Driver core: fix race in __device_release_driver
[linux-2.6/mini2440.git] / block / cfq-iosched.c
blob13553e015d7203f244db2e411884c56cbee1bc26
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
16 * tunables
18 static const int cfq_quantum = 4; /* max queue in one round of service */
19 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
20 static const int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */
21 static const int cfq_back_penalty = 2; /* penalty of a backwards seek */
23 static const int cfq_slice_sync = HZ / 10;
24 static int cfq_slice_async = HZ / 25;
25 static const int cfq_slice_async_rq = 2;
26 static int cfq_slice_idle = HZ / 125;
29 * grace period before allowing idle class to get disk access
31 #define CFQ_IDLE_GRACE (HZ / 10)
34 * below this threshold, we consider thinktime immediate
36 #define CFQ_MIN_TT (2)
38 #define CFQ_SLICE_SCALE (5)
40 #define RQ_CIC(rq) ((struct cfq_io_context*)(rq)->elevator_private)
41 #define RQ_CFQQ(rq) ((rq)->elevator_private2)
43 static struct kmem_cache *cfq_pool;
44 static struct kmem_cache *cfq_ioc_pool;
46 static DEFINE_PER_CPU(unsigned long, ioc_count);
47 static struct completion *ioc_gone;
49 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
50 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
51 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
53 #define ASYNC (0)
54 #define SYNC (1)
56 #define sample_valid(samples) ((samples) > 80)
59 * Most of our rbtree usage is for sorting with min extraction, so
60 * if we cache the leftmost node we don't have to walk down the tree
61 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
62 * move this into the elevator for the rq sorting as well.
64 struct cfq_rb_root {
65 struct rb_root rb;
66 struct rb_node *left;
68 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
71 * Per block device queue structure
73 struct cfq_data {
74 struct request_queue *queue;
77 * rr list of queues with requests and the count of them
79 struct cfq_rb_root service_tree;
80 unsigned int busy_queues;
82 int rq_in_driver;
83 int sync_flight;
84 int hw_tag;
87 * idle window management
89 struct timer_list idle_slice_timer;
90 struct work_struct unplug_work;
92 struct cfq_queue *active_queue;
93 struct cfq_io_context *active_cic;
96 * async queue for each priority case
98 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
99 struct cfq_queue *async_idle_cfqq;
101 struct timer_list idle_class_timer;
103 sector_t last_position;
104 unsigned long last_end_request;
107 * tunables, see top of file
109 unsigned int cfq_quantum;
110 unsigned int cfq_fifo_expire[2];
111 unsigned int cfq_back_penalty;
112 unsigned int cfq_back_max;
113 unsigned int cfq_slice[2];
114 unsigned int cfq_slice_async_rq;
115 unsigned int cfq_slice_idle;
117 struct list_head cic_list;
121 * Per process-grouping structure
123 struct cfq_queue {
124 /* reference count */
125 atomic_t ref;
126 /* parent cfq_data */
127 struct cfq_data *cfqd;
128 /* service_tree member */
129 struct rb_node rb_node;
130 /* service_tree key */
131 unsigned long rb_key;
132 /* sorted list of pending requests */
133 struct rb_root sort_list;
134 /* if fifo isn't expired, next request to serve */
135 struct request *next_rq;
136 /* requests queued in sort_list */
137 int queued[2];
138 /* currently allocated requests */
139 int allocated[2];
140 /* pending metadata requests */
141 int meta_pending;
142 /* fifo list of requests in sort_list */
143 struct list_head fifo;
145 unsigned long slice_end;
146 long slice_resid;
148 /* number of requests that are on the dispatch list or inside driver */
149 int dispatched;
151 /* io prio of this group */
152 unsigned short ioprio, org_ioprio;
153 unsigned short ioprio_class, org_ioprio_class;
155 /* various state flags, see below */
156 unsigned int flags;
159 enum cfqq_state_flags {
160 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
161 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
162 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
163 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
164 CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
165 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
166 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
167 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
168 CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
169 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
170 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
173 #define CFQ_CFQQ_FNS(name) \
174 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
176 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
178 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
180 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
182 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
184 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
187 CFQ_CFQQ_FNS(on_rr);
188 CFQ_CFQQ_FNS(wait_request);
189 CFQ_CFQQ_FNS(must_alloc);
190 CFQ_CFQQ_FNS(must_alloc_slice);
191 CFQ_CFQQ_FNS(must_dispatch);
192 CFQ_CFQQ_FNS(fifo_expire);
193 CFQ_CFQQ_FNS(idle_window);
194 CFQ_CFQQ_FNS(prio_changed);
195 CFQ_CFQQ_FNS(queue_new);
196 CFQ_CFQQ_FNS(slice_new);
197 CFQ_CFQQ_FNS(sync);
198 #undef CFQ_CFQQ_FNS
200 static void cfq_dispatch_insert(struct request_queue *, struct request *);
201 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
202 struct task_struct *, gfp_t);
203 static struct cfq_io_context *cfq_cic_rb_lookup(struct cfq_data *,
204 struct io_context *);
206 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
207 int is_sync)
209 return cic->cfqq[!!is_sync];
212 static inline void cic_set_cfqq(struct cfq_io_context *cic,
213 struct cfq_queue *cfqq, int is_sync)
215 cic->cfqq[!!is_sync] = cfqq;
219 * We regard a request as SYNC, if it's either a read or has the SYNC bit
220 * set (in which case it could also be direct WRITE).
222 static inline int cfq_bio_sync(struct bio *bio)
224 if (bio_data_dir(bio) == READ || bio_sync(bio))
225 return 1;
227 return 0;
231 * scheduler run of queue, if there are requests pending and no one in the
232 * driver that will restart queueing
234 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
236 if (cfqd->busy_queues)
237 kblockd_schedule_work(&cfqd->unplug_work);
240 static int cfq_queue_empty(struct request_queue *q)
242 struct cfq_data *cfqd = q->elevator->elevator_data;
244 return !cfqd->busy_queues;
248 * Scale schedule slice based on io priority. Use the sync time slice only
249 * if a queue is marked sync and has sync io queued. A sync queue with async
250 * io only, should not get full sync slice length.
252 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
253 unsigned short prio)
255 const int base_slice = cfqd->cfq_slice[sync];
257 WARN_ON(prio >= IOPRIO_BE_NR);
259 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
262 static inline int
263 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
265 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
268 static inline void
269 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
271 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
275 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
276 * isn't valid until the first request from the dispatch is activated
277 * and the slice time set.
279 static inline int cfq_slice_used(struct cfq_queue *cfqq)
281 if (cfq_cfqq_slice_new(cfqq))
282 return 0;
283 if (time_before(jiffies, cfqq->slice_end))
284 return 0;
286 return 1;
290 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
291 * We choose the request that is closest to the head right now. Distance
292 * behind the head is penalized and only allowed to a certain extent.
294 static struct request *
295 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
297 sector_t last, s1, s2, d1 = 0, d2 = 0;
298 unsigned long back_max;
299 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
300 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
301 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
303 if (rq1 == NULL || rq1 == rq2)
304 return rq2;
305 if (rq2 == NULL)
306 return rq1;
308 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
309 return rq1;
310 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
311 return rq2;
312 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
313 return rq1;
314 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
315 return rq2;
317 s1 = rq1->sector;
318 s2 = rq2->sector;
320 last = cfqd->last_position;
323 * by definition, 1KiB is 2 sectors
325 back_max = cfqd->cfq_back_max * 2;
328 * Strict one way elevator _except_ in the case where we allow
329 * short backward seeks which are biased as twice the cost of a
330 * similar forward seek.
332 if (s1 >= last)
333 d1 = s1 - last;
334 else if (s1 + back_max >= last)
335 d1 = (last - s1) * cfqd->cfq_back_penalty;
336 else
337 wrap |= CFQ_RQ1_WRAP;
339 if (s2 >= last)
340 d2 = s2 - last;
341 else if (s2 + back_max >= last)
342 d2 = (last - s2) * cfqd->cfq_back_penalty;
343 else
344 wrap |= CFQ_RQ2_WRAP;
346 /* Found required data */
349 * By doing switch() on the bit mask "wrap" we avoid having to
350 * check two variables for all permutations: --> faster!
352 switch (wrap) {
353 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
354 if (d1 < d2)
355 return rq1;
356 else if (d2 < d1)
357 return rq2;
358 else {
359 if (s1 >= s2)
360 return rq1;
361 else
362 return rq2;
365 case CFQ_RQ2_WRAP:
366 return rq1;
367 case CFQ_RQ1_WRAP:
368 return rq2;
369 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
370 default:
372 * Since both rqs are wrapped,
373 * start with the one that's further behind head
374 * (--> only *one* back seek required),
375 * since back seek takes more time than forward.
377 if (s1 <= s2)
378 return rq1;
379 else
380 return rq2;
385 * The below is leftmost cache rbtree addon
387 static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
389 if (!root->left)
390 root->left = rb_first(&root->rb);
392 return root->left;
395 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
397 if (root->left == n)
398 root->left = NULL;
400 rb_erase(n, &root->rb);
401 RB_CLEAR_NODE(n);
405 * would be nice to take fifo expire time into account as well
407 static struct request *
408 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
409 struct request *last)
411 struct rb_node *rbnext = rb_next(&last->rb_node);
412 struct rb_node *rbprev = rb_prev(&last->rb_node);
413 struct request *next = NULL, *prev = NULL;
415 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
417 if (rbprev)
418 prev = rb_entry_rq(rbprev);
420 if (rbnext)
421 next = rb_entry_rq(rbnext);
422 else {
423 rbnext = rb_first(&cfqq->sort_list);
424 if (rbnext && rbnext != &last->rb_node)
425 next = rb_entry_rq(rbnext);
428 return cfq_choose_req(cfqd, next, prev);
431 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
432 struct cfq_queue *cfqq)
435 * just an approximation, should be ok.
437 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
438 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
442 * The cfqd->service_tree holds all pending cfq_queue's that have
443 * requests waiting to be processed. It is sorted in the order that
444 * we will service the queues.
446 static void cfq_service_tree_add(struct cfq_data *cfqd,
447 struct cfq_queue *cfqq, int add_front)
449 struct rb_node **p = &cfqd->service_tree.rb.rb_node;
450 struct rb_node *parent = NULL;
451 unsigned long rb_key;
452 int left;
454 if (!add_front) {
455 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
456 rb_key += cfqq->slice_resid;
457 cfqq->slice_resid = 0;
458 } else
459 rb_key = 0;
461 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
463 * same position, nothing more to do
465 if (rb_key == cfqq->rb_key)
466 return;
468 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
471 left = 1;
472 while (*p) {
473 struct cfq_queue *__cfqq;
474 struct rb_node **n;
476 parent = *p;
477 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
480 * sort RT queues first, we always want to give
481 * preference to them. IDLE queues goes to the back.
482 * after that, sort on the next service time.
484 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
485 n = &(*p)->rb_left;
486 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
487 n = &(*p)->rb_right;
488 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
489 n = &(*p)->rb_left;
490 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
491 n = &(*p)->rb_right;
492 else if (rb_key < __cfqq->rb_key)
493 n = &(*p)->rb_left;
494 else
495 n = &(*p)->rb_right;
497 if (n == &(*p)->rb_right)
498 left = 0;
500 p = n;
503 if (left)
504 cfqd->service_tree.left = &cfqq->rb_node;
506 cfqq->rb_key = rb_key;
507 rb_link_node(&cfqq->rb_node, parent, p);
508 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
512 * Update cfqq's position in the service tree.
514 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
517 * Resorting requires the cfqq to be on the RR list already.
519 if (cfq_cfqq_on_rr(cfqq))
520 cfq_service_tree_add(cfqd, cfqq, 0);
524 * add to busy list of queues for service, trying to be fair in ordering
525 * the pending list according to last request service
527 static inline void
528 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
530 BUG_ON(cfq_cfqq_on_rr(cfqq));
531 cfq_mark_cfqq_on_rr(cfqq);
532 cfqd->busy_queues++;
534 cfq_resort_rr_list(cfqd, cfqq);
538 * Called when the cfqq no longer has requests pending, remove it from
539 * the service tree.
541 static inline void
542 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
544 BUG_ON(!cfq_cfqq_on_rr(cfqq));
545 cfq_clear_cfqq_on_rr(cfqq);
547 if (!RB_EMPTY_NODE(&cfqq->rb_node))
548 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
550 BUG_ON(!cfqd->busy_queues);
551 cfqd->busy_queues--;
555 * rb tree support functions
557 static inline void cfq_del_rq_rb(struct request *rq)
559 struct cfq_queue *cfqq = RQ_CFQQ(rq);
560 struct cfq_data *cfqd = cfqq->cfqd;
561 const int sync = rq_is_sync(rq);
563 BUG_ON(!cfqq->queued[sync]);
564 cfqq->queued[sync]--;
566 elv_rb_del(&cfqq->sort_list, rq);
568 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
569 cfq_del_cfqq_rr(cfqd, cfqq);
572 static void cfq_add_rq_rb(struct request *rq)
574 struct cfq_queue *cfqq = RQ_CFQQ(rq);
575 struct cfq_data *cfqd = cfqq->cfqd;
576 struct request *__alias;
578 cfqq->queued[rq_is_sync(rq)]++;
581 * looks a little odd, but the first insert might return an alias.
582 * if that happens, put the alias on the dispatch list
584 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
585 cfq_dispatch_insert(cfqd->queue, __alias);
587 if (!cfq_cfqq_on_rr(cfqq))
588 cfq_add_cfqq_rr(cfqd, cfqq);
591 * check if this request is a better next-serve candidate
593 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
594 BUG_ON(!cfqq->next_rq);
597 static inline void
598 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
600 elv_rb_del(&cfqq->sort_list, rq);
601 cfqq->queued[rq_is_sync(rq)]--;
602 cfq_add_rq_rb(rq);
605 static struct request *
606 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
608 struct task_struct *tsk = current;
609 struct cfq_io_context *cic;
610 struct cfq_queue *cfqq;
612 cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
613 if (!cic)
614 return NULL;
616 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
617 if (cfqq) {
618 sector_t sector = bio->bi_sector + bio_sectors(bio);
620 return elv_rb_find(&cfqq->sort_list, sector);
623 return NULL;
626 static void cfq_activate_request(struct request_queue *q, struct request *rq)
628 struct cfq_data *cfqd = q->elevator->elevator_data;
630 cfqd->rq_in_driver++;
633 * If the depth is larger 1, it really could be queueing. But lets
634 * make the mark a little higher - idling could still be good for
635 * low queueing, and a low queueing number could also just indicate
636 * a SCSI mid layer like behaviour where limit+1 is often seen.
638 if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
639 cfqd->hw_tag = 1;
641 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
644 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
646 struct cfq_data *cfqd = q->elevator->elevator_data;
648 WARN_ON(!cfqd->rq_in_driver);
649 cfqd->rq_in_driver--;
652 static void cfq_remove_request(struct request *rq)
654 struct cfq_queue *cfqq = RQ_CFQQ(rq);
656 if (cfqq->next_rq == rq)
657 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
659 list_del_init(&rq->queuelist);
660 cfq_del_rq_rb(rq);
662 if (rq_is_meta(rq)) {
663 WARN_ON(!cfqq->meta_pending);
664 cfqq->meta_pending--;
668 static int cfq_merge(struct request_queue *q, struct request **req,
669 struct bio *bio)
671 struct cfq_data *cfqd = q->elevator->elevator_data;
672 struct request *__rq;
674 __rq = cfq_find_rq_fmerge(cfqd, bio);
675 if (__rq && elv_rq_merge_ok(__rq, bio)) {
676 *req = __rq;
677 return ELEVATOR_FRONT_MERGE;
680 return ELEVATOR_NO_MERGE;
683 static void cfq_merged_request(struct request_queue *q, struct request *req,
684 int type)
686 if (type == ELEVATOR_FRONT_MERGE) {
687 struct cfq_queue *cfqq = RQ_CFQQ(req);
689 cfq_reposition_rq_rb(cfqq, req);
693 static void
694 cfq_merged_requests(struct request_queue *q, struct request *rq,
695 struct request *next)
698 * reposition in fifo if next is older than rq
700 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
701 time_before(next->start_time, rq->start_time))
702 list_move(&rq->queuelist, &next->queuelist);
704 cfq_remove_request(next);
707 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
708 struct bio *bio)
710 struct cfq_data *cfqd = q->elevator->elevator_data;
711 struct cfq_io_context *cic;
712 struct cfq_queue *cfqq;
715 * Disallow merge of a sync bio into an async request.
717 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
718 return 0;
721 * Lookup the cfqq that this bio will be queued with. Allow
722 * merge only if rq is queued there.
724 cic = cfq_cic_rb_lookup(cfqd, current->io_context);
725 if (!cic)
726 return 0;
728 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
729 if (cfqq == RQ_CFQQ(rq))
730 return 1;
732 return 0;
735 static inline void
736 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
738 if (cfqq) {
740 * stop potential idle class queues waiting service
742 del_timer(&cfqd->idle_class_timer);
744 cfqq->slice_end = 0;
745 cfq_clear_cfqq_must_alloc_slice(cfqq);
746 cfq_clear_cfqq_fifo_expire(cfqq);
747 cfq_mark_cfqq_slice_new(cfqq);
748 cfq_clear_cfqq_queue_new(cfqq);
751 cfqd->active_queue = cfqq;
755 * current cfqq expired its slice (or was too idle), select new one
757 static void
758 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
759 int timed_out)
761 if (cfq_cfqq_wait_request(cfqq))
762 del_timer(&cfqd->idle_slice_timer);
764 cfq_clear_cfqq_must_dispatch(cfqq);
765 cfq_clear_cfqq_wait_request(cfqq);
768 * store what was left of this slice, if the queue idled/timed out
770 if (timed_out && !cfq_cfqq_slice_new(cfqq))
771 cfqq->slice_resid = cfqq->slice_end - jiffies;
773 cfq_resort_rr_list(cfqd, cfqq);
775 if (cfqq == cfqd->active_queue)
776 cfqd->active_queue = NULL;
778 if (cfqd->active_cic) {
779 put_io_context(cfqd->active_cic->ioc);
780 cfqd->active_cic = NULL;
784 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
786 struct cfq_queue *cfqq = cfqd->active_queue;
788 if (cfqq)
789 __cfq_slice_expired(cfqd, cfqq, timed_out);
792 static int start_idle_class_timer(struct cfq_data *cfqd)
794 unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
795 unsigned long now = jiffies;
797 if (time_before(now, end) &&
798 time_after_eq(now, cfqd->last_end_request)) {
799 mod_timer(&cfqd->idle_class_timer, end);
800 return 1;
803 return 0;
807 * Get next queue for service. Unless we have a queue preemption,
808 * we'll simply select the first cfqq in the service tree.
810 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
812 struct cfq_queue *cfqq;
813 struct rb_node *n;
815 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
816 return NULL;
818 n = cfq_rb_first(&cfqd->service_tree);
819 cfqq = rb_entry(n, struct cfq_queue, rb_node);
821 if (cfq_class_idle(cfqq)) {
823 * if we have idle queues and no rt or be queues had
824 * pending requests, either allow immediate service if
825 * the grace period has passed or arm the idle grace
826 * timer
828 if (start_idle_class_timer(cfqd))
829 cfqq = NULL;
832 return cfqq;
836 * Get and set a new active queue for service.
838 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
840 struct cfq_queue *cfqq;
842 cfqq = cfq_get_next_queue(cfqd);
843 __cfq_set_active_queue(cfqd, cfqq);
844 return cfqq;
847 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
848 struct request *rq)
850 if (rq->sector >= cfqd->last_position)
851 return rq->sector - cfqd->last_position;
852 else
853 return cfqd->last_position - rq->sector;
856 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
858 struct cfq_io_context *cic = cfqd->active_cic;
860 if (!sample_valid(cic->seek_samples))
861 return 0;
863 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
866 static int cfq_close_cooperator(struct cfq_data *cfq_data,
867 struct cfq_queue *cfqq)
870 * We should notice if some of the queues are cooperating, eg
871 * working closely on the same area of the disk. In that case,
872 * we can group them together and don't waste time idling.
874 return 0;
877 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
879 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
881 struct cfq_queue *cfqq = cfqd->active_queue;
882 struct cfq_io_context *cic;
883 unsigned long sl;
885 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
886 WARN_ON(cfq_cfqq_slice_new(cfqq));
889 * idle is disabled, either manually or by past process history
891 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
892 return;
895 * task has exited, don't wait
897 cic = cfqd->active_cic;
898 if (!cic || !cic->ioc->task)
899 return;
902 * See if this prio level has a good candidate
904 if (cfq_close_cooperator(cfqd, cfqq) &&
905 (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
906 return;
908 cfq_mark_cfqq_must_dispatch(cfqq);
909 cfq_mark_cfqq_wait_request(cfqq);
912 * we don't want to idle for seeks, but we do want to allow
913 * fair distribution of slice time for a process doing back-to-back
914 * seeks. so allow a little bit of time for him to submit a new rq
916 sl = cfqd->cfq_slice_idle;
917 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
918 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
920 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
924 * Move request from internal lists to the request queue dispatch list.
926 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
928 struct cfq_data *cfqd = q->elevator->elevator_data;
929 struct cfq_queue *cfqq = RQ_CFQQ(rq);
931 cfq_remove_request(rq);
932 cfqq->dispatched++;
933 elv_dispatch_sort(q, rq);
935 if (cfq_cfqq_sync(cfqq))
936 cfqd->sync_flight++;
940 * return expired entry, or NULL to just start from scratch in rbtree
942 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
944 struct cfq_data *cfqd = cfqq->cfqd;
945 struct request *rq;
946 int fifo;
948 if (cfq_cfqq_fifo_expire(cfqq))
949 return NULL;
951 cfq_mark_cfqq_fifo_expire(cfqq);
953 if (list_empty(&cfqq->fifo))
954 return NULL;
956 fifo = cfq_cfqq_sync(cfqq);
957 rq = rq_entry_fifo(cfqq->fifo.next);
959 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
960 return NULL;
962 return rq;
965 static inline int
966 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
968 const int base_rq = cfqd->cfq_slice_async_rq;
970 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
972 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
976 * Select a queue for service. If we have a current active queue,
977 * check whether to continue servicing it, or retrieve and set a new one.
979 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
981 struct cfq_queue *cfqq;
983 cfqq = cfqd->active_queue;
984 if (!cfqq)
985 goto new_queue;
988 * The active queue has run out of time, expire it and select new.
990 if (cfq_slice_used(cfqq))
991 goto expire;
994 * The active queue has requests and isn't expired, allow it to
995 * dispatch.
997 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
998 goto keep_queue;
1001 * No requests pending. If the active queue still has requests in
1002 * flight or is idling for a new request, allow either of these
1003 * conditions to happen (or time out) before selecting a new queue.
1005 if (timer_pending(&cfqd->idle_slice_timer) ||
1006 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1007 cfqq = NULL;
1008 goto keep_queue;
1011 expire:
1012 cfq_slice_expired(cfqd, 0);
1013 new_queue:
1014 cfqq = cfq_set_active_queue(cfqd);
1015 keep_queue:
1016 return cfqq;
1020 * Dispatch some requests from cfqq, moving them to the request queue
1021 * dispatch list.
1023 static int
1024 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1025 int max_dispatch)
1027 int dispatched = 0;
1029 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1031 do {
1032 struct request *rq;
1035 * follow expired path, else get first next available
1037 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1038 rq = cfqq->next_rq;
1041 * finally, insert request into driver dispatch list
1043 cfq_dispatch_insert(cfqd->queue, rq);
1045 dispatched++;
1047 if (!cfqd->active_cic) {
1048 atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1049 cfqd->active_cic = RQ_CIC(rq);
1052 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1053 break;
1055 } while (dispatched < max_dispatch);
1058 * expire an async queue immediately if it has used up its slice. idle
1059 * queue always expire after 1 dispatch round.
1061 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1062 dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1063 cfq_class_idle(cfqq))) {
1064 cfqq->slice_end = jiffies + 1;
1065 cfq_slice_expired(cfqd, 0);
1068 return dispatched;
1071 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1073 int dispatched = 0;
1075 while (cfqq->next_rq) {
1076 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1077 dispatched++;
1080 BUG_ON(!list_empty(&cfqq->fifo));
1081 return dispatched;
1085 * Drain our current requests. Used for barriers and when switching
1086 * io schedulers on-the-fly.
1088 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1090 int dispatched = 0;
1091 struct rb_node *n;
1093 while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1094 struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1096 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1099 cfq_slice_expired(cfqd, 0);
1101 BUG_ON(cfqd->busy_queues);
1103 return dispatched;
1106 static int cfq_dispatch_requests(struct request_queue *q, int force)
1108 struct cfq_data *cfqd = q->elevator->elevator_data;
1109 struct cfq_queue *cfqq;
1110 int dispatched;
1112 if (!cfqd->busy_queues)
1113 return 0;
1115 if (unlikely(force))
1116 return cfq_forced_dispatch(cfqd);
1118 dispatched = 0;
1119 while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1120 int max_dispatch;
1122 max_dispatch = cfqd->cfq_quantum;
1123 if (cfq_class_idle(cfqq))
1124 max_dispatch = 1;
1126 if (cfqq->dispatched >= max_dispatch) {
1127 if (cfqd->busy_queues > 1)
1128 break;
1129 if (cfqq->dispatched >= 4 * max_dispatch)
1130 break;
1133 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1134 break;
1136 cfq_clear_cfqq_must_dispatch(cfqq);
1137 cfq_clear_cfqq_wait_request(cfqq);
1138 del_timer(&cfqd->idle_slice_timer);
1140 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1143 return dispatched;
1147 * task holds one reference to the queue, dropped when task exits. each rq
1148 * in-flight on this queue also holds a reference, dropped when rq is freed.
1150 * queue lock must be held here.
1152 static void cfq_put_queue(struct cfq_queue *cfqq)
1154 struct cfq_data *cfqd = cfqq->cfqd;
1156 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1158 if (!atomic_dec_and_test(&cfqq->ref))
1159 return;
1161 BUG_ON(rb_first(&cfqq->sort_list));
1162 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1163 BUG_ON(cfq_cfqq_on_rr(cfqq));
1165 if (unlikely(cfqd->active_queue == cfqq)) {
1166 __cfq_slice_expired(cfqd, cfqq, 0);
1167 cfq_schedule_dispatch(cfqd);
1170 kmem_cache_free(cfq_pool, cfqq);
1173 static void cfq_free_io_context(struct io_context *ioc)
1175 struct cfq_io_context *__cic;
1176 struct rb_node *n;
1177 int freed = 0;
1179 ioc->ioc_data = NULL;
1181 while ((n = rb_first(&ioc->cic_root)) != NULL) {
1182 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1183 rb_erase(&__cic->rb_node, &ioc->cic_root);
1184 kmem_cache_free(cfq_ioc_pool, __cic);
1185 freed++;
1188 elv_ioc_count_mod(ioc_count, -freed);
1190 if (ioc_gone && !elv_ioc_count_read(ioc_count))
1191 complete(ioc_gone);
1194 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1196 if (unlikely(cfqq == cfqd->active_queue)) {
1197 __cfq_slice_expired(cfqd, cfqq, 0);
1198 cfq_schedule_dispatch(cfqd);
1201 cfq_put_queue(cfqq);
1204 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1205 struct cfq_io_context *cic)
1207 list_del_init(&cic->queue_list);
1208 smp_wmb();
1209 cic->key = NULL;
1211 if (cic->cfqq[ASYNC]) {
1212 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1213 cic->cfqq[ASYNC] = NULL;
1216 if (cic->cfqq[SYNC]) {
1217 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1218 cic->cfqq[SYNC] = NULL;
1222 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1224 struct cfq_data *cfqd = cic->key;
1226 if (cfqd) {
1227 struct request_queue *q = cfqd->queue;
1229 spin_lock_irq(q->queue_lock);
1230 __cfq_exit_single_io_context(cfqd, cic);
1231 spin_unlock_irq(q->queue_lock);
1236 * The process that ioc belongs to has exited, we need to clean up
1237 * and put the internal structures we have that belongs to that process.
1239 static void cfq_exit_io_context(struct io_context *ioc)
1241 struct cfq_io_context *__cic;
1242 struct rb_node *n;
1244 ioc->ioc_data = NULL;
1247 * put the reference this task is holding to the various queues
1249 n = rb_first(&ioc->cic_root);
1250 while (n != NULL) {
1251 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1253 cfq_exit_single_io_context(__cic);
1254 n = rb_next(n);
1258 static struct cfq_io_context *
1259 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1261 struct cfq_io_context *cic;
1263 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1264 cfqd->queue->node);
1265 if (cic) {
1266 cic->last_end_request = jiffies;
1267 INIT_LIST_HEAD(&cic->queue_list);
1268 cic->dtor = cfq_free_io_context;
1269 cic->exit = cfq_exit_io_context;
1270 elv_ioc_count_inc(ioc_count);
1273 return cic;
1276 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1278 struct task_struct *tsk = current;
1279 int ioprio_class;
1281 if (!cfq_cfqq_prio_changed(cfqq))
1282 return;
1284 ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1285 switch (ioprio_class) {
1286 default:
1287 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1288 case IOPRIO_CLASS_NONE:
1290 * no prio set, place us in the middle of the BE classes
1292 cfqq->ioprio = task_nice_ioprio(tsk);
1293 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1294 break;
1295 case IOPRIO_CLASS_RT:
1296 cfqq->ioprio = task_ioprio(tsk);
1297 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1298 break;
1299 case IOPRIO_CLASS_BE:
1300 cfqq->ioprio = task_ioprio(tsk);
1301 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1302 break;
1303 case IOPRIO_CLASS_IDLE:
1304 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1305 cfqq->ioprio = 7;
1306 cfq_clear_cfqq_idle_window(cfqq);
1307 break;
1311 * keep track of original prio settings in case we have to temporarily
1312 * elevate the priority of this queue
1314 cfqq->org_ioprio = cfqq->ioprio;
1315 cfqq->org_ioprio_class = cfqq->ioprio_class;
1316 cfq_clear_cfqq_prio_changed(cfqq);
1319 static inline void changed_ioprio(struct cfq_io_context *cic)
1321 struct cfq_data *cfqd = cic->key;
1322 struct cfq_queue *cfqq;
1323 unsigned long flags;
1325 if (unlikely(!cfqd))
1326 return;
1328 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1330 cfqq = cic->cfqq[ASYNC];
1331 if (cfqq) {
1332 struct cfq_queue *new_cfqq;
1333 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc->task,
1334 GFP_ATOMIC);
1335 if (new_cfqq) {
1336 cic->cfqq[ASYNC] = new_cfqq;
1337 cfq_put_queue(cfqq);
1341 cfqq = cic->cfqq[SYNC];
1342 if (cfqq)
1343 cfq_mark_cfqq_prio_changed(cfqq);
1345 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1348 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1350 struct cfq_io_context *cic;
1351 struct rb_node *n;
1353 ioc->ioprio_changed = 0;
1355 n = rb_first(&ioc->cic_root);
1356 while (n != NULL) {
1357 cic = rb_entry(n, struct cfq_io_context, rb_node);
1359 changed_ioprio(cic);
1360 n = rb_next(n);
1364 static struct cfq_queue *
1365 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1366 struct task_struct *tsk, gfp_t gfp_mask)
1368 struct cfq_queue *cfqq, *new_cfqq = NULL;
1369 struct cfq_io_context *cic;
1371 retry:
1372 cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
1373 /* cic always exists here */
1374 cfqq = cic_to_cfqq(cic, is_sync);
1376 if (!cfqq) {
1377 if (new_cfqq) {
1378 cfqq = new_cfqq;
1379 new_cfqq = NULL;
1380 } else if (gfp_mask & __GFP_WAIT) {
1382 * Inform the allocator of the fact that we will
1383 * just repeat this allocation if it fails, to allow
1384 * the allocator to do whatever it needs to attempt to
1385 * free memory.
1387 spin_unlock_irq(cfqd->queue->queue_lock);
1388 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1389 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1390 cfqd->queue->node);
1391 spin_lock_irq(cfqd->queue->queue_lock);
1392 goto retry;
1393 } else {
1394 cfqq = kmem_cache_alloc_node(cfq_pool,
1395 gfp_mask | __GFP_ZERO,
1396 cfqd->queue->node);
1397 if (!cfqq)
1398 goto out;
1401 RB_CLEAR_NODE(&cfqq->rb_node);
1402 INIT_LIST_HEAD(&cfqq->fifo);
1404 atomic_set(&cfqq->ref, 0);
1405 cfqq->cfqd = cfqd;
1407 if (is_sync) {
1408 cfq_mark_cfqq_idle_window(cfqq);
1409 cfq_mark_cfqq_sync(cfqq);
1412 cfq_mark_cfqq_prio_changed(cfqq);
1413 cfq_mark_cfqq_queue_new(cfqq);
1415 cfq_init_prio_data(cfqq);
1418 if (new_cfqq)
1419 kmem_cache_free(cfq_pool, new_cfqq);
1421 out:
1422 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1423 return cfqq;
1426 static struct cfq_queue **
1427 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1429 switch(ioprio_class) {
1430 case IOPRIO_CLASS_RT:
1431 return &cfqd->async_cfqq[0][ioprio];
1432 case IOPRIO_CLASS_BE:
1433 return &cfqd->async_cfqq[1][ioprio];
1434 case IOPRIO_CLASS_IDLE:
1435 return &cfqd->async_idle_cfqq;
1436 default:
1437 BUG();
1441 static struct cfq_queue *
1442 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct task_struct *tsk,
1443 gfp_t gfp_mask)
1445 const int ioprio = task_ioprio(tsk);
1446 const int ioprio_class = task_ioprio_class(tsk);
1447 struct cfq_queue **async_cfqq = NULL;
1448 struct cfq_queue *cfqq = NULL;
1450 if (!is_sync) {
1451 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1452 cfqq = *async_cfqq;
1455 if (!cfqq) {
1456 cfqq = cfq_find_alloc_queue(cfqd, is_sync, tsk, gfp_mask);
1457 if (!cfqq)
1458 return NULL;
1462 * pin the queue now that it's allocated, scheduler exit will prune it
1464 if (!is_sync && !(*async_cfqq)) {
1465 atomic_inc(&cfqq->ref);
1466 *async_cfqq = cfqq;
1469 atomic_inc(&cfqq->ref);
1470 return cfqq;
1474 * We drop cfq io contexts lazily, so we may find a dead one.
1476 static void
1477 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1479 WARN_ON(!list_empty(&cic->queue_list));
1481 if (ioc->ioc_data == cic)
1482 ioc->ioc_data = NULL;
1484 rb_erase(&cic->rb_node, &ioc->cic_root);
1485 kmem_cache_free(cfq_ioc_pool, cic);
1486 elv_ioc_count_dec(ioc_count);
1489 static struct cfq_io_context *
1490 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1492 struct rb_node *n;
1493 struct cfq_io_context *cic;
1494 void *k, *key = cfqd;
1496 if (unlikely(!ioc))
1497 return NULL;
1500 * we maintain a last-hit cache, to avoid browsing over the tree
1502 cic = ioc->ioc_data;
1503 if (cic && cic->key == cfqd)
1504 return cic;
1506 restart:
1507 n = ioc->cic_root.rb_node;
1508 while (n) {
1509 cic = rb_entry(n, struct cfq_io_context, rb_node);
1510 /* ->key must be copied to avoid race with cfq_exit_queue() */
1511 k = cic->key;
1512 if (unlikely(!k)) {
1513 cfq_drop_dead_cic(ioc, cic);
1514 goto restart;
1517 if (key < k)
1518 n = n->rb_left;
1519 else if (key > k)
1520 n = n->rb_right;
1521 else {
1522 ioc->ioc_data = cic;
1523 return cic;
1527 return NULL;
1530 static inline void
1531 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1532 struct cfq_io_context *cic)
1534 struct rb_node **p;
1535 struct rb_node *parent;
1536 struct cfq_io_context *__cic;
1537 unsigned long flags;
1538 void *k;
1540 cic->ioc = ioc;
1541 cic->key = cfqd;
1543 restart:
1544 parent = NULL;
1545 p = &ioc->cic_root.rb_node;
1546 while (*p) {
1547 parent = *p;
1548 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1549 /* ->key must be copied to avoid race with cfq_exit_queue() */
1550 k = __cic->key;
1551 if (unlikely(!k)) {
1552 cfq_drop_dead_cic(ioc, __cic);
1553 goto restart;
1556 if (cic->key < k)
1557 p = &(*p)->rb_left;
1558 else if (cic->key > k)
1559 p = &(*p)->rb_right;
1560 else
1561 BUG();
1564 rb_link_node(&cic->rb_node, parent, p);
1565 rb_insert_color(&cic->rb_node, &ioc->cic_root);
1567 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1568 list_add(&cic->queue_list, &cfqd->cic_list);
1569 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1573 * Setup general io context and cfq io context. There can be several cfq
1574 * io contexts per general io context, if this process is doing io to more
1575 * than one device managed by cfq.
1577 static struct cfq_io_context *
1578 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1580 struct io_context *ioc = NULL;
1581 struct cfq_io_context *cic;
1583 might_sleep_if(gfp_mask & __GFP_WAIT);
1585 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1586 if (!ioc)
1587 return NULL;
1589 cic = cfq_cic_rb_lookup(cfqd, ioc);
1590 if (cic)
1591 goto out;
1593 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1594 if (cic == NULL)
1595 goto err;
1597 cfq_cic_link(cfqd, ioc, cic);
1598 out:
1599 smp_read_barrier_depends();
1600 if (unlikely(ioc->ioprio_changed))
1601 cfq_ioc_set_ioprio(ioc);
1603 return cic;
1604 err:
1605 put_io_context(ioc);
1606 return NULL;
1609 static void
1610 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1612 unsigned long elapsed = jiffies - cic->last_end_request;
1613 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1615 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1616 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1617 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1620 static void
1621 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1622 struct request *rq)
1624 sector_t sdist;
1625 u64 total;
1627 if (cic->last_request_pos < rq->sector)
1628 sdist = rq->sector - cic->last_request_pos;
1629 else
1630 sdist = cic->last_request_pos - rq->sector;
1633 * Don't allow the seek distance to get too large from the
1634 * odd fragment, pagein, etc
1636 if (cic->seek_samples <= 60) /* second&third seek */
1637 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1638 else
1639 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1641 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1642 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1643 total = cic->seek_total + (cic->seek_samples/2);
1644 do_div(total, cic->seek_samples);
1645 cic->seek_mean = (sector_t)total;
1649 * Disable idle window if the process thinks too long or seeks so much that
1650 * it doesn't matter
1652 static void
1653 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1654 struct cfq_io_context *cic)
1656 int enable_idle;
1658 if (!cfq_cfqq_sync(cfqq))
1659 return;
1661 enable_idle = cfq_cfqq_idle_window(cfqq);
1663 if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1664 (cfqd->hw_tag && CIC_SEEKY(cic)))
1665 enable_idle = 0;
1666 else if (sample_valid(cic->ttime_samples)) {
1667 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1668 enable_idle = 0;
1669 else
1670 enable_idle = 1;
1673 if (enable_idle)
1674 cfq_mark_cfqq_idle_window(cfqq);
1675 else
1676 cfq_clear_cfqq_idle_window(cfqq);
1680 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1681 * no or if we aren't sure, a 1 will cause a preempt.
1683 static int
1684 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1685 struct request *rq)
1687 struct cfq_queue *cfqq;
1689 cfqq = cfqd->active_queue;
1690 if (!cfqq)
1691 return 0;
1693 if (cfq_slice_used(cfqq))
1694 return 1;
1696 if (cfq_class_idle(new_cfqq))
1697 return 0;
1699 if (cfq_class_idle(cfqq))
1700 return 1;
1703 * if the new request is sync, but the currently running queue is
1704 * not, let the sync request have priority.
1706 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1707 return 1;
1710 * So both queues are sync. Let the new request get disk time if
1711 * it's a metadata request and the current queue is doing regular IO.
1713 if (rq_is_meta(rq) && !cfqq->meta_pending)
1714 return 1;
1716 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1717 return 0;
1720 * if this request is as-good as one we would expect from the
1721 * current cfqq, let it preempt
1723 if (cfq_rq_close(cfqd, rq))
1724 return 1;
1726 return 0;
1730 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1731 * let it have half of its nominal slice.
1733 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1735 cfq_slice_expired(cfqd, 1);
1738 * Put the new queue at the front of the of the current list,
1739 * so we know that it will be selected next.
1741 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1743 cfq_service_tree_add(cfqd, cfqq, 1);
1745 cfqq->slice_end = 0;
1746 cfq_mark_cfqq_slice_new(cfqq);
1750 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1751 * something we should do about it
1753 static void
1754 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1755 struct request *rq)
1757 struct cfq_io_context *cic = RQ_CIC(rq);
1759 if (rq_is_meta(rq))
1760 cfqq->meta_pending++;
1762 cfq_update_io_thinktime(cfqd, cic);
1763 cfq_update_io_seektime(cfqd, cic, rq);
1764 cfq_update_idle_window(cfqd, cfqq, cic);
1766 cic->last_request_pos = rq->sector + rq->nr_sectors;
1768 if (cfqq == cfqd->active_queue) {
1770 * if we are waiting for a request for this queue, let it rip
1771 * immediately and flag that we must not expire this queue
1772 * just now
1774 if (cfq_cfqq_wait_request(cfqq)) {
1775 cfq_mark_cfqq_must_dispatch(cfqq);
1776 del_timer(&cfqd->idle_slice_timer);
1777 blk_start_queueing(cfqd->queue);
1779 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1781 * not the active queue - expire current slice if it is
1782 * idle and has expired it's mean thinktime or this new queue
1783 * has some old slice time left and is of higher priority
1785 cfq_preempt_queue(cfqd, cfqq);
1786 cfq_mark_cfqq_must_dispatch(cfqq);
1787 blk_start_queueing(cfqd->queue);
1791 static void cfq_insert_request(struct request_queue *q, struct request *rq)
1793 struct cfq_data *cfqd = q->elevator->elevator_data;
1794 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1796 cfq_init_prio_data(cfqq);
1798 cfq_add_rq_rb(rq);
1800 list_add_tail(&rq->queuelist, &cfqq->fifo);
1802 cfq_rq_enqueued(cfqd, cfqq, rq);
1805 static void cfq_completed_request(struct request_queue *q, struct request *rq)
1807 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1808 struct cfq_data *cfqd = cfqq->cfqd;
1809 const int sync = rq_is_sync(rq);
1810 unsigned long now;
1812 now = jiffies;
1814 WARN_ON(!cfqd->rq_in_driver);
1815 WARN_ON(!cfqq->dispatched);
1816 cfqd->rq_in_driver--;
1817 cfqq->dispatched--;
1819 if (cfq_cfqq_sync(cfqq))
1820 cfqd->sync_flight--;
1822 if (!cfq_class_idle(cfqq))
1823 cfqd->last_end_request = now;
1825 if (sync)
1826 RQ_CIC(rq)->last_end_request = now;
1829 * If this is the active queue, check if it needs to be expired,
1830 * or if we want to idle in case it has no pending requests.
1832 if (cfqd->active_queue == cfqq) {
1833 if (cfq_cfqq_slice_new(cfqq)) {
1834 cfq_set_prio_slice(cfqd, cfqq);
1835 cfq_clear_cfqq_slice_new(cfqq);
1837 if (cfq_slice_used(cfqq))
1838 cfq_slice_expired(cfqd, 1);
1839 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1840 cfq_arm_slice_timer(cfqd);
1843 if (!cfqd->rq_in_driver)
1844 cfq_schedule_dispatch(cfqd);
1848 * we temporarily boost lower priority queues if they are holding fs exclusive
1849 * resources. they are boosted to normal prio (CLASS_BE/4)
1851 static void cfq_prio_boost(struct cfq_queue *cfqq)
1853 if (has_fs_excl()) {
1855 * boost idle prio on transactions that would lock out other
1856 * users of the filesystem
1858 if (cfq_class_idle(cfqq))
1859 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1860 if (cfqq->ioprio > IOPRIO_NORM)
1861 cfqq->ioprio = IOPRIO_NORM;
1862 } else {
1864 * check if we need to unboost the queue
1866 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1867 cfqq->ioprio_class = cfqq->org_ioprio_class;
1868 if (cfqq->ioprio != cfqq->org_ioprio)
1869 cfqq->ioprio = cfqq->org_ioprio;
1873 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1875 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1876 !cfq_cfqq_must_alloc_slice(cfqq)) {
1877 cfq_mark_cfqq_must_alloc_slice(cfqq);
1878 return ELV_MQUEUE_MUST;
1881 return ELV_MQUEUE_MAY;
1884 static int cfq_may_queue(struct request_queue *q, int rw)
1886 struct cfq_data *cfqd = q->elevator->elevator_data;
1887 struct task_struct *tsk = current;
1888 struct cfq_io_context *cic;
1889 struct cfq_queue *cfqq;
1892 * don't force setup of a queue from here, as a call to may_queue
1893 * does not necessarily imply that a request actually will be queued.
1894 * so just lookup a possibly existing queue, or return 'may queue'
1895 * if that fails
1897 cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
1898 if (!cic)
1899 return ELV_MQUEUE_MAY;
1901 cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
1902 if (cfqq) {
1903 cfq_init_prio_data(cfqq);
1904 cfq_prio_boost(cfqq);
1906 return __cfq_may_queue(cfqq);
1909 return ELV_MQUEUE_MAY;
1913 * queue lock held here
1915 static void cfq_put_request(struct request *rq)
1917 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1919 if (cfqq) {
1920 const int rw = rq_data_dir(rq);
1922 BUG_ON(!cfqq->allocated[rw]);
1923 cfqq->allocated[rw]--;
1925 put_io_context(RQ_CIC(rq)->ioc);
1927 rq->elevator_private = NULL;
1928 rq->elevator_private2 = NULL;
1930 cfq_put_queue(cfqq);
1935 * Allocate cfq data structures associated with this request.
1937 static int
1938 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1940 struct cfq_data *cfqd = q->elevator->elevator_data;
1941 struct task_struct *tsk = current;
1942 struct cfq_io_context *cic;
1943 const int rw = rq_data_dir(rq);
1944 const int is_sync = rq_is_sync(rq);
1945 struct cfq_queue *cfqq;
1946 unsigned long flags;
1948 might_sleep_if(gfp_mask & __GFP_WAIT);
1950 cic = cfq_get_io_context(cfqd, gfp_mask);
1952 spin_lock_irqsave(q->queue_lock, flags);
1954 if (!cic)
1955 goto queue_fail;
1957 cfqq = cic_to_cfqq(cic, is_sync);
1958 if (!cfqq) {
1959 cfqq = cfq_get_queue(cfqd, is_sync, tsk, gfp_mask);
1961 if (!cfqq)
1962 goto queue_fail;
1964 cic_set_cfqq(cic, cfqq, is_sync);
1967 cfqq->allocated[rw]++;
1968 cfq_clear_cfqq_must_alloc(cfqq);
1969 atomic_inc(&cfqq->ref);
1971 spin_unlock_irqrestore(q->queue_lock, flags);
1973 rq->elevator_private = cic;
1974 rq->elevator_private2 = cfqq;
1975 return 0;
1977 queue_fail:
1978 if (cic)
1979 put_io_context(cic->ioc);
1981 cfq_schedule_dispatch(cfqd);
1982 spin_unlock_irqrestore(q->queue_lock, flags);
1983 return 1;
1986 static void cfq_kick_queue(struct work_struct *work)
1988 struct cfq_data *cfqd =
1989 container_of(work, struct cfq_data, unplug_work);
1990 struct request_queue *q = cfqd->queue;
1991 unsigned long flags;
1993 spin_lock_irqsave(q->queue_lock, flags);
1994 blk_start_queueing(q);
1995 spin_unlock_irqrestore(q->queue_lock, flags);
1999 * Timer running if the active_queue is currently idling inside its time slice
2001 static void cfq_idle_slice_timer(unsigned long data)
2003 struct cfq_data *cfqd = (struct cfq_data *) data;
2004 struct cfq_queue *cfqq;
2005 unsigned long flags;
2006 int timed_out = 1;
2008 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2010 if ((cfqq = cfqd->active_queue) != NULL) {
2011 timed_out = 0;
2014 * expired
2016 if (cfq_slice_used(cfqq))
2017 goto expire;
2020 * only expire and reinvoke request handler, if there are
2021 * other queues with pending requests
2023 if (!cfqd->busy_queues)
2024 goto out_cont;
2027 * not expired and it has a request pending, let it dispatch
2029 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2030 cfq_mark_cfqq_must_dispatch(cfqq);
2031 goto out_kick;
2034 expire:
2035 cfq_slice_expired(cfqd, timed_out);
2036 out_kick:
2037 cfq_schedule_dispatch(cfqd);
2038 out_cont:
2039 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2043 * Timer running if an idle class queue is waiting for service
2045 static void cfq_idle_class_timer(unsigned long data)
2047 struct cfq_data *cfqd = (struct cfq_data *) data;
2048 unsigned long flags;
2050 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2053 * race with a non-idle queue, reset timer
2055 if (!start_idle_class_timer(cfqd))
2056 cfq_schedule_dispatch(cfqd);
2058 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2061 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2063 del_timer_sync(&cfqd->idle_slice_timer);
2064 del_timer_sync(&cfqd->idle_class_timer);
2065 kblockd_flush_work(&cfqd->unplug_work);
2068 static void cfq_put_async_queues(struct cfq_data *cfqd)
2070 int i;
2072 for (i = 0; i < IOPRIO_BE_NR; i++) {
2073 if (cfqd->async_cfqq[0][i])
2074 cfq_put_queue(cfqd->async_cfqq[0][i]);
2075 if (cfqd->async_cfqq[1][i])
2076 cfq_put_queue(cfqd->async_cfqq[1][i]);
2079 if (cfqd->async_idle_cfqq)
2080 cfq_put_queue(cfqd->async_idle_cfqq);
2083 static void cfq_exit_queue(elevator_t *e)
2085 struct cfq_data *cfqd = e->elevator_data;
2086 struct request_queue *q = cfqd->queue;
2088 cfq_shutdown_timer_wq(cfqd);
2090 spin_lock_irq(q->queue_lock);
2092 if (cfqd->active_queue)
2093 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2095 while (!list_empty(&cfqd->cic_list)) {
2096 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2097 struct cfq_io_context,
2098 queue_list);
2100 __cfq_exit_single_io_context(cfqd, cic);
2103 cfq_put_async_queues(cfqd);
2105 spin_unlock_irq(q->queue_lock);
2107 cfq_shutdown_timer_wq(cfqd);
2109 kfree(cfqd);
2112 static void *cfq_init_queue(struct request_queue *q)
2114 struct cfq_data *cfqd;
2116 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2117 if (!cfqd)
2118 return NULL;
2120 cfqd->service_tree = CFQ_RB_ROOT;
2121 INIT_LIST_HEAD(&cfqd->cic_list);
2123 cfqd->queue = q;
2125 init_timer(&cfqd->idle_slice_timer);
2126 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2127 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2129 init_timer(&cfqd->idle_class_timer);
2130 cfqd->idle_class_timer.function = cfq_idle_class_timer;
2131 cfqd->idle_class_timer.data = (unsigned long) cfqd;
2133 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2135 cfqd->last_end_request = jiffies;
2136 cfqd->cfq_quantum = cfq_quantum;
2137 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2138 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2139 cfqd->cfq_back_max = cfq_back_max;
2140 cfqd->cfq_back_penalty = cfq_back_penalty;
2141 cfqd->cfq_slice[0] = cfq_slice_async;
2142 cfqd->cfq_slice[1] = cfq_slice_sync;
2143 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2144 cfqd->cfq_slice_idle = cfq_slice_idle;
2146 return cfqd;
2149 static void cfq_slab_kill(void)
2151 if (cfq_pool)
2152 kmem_cache_destroy(cfq_pool);
2153 if (cfq_ioc_pool)
2154 kmem_cache_destroy(cfq_ioc_pool);
2157 static int __init cfq_slab_setup(void)
2159 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2160 if (!cfq_pool)
2161 goto fail;
2163 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2164 if (!cfq_ioc_pool)
2165 goto fail;
2167 return 0;
2168 fail:
2169 cfq_slab_kill();
2170 return -ENOMEM;
2174 * sysfs parts below -->
2176 static ssize_t
2177 cfq_var_show(unsigned int var, char *page)
2179 return sprintf(page, "%d\n", var);
2182 static ssize_t
2183 cfq_var_store(unsigned int *var, const char *page, size_t count)
2185 char *p = (char *) page;
2187 *var = simple_strtoul(p, &p, 10);
2188 return count;
2191 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2192 static ssize_t __FUNC(elevator_t *e, char *page) \
2194 struct cfq_data *cfqd = e->elevator_data; \
2195 unsigned int __data = __VAR; \
2196 if (__CONV) \
2197 __data = jiffies_to_msecs(__data); \
2198 return cfq_var_show(__data, (page)); \
2200 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2201 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2202 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2203 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2204 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2205 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2206 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2207 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2208 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2209 #undef SHOW_FUNCTION
2211 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2212 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
2214 struct cfq_data *cfqd = e->elevator_data; \
2215 unsigned int __data; \
2216 int ret = cfq_var_store(&__data, (page), count); \
2217 if (__data < (MIN)) \
2218 __data = (MIN); \
2219 else if (__data > (MAX)) \
2220 __data = (MAX); \
2221 if (__CONV) \
2222 *(__PTR) = msecs_to_jiffies(__data); \
2223 else \
2224 *(__PTR) = __data; \
2225 return ret; \
2227 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2228 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2229 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2230 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2231 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2232 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2233 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2234 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2235 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2236 #undef STORE_FUNCTION
2238 #define CFQ_ATTR(name) \
2239 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2241 static struct elv_fs_entry cfq_attrs[] = {
2242 CFQ_ATTR(quantum),
2243 CFQ_ATTR(fifo_expire_sync),
2244 CFQ_ATTR(fifo_expire_async),
2245 CFQ_ATTR(back_seek_max),
2246 CFQ_ATTR(back_seek_penalty),
2247 CFQ_ATTR(slice_sync),
2248 CFQ_ATTR(slice_async),
2249 CFQ_ATTR(slice_async_rq),
2250 CFQ_ATTR(slice_idle),
2251 __ATTR_NULL
2254 static struct elevator_type iosched_cfq = {
2255 .ops = {
2256 .elevator_merge_fn = cfq_merge,
2257 .elevator_merged_fn = cfq_merged_request,
2258 .elevator_merge_req_fn = cfq_merged_requests,
2259 .elevator_allow_merge_fn = cfq_allow_merge,
2260 .elevator_dispatch_fn = cfq_dispatch_requests,
2261 .elevator_add_req_fn = cfq_insert_request,
2262 .elevator_activate_req_fn = cfq_activate_request,
2263 .elevator_deactivate_req_fn = cfq_deactivate_request,
2264 .elevator_queue_empty_fn = cfq_queue_empty,
2265 .elevator_completed_req_fn = cfq_completed_request,
2266 .elevator_former_req_fn = elv_rb_former_request,
2267 .elevator_latter_req_fn = elv_rb_latter_request,
2268 .elevator_set_req_fn = cfq_set_request,
2269 .elevator_put_req_fn = cfq_put_request,
2270 .elevator_may_queue_fn = cfq_may_queue,
2271 .elevator_init_fn = cfq_init_queue,
2272 .elevator_exit_fn = cfq_exit_queue,
2273 .trim = cfq_free_io_context,
2275 .elevator_attrs = cfq_attrs,
2276 .elevator_name = "cfq",
2277 .elevator_owner = THIS_MODULE,
2280 static int __init cfq_init(void)
2283 * could be 0 on HZ < 1000 setups
2285 if (!cfq_slice_async)
2286 cfq_slice_async = 1;
2287 if (!cfq_slice_idle)
2288 cfq_slice_idle = 1;
2290 if (cfq_slab_setup())
2291 return -ENOMEM;
2293 elv_register(&iosched_cfq);
2295 return 0;
2298 static void __exit cfq_exit(void)
2300 DECLARE_COMPLETION_ONSTACK(all_gone);
2301 elv_unregister(&iosched_cfq);
2302 ioc_gone = &all_gone;
2303 /* ioc_gone's update must be visible before reading ioc_count */
2304 smp_wmb();
2305 if (elv_ioc_count_read(ioc_count))
2306 wait_for_completion(ioc_gone);
2307 synchronize_rcu();
2308 cfq_slab_kill();
2311 module_init(cfq_init);
2312 module_exit(cfq_exit);
2314 MODULE_AUTHOR("Jens Axboe");
2315 MODULE_LICENSE("GPL");
2316 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");