD(&rq
->migration_queue
);
8285 rq_attach_root(rq
, &def_root_domain
);
8288 atomic_set(&rq
->nr_iowait
, 0);
8291 set_load_weight(&init_task
);
8293 #ifdef CONFIG_PREEMPT_NOTIFIERS
8294 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8298 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
8301 #ifdef CONFIG_RT_MUTEXES
8302 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8306 * The boot idle thread does lazy MMU switching as well:
8308 atomic_inc(&init_mm
.mm_count
);
8309 enter_lazy_tlb(&init_mm
, current
);
8312 * Make us the idle thread. Technically, schedule() should not be
8313 * called from this thread, however somewhere below it might be,
8314 * but because we are the idle thread, we just pick up running again
8315 * when this runqueue becomes "idle".
8317 init_idle(current
, smp_processor_id());
8319 * During early bootup we pretend to be a normal task:
8321 current
->sched_class
= &fair_sched_class
;
8323 scheduler_running
= 1;
8326 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8327 void __might_sleep(char *file
, int line
)
8330 static unsigned long prev_jiffy
; /* ratelimiting */
8332 if ((in_atomic() || irqs_disabled()) &&
8333 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
8334 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8336 prev_jiffy
= jiffies
;
8337 printk(KERN_ERR
"BUG: sleeping function called from invalid"
8338 " context at %s:%d\n", file
, line
);
8339 printk("in_atomic():%d, irqs_disabled():%d\n",
8340 in_atomic(), irqs_disabled());
8341 debug_show_held_locks(current
);
8342 if (irqs_disabled())
8343 print_irqtrace_events(current
);
8348 EXPORT_SYMBOL(__might_sleep
);
8351 #ifdef CONFIG_MAGIC_SYSRQ
8352 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8355 update_rq_clock(rq
);
8356 on_rq
= p
->se
.on_rq
;
8358 deactivate_task(rq
, p
, 0);
8359 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8361 activate_task(rq
, p
, 0);
8362 resched_task(rq
->curr
);
8366 void normalize_rt_tasks(void)
8368 struct task_struct
*g
, *p
;
8369 unsigned long flags
;
8372 read_lock_irqsave(&tasklist_lock
, flags
);
8373 do_each_thread(g
, p
) {
8375 * Only normalize user tasks:
8380 p
->se
.exec_start
= 0;
8381 #ifdef CONFIG_SCHEDSTATS
8382 p
->se
.wait_start
= 0;
8383 p
->se
.sleep_start
= 0;
8384 p
->se
.block_start
= 0;
8386 task_rq(p
)->clock
= 0;
8390 * Renice negative nice level userspace
8393 if (TASK_NICE(p
) < 0 && p
->mm
)
8394 set_user_nice(p
, 0);
8398 spin_lock(&p
->pi_lock
);
8399 rq
= __task_rq_lock(p
);
8401 normalize_task(rq
, p
);
8403 __task_rq_unlock(rq
);
8404 spin_unlock(&p
->pi_lock
);
8405 } while_each_thread(g
, p
);
8407 read_unlock_irqrestore(&tasklist_lock
, flags
);
8410 #endif /* CONFIG_MAGIC_SYSRQ */
8414 * These functions are only useful for the IA64 MCA handling.
8416 * They can only be called when the whole system has been
8417 * stopped - every CPU needs to be quiescent, and no scheduling
8418 * activity can take place. Using them for anything else would
8419 * be a serious bug, and as a result, they aren't even visible
8420 * under any other configuration.
8424 * curr_task - return the current task for a given cpu.
8425 * @cpu: the processor in question.
8427 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8429 struct task_struct
*curr_task(int cpu
)
8431 return cpu_curr(cpu
);
8435 * set_curr_task - set the current task for a given cpu.
8436 * @cpu: the processor in question.
8437 * @p: the task pointer to set.
8439 * Description: This function must only be used when non-maskable interrupts
8440 * are serviced on a separate stack. It allows the architecture to switch the
8441 * notion of the current task on a cpu in a non-blocking manner. This function
8442 * must be called with all CPU's synchronized, and interrupts disabled, the
8443 * and caller must save the original value of the current task (see
8444 * curr_task() above) and restore that value before reenabling interrupts and
8445 * re-starting the system.
8447 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8449 void set_curr_task(int cpu
, struct task_struct
*p
)
8456 #ifdef CONFIG_FAIR_GROUP_SCHED
8457 static void free_fair_sched_group(struct task_group
*tg
)
8461 for_each_possible_cpu(i
) {
8463 kfree(tg
->cfs_rq
[i
]);
8473 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8475 struct cfs_rq
*cfs_rq
;
8476 struct sched_entity
*se
, *parent_se
;
8480 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8483 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8487 tg
->shares
= NICE_0_LOAD
;
8489 for_each_possible_cpu(i
) {
8492 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
),
8493 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8497 se
= kmalloc_node(sizeof(struct sched_entity
),
8498 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8502 parent_se
= parent
? parent
->se
[i
] : NULL
;
8503 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent_se
);
8512 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8514 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8515 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8518 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8520 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8523 static inline void free_fair_sched_group(struct task_group
*tg
)
8528 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8533 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8537 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8542 #ifdef CONFIG_RT_GROUP_SCHED
8543 static void free_rt_sched_group(struct task_group
*tg
)
8547 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8549 for_each_possible_cpu(i
) {
8551 kfree(tg
->rt_rq
[i
]);
8553 kfree(tg
->rt_se
[i
]);
8561 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8563 struct rt_rq
*rt_rq
;
8564 struct sched_rt_entity
*rt_se
, *parent_se
;
8568 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8571 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8575 init_rt_bandwidth(&tg
->rt_bandwidth
,
8576 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8578 for_each_possible_cpu(i
) {
8581 rt_rq
= kmalloc_node(sizeof(struct rt_rq
),
8582 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8586 rt_se
= kmalloc_node(sizeof(struct sched_rt_entity
),
8587 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8591 parent_se
= parent
? parent
->rt_se
[i
] : NULL
;
8592 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent_se
);
8601 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8603 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8604 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8607 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8609 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8612 static inline void free_rt_sched_group(struct task_group
*tg
)
8617 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8622 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8626 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8631 #ifdef CONFIG_GROUP_SCHED
8632 static void free_sched_group(struct task_group
*tg
)
8634 free_fair_sched_group(tg
);
8635 free_rt_sched_group(tg
);
8639 /* allocate runqueue etc for a new task group */
8640 struct task_group
*sched_create_group(struct task_group
*parent
)
8642 struct task_group
*tg
;
8643 unsigned long flags
;
8646 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8648 return ERR_PTR(-ENOMEM
);
8650 if (!alloc_fair_sched_group(tg
, parent
))
8653 if (!alloc_rt_sched_group(tg
, parent
))
8656 spin_lock_irqsave(&task_group_lock
, flags
);
8657 for_each_possible_cpu(i
) {
8658 register_fair_sched_group(tg
, i
);
8659 register_rt_sched_group(tg
, i
);
8661 list_add_rcu(&tg
->list
, &task_groups
);
8663 WARN_ON(!parent
); /* root should already exist */
8665 tg
->parent
= parent
;
8666 list_add_rcu(&tg
->siblings
, &parent
->children
);
8667 INIT_LIST_HEAD(&tg
->children
);
8668 spin_unlock_irqrestore(&task_group_lock
, flags
);
8673 free_sched_group(tg
);
8674 return ERR_PTR(-ENOMEM
);
8677 /* rcu callback to free various structures associated with a task group */
8678 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8680 /* now it should be safe to free those cfs_rqs */
8681 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8684 /* Destroy runqueue etc associated with a task group */
8685 void sched_destroy_group(struct task_group
*tg
)
8687 unsigned long flags
;
8690 spin_lock_irqsave(&task_group_lock
, flags
);
8691 for_each_possible_cpu(i
) {
8692 unregister_fair_sched_group(tg
, i
);
8693 unregister_rt_sched_group(tg
, i
);
8695 list_del_rcu(&tg
->list
);
8696 list_del_rcu(&tg
->siblings
);
8697 spin_unlock_irqrestore(&task_group_lock
, flags
);
8699 /* wait for possible concurrent references to cfs_rqs complete */
8700 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8703 /* change task's runqueue when it moves between groups.
8704 * The caller of this function should have put the task in its new group
8705 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8706 * reflect its new group.
8708 void sched_move_task(struct task_struct
*tsk
)
8711 unsigned long flags
;
8714 rq
= task_rq_lock(tsk
, &flags
);
8716 update_rq_clock(rq
);
8718 running
= task_current(rq
, tsk
);
8719 on_rq
= tsk
->se
.on_rq
;
8722 dequeue_task(rq
, tsk
, 0);
8723 if (unlikely(running
))
8724 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8726 set_task_rq(tsk
, task_cpu(tsk
));
8728 #ifdef CONFIG_FAIR_GROUP_SCHED
8729 if (tsk
->sched_class
->moved_group
)
8730 tsk
->sched_class
->moved_group(tsk
);
8733 if (unlikely(running
))
8734 tsk
->sched_class
->set_curr_task(rq
);
8736 enqueue_task(rq
, tsk
, 0);
8738 task_rq_unlock(rq
, &flags
);
8742 #ifdef CONFIG_FAIR_GROUP_SCHED
8743 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8745 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8750 dequeue_entity(cfs_rq
, se
, 0);
8752 se
->load
.weight
= shares
;
8753 se
->load
.inv_weight
= div64_64((1ULL<<32), shares
);
8756 enqueue_entity(cfs_rq
, se
, 0);
8759 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8761 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8762 struct rq
*rq
= cfs_rq
->rq
;
8763 unsigned long flags
;
8765 spin_lock_irqsave(&rq
->lock
, flags
);
8766 __set_se_shares(se
, shares
);
8767 spin_unlock_irqrestore(&rq
->lock
, flags
);
8770 static DEFINE_MUTEX(shares_mutex
);
8772 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8775 unsigned long flags
;
8778 * We can't change the weight of the root cgroup.
8784 * A weight of 0 or 1 can cause arithmetics problems.
8785 * (The default weight is 1024 - so there's no practical
8786 * limitation from this.)
8788 if (shares
< MIN_SHARES
)
8789 shares
= MIN_SHARES
;
8791 mutex_lock(&shares_mutex
);
8792 if (tg
->shares
== shares
)
8795 spin_lock_irqsave(&task_group_lock
, flags
);
8796 for_each_possible_cpu(i
)
8797 unregister_fair_sched_group(tg
, i
);
8798 list_del_rcu(&tg
->siblings
);
8799 spin_unlock_irqrestore(&task_group_lock
, flags
);
8801 /* wait for any ongoing reference to this group to finish */
8802 synchronize_sched();
8805 * Now we are free to modify the group's share on each cpu
8806 * w/o tripping rebalance_share or load_balance_fair.
8808 tg
->shares
= shares
;
8809 for_each_possible_cpu(i
) {
8813 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8814 set_se_shares(tg
->se
[i
], shares
/nr_cpu_ids
);
8818 * Enable load balance activity on this group, by inserting it back on
8819 * each cpu's rq->leaf_cfs_rq_list.
8821 spin_lock_irqsave(&task_group_lock
, flags
);
8822 for_each_possible_cpu(i
)
8823 register_fair_sched_group(tg
, i
);
8824 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8825 spin_unlock_irqrestore(&task_group_lock
, flags
);
8827 mutex_unlock(&shares_mutex
);
8831 unsigned long sched_group_shares(struct task_group
*tg
)
8837 #ifdef CONFIG_RT_GROUP_SCHED
8839 * Ensure that the real time constraints are schedulable.
8841 static DEFINE_MUTEX(rt_constraints_mutex
);
8843 static unsigned long to_ratio(u64 period
, u64 runtime
)
8845 if (runtime
== RUNTIME_INF
)
8848 return div64_64(runtime
<< 16, period
);
8851 #ifdef CONFIG_CGROUP_SCHED
8852 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8854 struct task_group
*tgi
, *parent
= tg
->parent
;
8855 unsigned long total
= 0;
8858 if (global_rt_period() < period
)
8861 return to_ratio(period
, runtime
) <
8862 to_ratio(global_rt_period(), global_rt_runtime());
8865 if (ktime_to_ns(parent
->rt_bandwidth
.rt_period
) < period
)
8869 list_for_each_entry_rcu(tgi
, &parent
->children
, siblings
) {
8873 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8874 tgi
->rt_bandwidth
.rt_runtime
);
8878 return total
+ to_ratio(period
, runtime
) <
8879 to_ratio(ktime_to_ns(parent
->rt_bandwidth
.rt_period
),
8880 parent
->rt_bandwidth
.rt_runtime
);
8882 #elif defined CONFIG_USER_SCHED
8883 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8885 struct task_group
*tgi
;
8886 unsigned long total
= 0;
8887 unsigned long global_ratio
=
8888 to_ratio(global_rt_period(), global_rt_runtime());
8891 list_for_each_entry_rcu(tgi
, &task_groups
, list
) {
8895 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8896 tgi
->rt_bandwidth
.rt_runtime
);
8900 return total
+ to_ratio(period
, runtime
) < global_ratio
;
8904 /* Must be called with tasklist_lock held */
8905 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8907 struct task_struct
*g
, *p
;
8908 do_each_thread(g
, p
) {
8909 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8911 } while_each_thread(g
, p
);
8915 static int tg_set_bandwidth(struct task_group
*tg
,
8916 u64 rt_period
, u64 rt_runtime
)
8920 mutex_lock(&rt_constraints_mutex
);
8921 read_lock(&tasklist_lock
);
8922 if (rt_runtime
== 0 && tg_has_rt_tasks(tg
)) {
8926 if (!__rt_schedulable(tg
, rt_period
, rt_runtime
)) {
8931 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8932 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8933 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8935 for_each_possible_cpu(i
) {
8936 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8938 spin_lock(&rt_rq
->rt_runtime_lock
);
8939 rt_rq
->rt_runtime
= rt_runtime
;
8940 spin_unlock(&rt_rq
->rt_runtime_lock
);
8942 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8944 read_unlock(&tasklist_lock
);
8945 mutex_unlock(&rt_constraints_mutex
);
8950 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8952 u64 rt_runtime
, rt_period
;
8954 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8955 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8956 if (rt_runtime_us
< 0)
8957 rt_runtime
= RUNTIME_INF
;
8959 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8962 long sched_group_rt_runtime(struct task_group
*tg
)
8966 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8969 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8970 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8971 return rt_runtime_us
;
8974 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8976 u64 rt_runtime
, rt_period
;
8978 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8979 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8981 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8984 long sched_group_rt_period(struct task_group
*tg
)
8988 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8989 do_div(rt_period_us
, NSEC_PER_USEC
);
8990 return rt_period_us
;
8993 static int sched_rt_global_constraints(void)
8997 mutex_lock(&rt_constraints_mutex
);
8998 if (!__rt_schedulable(NULL
, 1, 0))
9000 mutex_unlock(&rt_constraints_mutex
);
9005 static int sched_rt_global_constraints(void)
9007 unsigned long flags
;
9010 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9011 for_each_possible_cpu(i
) {
9012 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
9014 spin_lock(&rt_rq
->rt_runtime_lock
);
9015 rt_rq
->rt_runtime
= global_rt_runtime();
9016 spin_unlock(&rt_rq
->rt_runtime_lock
);
9018 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9024 int sched_rt_handler(struct ctl_table
*table
, int write
,
9025 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
9029 int old_period
, old_runtime
;
9030 static DEFINE_MUTEX(mutex
);
9033 old_period
= sysctl_sched_rt_period
;
9034 old_runtime
= sysctl_sched_rt_runtime
;
9036 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
9038 if (!ret
&& write
) {
9039 ret
= sched_rt_global_constraints();
9041 sysctl_sched_rt_period
= old_period
;
9042 sysctl_sched_rt_runtime
= old_runtime
;
9044 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
9045 def_rt_bandwidth
.rt_period
=
9046 ns_to_ktime(global_rt_period());
9049 mutex_unlock(&mutex
);
9054 #ifdef CONFIG_CGROUP_SCHED
9056 /* return corresponding task_group object of a cgroup */
9057 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
9059 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
9060 struct task_group
, css
);
9063 static struct cgroup_subsys_state
*
9064 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9066 struct task_group
*tg
, *parent
;
9068 if (!cgrp
->parent
) {
9069 /* This is early initialization for the top cgroup */
9070 init_task_group
.css
.cgroup
= cgrp
;
9071 return &init_task_group
.css
;
9074 parent
= cgroup_tg(cgrp
->parent
);
9075 tg
= sched_create_group(parent
);
9077 return ERR_PTR(-ENOMEM
);
9079 /* Bind the cgroup to task_group object we just created */
9080 tg
->css
.cgroup
= cgrp
;
9086 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9088 struct task_group
*tg
= cgroup_tg(cgrp
);
9090 sched_destroy_group(tg
);
9094 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9095 struct task_struct
*tsk
)
9097 #ifdef CONFIG_RT_GROUP_SCHED
9098 /* Don't accept realtime tasks when there is no way for them to run */
9099 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_bandwidth
.rt_runtime
== 0)
9102 /* We don't support RT-tasks being in separate groups */
9103 if (tsk
->sched_class
!= &fair_sched_class
)
9111 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9112 struct cgroup
*old_cont
, struct task_struct
*tsk
)
9114 sched_move_task(tsk
);
9117 #ifdef CONFIG_FAIR_GROUP_SCHED
9118 static int cpu_shares_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9121 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
9124 static u64
cpu_shares_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9126 struct task_group
*tg
= cgroup_tg(cgrp
);
9128 return (u64
) tg
->shares
;
9132 #ifdef CONFIG_RT_GROUP_SCHED
9133 static ssize_t
cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9135 const char __user
*userbuf
,
9136 size_t nbytes
, loff_t
*unused_ppos
)
9145 if (nbytes
>= sizeof(buffer
))
9147 if (copy_from_user(buffer
, userbuf
, nbytes
))
9150 buffer
[nbytes
] = 0; /* nul-terminate */
9152 /* strip newline if necessary */
9153 if (nbytes
&& (buffer
[nbytes
-1] == '\n'))
9154 buffer
[nbytes
-1] = 0;
9155 val
= simple_strtoll(buffer
, &end
, 0);
9159 /* Pass to subsystem */
9160 retval
= sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9166 static ssize_t
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
,
9168 char __user
*buf
, size_t nbytes
,
9172 long val
= sched_group_rt_runtime(cgroup_tg(cgrp
));
9173 int len
= sprintf(tmp
, "%ld\n", val
);
9175 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
9178 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9181 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9184 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9186 return sched_group_rt_period(cgroup_tg(cgrp
));
9190 static struct cftype cpu_files
[] = {
9191 #ifdef CONFIG_FAIR_GROUP_SCHED
9194 .read_uint
= cpu_shares_read_uint
,
9195 .write_uint
= cpu_shares_write_uint
,
9198 #ifdef CONFIG_RT_GROUP_SCHED
9200 .name
= "rt_runtime_us",
9201 .read
= cpu_rt_runtime_read
,
9202 .write
= cpu_rt_runtime_write
,
9205 .name
= "rt_period_us",
9206 .read_uint
= cpu_rt_period_read_uint
,
9207 .write_uint
= cpu_rt_period_write_uint
,
9212 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9214 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9217 struct cgroup_subsys cpu_cgroup_subsys
= {
9219 .create
= cpu_cgroup_create
,
9220 .destroy
= cpu_cgroup_destroy
,
9221 .can_attach
= cpu_cgroup_can_attach
,
9222 .attach
= cpu_cgroup_attach
,
9223 .populate
= cpu_cgroup_populate
,
9224 .subsys_id
= cpu_cgroup_subsys_id
,
9228 #endif /* CONFIG_CGROUP_SCHED */
9230 #ifdef CONFIG_CGROUP_CPUACCT
9233 * CPU accounting code for task groups.
9235 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9236 * (balbir@in.ibm.com).
9239 /* track cpu usage of a group of tasks */
9241 struct cgroup_subsys_state css
;
9242 /* cpuusage holds pointer to a u64-type object on every cpu */
9246 struct cgroup_subsys cpuacct_subsys
;
9248 /* return cpu accounting group corresponding to this container */
9249 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9251 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9252 struct cpuacct
, css
);
9255 /* return cpu accounting group to which this task belongs */
9256 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9258 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9259 struct cpuacct
, css
);
9262 /* create a new cpu accounting group */
9263 static struct cgroup_subsys_state
*cpuacct_create(
9264 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9266 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9269 return ERR_PTR(-ENOMEM
);
9271 ca
->cpuusage
= alloc_percpu(u64
);
9272 if (!ca
->cpuusage
) {
9274 return ERR_PTR(-ENOMEM
);
9280 /* destroy an existing cpu accounting group */
9282 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9284 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9286 free_percpu(ca
->cpuusage
);
9290 /* return total cpu usage (in nanoseconds) of a group */
9291 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9293 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9294 u64 totalcpuusage
= 0;
9297 for_each_possible_cpu(i
) {
9298 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
9301 * Take rq->lock to make 64-bit addition safe on 32-bit
9304 spin_lock_irq(&cpu_rq(i
)->lock
);
9305 totalcpuusage
+= *cpuusage
;
9306 spin_unlock_irq(&cpu_rq(i
)->lock
);
9309 return totalcpuusage
;
9312 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9315 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9324 for_each_possible_cpu(i
) {
9325 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
9327 spin_lock_irq(&cpu_rq(i
)->lock
);
9329 spin_unlock_irq(&cpu_rq(i
)->lock
);
9335 static struct cftype files
[] = {
9338 .read_uint
= cpuusage_read
,
9339 .write_uint
= cpuusage_write
,
9343 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9345 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9349 * charge this task's execution time to its accounting group.
9351 * called with rq->lock held.
9353 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9357 if (!cpuacct_subsys
.active
)
9362 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
9364 *cpuusage
+= cputime
;
9368 struct cgroup_subsys cpuacct_subsys
= {
9370 .create
= cpuacct_create
,
9371 .destroy
= cpuacct_destroy
,
9372 .populate
= cpuacct_populate
,
9373 .subsys_id
= cpuacct_subsys_id
,
9375 #endif /* CONFIG_CGROUP_CPUACCT */