Driver core: fix race in __device_release_driver
[linux-2.6/mini2440.git] / mm / memory.c
blob4b0144b24c123681dcd9e95e715ae56b009355d7
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/tlb.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr;
66 struct page *mem_map;
68 EXPORT_SYMBOL(max_mapnr);
69 EXPORT_SYMBOL(mem_map);
70 #endif
72 unsigned long num_physpages;
74 * A number of key systems in x86 including ioremap() rely on the assumption
75 * that high_memory defines the upper bound on direct map memory, then end
76 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78 * and ZONE_HIGHMEM.
80 void * high_memory;
82 EXPORT_SYMBOL(num_physpages);
83 EXPORT_SYMBOL(high_memory);
85 int randomize_va_space __read_mostly = 1;
87 static int __init disable_randmaps(char *s)
89 randomize_va_space = 0;
90 return 1;
92 __setup("norandmaps", disable_randmaps);
96 * If a p?d_bad entry is found while walking page tables, report
97 * the error, before resetting entry to p?d_none. Usually (but
98 * very seldom) called out from the p?d_none_or_clear_bad macros.
101 void pgd_clear_bad(pgd_t *pgd)
103 pgd_ERROR(*pgd);
104 pgd_clear(pgd);
107 void pud_clear_bad(pud_t *pud)
109 pud_ERROR(*pud);
110 pud_clear(pud);
113 void pmd_clear_bad(pmd_t *pmd)
115 pmd_ERROR(*pmd);
116 pmd_clear(pmd);
120 * Note: this doesn't free the actual pages themselves. That
121 * has been handled earlier when unmapping all the memory regions.
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
125 struct page *page = pmd_page(*pmd);
126 pmd_clear(pmd);
127 pte_lock_deinit(page);
128 pte_free_tlb(tlb, page);
129 dec_zone_page_state(page, NR_PAGETABLE);
130 tlb->mm->nr_ptes--;
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134 unsigned long addr, unsigned long end,
135 unsigned long floor, unsigned long ceiling)
137 pmd_t *pmd;
138 unsigned long next;
139 unsigned long start;
141 start = addr;
142 pmd = pmd_offset(pud, addr);
143 do {
144 next = pmd_addr_end(addr, end);
145 if (pmd_none_or_clear_bad(pmd))
146 continue;
147 free_pte_range(tlb, pmd);
148 } while (pmd++, addr = next, addr != end);
150 start &= PUD_MASK;
151 if (start < floor)
152 return;
153 if (ceiling) {
154 ceiling &= PUD_MASK;
155 if (!ceiling)
156 return;
158 if (end - 1 > ceiling - 1)
159 return;
161 pmd = pmd_offset(pud, start);
162 pud_clear(pud);
163 pmd_free_tlb(tlb, pmd);
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167 unsigned long addr, unsigned long end,
168 unsigned long floor, unsigned long ceiling)
170 pud_t *pud;
171 unsigned long next;
172 unsigned long start;
174 start = addr;
175 pud = pud_offset(pgd, addr);
176 do {
177 next = pud_addr_end(addr, end);
178 if (pud_none_or_clear_bad(pud))
179 continue;
180 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181 } while (pud++, addr = next, addr != end);
183 start &= PGDIR_MASK;
184 if (start < floor)
185 return;
186 if (ceiling) {
187 ceiling &= PGDIR_MASK;
188 if (!ceiling)
189 return;
191 if (end - 1 > ceiling - 1)
192 return;
194 pud = pud_offset(pgd, start);
195 pgd_clear(pgd);
196 pud_free_tlb(tlb, pud);
200 * This function frees user-level page tables of a process.
202 * Must be called with pagetable lock held.
204 void free_pgd_range(struct mmu_gather **tlb,
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
208 pgd_t *pgd;
209 unsigned long next;
210 unsigned long start;
213 * The next few lines have given us lots of grief...
215 * Why are we testing PMD* at this top level? Because often
216 * there will be no work to do at all, and we'd prefer not to
217 * go all the way down to the bottom just to discover that.
219 * Why all these "- 1"s? Because 0 represents both the bottom
220 * of the address space and the top of it (using -1 for the
221 * top wouldn't help much: the masks would do the wrong thing).
222 * The rule is that addr 0 and floor 0 refer to the bottom of
223 * the address space, but end 0 and ceiling 0 refer to the top
224 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 * that end 0 case should be mythical).
227 * Wherever addr is brought up or ceiling brought down, we must
228 * be careful to reject "the opposite 0" before it confuses the
229 * subsequent tests. But what about where end is brought down
230 * by PMD_SIZE below? no, end can't go down to 0 there.
232 * Whereas we round start (addr) and ceiling down, by different
233 * masks at different levels, in order to test whether a table
234 * now has no other vmas using it, so can be freed, we don't
235 * bother to round floor or end up - the tests don't need that.
238 addr &= PMD_MASK;
239 if (addr < floor) {
240 addr += PMD_SIZE;
241 if (!addr)
242 return;
244 if (ceiling) {
245 ceiling &= PMD_MASK;
246 if (!ceiling)
247 return;
249 if (end - 1 > ceiling - 1)
250 end -= PMD_SIZE;
251 if (addr > end - 1)
252 return;
254 start = addr;
255 pgd = pgd_offset((*tlb)->mm, addr);
256 do {
257 next = pgd_addr_end(addr, end);
258 if (pgd_none_or_clear_bad(pgd))
259 continue;
260 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261 } while (pgd++, addr = next, addr != end);
264 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
265 unsigned long floor, unsigned long ceiling)
267 while (vma) {
268 struct vm_area_struct *next = vma->vm_next;
269 unsigned long addr = vma->vm_start;
272 * Hide vma from rmap and vmtruncate before freeing pgtables
274 anon_vma_unlink(vma);
275 unlink_file_vma(vma);
277 if (is_vm_hugetlb_page(vma)) {
278 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
279 floor, next? next->vm_start: ceiling);
280 } else {
282 * Optimization: gather nearby vmas into one call down
284 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
285 && !is_vm_hugetlb_page(next)) {
286 vma = next;
287 next = vma->vm_next;
288 anon_vma_unlink(vma);
289 unlink_file_vma(vma);
291 free_pgd_range(tlb, addr, vma->vm_end,
292 floor, next? next->vm_start: ceiling);
294 vma = next;
298 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
300 struct page *new = pte_alloc_one(mm, address);
301 if (!new)
302 return -ENOMEM;
304 pte_lock_init(new);
305 spin_lock(&mm->page_table_lock);
306 if (pmd_present(*pmd)) { /* Another has populated it */
307 pte_lock_deinit(new);
308 pte_free(new);
309 } else {
310 mm->nr_ptes++;
311 inc_zone_page_state(new, NR_PAGETABLE);
312 pmd_populate(mm, pmd, new);
314 spin_unlock(&mm->page_table_lock);
315 return 0;
318 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
320 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
321 if (!new)
322 return -ENOMEM;
324 spin_lock(&init_mm.page_table_lock);
325 if (pmd_present(*pmd)) /* Another has populated it */
326 pte_free_kernel(new);
327 else
328 pmd_populate_kernel(&init_mm, pmd, new);
329 spin_unlock(&init_mm.page_table_lock);
330 return 0;
333 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
335 if (file_rss)
336 add_mm_counter(mm, file_rss, file_rss);
337 if (anon_rss)
338 add_mm_counter(mm, anon_rss, anon_rss);
342 * This function is called to print an error when a bad pte
343 * is found. For example, we might have a PFN-mapped pte in
344 * a region that doesn't allow it.
346 * The calling function must still handle the error.
348 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
350 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
351 "vm_flags = %lx, vaddr = %lx\n",
352 (long long)pte_val(pte),
353 (vma->vm_mm == current->mm ? current->comm : "???"),
354 vma->vm_flags, vaddr);
355 dump_stack();
358 static inline int is_cow_mapping(unsigned int flags)
360 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
364 * This function gets the "struct page" associated with a pte.
366 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
367 * will have each page table entry just pointing to a raw page frame
368 * number, and as far as the VM layer is concerned, those do not have
369 * pages associated with them - even if the PFN might point to memory
370 * that otherwise is perfectly fine and has a "struct page".
372 * The way we recognize those mappings is through the rules set up
373 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
374 * and the vm_pgoff will point to the first PFN mapped: thus every
375 * page that is a raw mapping will always honor the rule
377 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
379 * and if that isn't true, the page has been COW'ed (in which case it
380 * _does_ have a "struct page" associated with it even if it is in a
381 * VM_PFNMAP range).
383 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
385 unsigned long pfn = pte_pfn(pte);
387 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
388 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
389 if (pfn == vma->vm_pgoff + off)
390 return NULL;
391 if (!is_cow_mapping(vma->vm_flags))
392 return NULL;
395 #ifdef CONFIG_DEBUG_VM
397 * Add some anal sanity checks for now. Eventually,
398 * we should just do "return pfn_to_page(pfn)", but
399 * in the meantime we check that we get a valid pfn,
400 * and that the resulting page looks ok.
402 if (unlikely(!pfn_valid(pfn))) {
403 print_bad_pte(vma, pte, addr);
404 return NULL;
406 #endif
409 * NOTE! We still have PageReserved() pages in the page
410 * tables.
412 * The PAGE_ZERO() pages and various VDSO mappings can
413 * cause them to exist.
415 return pfn_to_page(pfn);
419 * copy one vm_area from one task to the other. Assumes the page tables
420 * already present in the new task to be cleared in the whole range
421 * covered by this vma.
424 static inline void
425 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
426 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
427 unsigned long addr, int *rss)
429 unsigned long vm_flags = vma->vm_flags;
430 pte_t pte = *src_pte;
431 struct page *page;
433 /* pte contains position in swap or file, so copy. */
434 if (unlikely(!pte_present(pte))) {
435 if (!pte_file(pte)) {
436 swp_entry_t entry = pte_to_swp_entry(pte);
438 swap_duplicate(entry);
439 /* make sure dst_mm is on swapoff's mmlist. */
440 if (unlikely(list_empty(&dst_mm->mmlist))) {
441 spin_lock(&mmlist_lock);
442 if (list_empty(&dst_mm->mmlist))
443 list_add(&dst_mm->mmlist,
444 &src_mm->mmlist);
445 spin_unlock(&mmlist_lock);
447 if (is_write_migration_entry(entry) &&
448 is_cow_mapping(vm_flags)) {
450 * COW mappings require pages in both parent
451 * and child to be set to read.
453 make_migration_entry_read(&entry);
454 pte = swp_entry_to_pte(entry);
455 set_pte_at(src_mm, addr, src_pte, pte);
458 goto out_set_pte;
462 * If it's a COW mapping, write protect it both
463 * in the parent and the child
465 if (is_cow_mapping(vm_flags)) {
466 ptep_set_wrprotect(src_mm, addr, src_pte);
467 pte = pte_wrprotect(pte);
471 * If it's a shared mapping, mark it clean in
472 * the child
474 if (vm_flags & VM_SHARED)
475 pte = pte_mkclean(pte);
476 pte = pte_mkold(pte);
478 page = vm_normal_page(vma, addr, pte);
479 if (page) {
480 get_page(page);
481 page_dup_rmap(page, vma, addr);
482 rss[!!PageAnon(page)]++;
485 out_set_pte:
486 set_pte_at(dst_mm, addr, dst_pte, pte);
489 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
490 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
491 unsigned long addr, unsigned long end)
493 pte_t *src_pte, *dst_pte;
494 spinlock_t *src_ptl, *dst_ptl;
495 int progress = 0;
496 int rss[2];
498 again:
499 rss[1] = rss[0] = 0;
500 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
501 if (!dst_pte)
502 return -ENOMEM;
503 src_pte = pte_offset_map_nested(src_pmd, addr);
504 src_ptl = pte_lockptr(src_mm, src_pmd);
505 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
506 arch_enter_lazy_mmu_mode();
508 do {
510 * We are holding two locks at this point - either of them
511 * could generate latencies in another task on another CPU.
513 if (progress >= 32) {
514 progress = 0;
515 if (need_resched() ||
516 need_lockbreak(src_ptl) ||
517 need_lockbreak(dst_ptl))
518 break;
520 if (pte_none(*src_pte)) {
521 progress++;
522 continue;
524 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
525 progress += 8;
526 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
528 arch_leave_lazy_mmu_mode();
529 spin_unlock(src_ptl);
530 pte_unmap_nested(src_pte - 1);
531 add_mm_rss(dst_mm, rss[0], rss[1]);
532 pte_unmap_unlock(dst_pte - 1, dst_ptl);
533 cond_resched();
534 if (addr != end)
535 goto again;
536 return 0;
539 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
540 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
541 unsigned long addr, unsigned long end)
543 pmd_t *src_pmd, *dst_pmd;
544 unsigned long next;
546 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
547 if (!dst_pmd)
548 return -ENOMEM;
549 src_pmd = pmd_offset(src_pud, addr);
550 do {
551 next = pmd_addr_end(addr, end);
552 if (pmd_none_or_clear_bad(src_pmd))
553 continue;
554 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
555 vma, addr, next))
556 return -ENOMEM;
557 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
558 return 0;
561 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
562 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
563 unsigned long addr, unsigned long end)
565 pud_t *src_pud, *dst_pud;
566 unsigned long next;
568 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
569 if (!dst_pud)
570 return -ENOMEM;
571 src_pud = pud_offset(src_pgd, addr);
572 do {
573 next = pud_addr_end(addr, end);
574 if (pud_none_or_clear_bad(src_pud))
575 continue;
576 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
577 vma, addr, next))
578 return -ENOMEM;
579 } while (dst_pud++, src_pud++, addr = next, addr != end);
580 return 0;
583 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
584 struct vm_area_struct *vma)
586 pgd_t *src_pgd, *dst_pgd;
587 unsigned long next;
588 unsigned long addr = vma->vm_start;
589 unsigned long end = vma->vm_end;
592 * Don't copy ptes where a page fault will fill them correctly.
593 * Fork becomes much lighter when there are big shared or private
594 * readonly mappings. The tradeoff is that copy_page_range is more
595 * efficient than faulting.
597 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
598 if (!vma->anon_vma)
599 return 0;
602 if (is_vm_hugetlb_page(vma))
603 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
605 dst_pgd = pgd_offset(dst_mm, addr);
606 src_pgd = pgd_offset(src_mm, addr);
607 do {
608 next = pgd_addr_end(addr, end);
609 if (pgd_none_or_clear_bad(src_pgd))
610 continue;
611 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
612 vma, addr, next))
613 return -ENOMEM;
614 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
615 return 0;
618 static unsigned long zap_pte_range(struct mmu_gather *tlb,
619 struct vm_area_struct *vma, pmd_t *pmd,
620 unsigned long addr, unsigned long end,
621 long *zap_work, struct zap_details *details)
623 struct mm_struct *mm = tlb->mm;
624 pte_t *pte;
625 spinlock_t *ptl;
626 int file_rss = 0;
627 int anon_rss = 0;
629 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
630 arch_enter_lazy_mmu_mode();
631 do {
632 pte_t ptent = *pte;
633 if (pte_none(ptent)) {
634 (*zap_work)--;
635 continue;
638 (*zap_work) -= PAGE_SIZE;
640 if (pte_present(ptent)) {
641 struct page *page;
643 page = vm_normal_page(vma, addr, ptent);
644 if (unlikely(details) && page) {
646 * unmap_shared_mapping_pages() wants to
647 * invalidate cache without truncating:
648 * unmap shared but keep private pages.
650 if (details->check_mapping &&
651 details->check_mapping != page->mapping)
652 continue;
654 * Each page->index must be checked when
655 * invalidating or truncating nonlinear.
657 if (details->nonlinear_vma &&
658 (page->index < details->first_index ||
659 page->index > details->last_index))
660 continue;
662 ptent = ptep_get_and_clear_full(mm, addr, pte,
663 tlb->fullmm);
664 tlb_remove_tlb_entry(tlb, pte, addr);
665 if (unlikely(!page))
666 continue;
667 if (unlikely(details) && details->nonlinear_vma
668 && linear_page_index(details->nonlinear_vma,
669 addr) != page->index)
670 set_pte_at(mm, addr, pte,
671 pgoff_to_pte(page->index));
672 if (PageAnon(page))
673 anon_rss--;
674 else {
675 if (pte_dirty(ptent))
676 set_page_dirty(page);
677 if (pte_young(ptent))
678 SetPageReferenced(page);
679 file_rss--;
681 page_remove_rmap(page, vma);
682 tlb_remove_page(tlb, page);
683 continue;
686 * If details->check_mapping, we leave swap entries;
687 * if details->nonlinear_vma, we leave file entries.
689 if (unlikely(details))
690 continue;
691 if (!pte_file(ptent))
692 free_swap_and_cache(pte_to_swp_entry(ptent));
693 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
694 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
696 add_mm_rss(mm, file_rss, anon_rss);
697 arch_leave_lazy_mmu_mode();
698 pte_unmap_unlock(pte - 1, ptl);
700 return addr;
703 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
704 struct vm_area_struct *vma, pud_t *pud,
705 unsigned long addr, unsigned long end,
706 long *zap_work, struct zap_details *details)
708 pmd_t *pmd;
709 unsigned long next;
711 pmd = pmd_offset(pud, addr);
712 do {
713 next = pmd_addr_end(addr, end);
714 if (pmd_none_or_clear_bad(pmd)) {
715 (*zap_work)--;
716 continue;
718 next = zap_pte_range(tlb, vma, pmd, addr, next,
719 zap_work, details);
720 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
722 return addr;
725 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
726 struct vm_area_struct *vma, pgd_t *pgd,
727 unsigned long addr, unsigned long end,
728 long *zap_work, struct zap_details *details)
730 pud_t *pud;
731 unsigned long next;
733 pud = pud_offset(pgd, addr);
734 do {
735 next = pud_addr_end(addr, end);
736 if (pud_none_or_clear_bad(pud)) {
737 (*zap_work)--;
738 continue;
740 next = zap_pmd_range(tlb, vma, pud, addr, next,
741 zap_work, details);
742 } while (pud++, addr = next, (addr != end && *zap_work > 0));
744 return addr;
747 static unsigned long unmap_page_range(struct mmu_gather *tlb,
748 struct vm_area_struct *vma,
749 unsigned long addr, unsigned long end,
750 long *zap_work, struct zap_details *details)
752 pgd_t *pgd;
753 unsigned long next;
755 if (details && !details->check_mapping && !details->nonlinear_vma)
756 details = NULL;
758 BUG_ON(addr >= end);
759 tlb_start_vma(tlb, vma);
760 pgd = pgd_offset(vma->vm_mm, addr);
761 do {
762 next = pgd_addr_end(addr, end);
763 if (pgd_none_or_clear_bad(pgd)) {
764 (*zap_work)--;
765 continue;
767 next = zap_pud_range(tlb, vma, pgd, addr, next,
768 zap_work, details);
769 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
770 tlb_end_vma(tlb, vma);
772 return addr;
775 #ifdef CONFIG_PREEMPT
776 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
777 #else
778 /* No preempt: go for improved straight-line efficiency */
779 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
780 #endif
783 * unmap_vmas - unmap a range of memory covered by a list of vma's
784 * @tlbp: address of the caller's struct mmu_gather
785 * @vma: the starting vma
786 * @start_addr: virtual address at which to start unmapping
787 * @end_addr: virtual address at which to end unmapping
788 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
789 * @details: details of nonlinear truncation or shared cache invalidation
791 * Returns the end address of the unmapping (restart addr if interrupted).
793 * Unmap all pages in the vma list.
795 * We aim to not hold locks for too long (for scheduling latency reasons).
796 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
797 * return the ending mmu_gather to the caller.
799 * Only addresses between `start' and `end' will be unmapped.
801 * The VMA list must be sorted in ascending virtual address order.
803 * unmap_vmas() assumes that the caller will flush the whole unmapped address
804 * range after unmap_vmas() returns. So the only responsibility here is to
805 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
806 * drops the lock and schedules.
808 unsigned long unmap_vmas(struct mmu_gather **tlbp,
809 struct vm_area_struct *vma, unsigned long start_addr,
810 unsigned long end_addr, unsigned long *nr_accounted,
811 struct zap_details *details)
813 long zap_work = ZAP_BLOCK_SIZE;
814 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
815 int tlb_start_valid = 0;
816 unsigned long start = start_addr;
817 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
818 int fullmm = (*tlbp)->fullmm;
820 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
821 unsigned long end;
823 start = max(vma->vm_start, start_addr);
824 if (start >= vma->vm_end)
825 continue;
826 end = min(vma->vm_end, end_addr);
827 if (end <= vma->vm_start)
828 continue;
830 if (vma->vm_flags & VM_ACCOUNT)
831 *nr_accounted += (end - start) >> PAGE_SHIFT;
833 while (start != end) {
834 if (!tlb_start_valid) {
835 tlb_start = start;
836 tlb_start_valid = 1;
839 if (unlikely(is_vm_hugetlb_page(vma))) {
840 unmap_hugepage_range(vma, start, end);
841 zap_work -= (end - start) /
842 (HPAGE_SIZE / PAGE_SIZE);
843 start = end;
844 } else
845 start = unmap_page_range(*tlbp, vma,
846 start, end, &zap_work, details);
848 if (zap_work > 0) {
849 BUG_ON(start != end);
850 break;
853 tlb_finish_mmu(*tlbp, tlb_start, start);
855 if (need_resched() ||
856 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
857 if (i_mmap_lock) {
858 *tlbp = NULL;
859 goto out;
861 cond_resched();
864 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
865 tlb_start_valid = 0;
866 zap_work = ZAP_BLOCK_SIZE;
869 out:
870 return start; /* which is now the end (or restart) address */
874 * zap_page_range - remove user pages in a given range
875 * @vma: vm_area_struct holding the applicable pages
876 * @address: starting address of pages to zap
877 * @size: number of bytes to zap
878 * @details: details of nonlinear truncation or shared cache invalidation
880 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
881 unsigned long size, struct zap_details *details)
883 struct mm_struct *mm = vma->vm_mm;
884 struct mmu_gather *tlb;
885 unsigned long end = address + size;
886 unsigned long nr_accounted = 0;
888 lru_add_drain();
889 tlb = tlb_gather_mmu(mm, 0);
890 update_hiwater_rss(mm);
891 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
892 if (tlb)
893 tlb_finish_mmu(tlb, address, end);
894 return end;
898 * Do a quick page-table lookup for a single page.
900 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
901 unsigned int flags)
903 pgd_t *pgd;
904 pud_t *pud;
905 pmd_t *pmd;
906 pte_t *ptep, pte;
907 spinlock_t *ptl;
908 struct page *page;
909 struct mm_struct *mm = vma->vm_mm;
911 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
912 if (!IS_ERR(page)) {
913 BUG_ON(flags & FOLL_GET);
914 goto out;
917 page = NULL;
918 pgd = pgd_offset(mm, address);
919 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
920 goto no_page_table;
922 pud = pud_offset(pgd, address);
923 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
924 goto no_page_table;
926 pmd = pmd_offset(pud, address);
927 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
928 goto no_page_table;
930 if (pmd_huge(*pmd)) {
931 BUG_ON(flags & FOLL_GET);
932 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
933 goto out;
936 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
937 if (!ptep)
938 goto out;
940 pte = *ptep;
941 if (!pte_present(pte))
942 goto unlock;
943 if ((flags & FOLL_WRITE) && !pte_write(pte))
944 goto unlock;
945 page = vm_normal_page(vma, address, pte);
946 if (unlikely(!page))
947 goto unlock;
949 if (flags & FOLL_GET)
950 get_page(page);
951 if (flags & FOLL_TOUCH) {
952 if ((flags & FOLL_WRITE) &&
953 !pte_dirty(pte) && !PageDirty(page))
954 set_page_dirty(page);
955 mark_page_accessed(page);
957 unlock:
958 pte_unmap_unlock(ptep, ptl);
959 out:
960 return page;
962 no_page_table:
964 * When core dumping an enormous anonymous area that nobody
965 * has touched so far, we don't want to allocate page tables.
967 if (flags & FOLL_ANON) {
968 page = ZERO_PAGE(0);
969 if (flags & FOLL_GET)
970 get_page(page);
971 BUG_ON(flags & FOLL_WRITE);
973 return page;
976 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
977 unsigned long start, int len, int write, int force,
978 struct page **pages, struct vm_area_struct **vmas)
980 int i;
981 unsigned int vm_flags;
984 * Require read or write permissions.
985 * If 'force' is set, we only require the "MAY" flags.
987 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
988 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
989 i = 0;
991 do {
992 struct vm_area_struct *vma;
993 unsigned int foll_flags;
995 vma = find_extend_vma(mm, start);
996 if (!vma && in_gate_area(tsk, start)) {
997 unsigned long pg = start & PAGE_MASK;
998 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
999 pgd_t *pgd;
1000 pud_t *pud;
1001 pmd_t *pmd;
1002 pte_t *pte;
1003 if (write) /* user gate pages are read-only */
1004 return i ? : -EFAULT;
1005 if (pg > TASK_SIZE)
1006 pgd = pgd_offset_k(pg);
1007 else
1008 pgd = pgd_offset_gate(mm, pg);
1009 BUG_ON(pgd_none(*pgd));
1010 pud = pud_offset(pgd, pg);
1011 BUG_ON(pud_none(*pud));
1012 pmd = pmd_offset(pud, pg);
1013 if (pmd_none(*pmd))
1014 return i ? : -EFAULT;
1015 pte = pte_offset_map(pmd, pg);
1016 if (pte_none(*pte)) {
1017 pte_unmap(pte);
1018 return i ? : -EFAULT;
1020 if (pages) {
1021 struct page *page = vm_normal_page(gate_vma, start, *pte);
1022 pages[i] = page;
1023 if (page)
1024 get_page(page);
1026 pte_unmap(pte);
1027 if (vmas)
1028 vmas[i] = gate_vma;
1029 i++;
1030 start += PAGE_SIZE;
1031 len--;
1032 continue;
1035 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1036 || !(vm_flags & vma->vm_flags))
1037 return i ? : -EFAULT;
1039 if (is_vm_hugetlb_page(vma)) {
1040 i = follow_hugetlb_page(mm, vma, pages, vmas,
1041 &start, &len, i, write);
1042 continue;
1045 foll_flags = FOLL_TOUCH;
1046 if (pages)
1047 foll_flags |= FOLL_GET;
1048 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1049 (!vma->vm_ops || (!vma->vm_ops->nopage &&
1050 !vma->vm_ops->fault)))
1051 foll_flags |= FOLL_ANON;
1053 do {
1054 struct page *page;
1057 * If tsk is ooming, cut off its access to large memory
1058 * allocations. It has a pending SIGKILL, but it can't
1059 * be processed until returning to user space.
1061 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1062 return -ENOMEM;
1064 if (write)
1065 foll_flags |= FOLL_WRITE;
1067 cond_resched();
1068 while (!(page = follow_page(vma, start, foll_flags))) {
1069 int ret;
1070 ret = handle_mm_fault(mm, vma, start,
1071 foll_flags & FOLL_WRITE);
1072 if (ret & VM_FAULT_ERROR) {
1073 if (ret & VM_FAULT_OOM)
1074 return i ? i : -ENOMEM;
1075 else if (ret & VM_FAULT_SIGBUS)
1076 return i ? i : -EFAULT;
1077 BUG();
1079 if (ret & VM_FAULT_MAJOR)
1080 tsk->maj_flt++;
1081 else
1082 tsk->min_flt++;
1085 * The VM_FAULT_WRITE bit tells us that
1086 * do_wp_page has broken COW when necessary,
1087 * even if maybe_mkwrite decided not to set
1088 * pte_write. We can thus safely do subsequent
1089 * page lookups as if they were reads.
1091 if (ret & VM_FAULT_WRITE)
1092 foll_flags &= ~FOLL_WRITE;
1094 cond_resched();
1096 if (pages) {
1097 pages[i] = page;
1099 flush_anon_page(vma, page, start);
1100 flush_dcache_page(page);
1102 if (vmas)
1103 vmas[i] = vma;
1104 i++;
1105 start += PAGE_SIZE;
1106 len--;
1107 } while (len && start < vma->vm_end);
1108 } while (len);
1109 return i;
1111 EXPORT_SYMBOL(get_user_pages);
1113 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1115 pgd_t * pgd = pgd_offset(mm, addr);
1116 pud_t * pud = pud_alloc(mm, pgd, addr);
1117 if (pud) {
1118 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1119 if (pmd)
1120 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1122 return NULL;
1126 * This is the old fallback for page remapping.
1128 * For historical reasons, it only allows reserved pages. Only
1129 * old drivers should use this, and they needed to mark their
1130 * pages reserved for the old functions anyway.
1132 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1134 int retval;
1135 pte_t *pte;
1136 spinlock_t *ptl;
1138 retval = -EINVAL;
1139 if (PageAnon(page))
1140 goto out;
1141 retval = -ENOMEM;
1142 flush_dcache_page(page);
1143 pte = get_locked_pte(mm, addr, &ptl);
1144 if (!pte)
1145 goto out;
1146 retval = -EBUSY;
1147 if (!pte_none(*pte))
1148 goto out_unlock;
1150 /* Ok, finally just insert the thing.. */
1151 get_page(page);
1152 inc_mm_counter(mm, file_rss);
1153 page_add_file_rmap(page);
1154 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1156 retval = 0;
1157 out_unlock:
1158 pte_unmap_unlock(pte, ptl);
1159 out:
1160 return retval;
1164 * vm_insert_page - insert single page into user vma
1165 * @vma: user vma to map to
1166 * @addr: target user address of this page
1167 * @page: source kernel page
1169 * This allows drivers to insert individual pages they've allocated
1170 * into a user vma.
1172 * The page has to be a nice clean _individual_ kernel allocation.
1173 * If you allocate a compound page, you need to have marked it as
1174 * such (__GFP_COMP), or manually just split the page up yourself
1175 * (see split_page()).
1177 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1178 * took an arbitrary page protection parameter. This doesn't allow
1179 * that. Your vma protection will have to be set up correctly, which
1180 * means that if you want a shared writable mapping, you'd better
1181 * ask for a shared writable mapping!
1183 * The page does not need to be reserved.
1185 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1187 if (addr < vma->vm_start || addr >= vma->vm_end)
1188 return -EFAULT;
1189 if (!page_count(page))
1190 return -EINVAL;
1191 vma->vm_flags |= VM_INSERTPAGE;
1192 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1194 EXPORT_SYMBOL(vm_insert_page);
1197 * vm_insert_pfn - insert single pfn into user vma
1198 * @vma: user vma to map to
1199 * @addr: target user address of this page
1200 * @pfn: source kernel pfn
1202 * Similar to vm_inert_page, this allows drivers to insert individual pages
1203 * they've allocated into a user vma. Same comments apply.
1205 * This function should only be called from a vm_ops->fault handler, and
1206 * in that case the handler should return NULL.
1208 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1209 unsigned long pfn)
1211 struct mm_struct *mm = vma->vm_mm;
1212 int retval;
1213 pte_t *pte, entry;
1214 spinlock_t *ptl;
1216 BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1217 BUG_ON(is_cow_mapping(vma->vm_flags));
1219 retval = -ENOMEM;
1220 pte = get_locked_pte(mm, addr, &ptl);
1221 if (!pte)
1222 goto out;
1223 retval = -EBUSY;
1224 if (!pte_none(*pte))
1225 goto out_unlock;
1227 /* Ok, finally just insert the thing.. */
1228 entry = pfn_pte(pfn, vma->vm_page_prot);
1229 set_pte_at(mm, addr, pte, entry);
1230 update_mmu_cache(vma, addr, entry);
1232 retval = 0;
1233 out_unlock:
1234 pte_unmap_unlock(pte, ptl);
1236 out:
1237 return retval;
1239 EXPORT_SYMBOL(vm_insert_pfn);
1242 * maps a range of physical memory into the requested pages. the old
1243 * mappings are removed. any references to nonexistent pages results
1244 * in null mappings (currently treated as "copy-on-access")
1246 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1247 unsigned long addr, unsigned long end,
1248 unsigned long pfn, pgprot_t prot)
1250 pte_t *pte;
1251 spinlock_t *ptl;
1253 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1254 if (!pte)
1255 return -ENOMEM;
1256 arch_enter_lazy_mmu_mode();
1257 do {
1258 BUG_ON(!pte_none(*pte));
1259 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1260 pfn++;
1261 } while (pte++, addr += PAGE_SIZE, addr != end);
1262 arch_leave_lazy_mmu_mode();
1263 pte_unmap_unlock(pte - 1, ptl);
1264 return 0;
1267 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1268 unsigned long addr, unsigned long end,
1269 unsigned long pfn, pgprot_t prot)
1271 pmd_t *pmd;
1272 unsigned long next;
1274 pfn -= addr >> PAGE_SHIFT;
1275 pmd = pmd_alloc(mm, pud, addr);
1276 if (!pmd)
1277 return -ENOMEM;
1278 do {
1279 next = pmd_addr_end(addr, end);
1280 if (remap_pte_range(mm, pmd, addr, next,
1281 pfn + (addr >> PAGE_SHIFT), prot))
1282 return -ENOMEM;
1283 } while (pmd++, addr = next, addr != end);
1284 return 0;
1287 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1288 unsigned long addr, unsigned long end,
1289 unsigned long pfn, pgprot_t prot)
1291 pud_t *pud;
1292 unsigned long next;
1294 pfn -= addr >> PAGE_SHIFT;
1295 pud = pud_alloc(mm, pgd, addr);
1296 if (!pud)
1297 return -ENOMEM;
1298 do {
1299 next = pud_addr_end(addr, end);
1300 if (remap_pmd_range(mm, pud, addr, next,
1301 pfn + (addr >> PAGE_SHIFT), prot))
1302 return -ENOMEM;
1303 } while (pud++, addr = next, addr != end);
1304 return 0;
1308 * remap_pfn_range - remap kernel memory to userspace
1309 * @vma: user vma to map to
1310 * @addr: target user address to start at
1311 * @pfn: physical address of kernel memory
1312 * @size: size of map area
1313 * @prot: page protection flags for this mapping
1315 * Note: this is only safe if the mm semaphore is held when called.
1317 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1318 unsigned long pfn, unsigned long size, pgprot_t prot)
1320 pgd_t *pgd;
1321 unsigned long next;
1322 unsigned long end = addr + PAGE_ALIGN(size);
1323 struct mm_struct *mm = vma->vm_mm;
1324 int err;
1327 * Physically remapped pages are special. Tell the
1328 * rest of the world about it:
1329 * VM_IO tells people not to look at these pages
1330 * (accesses can have side effects).
1331 * VM_RESERVED is specified all over the place, because
1332 * in 2.4 it kept swapout's vma scan off this vma; but
1333 * in 2.6 the LRU scan won't even find its pages, so this
1334 * flag means no more than count its pages in reserved_vm,
1335 * and omit it from core dump, even when VM_IO turned off.
1336 * VM_PFNMAP tells the core MM that the base pages are just
1337 * raw PFN mappings, and do not have a "struct page" associated
1338 * with them.
1340 * There's a horrible special case to handle copy-on-write
1341 * behaviour that some programs depend on. We mark the "original"
1342 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1344 if (is_cow_mapping(vma->vm_flags)) {
1345 if (addr != vma->vm_start || end != vma->vm_end)
1346 return -EINVAL;
1347 vma->vm_pgoff = pfn;
1350 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1352 BUG_ON(addr >= end);
1353 pfn -= addr >> PAGE_SHIFT;
1354 pgd = pgd_offset(mm, addr);
1355 flush_cache_range(vma, addr, end);
1356 do {
1357 next = pgd_addr_end(addr, end);
1358 err = remap_pud_range(mm, pgd, addr, next,
1359 pfn + (addr >> PAGE_SHIFT), prot);
1360 if (err)
1361 break;
1362 } while (pgd++, addr = next, addr != end);
1363 return err;
1365 EXPORT_SYMBOL(remap_pfn_range);
1367 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1368 unsigned long addr, unsigned long end,
1369 pte_fn_t fn, void *data)
1371 pte_t *pte;
1372 int err;
1373 struct page *pmd_page;
1374 spinlock_t *uninitialized_var(ptl);
1376 pte = (mm == &init_mm) ?
1377 pte_alloc_kernel(pmd, addr) :
1378 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1379 if (!pte)
1380 return -ENOMEM;
1382 BUG_ON(pmd_huge(*pmd));
1384 pmd_page = pmd_page(*pmd);
1386 do {
1387 err = fn(pte, pmd_page, addr, data);
1388 if (err)
1389 break;
1390 } while (pte++, addr += PAGE_SIZE, addr != end);
1392 if (mm != &init_mm)
1393 pte_unmap_unlock(pte-1, ptl);
1394 return err;
1397 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1398 unsigned long addr, unsigned long end,
1399 pte_fn_t fn, void *data)
1401 pmd_t *pmd;
1402 unsigned long next;
1403 int err;
1405 pmd = pmd_alloc(mm, pud, addr);
1406 if (!pmd)
1407 return -ENOMEM;
1408 do {
1409 next = pmd_addr_end(addr, end);
1410 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1411 if (err)
1412 break;
1413 } while (pmd++, addr = next, addr != end);
1414 return err;
1417 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1418 unsigned long addr, unsigned long end,
1419 pte_fn_t fn, void *data)
1421 pud_t *pud;
1422 unsigned long next;
1423 int err;
1425 pud = pud_alloc(mm, pgd, addr);
1426 if (!pud)
1427 return -ENOMEM;
1428 do {
1429 next = pud_addr_end(addr, end);
1430 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1431 if (err)
1432 break;
1433 } while (pud++, addr = next, addr != end);
1434 return err;
1438 * Scan a region of virtual memory, filling in page tables as necessary
1439 * and calling a provided function on each leaf page table.
1441 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1442 unsigned long size, pte_fn_t fn, void *data)
1444 pgd_t *pgd;
1445 unsigned long next;
1446 unsigned long end = addr + size;
1447 int err;
1449 BUG_ON(addr >= end);
1450 pgd = pgd_offset(mm, addr);
1451 do {
1452 next = pgd_addr_end(addr, end);
1453 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1454 if (err)
1455 break;
1456 } while (pgd++, addr = next, addr != end);
1457 return err;
1459 EXPORT_SYMBOL_GPL(apply_to_page_range);
1462 * handle_pte_fault chooses page fault handler according to an entry
1463 * which was read non-atomically. Before making any commitment, on
1464 * those architectures or configurations (e.g. i386 with PAE) which
1465 * might give a mix of unmatched parts, do_swap_page and do_file_page
1466 * must check under lock before unmapping the pte and proceeding
1467 * (but do_wp_page is only called after already making such a check;
1468 * and do_anonymous_page and do_no_page can safely check later on).
1470 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1471 pte_t *page_table, pte_t orig_pte)
1473 int same = 1;
1474 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1475 if (sizeof(pte_t) > sizeof(unsigned long)) {
1476 spinlock_t *ptl = pte_lockptr(mm, pmd);
1477 spin_lock(ptl);
1478 same = pte_same(*page_table, orig_pte);
1479 spin_unlock(ptl);
1481 #endif
1482 pte_unmap(page_table);
1483 return same;
1487 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1488 * servicing faults for write access. In the normal case, do always want
1489 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1490 * that do not have writing enabled, when used by access_process_vm.
1492 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1494 if (likely(vma->vm_flags & VM_WRITE))
1495 pte = pte_mkwrite(pte);
1496 return pte;
1499 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1502 * If the source page was a PFN mapping, we don't have
1503 * a "struct page" for it. We do a best-effort copy by
1504 * just copying from the original user address. If that
1505 * fails, we just zero-fill it. Live with it.
1507 if (unlikely(!src)) {
1508 void *kaddr = kmap_atomic(dst, KM_USER0);
1509 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1512 * This really shouldn't fail, because the page is there
1513 * in the page tables. But it might just be unreadable,
1514 * in which case we just give up and fill the result with
1515 * zeroes.
1517 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1518 memset(kaddr, 0, PAGE_SIZE);
1519 kunmap_atomic(kaddr, KM_USER0);
1520 flush_dcache_page(dst);
1521 return;
1524 copy_user_highpage(dst, src, va, vma);
1528 * This routine handles present pages, when users try to write
1529 * to a shared page. It is done by copying the page to a new address
1530 * and decrementing the shared-page counter for the old page.
1532 * Note that this routine assumes that the protection checks have been
1533 * done by the caller (the low-level page fault routine in most cases).
1534 * Thus we can safely just mark it writable once we've done any necessary
1535 * COW.
1537 * We also mark the page dirty at this point even though the page will
1538 * change only once the write actually happens. This avoids a few races,
1539 * and potentially makes it more efficient.
1541 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1542 * but allow concurrent faults), with pte both mapped and locked.
1543 * We return with mmap_sem still held, but pte unmapped and unlocked.
1545 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1546 unsigned long address, pte_t *page_table, pmd_t *pmd,
1547 spinlock_t *ptl, pte_t orig_pte)
1549 struct page *old_page, *new_page;
1550 pte_t entry;
1551 int reuse = 0, ret = 0;
1552 int page_mkwrite = 0;
1553 struct page *dirty_page = NULL;
1555 old_page = vm_normal_page(vma, address, orig_pte);
1556 if (!old_page)
1557 goto gotten;
1560 * Take out anonymous pages first, anonymous shared vmas are
1561 * not dirty accountable.
1563 if (PageAnon(old_page)) {
1564 if (!TestSetPageLocked(old_page)) {
1565 reuse = can_share_swap_page(old_page);
1566 unlock_page(old_page);
1568 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1569 (VM_WRITE|VM_SHARED))) {
1571 * Only catch write-faults on shared writable pages,
1572 * read-only shared pages can get COWed by
1573 * get_user_pages(.write=1, .force=1).
1575 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1577 * Notify the address space that the page is about to
1578 * become writable so that it can prohibit this or wait
1579 * for the page to get into an appropriate state.
1581 * We do this without the lock held, so that it can
1582 * sleep if it needs to.
1584 page_cache_get(old_page);
1585 pte_unmap_unlock(page_table, ptl);
1587 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1588 goto unwritable_page;
1591 * Since we dropped the lock we need to revalidate
1592 * the PTE as someone else may have changed it. If
1593 * they did, we just return, as we can count on the
1594 * MMU to tell us if they didn't also make it writable.
1596 page_table = pte_offset_map_lock(mm, pmd, address,
1597 &ptl);
1598 page_cache_release(old_page);
1599 if (!pte_same(*page_table, orig_pte))
1600 goto unlock;
1602 page_mkwrite = 1;
1604 dirty_page = old_page;
1605 get_page(dirty_page);
1606 reuse = 1;
1609 if (reuse) {
1610 flush_cache_page(vma, address, pte_pfn(orig_pte));
1611 entry = pte_mkyoung(orig_pte);
1612 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1613 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1614 update_mmu_cache(vma, address, entry);
1615 ret |= VM_FAULT_WRITE;
1616 goto unlock;
1620 * Ok, we need to copy. Oh, well..
1622 page_cache_get(old_page);
1623 gotten:
1624 pte_unmap_unlock(page_table, ptl);
1626 if (unlikely(anon_vma_prepare(vma)))
1627 goto oom;
1628 VM_BUG_ON(old_page == ZERO_PAGE(0));
1629 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1630 if (!new_page)
1631 goto oom;
1632 cow_user_page(new_page, old_page, address, vma);
1635 * Re-check the pte - we dropped the lock
1637 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1638 if (likely(pte_same(*page_table, orig_pte))) {
1639 if (old_page) {
1640 page_remove_rmap(old_page, vma);
1641 if (!PageAnon(old_page)) {
1642 dec_mm_counter(mm, file_rss);
1643 inc_mm_counter(mm, anon_rss);
1645 } else
1646 inc_mm_counter(mm, anon_rss);
1647 flush_cache_page(vma, address, pte_pfn(orig_pte));
1648 entry = mk_pte(new_page, vma->vm_page_prot);
1649 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1651 * Clear the pte entry and flush it first, before updating the
1652 * pte with the new entry. This will avoid a race condition
1653 * seen in the presence of one thread doing SMC and another
1654 * thread doing COW.
1656 ptep_clear_flush(vma, address, page_table);
1657 set_pte_at(mm, address, page_table, entry);
1658 update_mmu_cache(vma, address, entry);
1659 lru_cache_add_active(new_page);
1660 page_add_new_anon_rmap(new_page, vma, address);
1662 /* Free the old page.. */
1663 new_page = old_page;
1664 ret |= VM_FAULT_WRITE;
1666 if (new_page)
1667 page_cache_release(new_page);
1668 if (old_page)
1669 page_cache_release(old_page);
1670 unlock:
1671 pte_unmap_unlock(page_table, ptl);
1672 if (dirty_page) {
1673 if (vma->vm_file)
1674 file_update_time(vma->vm_file);
1677 * Yes, Virginia, this is actually required to prevent a race
1678 * with clear_page_dirty_for_io() from clearing the page dirty
1679 * bit after it clear all dirty ptes, but before a racing
1680 * do_wp_page installs a dirty pte.
1682 * do_no_page is protected similarly.
1684 wait_on_page_locked(dirty_page);
1685 set_page_dirty_balance(dirty_page, page_mkwrite);
1686 put_page(dirty_page);
1688 return ret;
1689 oom:
1690 if (old_page)
1691 page_cache_release(old_page);
1692 return VM_FAULT_OOM;
1694 unwritable_page:
1695 page_cache_release(old_page);
1696 return VM_FAULT_SIGBUS;
1700 * Helper functions for unmap_mapping_range().
1702 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1704 * We have to restart searching the prio_tree whenever we drop the lock,
1705 * since the iterator is only valid while the lock is held, and anyway
1706 * a later vma might be split and reinserted earlier while lock dropped.
1708 * The list of nonlinear vmas could be handled more efficiently, using
1709 * a placeholder, but handle it in the same way until a need is shown.
1710 * It is important to search the prio_tree before nonlinear list: a vma
1711 * may become nonlinear and be shifted from prio_tree to nonlinear list
1712 * while the lock is dropped; but never shifted from list to prio_tree.
1714 * In order to make forward progress despite restarting the search,
1715 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1716 * quickly skip it next time around. Since the prio_tree search only
1717 * shows us those vmas affected by unmapping the range in question, we
1718 * can't efficiently keep all vmas in step with mapping->truncate_count:
1719 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1720 * mapping->truncate_count and vma->vm_truncate_count are protected by
1721 * i_mmap_lock.
1723 * In order to make forward progress despite repeatedly restarting some
1724 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1725 * and restart from that address when we reach that vma again. It might
1726 * have been split or merged, shrunk or extended, but never shifted: so
1727 * restart_addr remains valid so long as it remains in the vma's range.
1728 * unmap_mapping_range forces truncate_count to leap over page-aligned
1729 * values so we can save vma's restart_addr in its truncate_count field.
1731 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1733 static void reset_vma_truncate_counts(struct address_space *mapping)
1735 struct vm_area_struct *vma;
1736 struct prio_tree_iter iter;
1738 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1739 vma->vm_truncate_count = 0;
1740 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1741 vma->vm_truncate_count = 0;
1744 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1745 unsigned long start_addr, unsigned long end_addr,
1746 struct zap_details *details)
1748 unsigned long restart_addr;
1749 int need_break;
1752 * files that support invalidating or truncating portions of the
1753 * file from under mmaped areas must have their ->fault function
1754 * return a locked page (and set VM_FAULT_LOCKED in the return).
1755 * This provides synchronisation against concurrent unmapping here.
1758 again:
1759 restart_addr = vma->vm_truncate_count;
1760 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1761 start_addr = restart_addr;
1762 if (start_addr >= end_addr) {
1763 /* Top of vma has been split off since last time */
1764 vma->vm_truncate_count = details->truncate_count;
1765 return 0;
1769 restart_addr = zap_page_range(vma, start_addr,
1770 end_addr - start_addr, details);
1771 need_break = need_resched() ||
1772 need_lockbreak(details->i_mmap_lock);
1774 if (restart_addr >= end_addr) {
1775 /* We have now completed this vma: mark it so */
1776 vma->vm_truncate_count = details->truncate_count;
1777 if (!need_break)
1778 return 0;
1779 } else {
1780 /* Note restart_addr in vma's truncate_count field */
1781 vma->vm_truncate_count = restart_addr;
1782 if (!need_break)
1783 goto again;
1786 spin_unlock(details->i_mmap_lock);
1787 cond_resched();
1788 spin_lock(details->i_mmap_lock);
1789 return -EINTR;
1792 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1793 struct zap_details *details)
1795 struct vm_area_struct *vma;
1796 struct prio_tree_iter iter;
1797 pgoff_t vba, vea, zba, zea;
1799 restart:
1800 vma_prio_tree_foreach(vma, &iter, root,
1801 details->first_index, details->last_index) {
1802 /* Skip quickly over those we have already dealt with */
1803 if (vma->vm_truncate_count == details->truncate_count)
1804 continue;
1806 vba = vma->vm_pgoff;
1807 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1808 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1809 zba = details->first_index;
1810 if (zba < vba)
1811 zba = vba;
1812 zea = details->last_index;
1813 if (zea > vea)
1814 zea = vea;
1816 if (unmap_mapping_range_vma(vma,
1817 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1818 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1819 details) < 0)
1820 goto restart;
1824 static inline void unmap_mapping_range_list(struct list_head *head,
1825 struct zap_details *details)
1827 struct vm_area_struct *vma;
1830 * In nonlinear VMAs there is no correspondence between virtual address
1831 * offset and file offset. So we must perform an exhaustive search
1832 * across *all* the pages in each nonlinear VMA, not just the pages
1833 * whose virtual address lies outside the file truncation point.
1835 restart:
1836 list_for_each_entry(vma, head, shared.vm_set.list) {
1837 /* Skip quickly over those we have already dealt with */
1838 if (vma->vm_truncate_count == details->truncate_count)
1839 continue;
1840 details->nonlinear_vma = vma;
1841 if (unmap_mapping_range_vma(vma, vma->vm_start,
1842 vma->vm_end, details) < 0)
1843 goto restart;
1848 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1849 * @mapping: the address space containing mmaps to be unmapped.
1850 * @holebegin: byte in first page to unmap, relative to the start of
1851 * the underlying file. This will be rounded down to a PAGE_SIZE
1852 * boundary. Note that this is different from vmtruncate(), which
1853 * must keep the partial page. In contrast, we must get rid of
1854 * partial pages.
1855 * @holelen: size of prospective hole in bytes. This will be rounded
1856 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1857 * end of the file.
1858 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1859 * but 0 when invalidating pagecache, don't throw away private data.
1861 void unmap_mapping_range(struct address_space *mapping,
1862 loff_t const holebegin, loff_t const holelen, int even_cows)
1864 struct zap_details details;
1865 pgoff_t hba = holebegin >> PAGE_SHIFT;
1866 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1868 /* Check for overflow. */
1869 if (sizeof(holelen) > sizeof(hlen)) {
1870 long long holeend =
1871 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1872 if (holeend & ~(long long)ULONG_MAX)
1873 hlen = ULONG_MAX - hba + 1;
1876 details.check_mapping = even_cows? NULL: mapping;
1877 details.nonlinear_vma = NULL;
1878 details.first_index = hba;
1879 details.last_index = hba + hlen - 1;
1880 if (details.last_index < details.first_index)
1881 details.last_index = ULONG_MAX;
1882 details.i_mmap_lock = &mapping->i_mmap_lock;
1884 spin_lock(&mapping->i_mmap_lock);
1886 /* Protect against endless unmapping loops */
1887 mapping->truncate_count++;
1888 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1889 if (mapping->truncate_count == 0)
1890 reset_vma_truncate_counts(mapping);
1891 mapping->truncate_count++;
1893 details.truncate_count = mapping->truncate_count;
1895 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1896 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1897 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1898 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1899 spin_unlock(&mapping->i_mmap_lock);
1901 EXPORT_SYMBOL(unmap_mapping_range);
1904 * vmtruncate - unmap mappings "freed" by truncate() syscall
1905 * @inode: inode of the file used
1906 * @offset: file offset to start truncating
1908 * NOTE! We have to be ready to update the memory sharing
1909 * between the file and the memory map for a potential last
1910 * incomplete page. Ugly, but necessary.
1912 int vmtruncate(struct inode * inode, loff_t offset)
1914 struct address_space *mapping = inode->i_mapping;
1915 unsigned long limit;
1917 if (inode->i_size < offset)
1918 goto do_expand;
1920 * truncation of in-use swapfiles is disallowed - it would cause
1921 * subsequent swapout to scribble on the now-freed blocks.
1923 if (IS_SWAPFILE(inode))
1924 goto out_busy;
1925 i_size_write(inode, offset);
1928 * unmap_mapping_range is called twice, first simply for efficiency
1929 * so that truncate_inode_pages does fewer single-page unmaps. However
1930 * after this first call, and before truncate_inode_pages finishes,
1931 * it is possible for private pages to be COWed, which remain after
1932 * truncate_inode_pages finishes, hence the second unmap_mapping_range
1933 * call must be made for correctness.
1935 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1936 truncate_inode_pages(mapping, offset);
1937 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1938 goto out_truncate;
1940 do_expand:
1941 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1942 if (limit != RLIM_INFINITY && offset > limit)
1943 goto out_sig;
1944 if (offset > inode->i_sb->s_maxbytes)
1945 goto out_big;
1946 i_size_write(inode, offset);
1948 out_truncate:
1949 if (inode->i_op && inode->i_op->truncate)
1950 inode->i_op->truncate(inode);
1951 return 0;
1952 out_sig:
1953 send_sig(SIGXFSZ, current, 0);
1954 out_big:
1955 return -EFBIG;
1956 out_busy:
1957 return -ETXTBSY;
1959 EXPORT_SYMBOL(vmtruncate);
1961 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1963 struct address_space *mapping = inode->i_mapping;
1966 * If the underlying filesystem is not going to provide
1967 * a way to truncate a range of blocks (punch a hole) -
1968 * we should return failure right now.
1970 if (!inode->i_op || !inode->i_op->truncate_range)
1971 return -ENOSYS;
1973 mutex_lock(&inode->i_mutex);
1974 down_write(&inode->i_alloc_sem);
1975 unmap_mapping_range(mapping, offset, (end - offset), 1);
1976 truncate_inode_pages_range(mapping, offset, end);
1977 unmap_mapping_range(mapping, offset, (end - offset), 1);
1978 inode->i_op->truncate_range(inode, offset, end);
1979 up_write(&inode->i_alloc_sem);
1980 mutex_unlock(&inode->i_mutex);
1982 return 0;
1986 * swapin_readahead - swap in pages in hope we need them soon
1987 * @entry: swap entry of this memory
1988 * @addr: address to start
1989 * @vma: user vma this addresses belong to
1991 * Primitive swap readahead code. We simply read an aligned block of
1992 * (1 << page_cluster) entries in the swap area. This method is chosen
1993 * because it doesn't cost us any seek time. We also make sure to queue
1994 * the 'original' request together with the readahead ones...
1996 * This has been extended to use the NUMA policies from the mm triggering
1997 * the readahead.
1999 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
2001 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
2003 #ifdef CONFIG_NUMA
2004 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
2005 #endif
2006 int i, num;
2007 struct page *new_page;
2008 unsigned long offset;
2011 * Get the number of handles we should do readahead io to.
2013 num = valid_swaphandles(entry, &offset);
2014 for (i = 0; i < num; offset++, i++) {
2015 /* Ok, do the async read-ahead now */
2016 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
2017 offset), vma, addr);
2018 if (!new_page)
2019 break;
2020 page_cache_release(new_page);
2021 #ifdef CONFIG_NUMA
2023 * Find the next applicable VMA for the NUMA policy.
2025 addr += PAGE_SIZE;
2026 if (addr == 0)
2027 vma = NULL;
2028 if (vma) {
2029 if (addr >= vma->vm_end) {
2030 vma = next_vma;
2031 next_vma = vma ? vma->vm_next : NULL;
2033 if (vma && addr < vma->vm_start)
2034 vma = NULL;
2035 } else {
2036 if (next_vma && addr >= next_vma->vm_start) {
2037 vma = next_vma;
2038 next_vma = vma->vm_next;
2041 #endif
2043 lru_add_drain(); /* Push any new pages onto the LRU now */
2047 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2048 * but allow concurrent faults), and pte mapped but not yet locked.
2049 * We return with mmap_sem still held, but pte unmapped and unlocked.
2051 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2052 unsigned long address, pte_t *page_table, pmd_t *pmd,
2053 int write_access, pte_t orig_pte)
2055 spinlock_t *ptl;
2056 struct page *page;
2057 swp_entry_t entry;
2058 pte_t pte;
2059 int ret = 0;
2061 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2062 goto out;
2064 entry = pte_to_swp_entry(orig_pte);
2065 if (is_migration_entry(entry)) {
2066 migration_entry_wait(mm, pmd, address);
2067 goto out;
2069 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2070 page = lookup_swap_cache(entry);
2071 if (!page) {
2072 grab_swap_token(); /* Contend for token _before_ read-in */
2073 swapin_readahead(entry, address, vma);
2074 page = read_swap_cache_async(entry, vma, address);
2075 if (!page) {
2077 * Back out if somebody else faulted in this pte
2078 * while we released the pte lock.
2080 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2081 if (likely(pte_same(*page_table, orig_pte)))
2082 ret = VM_FAULT_OOM;
2083 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2084 goto unlock;
2087 /* Had to read the page from swap area: Major fault */
2088 ret = VM_FAULT_MAJOR;
2089 count_vm_event(PGMAJFAULT);
2092 mark_page_accessed(page);
2093 lock_page(page);
2094 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2097 * Back out if somebody else already faulted in this pte.
2099 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2100 if (unlikely(!pte_same(*page_table, orig_pte)))
2101 goto out_nomap;
2103 if (unlikely(!PageUptodate(page))) {
2104 ret = VM_FAULT_SIGBUS;
2105 goto out_nomap;
2108 /* The page isn't present yet, go ahead with the fault. */
2110 inc_mm_counter(mm, anon_rss);
2111 pte = mk_pte(page, vma->vm_page_prot);
2112 if (write_access && can_share_swap_page(page)) {
2113 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2114 write_access = 0;
2117 flush_icache_page(vma, page);
2118 set_pte_at(mm, address, page_table, pte);
2119 page_add_anon_rmap(page, vma, address);
2121 swap_free(entry);
2122 if (vm_swap_full())
2123 remove_exclusive_swap_page(page);
2124 unlock_page(page);
2126 if (write_access) {
2127 /* XXX: We could OR the do_wp_page code with this one? */
2128 if (do_wp_page(mm, vma, address,
2129 page_table, pmd, ptl, pte) & VM_FAULT_OOM)
2130 ret = VM_FAULT_OOM;
2131 goto out;
2134 /* No need to invalidate - it was non-present before */
2135 update_mmu_cache(vma, address, pte);
2136 unlock:
2137 pte_unmap_unlock(page_table, ptl);
2138 out:
2139 return ret;
2140 out_nomap:
2141 pte_unmap_unlock(page_table, ptl);
2142 unlock_page(page);
2143 page_cache_release(page);
2144 return ret;
2148 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2149 * but allow concurrent faults), and pte mapped but not yet locked.
2150 * We return with mmap_sem still held, but pte unmapped and unlocked.
2152 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2153 unsigned long address, pte_t *page_table, pmd_t *pmd,
2154 int write_access)
2156 struct page *page;
2157 spinlock_t *ptl;
2158 pte_t entry;
2160 /* Allocate our own private page. */
2161 pte_unmap(page_table);
2163 if (unlikely(anon_vma_prepare(vma)))
2164 goto oom;
2165 page = alloc_zeroed_user_highpage_movable(vma, address);
2166 if (!page)
2167 goto oom;
2169 entry = mk_pte(page, vma->vm_page_prot);
2170 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2172 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2173 if (!pte_none(*page_table))
2174 goto release;
2175 inc_mm_counter(mm, anon_rss);
2176 lru_cache_add_active(page);
2177 page_add_new_anon_rmap(page, vma, address);
2178 set_pte_at(mm, address, page_table, entry);
2180 /* No need to invalidate - it was non-present before */
2181 update_mmu_cache(vma, address, entry);
2182 unlock:
2183 pte_unmap_unlock(page_table, ptl);
2184 return 0;
2185 release:
2186 page_cache_release(page);
2187 goto unlock;
2188 oom:
2189 return VM_FAULT_OOM;
2193 * __do_fault() tries to create a new page mapping. It aggressively
2194 * tries to share with existing pages, but makes a separate copy if
2195 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2196 * the next page fault.
2198 * As this is called only for pages that do not currently exist, we
2199 * do not need to flush old virtual caches or the TLB.
2201 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2202 * but allow concurrent faults), and pte neither mapped nor locked.
2203 * We return with mmap_sem still held, but pte unmapped and unlocked.
2205 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2206 unsigned long address, pmd_t *pmd,
2207 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2209 pte_t *page_table;
2210 spinlock_t *ptl;
2211 struct page *page;
2212 pte_t entry;
2213 int anon = 0;
2214 struct page *dirty_page = NULL;
2215 struct vm_fault vmf;
2216 int ret;
2217 int page_mkwrite = 0;
2219 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2220 vmf.pgoff = pgoff;
2221 vmf.flags = flags;
2222 vmf.page = NULL;
2224 BUG_ON(vma->vm_flags & VM_PFNMAP);
2226 if (likely(vma->vm_ops->fault)) {
2227 ret = vma->vm_ops->fault(vma, &vmf);
2228 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2229 return ret;
2230 } else {
2231 /* Legacy ->nopage path */
2232 ret = 0;
2233 vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2234 /* no page was available -- either SIGBUS or OOM */
2235 if (unlikely(vmf.page == NOPAGE_SIGBUS))
2236 return VM_FAULT_SIGBUS;
2237 else if (unlikely(vmf.page == NOPAGE_OOM))
2238 return VM_FAULT_OOM;
2242 * For consistency in subsequent calls, make the faulted page always
2243 * locked.
2245 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2246 lock_page(vmf.page);
2247 else
2248 VM_BUG_ON(!PageLocked(vmf.page));
2251 * Should we do an early C-O-W break?
2253 page = vmf.page;
2254 if (flags & FAULT_FLAG_WRITE) {
2255 if (!(vma->vm_flags & VM_SHARED)) {
2256 anon = 1;
2257 if (unlikely(anon_vma_prepare(vma))) {
2258 ret = VM_FAULT_OOM;
2259 goto out;
2261 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2262 vma, address);
2263 if (!page) {
2264 ret = VM_FAULT_OOM;
2265 goto out;
2267 copy_user_highpage(page, vmf.page, address, vma);
2268 } else {
2270 * If the page will be shareable, see if the backing
2271 * address space wants to know that the page is about
2272 * to become writable
2274 if (vma->vm_ops->page_mkwrite) {
2275 unlock_page(page);
2276 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2277 ret = VM_FAULT_SIGBUS;
2278 anon = 1; /* no anon but release vmf.page */
2279 goto out_unlocked;
2281 lock_page(page);
2283 * XXX: this is not quite right (racy vs
2284 * invalidate) to unlock and relock the page
2285 * like this, however a better fix requires
2286 * reworking page_mkwrite locking API, which
2287 * is better done later.
2289 if (!page->mapping) {
2290 ret = 0;
2291 anon = 1; /* no anon but release vmf.page */
2292 goto out;
2294 page_mkwrite = 1;
2300 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2303 * This silly early PAGE_DIRTY setting removes a race
2304 * due to the bad i386 page protection. But it's valid
2305 * for other architectures too.
2307 * Note that if write_access is true, we either now have
2308 * an exclusive copy of the page, or this is a shared mapping,
2309 * so we can make it writable and dirty to avoid having to
2310 * handle that later.
2312 /* Only go through if we didn't race with anybody else... */
2313 if (likely(pte_same(*page_table, orig_pte))) {
2314 flush_icache_page(vma, page);
2315 entry = mk_pte(page, vma->vm_page_prot);
2316 if (flags & FAULT_FLAG_WRITE)
2317 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2318 set_pte_at(mm, address, page_table, entry);
2319 if (anon) {
2320 inc_mm_counter(mm, anon_rss);
2321 lru_cache_add_active(page);
2322 page_add_new_anon_rmap(page, vma, address);
2323 } else {
2324 inc_mm_counter(mm, file_rss);
2325 page_add_file_rmap(page);
2326 if (flags & FAULT_FLAG_WRITE) {
2327 dirty_page = page;
2328 get_page(dirty_page);
2332 /* no need to invalidate: a not-present page won't be cached */
2333 update_mmu_cache(vma, address, entry);
2334 } else {
2335 if (anon)
2336 page_cache_release(page);
2337 else
2338 anon = 1; /* no anon but release faulted_page */
2341 pte_unmap_unlock(page_table, ptl);
2343 out:
2344 unlock_page(vmf.page);
2345 out_unlocked:
2346 if (anon)
2347 page_cache_release(vmf.page);
2348 else if (dirty_page) {
2349 if (vma->vm_file)
2350 file_update_time(vma->vm_file);
2352 set_page_dirty_balance(dirty_page, page_mkwrite);
2353 put_page(dirty_page);
2356 return ret;
2359 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2360 unsigned long address, pte_t *page_table, pmd_t *pmd,
2361 int write_access, pte_t orig_pte)
2363 pgoff_t pgoff = (((address & PAGE_MASK)
2364 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2365 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2367 pte_unmap(page_table);
2368 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2373 * do_no_pfn() tries to create a new page mapping for a page without
2374 * a struct_page backing it
2376 * As this is called only for pages that do not currently exist, we
2377 * do not need to flush old virtual caches or the TLB.
2379 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2380 * but allow concurrent faults), and pte mapped but not yet locked.
2381 * We return with mmap_sem still held, but pte unmapped and unlocked.
2383 * It is expected that the ->nopfn handler always returns the same pfn
2384 * for a given virtual mapping.
2386 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2388 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2389 unsigned long address, pte_t *page_table, pmd_t *pmd,
2390 int write_access)
2392 spinlock_t *ptl;
2393 pte_t entry;
2394 unsigned long pfn;
2396 pte_unmap(page_table);
2397 BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2398 BUG_ON(is_cow_mapping(vma->vm_flags));
2400 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2401 if (unlikely(pfn == NOPFN_OOM))
2402 return VM_FAULT_OOM;
2403 else if (unlikely(pfn == NOPFN_SIGBUS))
2404 return VM_FAULT_SIGBUS;
2405 else if (unlikely(pfn == NOPFN_REFAULT))
2406 return 0;
2408 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2410 /* Only go through if we didn't race with anybody else... */
2411 if (pte_none(*page_table)) {
2412 entry = pfn_pte(pfn, vma->vm_page_prot);
2413 if (write_access)
2414 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2415 set_pte_at(mm, address, page_table, entry);
2417 pte_unmap_unlock(page_table, ptl);
2418 return 0;
2422 * Fault of a previously existing named mapping. Repopulate the pte
2423 * from the encoded file_pte if possible. This enables swappable
2424 * nonlinear vmas.
2426 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2427 * but allow concurrent faults), and pte mapped but not yet locked.
2428 * We return with mmap_sem still held, but pte unmapped and unlocked.
2430 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2431 unsigned long address, pte_t *page_table, pmd_t *pmd,
2432 int write_access, pte_t orig_pte)
2434 unsigned int flags = FAULT_FLAG_NONLINEAR |
2435 (write_access ? FAULT_FLAG_WRITE : 0);
2436 pgoff_t pgoff;
2438 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2439 return 0;
2441 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2442 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2444 * Page table corrupted: show pte and kill process.
2446 print_bad_pte(vma, orig_pte, address);
2447 return VM_FAULT_OOM;
2450 pgoff = pte_to_pgoff(orig_pte);
2451 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2455 * These routines also need to handle stuff like marking pages dirty
2456 * and/or accessed for architectures that don't do it in hardware (most
2457 * RISC architectures). The early dirtying is also good on the i386.
2459 * There is also a hook called "update_mmu_cache()" that architectures
2460 * with external mmu caches can use to update those (ie the Sparc or
2461 * PowerPC hashed page tables that act as extended TLBs).
2463 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2464 * but allow concurrent faults), and pte mapped but not yet locked.
2465 * We return with mmap_sem still held, but pte unmapped and unlocked.
2467 static inline int handle_pte_fault(struct mm_struct *mm,
2468 struct vm_area_struct *vma, unsigned long address,
2469 pte_t *pte, pmd_t *pmd, int write_access)
2471 pte_t entry;
2472 spinlock_t *ptl;
2474 entry = *pte;
2475 if (!pte_present(entry)) {
2476 if (pte_none(entry)) {
2477 if (vma->vm_ops) {
2478 if (vma->vm_ops->fault || vma->vm_ops->nopage)
2479 return do_linear_fault(mm, vma, address,
2480 pte, pmd, write_access, entry);
2481 if (unlikely(vma->vm_ops->nopfn))
2482 return do_no_pfn(mm, vma, address, pte,
2483 pmd, write_access);
2485 return do_anonymous_page(mm, vma, address,
2486 pte, pmd, write_access);
2488 if (pte_file(entry))
2489 return do_nonlinear_fault(mm, vma, address,
2490 pte, pmd, write_access, entry);
2491 return do_swap_page(mm, vma, address,
2492 pte, pmd, write_access, entry);
2495 ptl = pte_lockptr(mm, pmd);
2496 spin_lock(ptl);
2497 if (unlikely(!pte_same(*pte, entry)))
2498 goto unlock;
2499 if (write_access) {
2500 if (!pte_write(entry))
2501 return do_wp_page(mm, vma, address,
2502 pte, pmd, ptl, entry);
2503 entry = pte_mkdirty(entry);
2505 entry = pte_mkyoung(entry);
2506 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2507 update_mmu_cache(vma, address, entry);
2508 } else {
2510 * This is needed only for protection faults but the arch code
2511 * is not yet telling us if this is a protection fault or not.
2512 * This still avoids useless tlb flushes for .text page faults
2513 * with threads.
2515 if (write_access)
2516 flush_tlb_page(vma, address);
2518 unlock:
2519 pte_unmap_unlock(pte, ptl);
2520 return 0;
2524 * By the time we get here, we already hold the mm semaphore
2526 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2527 unsigned long address, int write_access)
2529 pgd_t *pgd;
2530 pud_t *pud;
2531 pmd_t *pmd;
2532 pte_t *pte;
2534 __set_current_state(TASK_RUNNING);
2536 count_vm_event(PGFAULT);
2538 if (unlikely(is_vm_hugetlb_page(vma)))
2539 return hugetlb_fault(mm, vma, address, write_access);
2541 pgd = pgd_offset(mm, address);
2542 pud = pud_alloc(mm, pgd, address);
2543 if (!pud)
2544 return VM_FAULT_OOM;
2545 pmd = pmd_alloc(mm, pud, address);
2546 if (!pmd)
2547 return VM_FAULT_OOM;
2548 pte = pte_alloc_map(mm, pmd, address);
2549 if (!pte)
2550 return VM_FAULT_OOM;
2552 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2555 #ifndef __PAGETABLE_PUD_FOLDED
2557 * Allocate page upper directory.
2558 * We've already handled the fast-path in-line.
2560 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2562 pud_t *new = pud_alloc_one(mm, address);
2563 if (!new)
2564 return -ENOMEM;
2566 spin_lock(&mm->page_table_lock);
2567 if (pgd_present(*pgd)) /* Another has populated it */
2568 pud_free(new);
2569 else
2570 pgd_populate(mm, pgd, new);
2571 spin_unlock(&mm->page_table_lock);
2572 return 0;
2574 #endif /* __PAGETABLE_PUD_FOLDED */
2576 #ifndef __PAGETABLE_PMD_FOLDED
2578 * Allocate page middle directory.
2579 * We've already handled the fast-path in-line.
2581 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2583 pmd_t *new = pmd_alloc_one(mm, address);
2584 if (!new)
2585 return -ENOMEM;
2587 spin_lock(&mm->page_table_lock);
2588 #ifndef __ARCH_HAS_4LEVEL_HACK
2589 if (pud_present(*pud)) /* Another has populated it */
2590 pmd_free(new);
2591 else
2592 pud_populate(mm, pud, new);
2593 #else
2594 if (pgd_present(*pud)) /* Another has populated it */
2595 pmd_free(new);
2596 else
2597 pgd_populate(mm, pud, new);
2598 #endif /* __ARCH_HAS_4LEVEL_HACK */
2599 spin_unlock(&mm->page_table_lock);
2600 return 0;
2602 #endif /* __PAGETABLE_PMD_FOLDED */
2604 int make_pages_present(unsigned long addr, unsigned long end)
2606 int ret, len, write;
2607 struct vm_area_struct * vma;
2609 vma = find_vma(current->mm, addr);
2610 if (!vma)
2611 return -1;
2612 write = (vma->vm_flags & VM_WRITE) != 0;
2613 BUG_ON(addr >= end);
2614 BUG_ON(end > vma->vm_end);
2615 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2616 ret = get_user_pages(current, current->mm, addr,
2617 len, write, 0, NULL, NULL);
2618 if (ret < 0)
2619 return ret;
2620 return ret == len ? 0 : -1;
2624 * Map a vmalloc()-space virtual address to the physical page.
2626 struct page * vmalloc_to_page(void * vmalloc_addr)
2628 unsigned long addr = (unsigned long) vmalloc_addr;
2629 struct page *page = NULL;
2630 pgd_t *pgd = pgd_offset_k(addr);
2631 pud_t *pud;
2632 pmd_t *pmd;
2633 pte_t *ptep, pte;
2635 if (!pgd_none(*pgd)) {
2636 pud = pud_offset(pgd, addr);
2637 if (!pud_none(*pud)) {
2638 pmd = pmd_offset(pud, addr);
2639 if (!pmd_none(*pmd)) {
2640 ptep = pte_offset_map(pmd, addr);
2641 pte = *ptep;
2642 if (pte_present(pte))
2643 page = pte_page(pte);
2644 pte_unmap(ptep);
2648 return page;
2651 EXPORT_SYMBOL(vmalloc_to_page);
2654 * Map a vmalloc()-space virtual address to the physical page frame number.
2656 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2658 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2661 EXPORT_SYMBOL(vmalloc_to_pfn);
2663 #if !defined(__HAVE_ARCH_GATE_AREA)
2665 #if defined(AT_SYSINFO_EHDR)
2666 static struct vm_area_struct gate_vma;
2668 static int __init gate_vma_init(void)
2670 gate_vma.vm_mm = NULL;
2671 gate_vma.vm_start = FIXADDR_USER_START;
2672 gate_vma.vm_end = FIXADDR_USER_END;
2673 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2674 gate_vma.vm_page_prot = __P101;
2676 * Make sure the vDSO gets into every core dump.
2677 * Dumping its contents makes post-mortem fully interpretable later
2678 * without matching up the same kernel and hardware config to see
2679 * what PC values meant.
2681 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2682 return 0;
2684 __initcall(gate_vma_init);
2685 #endif
2687 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2689 #ifdef AT_SYSINFO_EHDR
2690 return &gate_vma;
2691 #else
2692 return NULL;
2693 #endif
2696 int in_gate_area_no_task(unsigned long addr)
2698 #ifdef AT_SYSINFO_EHDR
2699 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2700 return 1;
2701 #endif
2702 return 0;
2705 #endif /* __HAVE_ARCH_GATE_AREA */
2708 * Access another process' address space.
2709 * Source/target buffer must be kernel space,
2710 * Do not walk the page table directly, use get_user_pages
2712 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2714 struct mm_struct *mm;
2715 struct vm_area_struct *vma;
2716 struct page *page;
2717 void *old_buf = buf;
2719 mm = get_task_mm(tsk);
2720 if (!mm)
2721 return 0;
2723 down_read(&mm->mmap_sem);
2724 /* ignore errors, just check how much was successfully transferred */
2725 while (len) {
2726 int bytes, ret, offset;
2727 void *maddr;
2729 ret = get_user_pages(tsk, mm, addr, 1,
2730 write, 1, &page, &vma);
2731 if (ret <= 0)
2732 break;
2734 bytes = len;
2735 offset = addr & (PAGE_SIZE-1);
2736 if (bytes > PAGE_SIZE-offset)
2737 bytes = PAGE_SIZE-offset;
2739 maddr = kmap(page);
2740 if (write) {
2741 copy_to_user_page(vma, page, addr,
2742 maddr + offset, buf, bytes);
2743 set_page_dirty_lock(page);
2744 } else {
2745 copy_from_user_page(vma, page, addr,
2746 buf, maddr + offset, bytes);
2748 kunmap(page);
2749 page_cache_release(page);
2750 len -= bytes;
2751 buf += bytes;
2752 addr += bytes;
2754 up_read(&mm->mmap_sem);
2755 mmput(mm);
2757 return buf - old_buf;