[PATCH] libertas: move channel changing into association framework
[linux-2.6/mini2440.git] / fs / splice.c
blob12f28281d2b1e1f8d1627995f03efcfeb25a4945
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
32 struct partial_page {
33 unsigned int offset;
34 unsigned int len;
38 * Passed to splice_to_pipe
40 struct splice_pipe_desc {
41 struct page **pages; /* page map */
42 struct partial_page *partial; /* pages[] may not be contig */
43 int nr_pages; /* number of pages in map */
44 unsigned int flags; /* splice flags */
45 const struct pipe_buf_operations *ops;/* ops associated with output pipe */
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55 struct pipe_buffer *buf)
57 struct page *page = buf->page;
58 struct address_space *mapping;
60 lock_page(page);
62 mapping = page_mapping(page);
63 if (mapping) {
64 WARN_ON(!PageUptodate(page));
67 * At least for ext2 with nobh option, we need to wait on
68 * writeback completing on this page, since we'll remove it
69 * from the pagecache. Otherwise truncate wont wait on the
70 * page, allowing the disk blocks to be reused by someone else
71 * before we actually wrote our data to them. fs corruption
72 * ensues.
74 wait_on_page_writeback(page);
76 if (PagePrivate(page))
77 try_to_release_page(page, GFP_KERNEL);
80 * If we succeeded in removing the mapping, set LRU flag
81 * and return good.
83 if (remove_mapping(mapping, page)) {
84 buf->flags |= PIPE_BUF_FLAG_LRU;
85 return 0;
90 * Raced with truncate or failed to remove page from current
91 * address space, unlock and return failure.
93 unlock_page(page);
94 return 1;
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
100 page_cache_release(buf->page);
101 buf->flags &= ~PIPE_BUF_FLAG_LRU;
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105 struct pipe_buffer *buf)
107 struct page *page = buf->page;
108 int err;
110 if (!PageUptodate(page)) {
111 lock_page(page);
114 * Page got truncated/unhashed. This will cause a 0-byte
115 * splice, if this is the first page.
117 if (!page->mapping) {
118 err = -ENODATA;
119 goto error;
123 * Uh oh, read-error from disk.
125 if (!PageUptodate(page)) {
126 err = -EIO;
127 goto error;
131 * Page is ok afterall, we are done.
133 unlock_page(page);
136 return 0;
137 error:
138 unlock_page(page);
139 return err;
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
143 .can_merge = 0,
144 .map = generic_pipe_buf_map,
145 .unmap = generic_pipe_buf_unmap,
146 .pin = page_cache_pipe_buf_pin,
147 .release = page_cache_pipe_buf_release,
148 .steal = page_cache_pipe_buf_steal,
149 .get = generic_pipe_buf_get,
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153 struct pipe_buffer *buf)
155 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156 return 1;
158 buf->flags |= PIPE_BUF_FLAG_LRU;
159 return generic_pipe_buf_steal(pipe, buf);
162 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
163 .can_merge = 0,
164 .map = generic_pipe_buf_map,
165 .unmap = generic_pipe_buf_unmap,
166 .pin = generic_pipe_buf_pin,
167 .release = page_cache_pipe_buf_release,
168 .steal = user_page_pipe_buf_steal,
169 .get = generic_pipe_buf_get,
173 * Pipe output worker. This sets up our pipe format with the page cache
174 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
179 int ret, do_wakeup, page_nr;
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
185 if (pipe->inode)
186 mutex_lock(&pipe->inode->i_mutex);
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
196 if (pipe->nrbufs < PIPE_BUFFERS) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
211 if (pipe->inode)
212 do_wakeup = 1;
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
219 break;
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
247 if (pipe->inode)
248 mutex_unlock(&pipe->inode->i_mutex);
250 if (do_wakeup) {
251 smp_mb();
252 if (waitqueue_active(&pipe->wait))
253 wake_up_interruptible(&pipe->wait);
254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
257 while (page_nr < spd->nr_pages)
258 page_cache_release(spd->pages[page_nr++]);
260 return ret;
263 static int
264 __generic_file_splice_read(struct file *in, loff_t *ppos,
265 struct pipe_inode_info *pipe, size_t len,
266 unsigned int flags)
268 struct address_space *mapping = in->f_mapping;
269 unsigned int loff, nr_pages;
270 struct page *pages[PIPE_BUFFERS];
271 struct partial_page partial[PIPE_BUFFERS];
272 struct page *page;
273 pgoff_t index, end_index;
274 loff_t isize;
275 size_t total_len;
276 int error, page_nr;
277 struct splice_pipe_desc spd = {
278 .pages = pages,
279 .partial = partial,
280 .flags = flags,
281 .ops = &page_cache_pipe_buf_ops,
284 index = *ppos >> PAGE_CACHE_SHIFT;
285 loff = *ppos & ~PAGE_CACHE_MASK;
286 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
288 if (nr_pages > PIPE_BUFFERS)
289 nr_pages = PIPE_BUFFERS;
292 * Don't try to 2nd guess the read-ahead logic, call into
293 * page_cache_readahead() like the page cache reads would do.
295 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
298 * Now fill in the holes:
300 error = 0;
301 total_len = 0;
304 * Lookup the (hopefully) full range of pages we need.
306 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
309 * If find_get_pages_contig() returned fewer pages than we needed,
310 * allocate the rest.
312 index += spd.nr_pages;
313 while (spd.nr_pages < nr_pages) {
315 * Page could be there, find_get_pages_contig() breaks on
316 * the first hole.
318 page = find_get_page(mapping, index);
319 if (!page) {
321 * Make sure the read-ahead engine is notified
322 * about this failure.
324 handle_ra_miss(mapping, &in->f_ra, index);
327 * page didn't exist, allocate one.
329 page = page_cache_alloc_cold(mapping);
330 if (!page)
331 break;
333 error = add_to_page_cache_lru(page, mapping, index,
334 GFP_KERNEL);
335 if (unlikely(error)) {
336 page_cache_release(page);
337 if (error == -EEXIST)
338 continue;
339 break;
342 * add_to_page_cache() locks the page, unlock it
343 * to avoid convoluting the logic below even more.
345 unlock_page(page);
348 pages[spd.nr_pages++] = page;
349 index++;
353 * Now loop over the map and see if we need to start IO on any
354 * pages, fill in the partial map, etc.
356 index = *ppos >> PAGE_CACHE_SHIFT;
357 nr_pages = spd.nr_pages;
358 spd.nr_pages = 0;
359 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
360 unsigned int this_len;
362 if (!len)
363 break;
366 * this_len is the max we'll use from this page
368 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
369 page = pages[page_nr];
372 * If the page isn't uptodate, we may need to start io on it
374 if (!PageUptodate(page)) {
376 * If in nonblock mode then dont block on waiting
377 * for an in-flight io page
379 if (flags & SPLICE_F_NONBLOCK) {
380 if (TestSetPageLocked(page))
381 break;
382 } else
383 lock_page(page);
386 * page was truncated, stop here. if this isn't the
387 * first page, we'll just complete what we already
388 * added
390 if (!page->mapping) {
391 unlock_page(page);
392 break;
395 * page was already under io and is now done, great
397 if (PageUptodate(page)) {
398 unlock_page(page);
399 goto fill_it;
403 * need to read in the page
405 error = mapping->a_ops->readpage(in, page);
406 if (unlikely(error)) {
408 * We really should re-lookup the page here,
409 * but it complicates things a lot. Instead
410 * lets just do what we already stored, and
411 * we'll get it the next time we are called.
413 if (error == AOP_TRUNCATED_PAGE)
414 error = 0;
416 break;
420 * i_size must be checked after ->readpage().
422 isize = i_size_read(mapping->host);
423 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
424 if (unlikely(!isize || index > end_index))
425 break;
428 * if this is the last page, see if we need to shrink
429 * the length and stop
431 if (end_index == index) {
432 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
433 if (total_len + loff > isize)
434 break;
436 * force quit after adding this page
438 len = this_len;
439 this_len = min(this_len, loff);
440 loff = 0;
443 fill_it:
444 partial[page_nr].offset = loff;
445 partial[page_nr].len = this_len;
446 len -= this_len;
447 total_len += this_len;
448 loff = 0;
449 spd.nr_pages++;
450 index++;
454 * Release any pages at the end, if we quit early. 'i' is how far
455 * we got, 'nr_pages' is how many pages are in the map.
457 while (page_nr < nr_pages)
458 page_cache_release(pages[page_nr++]);
460 if (spd.nr_pages)
461 return splice_to_pipe(pipe, &spd);
463 return error;
467 * generic_file_splice_read - splice data from file to a pipe
468 * @in: file to splice from
469 * @pipe: pipe to splice to
470 * @len: number of bytes to splice
471 * @flags: splice modifier flags
473 * Will read pages from given file and fill them into a pipe.
475 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
476 struct pipe_inode_info *pipe, size_t len,
477 unsigned int flags)
479 ssize_t spliced;
480 int ret;
482 ret = 0;
483 spliced = 0;
485 while (len) {
486 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
488 if (ret < 0)
489 break;
490 else if (!ret) {
491 if (spliced)
492 break;
493 if (flags & SPLICE_F_NONBLOCK) {
494 ret = -EAGAIN;
495 break;
499 *ppos += ret;
500 len -= ret;
501 spliced += ret;
504 if (spliced)
505 return spliced;
507 return ret;
510 EXPORT_SYMBOL(generic_file_splice_read);
513 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
514 * using sendpage(). Return the number of bytes sent.
516 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
517 struct pipe_buffer *buf, struct splice_desc *sd)
519 struct file *file = sd->file;
520 loff_t pos = sd->pos;
521 int ret, more;
523 ret = buf->ops->pin(pipe, buf);
524 if (!ret) {
525 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
527 ret = file->f_op->sendpage(file, buf->page, buf->offset,
528 sd->len, &pos, more);
531 return ret;
535 * This is a little more tricky than the file -> pipe splicing. There are
536 * basically three cases:
538 * - Destination page already exists in the address space and there
539 * are users of it. For that case we have no other option that
540 * copying the data. Tough luck.
541 * - Destination page already exists in the address space, but there
542 * are no users of it. Make sure it's uptodate, then drop it. Fall
543 * through to last case.
544 * - Destination page does not exist, we can add the pipe page to
545 * the page cache and avoid the copy.
547 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
548 * sd->flags), we attempt to migrate pages from the pipe to the output
549 * file address space page cache. This is possible if no one else has
550 * the pipe page referenced outside of the pipe and page cache. If
551 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
552 * a new page in the output file page cache and fill/dirty that.
554 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
555 struct splice_desc *sd)
557 struct file *file = sd->file;
558 struct address_space *mapping = file->f_mapping;
559 unsigned int offset, this_len;
560 struct page *page;
561 pgoff_t index;
562 int ret;
565 * make sure the data in this buffer is uptodate
567 ret = buf->ops->pin(pipe, buf);
568 if (unlikely(ret))
569 return ret;
571 index = sd->pos >> PAGE_CACHE_SHIFT;
572 offset = sd->pos & ~PAGE_CACHE_MASK;
574 this_len = sd->len;
575 if (this_len + offset > PAGE_CACHE_SIZE)
576 this_len = PAGE_CACHE_SIZE - offset;
578 find_page:
579 page = find_lock_page(mapping, index);
580 if (!page) {
581 ret = -ENOMEM;
582 page = page_cache_alloc_cold(mapping);
583 if (unlikely(!page))
584 goto out_ret;
587 * This will also lock the page
589 ret = add_to_page_cache_lru(page, mapping, index,
590 GFP_KERNEL);
591 if (unlikely(ret))
592 goto out;
595 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
596 if (unlikely(ret)) {
597 loff_t isize = i_size_read(mapping->host);
599 if (ret != AOP_TRUNCATED_PAGE)
600 unlock_page(page);
601 page_cache_release(page);
602 if (ret == AOP_TRUNCATED_PAGE)
603 goto find_page;
606 * prepare_write() may have instantiated a few blocks
607 * outside i_size. Trim these off again.
609 if (sd->pos + this_len > isize)
610 vmtruncate(mapping->host, isize);
612 goto out_ret;
615 if (buf->page != page) {
617 * Careful, ->map() uses KM_USER0!
619 char *src = buf->ops->map(pipe, buf, 1);
620 char *dst = kmap_atomic(page, KM_USER1);
622 memcpy(dst + offset, src + buf->offset, this_len);
623 flush_dcache_page(page);
624 kunmap_atomic(dst, KM_USER1);
625 buf->ops->unmap(pipe, buf, src);
628 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
629 if (ret) {
630 if (ret == AOP_TRUNCATED_PAGE) {
631 page_cache_release(page);
632 goto find_page;
634 if (ret < 0)
635 goto out;
637 * Partial write has happened, so 'ret' already initialized by
638 * number of bytes written, Where is nothing we have to do here.
640 } else
641 ret = this_len;
643 * Return the number of bytes written and mark page as
644 * accessed, we are now done!
646 mark_page_accessed(page);
647 balance_dirty_pages_ratelimited(mapping);
648 out:
649 page_cache_release(page);
650 unlock_page(page);
651 out_ret:
652 return ret;
656 * Pipe input worker. Most of this logic works like a regular pipe, the
657 * key here is the 'actor' worker passed in that actually moves the data
658 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
660 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
661 struct file *out, loff_t *ppos, size_t len,
662 unsigned int flags, splice_actor *actor)
664 int ret, do_wakeup, err;
665 struct splice_desc sd;
667 ret = 0;
668 do_wakeup = 0;
670 sd.total_len = len;
671 sd.flags = flags;
672 sd.file = out;
673 sd.pos = *ppos;
675 for (;;) {
676 if (pipe->nrbufs) {
677 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
678 const struct pipe_buf_operations *ops = buf->ops;
680 sd.len = buf->len;
681 if (sd.len > sd.total_len)
682 sd.len = sd.total_len;
684 err = actor(pipe, buf, &sd);
685 if (err <= 0) {
686 if (!ret && err != -ENODATA)
687 ret = err;
689 break;
692 ret += err;
693 buf->offset += err;
694 buf->len -= err;
696 sd.len -= err;
697 sd.pos += err;
698 sd.total_len -= err;
699 if (sd.len)
700 continue;
702 if (!buf->len) {
703 buf->ops = NULL;
704 ops->release(pipe, buf);
705 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
706 pipe->nrbufs--;
707 if (pipe->inode)
708 do_wakeup = 1;
711 if (!sd.total_len)
712 break;
715 if (pipe->nrbufs)
716 continue;
717 if (!pipe->writers)
718 break;
719 if (!pipe->waiting_writers) {
720 if (ret)
721 break;
724 if (flags & SPLICE_F_NONBLOCK) {
725 if (!ret)
726 ret = -EAGAIN;
727 break;
730 if (signal_pending(current)) {
731 if (!ret)
732 ret = -ERESTARTSYS;
733 break;
736 if (do_wakeup) {
737 smp_mb();
738 if (waitqueue_active(&pipe->wait))
739 wake_up_interruptible_sync(&pipe->wait);
740 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
741 do_wakeup = 0;
744 pipe_wait(pipe);
747 if (do_wakeup) {
748 smp_mb();
749 if (waitqueue_active(&pipe->wait))
750 wake_up_interruptible(&pipe->wait);
751 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
754 return ret;
756 EXPORT_SYMBOL(__splice_from_pipe);
758 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
759 loff_t *ppos, size_t len, unsigned int flags,
760 splice_actor *actor)
762 ssize_t ret;
763 struct inode *inode = out->f_mapping->host;
766 * The actor worker might be calling ->prepare_write and
767 * ->commit_write. Most of the time, these expect i_mutex to
768 * be held. Since this may result in an ABBA deadlock with
769 * pipe->inode, we have to order lock acquiry here.
771 inode_double_lock(inode, pipe->inode);
772 ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
773 inode_double_unlock(inode, pipe->inode);
775 return ret;
779 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
780 * @pipe: pipe info
781 * @out: file to write to
782 * @len: number of bytes to splice
783 * @flags: splice modifier flags
785 * Will either move or copy pages (determined by @flags options) from
786 * the given pipe inode to the given file. The caller is responsible
787 * for acquiring i_mutex on both inodes.
790 ssize_t
791 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
792 loff_t *ppos, size_t len, unsigned int flags)
794 struct address_space *mapping = out->f_mapping;
795 struct inode *inode = mapping->host;
796 ssize_t ret;
797 int err;
799 err = remove_suid(out->f_path.dentry);
800 if (unlikely(err))
801 return err;
803 ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
804 if (ret > 0) {
805 *ppos += ret;
808 * If file or inode is SYNC and we actually wrote some data,
809 * sync it.
811 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
812 err = generic_osync_inode(inode, mapping,
813 OSYNC_METADATA|OSYNC_DATA);
815 if (err)
816 ret = err;
820 return ret;
823 EXPORT_SYMBOL(generic_file_splice_write_nolock);
826 * generic_file_splice_write - splice data from a pipe to a file
827 * @pipe: pipe info
828 * @out: file to write to
829 * @len: number of bytes to splice
830 * @flags: splice modifier flags
832 * Will either move or copy pages (determined by @flags options) from
833 * the given pipe inode to the given file.
836 ssize_t
837 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
838 loff_t *ppos, size_t len, unsigned int flags)
840 struct address_space *mapping = out->f_mapping;
841 struct inode *inode = mapping->host;
842 ssize_t ret;
843 int err;
845 err = should_remove_suid(out->f_path.dentry);
846 if (unlikely(err)) {
847 mutex_lock(&inode->i_mutex);
848 err = __remove_suid(out->f_path.dentry, err);
849 mutex_unlock(&inode->i_mutex);
850 if (err)
851 return err;
854 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
855 if (ret > 0) {
856 *ppos += ret;
859 * If file or inode is SYNC and we actually wrote some data,
860 * sync it.
862 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
863 mutex_lock(&inode->i_mutex);
864 err = generic_osync_inode(inode, mapping,
865 OSYNC_METADATA|OSYNC_DATA);
866 mutex_unlock(&inode->i_mutex);
868 if (err)
869 ret = err;
873 return ret;
876 EXPORT_SYMBOL(generic_file_splice_write);
879 * generic_splice_sendpage - splice data from a pipe to a socket
880 * @inode: pipe inode
881 * @out: socket to write to
882 * @len: number of bytes to splice
883 * @flags: splice modifier flags
885 * Will send @len bytes from the pipe to a network socket. No data copying
886 * is involved.
889 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
890 loff_t *ppos, size_t len, unsigned int flags)
892 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
895 EXPORT_SYMBOL(generic_splice_sendpage);
898 * Attempt to initiate a splice from pipe to file.
900 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
901 loff_t *ppos, size_t len, unsigned int flags)
903 int ret;
905 if (unlikely(!out->f_op || !out->f_op->splice_write))
906 return -EINVAL;
908 if (unlikely(!(out->f_mode & FMODE_WRITE)))
909 return -EBADF;
911 ret = rw_verify_area(WRITE, out, ppos, len);
912 if (unlikely(ret < 0))
913 return ret;
915 return out->f_op->splice_write(pipe, out, ppos, len, flags);
919 * Attempt to initiate a splice from a file to a pipe.
921 static long do_splice_to(struct file *in, loff_t *ppos,
922 struct pipe_inode_info *pipe, size_t len,
923 unsigned int flags)
925 loff_t isize, left;
926 int ret;
928 if (unlikely(!in->f_op || !in->f_op->splice_read))
929 return -EINVAL;
931 if (unlikely(!(in->f_mode & FMODE_READ)))
932 return -EBADF;
934 ret = rw_verify_area(READ, in, ppos, len);
935 if (unlikely(ret < 0))
936 return ret;
938 isize = i_size_read(in->f_mapping->host);
939 if (unlikely(*ppos >= isize))
940 return 0;
942 left = isize - *ppos;
943 if (unlikely(left < len))
944 len = left;
946 return in->f_op->splice_read(in, ppos, pipe, len, flags);
949 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
950 size_t len, unsigned int flags)
952 struct pipe_inode_info *pipe;
953 long ret, bytes;
954 loff_t out_off;
955 umode_t i_mode;
956 int i;
959 * We require the input being a regular file, as we don't want to
960 * randomly drop data for eg socket -> socket splicing. Use the
961 * piped splicing for that!
963 i_mode = in->f_path.dentry->d_inode->i_mode;
964 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
965 return -EINVAL;
968 * neither in nor out is a pipe, setup an internal pipe attached to
969 * 'out' and transfer the wanted data from 'in' to 'out' through that
971 pipe = current->splice_pipe;
972 if (unlikely(!pipe)) {
973 pipe = alloc_pipe_info(NULL);
974 if (!pipe)
975 return -ENOMEM;
978 * We don't have an immediate reader, but we'll read the stuff
979 * out of the pipe right after the splice_to_pipe(). So set
980 * PIPE_READERS appropriately.
982 pipe->readers = 1;
984 current->splice_pipe = pipe;
988 * Do the splice.
990 ret = 0;
991 bytes = 0;
992 out_off = 0;
994 while (len) {
995 size_t read_len, max_read_len;
998 * Do at most PIPE_BUFFERS pages worth of transfer:
1000 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1002 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
1003 if (unlikely(ret < 0))
1004 goto out_release;
1006 read_len = ret;
1009 * NOTE: nonblocking mode only applies to the input. We
1010 * must not do the output in nonblocking mode as then we
1011 * could get stuck data in the internal pipe:
1013 ret = do_splice_from(pipe, out, &out_off, read_len,
1014 flags & ~SPLICE_F_NONBLOCK);
1015 if (unlikely(ret < 0))
1016 goto out_release;
1018 bytes += ret;
1019 len -= ret;
1022 * In nonblocking mode, if we got back a short read then
1023 * that was due to either an IO error or due to the
1024 * pagecache entry not being there. In the IO error case
1025 * the _next_ splice attempt will produce a clean IO error
1026 * return value (not a short read), so in both cases it's
1027 * correct to break out of the loop here:
1029 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1030 break;
1033 pipe->nrbufs = pipe->curbuf = 0;
1035 return bytes;
1037 out_release:
1039 * If we did an incomplete transfer we must release
1040 * the pipe buffers in question:
1042 for (i = 0; i < PIPE_BUFFERS; i++) {
1043 struct pipe_buffer *buf = pipe->bufs + i;
1045 if (buf->ops) {
1046 buf->ops->release(pipe, buf);
1047 buf->ops = NULL;
1050 pipe->nrbufs = pipe->curbuf = 0;
1053 * If we transferred some data, return the number of bytes:
1055 if (bytes > 0)
1056 return bytes;
1058 return ret;
1061 EXPORT_SYMBOL(do_splice_direct);
1064 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1065 * location, so checking ->i_pipe is not enough to verify that this is a
1066 * pipe.
1068 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1070 if (S_ISFIFO(inode->i_mode))
1071 return inode->i_pipe;
1073 return NULL;
1077 * Determine where to splice to/from.
1079 static long do_splice(struct file *in, loff_t __user *off_in,
1080 struct file *out, loff_t __user *off_out,
1081 size_t len, unsigned int flags)
1083 struct pipe_inode_info *pipe;
1084 loff_t offset, *off;
1085 long ret;
1087 pipe = pipe_info(in->f_path.dentry->d_inode);
1088 if (pipe) {
1089 if (off_in)
1090 return -ESPIPE;
1091 if (off_out) {
1092 if (out->f_op->llseek == no_llseek)
1093 return -EINVAL;
1094 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1095 return -EFAULT;
1096 off = &offset;
1097 } else
1098 off = &out->f_pos;
1100 ret = do_splice_from(pipe, out, off, len, flags);
1102 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1103 ret = -EFAULT;
1105 return ret;
1108 pipe = pipe_info(out->f_path.dentry->d_inode);
1109 if (pipe) {
1110 if (off_out)
1111 return -ESPIPE;
1112 if (off_in) {
1113 if (in->f_op->llseek == no_llseek)
1114 return -EINVAL;
1115 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1116 return -EFAULT;
1117 off = &offset;
1118 } else
1119 off = &in->f_pos;
1121 ret = do_splice_to(in, off, pipe, len, flags);
1123 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1124 ret = -EFAULT;
1126 return ret;
1129 return -EINVAL;
1133 * Map an iov into an array of pages and offset/length tupples. With the
1134 * partial_page structure, we can map several non-contiguous ranges into
1135 * our ones pages[] map instead of splitting that operation into pieces.
1136 * Could easily be exported as a generic helper for other users, in which
1137 * case one would probably want to add a 'max_nr_pages' parameter as well.
1139 static int get_iovec_page_array(const struct iovec __user *iov,
1140 unsigned int nr_vecs, struct page **pages,
1141 struct partial_page *partial, int aligned)
1143 int buffers = 0, error = 0;
1146 * It's ok to take the mmap_sem for reading, even
1147 * across a "get_user()".
1149 down_read(&current->mm->mmap_sem);
1151 while (nr_vecs) {
1152 unsigned long off, npages;
1153 void __user *base;
1154 size_t len;
1155 int i;
1158 * Get user address base and length for this iovec.
1160 error = get_user(base, &iov->iov_base);
1161 if (unlikely(error))
1162 break;
1163 error = get_user(len, &iov->iov_len);
1164 if (unlikely(error))
1165 break;
1168 * Sanity check this iovec. 0 read succeeds.
1170 if (unlikely(!len))
1171 break;
1172 error = -EFAULT;
1173 if (unlikely(!base))
1174 break;
1177 * Get this base offset and number of pages, then map
1178 * in the user pages.
1180 off = (unsigned long) base & ~PAGE_MASK;
1183 * If asked for alignment, the offset must be zero and the
1184 * length a multiple of the PAGE_SIZE.
1186 error = -EINVAL;
1187 if (aligned && (off || len & ~PAGE_MASK))
1188 break;
1190 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1191 if (npages > PIPE_BUFFERS - buffers)
1192 npages = PIPE_BUFFERS - buffers;
1194 error = get_user_pages(current, current->mm,
1195 (unsigned long) base, npages, 0, 0,
1196 &pages[buffers], NULL);
1198 if (unlikely(error <= 0))
1199 break;
1202 * Fill this contiguous range into the partial page map.
1204 for (i = 0; i < error; i++) {
1205 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1207 partial[buffers].offset = off;
1208 partial[buffers].len = plen;
1210 off = 0;
1211 len -= plen;
1212 buffers++;
1216 * We didn't complete this iov, stop here since it probably
1217 * means we have to move some of this into a pipe to
1218 * be able to continue.
1220 if (len)
1221 break;
1224 * Don't continue if we mapped fewer pages than we asked for,
1225 * or if we mapped the max number of pages that we have
1226 * room for.
1228 if (error < npages || buffers == PIPE_BUFFERS)
1229 break;
1231 nr_vecs--;
1232 iov++;
1235 up_read(&current->mm->mmap_sem);
1237 if (buffers)
1238 return buffers;
1240 return error;
1244 * vmsplice splices a user address range into a pipe. It can be thought of
1245 * as splice-from-memory, where the regular splice is splice-from-file (or
1246 * to file). In both cases the output is a pipe, naturally.
1248 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1249 * not the other way around. Splicing from user memory is a simple operation
1250 * that can be supported without any funky alignment restrictions or nasty
1251 * vm tricks. We simply map in the user memory and fill them into a pipe.
1252 * The reverse isn't quite as easy, though. There are two possible solutions
1253 * for that:
1255 * - memcpy() the data internally, at which point we might as well just
1256 * do a regular read() on the buffer anyway.
1257 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1258 * has restriction limitations on both ends of the pipe).
1260 * Alas, it isn't here.
1263 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1264 unsigned long nr_segs, unsigned int flags)
1266 struct pipe_inode_info *pipe;
1267 struct page *pages[PIPE_BUFFERS];
1268 struct partial_page partial[PIPE_BUFFERS];
1269 struct splice_pipe_desc spd = {
1270 .pages = pages,
1271 .partial = partial,
1272 .flags = flags,
1273 .ops = &user_page_pipe_buf_ops,
1276 pipe = pipe_info(file->f_path.dentry->d_inode);
1277 if (!pipe)
1278 return -EBADF;
1279 if (unlikely(nr_segs > UIO_MAXIOV))
1280 return -EINVAL;
1281 else if (unlikely(!nr_segs))
1282 return 0;
1284 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1285 flags & SPLICE_F_GIFT);
1286 if (spd.nr_pages <= 0)
1287 return spd.nr_pages;
1289 return splice_to_pipe(pipe, &spd);
1292 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1293 unsigned long nr_segs, unsigned int flags)
1295 struct file *file;
1296 long error;
1297 int fput;
1299 error = -EBADF;
1300 file = fget_light(fd, &fput);
1301 if (file) {
1302 if (file->f_mode & FMODE_WRITE)
1303 error = do_vmsplice(file, iov, nr_segs, flags);
1305 fput_light(file, fput);
1308 return error;
1311 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1312 int fd_out, loff_t __user *off_out,
1313 size_t len, unsigned int flags)
1315 long error;
1316 struct file *in, *out;
1317 int fput_in, fput_out;
1319 if (unlikely(!len))
1320 return 0;
1322 error = -EBADF;
1323 in = fget_light(fd_in, &fput_in);
1324 if (in) {
1325 if (in->f_mode & FMODE_READ) {
1326 out = fget_light(fd_out, &fput_out);
1327 if (out) {
1328 if (out->f_mode & FMODE_WRITE)
1329 error = do_splice(in, off_in,
1330 out, off_out,
1331 len, flags);
1332 fput_light(out, fput_out);
1336 fput_light(in, fput_in);
1339 return error;
1343 * Make sure there's data to read. Wait for input if we can, otherwise
1344 * return an appropriate error.
1346 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1348 int ret;
1351 * Check ->nrbufs without the inode lock first. This function
1352 * is speculative anyways, so missing one is ok.
1354 if (pipe->nrbufs)
1355 return 0;
1357 ret = 0;
1358 mutex_lock(&pipe->inode->i_mutex);
1360 while (!pipe->nrbufs) {
1361 if (signal_pending(current)) {
1362 ret = -ERESTARTSYS;
1363 break;
1365 if (!pipe->writers)
1366 break;
1367 if (!pipe->waiting_writers) {
1368 if (flags & SPLICE_F_NONBLOCK) {
1369 ret = -EAGAIN;
1370 break;
1373 pipe_wait(pipe);
1376 mutex_unlock(&pipe->inode->i_mutex);
1377 return ret;
1381 * Make sure there's writeable room. Wait for room if we can, otherwise
1382 * return an appropriate error.
1384 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1386 int ret;
1389 * Check ->nrbufs without the inode lock first. This function
1390 * is speculative anyways, so missing one is ok.
1392 if (pipe->nrbufs < PIPE_BUFFERS)
1393 return 0;
1395 ret = 0;
1396 mutex_lock(&pipe->inode->i_mutex);
1398 while (pipe->nrbufs >= PIPE_BUFFERS) {
1399 if (!pipe->readers) {
1400 send_sig(SIGPIPE, current, 0);
1401 ret = -EPIPE;
1402 break;
1404 if (flags & SPLICE_F_NONBLOCK) {
1405 ret = -EAGAIN;
1406 break;
1408 if (signal_pending(current)) {
1409 ret = -ERESTARTSYS;
1410 break;
1412 pipe->waiting_writers++;
1413 pipe_wait(pipe);
1414 pipe->waiting_writers--;
1417 mutex_unlock(&pipe->inode->i_mutex);
1418 return ret;
1422 * Link contents of ipipe to opipe.
1424 static int link_pipe(struct pipe_inode_info *ipipe,
1425 struct pipe_inode_info *opipe,
1426 size_t len, unsigned int flags)
1428 struct pipe_buffer *ibuf, *obuf;
1429 int ret = 0, i = 0, nbuf;
1432 * Potential ABBA deadlock, work around it by ordering lock
1433 * grabbing by inode address. Otherwise two different processes
1434 * could deadlock (one doing tee from A -> B, the other from B -> A).
1436 inode_double_lock(ipipe->inode, opipe->inode);
1438 do {
1439 if (!opipe->readers) {
1440 send_sig(SIGPIPE, current, 0);
1441 if (!ret)
1442 ret = -EPIPE;
1443 break;
1447 * If we have iterated all input buffers or ran out of
1448 * output room, break.
1450 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1451 break;
1453 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1454 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1457 * Get a reference to this pipe buffer,
1458 * so we can copy the contents over.
1460 ibuf->ops->get(ipipe, ibuf);
1462 obuf = opipe->bufs + nbuf;
1463 *obuf = *ibuf;
1466 * Don't inherit the gift flag, we need to
1467 * prevent multiple steals of this page.
1469 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1471 if (obuf->len > len)
1472 obuf->len = len;
1474 opipe->nrbufs++;
1475 ret += obuf->len;
1476 len -= obuf->len;
1477 i++;
1478 } while (len);
1480 inode_double_unlock(ipipe->inode, opipe->inode);
1483 * If we put data in the output pipe, wakeup any potential readers.
1485 if (ret > 0) {
1486 smp_mb();
1487 if (waitqueue_active(&opipe->wait))
1488 wake_up_interruptible(&opipe->wait);
1489 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1492 return ret;
1496 * This is a tee(1) implementation that works on pipes. It doesn't copy
1497 * any data, it simply references the 'in' pages on the 'out' pipe.
1498 * The 'flags' used are the SPLICE_F_* variants, currently the only
1499 * applicable one is SPLICE_F_NONBLOCK.
1501 static long do_tee(struct file *in, struct file *out, size_t len,
1502 unsigned int flags)
1504 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1505 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1506 int ret = -EINVAL;
1509 * Duplicate the contents of ipipe to opipe without actually
1510 * copying the data.
1512 if (ipipe && opipe && ipipe != opipe) {
1514 * Keep going, unless we encounter an error. The ipipe/opipe
1515 * ordering doesn't really matter.
1517 ret = link_ipipe_prep(ipipe, flags);
1518 if (!ret) {
1519 ret = link_opipe_prep(opipe, flags);
1520 if (!ret) {
1521 ret = link_pipe(ipipe, opipe, len, flags);
1522 if (!ret && (flags & SPLICE_F_NONBLOCK))
1523 ret = -EAGAIN;
1528 return ret;
1531 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1533 struct file *in;
1534 int error, fput_in;
1536 if (unlikely(!len))
1537 return 0;
1539 error = -EBADF;
1540 in = fget_light(fdin, &fput_in);
1541 if (in) {
1542 if (in->f_mode & FMODE_READ) {
1543 int fput_out;
1544 struct file *out = fget_light(fdout, &fput_out);
1546 if (out) {
1547 if (out->f_mode & FMODE_WRITE)
1548 error = do_tee(in, out, len, flags);
1549 fput_light(out, fput_out);
1552 fput_light(in, fput_in);
1555 return error;