2 * Marvell 88SE64xx/88SE94xx main function
4 * Copyright 2007 Red Hat, Inc.
5 * Copyright 2008 Marvell. <kewei@marvell.com>
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; version 2 of the
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
27 static int mvs_find_tag(struct mvs_info
*mvi
, struct sas_task
*task
, u32
*tag
)
29 if (task
->lldd_task
) {
30 struct mvs_slot_info
*slot
;
31 slot
= task
->lldd_task
;
32 *tag
= slot
->slot_tag
;
38 void mvs_tag_clear(struct mvs_info
*mvi
, u32 tag
)
40 void *bitmap
= &mvi
->tags
;
41 clear_bit(tag
, bitmap
);
44 void mvs_tag_free(struct mvs_info
*mvi
, u32 tag
)
46 mvs_tag_clear(mvi
, tag
);
49 void mvs_tag_set(struct mvs_info
*mvi
, unsigned int tag
)
51 void *bitmap
= &mvi
->tags
;
55 inline int mvs_tag_alloc(struct mvs_info
*mvi
, u32
*tag_out
)
57 unsigned int index
, tag
;
58 void *bitmap
= &mvi
->tags
;
60 index
= find_first_zero_bit(bitmap
, mvi
->tags_num
);
62 if (tag
>= mvi
->tags_num
)
63 return -SAS_QUEUE_FULL
;
64 mvs_tag_set(mvi
, tag
);
69 void mvs_tag_init(struct mvs_info
*mvi
)
72 for (i
= 0; i
< mvi
->tags_num
; ++i
)
73 mvs_tag_clear(mvi
, i
);
76 void mvs_hexdump(u32 size
, u8
*data
, u32 baseaddr
)
84 printk(KERN_DEBUG
"%08X : ", baseaddr
+ offset
);
90 for (i
= 0; i
< 16; i
++) {
92 printk(KERN_DEBUG
"%02X ", (u32
)data
[i
]);
94 printk(KERN_DEBUG
" ");
96 printk(KERN_DEBUG
": ");
97 for (i
= 0; i
< run
; i
++)
98 printk(KERN_DEBUG
"%c",
99 isalnum(data
[i
]) ? data
[i
] : '.');
100 printk(KERN_DEBUG
"\n");
104 printk(KERN_DEBUG
"\n");
108 static void mvs_hba_sb_dump(struct mvs_info
*mvi
, u32 tag
,
109 enum sas_protocol proto
)
112 struct mvs_slot_info
*slot
= &mvi
->slot_info
[tag
];
114 offset
= slot
->cmd_size
+ MVS_OAF_SZ
+
115 MVS_CHIP_DISP
->prd_size() * slot
->n_elem
;
116 dev_printk(KERN_DEBUG
, mvi
->dev
, "+---->Status buffer[%d] :\n",
118 mvs_hexdump(32, (u8
*) slot
->response
,
119 (u32
) slot
->buf_dma
+ offset
);
123 static void mvs_hba_memory_dump(struct mvs_info
*mvi
, u32 tag
,
124 enum sas_protocol proto
)
129 struct mvs_slot_info
*slot
= &mvi
->slot_info
[tag
];
132 sz
= MVS_CHIP_SLOT_SZ
;
135 dev_printk(KERN_DEBUG
, mvi
->dev
,
136 "Delivery Queue Size=%04d , WRT_PTR=%04X\n", sz
, w_ptr
);
137 dev_printk(KERN_DEBUG
, mvi
->dev
,
138 "Delivery Queue Base Address=0x%llX (PA)"
139 "(tx_dma=0x%llX), Entry=%04d\n",
140 addr
, (unsigned long long)mvi
->tx_dma
, w_ptr
);
141 mvs_hexdump(sizeof(u32
), (u8
*)(&mvi
->tx
[mvi
->tx_prod
]),
142 (u32
) mvi
->tx_dma
+ sizeof(u32
) * w_ptr
);
144 addr
= mvi
->slot_dma
;
145 dev_printk(KERN_DEBUG
, mvi
->dev
,
146 "Command List Base Address=0x%llX (PA)"
147 "(slot_dma=0x%llX), Header=%03d\n",
148 addr
, (unsigned long long)slot
->buf_dma
, tag
);
149 dev_printk(KERN_DEBUG
, mvi
->dev
, "Command Header[%03d]:\n", tag
);
151 mvs_hexdump(sizeof(struct mvs_cmd_hdr
), (u8
*)(&mvi
->slot
[tag
]),
152 (u32
) mvi
->slot_dma
+ tag
* sizeof(struct mvs_cmd_hdr
));
153 /*1.command table area */
154 dev_printk(KERN_DEBUG
, mvi
->dev
, "+---->Command Table :\n");
155 mvs_hexdump(slot
->cmd_size
, (u8
*) slot
->buf
, (u32
) slot
->buf_dma
);
156 /*2.open address frame area */
157 dev_printk(KERN_DEBUG
, mvi
->dev
, "+---->Open Address Frame :\n");
158 mvs_hexdump(MVS_OAF_SZ
, (u8
*) slot
->buf
+ slot
->cmd_size
,
159 (u32
) slot
->buf_dma
+ slot
->cmd_size
);
161 mvs_hba_sb_dump(mvi
, tag
, proto
);
163 dev_printk(KERN_DEBUG
, mvi
->dev
, "+---->PRD table :\n");
164 mvs_hexdump(MVS_CHIP_DISP
->prd_size() * slot
->n_elem
,
165 (u8
*) slot
->buf
+ slot
->cmd_size
+ MVS_OAF_SZ
,
166 (u32
) slot
->buf_dma
+ slot
->cmd_size
+ MVS_OAF_SZ
);
170 static void mvs_hba_cq_dump(struct mvs_info
*mvi
)
174 void __iomem
*regs
= mvi
->regs
;
175 u32 entry
= mvi
->rx_cons
+ 1;
176 u32 rx_desc
= le32_to_cpu(mvi
->rx
[entry
]);
178 /*Completion Queue */
179 addr
= mr32(RX_HI
) << 16 << 16 | mr32(RX_LO
);
180 dev_printk(KERN_DEBUG
, mvi
->dev
, "Completion Task = 0x%p\n",
181 mvi
->slot_info
[rx_desc
& RXQ_SLOT_MASK
].task
);
182 dev_printk(KERN_DEBUG
, mvi
->dev
,
183 "Completion List Base Address=0x%llX (PA), "
184 "CQ_Entry=%04d, CQ_WP=0x%08X\n",
185 addr
, entry
- 1, mvi
->rx
[0]);
186 mvs_hexdump(sizeof(u32
), (u8
*)(&rx_desc
),
187 mvi
->rx_dma
+ sizeof(u32
) * entry
);
191 void mvs_get_sas_addr(void *buf
, u32 buflen
)
193 /*memcpy(buf, "\x50\x05\x04\x30\x11\xab\x64\x40", 8);*/
196 struct mvs_info
*mvs_find_dev_mvi(struct domain_device
*dev
)
198 unsigned long i
= 0, j
= 0, hi
= 0;
199 struct sas_ha_struct
*sha
= dev
->port
->ha
;
200 struct mvs_info
*mvi
= NULL
;
201 struct asd_sas_phy
*phy
;
203 while (sha
->sas_port
[i
]) {
204 if (sha
->sas_port
[i
] == dev
->port
) {
205 phy
= container_of(sha
->sas_port
[i
]->phy_list
.next
,
206 struct asd_sas_phy
, port_phy_el
);
208 while (sha
->sas_phy
[j
]) {
209 if (sha
->sas_phy
[j
] == phy
)
217 hi
= j
/((struct mvs_prv_info
*)sha
->lldd_ha
)->n_phy
;
218 mvi
= ((struct mvs_prv_info
*)sha
->lldd_ha
)->mvi
[hi
];
225 int mvs_find_dev_phyno(struct domain_device
*dev
, int *phyno
)
227 unsigned long i
= 0, j
= 0, n
= 0, num
= 0;
228 struct mvs_device
*mvi_dev
= (struct mvs_device
*)dev
->lldd_dev
;
229 struct mvs_info
*mvi
= mvi_dev
->mvi_info
;
230 struct sas_ha_struct
*sha
= dev
->port
->ha
;
232 while (sha
->sas_port
[i
]) {
233 if (sha
->sas_port
[i
] == dev
->port
) {
234 struct asd_sas_phy
*phy
;
235 list_for_each_entry(phy
,
236 &sha
->sas_port
[i
]->phy_list
, port_phy_el
) {
238 while (sha
->sas_phy
[j
]) {
239 if (sha
->sas_phy
[j
] == phy
)
243 phyno
[n
] = (j
>= mvi
->chip
->n_phy
) ?
244 (j
- mvi
->chip
->n_phy
) : j
;
255 static inline void mvs_free_reg_set(struct mvs_info
*mvi
,
256 struct mvs_device
*dev
)
259 mv_printk("device has been free.\n");
262 if (dev
->runing_req
!= 0)
264 if (dev
->taskfileset
== MVS_ID_NOT_MAPPED
)
266 MVS_CHIP_DISP
->free_reg_set(mvi
, &dev
->taskfileset
);
269 static inline u8
mvs_assign_reg_set(struct mvs_info
*mvi
,
270 struct mvs_device
*dev
)
272 if (dev
->taskfileset
!= MVS_ID_NOT_MAPPED
)
274 return MVS_CHIP_DISP
->assign_reg_set(mvi
, &dev
->taskfileset
);
277 void mvs_phys_reset(struct mvs_info
*mvi
, u32 phy_mask
, int hard
)
280 for_each_phy(phy_mask
, phy_mask
, no
) {
283 MVS_CHIP_DISP
->phy_reset(mvi
, no
, hard
);
287 /* FIXME: locking? */
288 int mvs_phy_control(struct asd_sas_phy
*sas_phy
, enum phy_func func
,
291 int rc
= 0, phy_id
= sas_phy
->id
;
293 struct sas_ha_struct
*sha
= sas_phy
->ha
;
294 struct mvs_info
*mvi
= NULL
;
296 while (sha
->sas_phy
[i
]) {
297 if (sha
->sas_phy
[i
] == sas_phy
)
301 hi
= i
/((struct mvs_prv_info
*)sha
->lldd_ha
)->n_phy
;
302 mvi
= ((struct mvs_prv_info
*)sha
->lldd_ha
)->mvi
[hi
];
305 case PHY_FUNC_SET_LINK_RATE
:
306 MVS_CHIP_DISP
->phy_set_link_rate(mvi
, phy_id
, funcdata
);
309 case PHY_FUNC_HARD_RESET
:
310 tmp
= MVS_CHIP_DISP
->read_phy_ctl(mvi
, phy_id
);
311 if (tmp
& PHY_RST_HARD
)
313 MVS_CHIP_DISP
->phy_reset(mvi
, phy_id
, 1);
316 case PHY_FUNC_LINK_RESET
:
317 MVS_CHIP_DISP
->phy_enable(mvi
, phy_id
);
318 MVS_CHIP_DISP
->phy_reset(mvi
, phy_id
, 0);
321 case PHY_FUNC_DISABLE
:
322 MVS_CHIP_DISP
->phy_disable(mvi
, phy_id
);
324 case PHY_FUNC_RELEASE_SPINUP_HOLD
:
332 void __devinit
mvs_set_sas_addr(struct mvs_info
*mvi
, int port_id
,
333 u32 off_lo
, u32 off_hi
, u64 sas_addr
)
335 u32 lo
= (u32
)sas_addr
;
336 u32 hi
= (u32
)(sas_addr
>>32);
338 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, port_id
, off_lo
);
339 MVS_CHIP_DISP
->write_port_cfg_data(mvi
, port_id
, lo
);
340 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, port_id
, off_hi
);
341 MVS_CHIP_DISP
->write_port_cfg_data(mvi
, port_id
, hi
);
344 static void mvs_bytes_dmaed(struct mvs_info
*mvi
, int i
)
346 struct mvs_phy
*phy
= &mvi
->phy
[i
];
347 struct asd_sas_phy
*sas_phy
= &phy
->sas_phy
;
348 struct sas_ha_struct
*sas_ha
;
349 if (!phy
->phy_attached
)
352 if (!(phy
->att_dev_info
& PORT_DEV_TRGT_MASK
)
353 && phy
->phy_type
& PORT_TYPE_SAS
) {
358 sas_ha
->notify_phy_event(sas_phy
, PHYE_OOB_DONE
);
361 struct sas_phy
*sphy
= sas_phy
->phy
;
363 sphy
->negotiated_linkrate
= sas_phy
->linkrate
;
364 sphy
->minimum_linkrate
= phy
->minimum_linkrate
;
365 sphy
->minimum_linkrate_hw
= SAS_LINK_RATE_1_5_GBPS
;
366 sphy
->maximum_linkrate
= phy
->maximum_linkrate
;
367 sphy
->maximum_linkrate_hw
= MVS_CHIP_DISP
->phy_max_link_rate();
370 if (phy
->phy_type
& PORT_TYPE_SAS
) {
371 struct sas_identify_frame
*id
;
373 id
= (struct sas_identify_frame
*)phy
->frame_rcvd
;
374 id
->dev_type
= phy
->identify
.device_type
;
375 id
->initiator_bits
= SAS_PROTOCOL_ALL
;
376 id
->target_bits
= phy
->identify
.target_port_protocols
;
377 } else if (phy
->phy_type
& PORT_TYPE_SATA
) {
380 mv_dprintk("phy %d byte dmaded.\n", i
+ mvi
->id
* mvi
->chip
->n_phy
);
382 sas_phy
->frame_rcvd_size
= phy
->frame_rcvd_size
;
384 mvi
->sas
->notify_port_event(sas_phy
,
388 int mvs_slave_alloc(struct scsi_device
*scsi_dev
)
390 struct domain_device
*dev
= sdev_to_domain_dev(scsi_dev
);
391 if (dev_is_sata(dev
)) {
392 /* We don't need to rescan targets
393 * if REPORT_LUNS request is failed
395 if (scsi_dev
->lun
> 0)
397 scsi_dev
->tagged_supported
= 1;
400 return sas_slave_alloc(scsi_dev
);
403 int mvs_slave_configure(struct scsi_device
*sdev
)
405 struct domain_device
*dev
= sdev_to_domain_dev(sdev
);
406 int ret
= sas_slave_configure(sdev
);
410 if (dev_is_sata(dev
)) {
411 /* may set PIO mode */
413 struct ata_port
*ap
= dev
->sata_dev
.ap
;
414 struct ata_device
*adev
= ap
->link
.device
;
415 adev
->flags
|= ATA_DFLAG_NCQ_OFF
;
416 scsi_adjust_queue_depth(sdev
, MSG_SIMPLE_TAG
, 1);
422 void mvs_scan_start(struct Scsi_Host
*shost
)
425 unsigned short core_nr
;
426 struct mvs_info
*mvi
;
427 struct sas_ha_struct
*sha
= SHOST_TO_SAS_HA(shost
);
429 core_nr
= ((struct mvs_prv_info
*)sha
->lldd_ha
)->n_host
;
431 for (j
= 0; j
< core_nr
; j
++) {
432 mvi
= ((struct mvs_prv_info
*)sha
->lldd_ha
)->mvi
[j
];
433 for (i
= 0; i
< mvi
->chip
->n_phy
; ++i
)
434 mvs_bytes_dmaed(mvi
, i
);
438 int mvs_scan_finished(struct Scsi_Host
*shost
, unsigned long time
)
440 /* give the phy enabling interrupt event time to come in (1s
441 * is empirically about all it takes) */
444 /* Wait for discovery to finish */
445 scsi_flush_work(shost
);
449 static int mvs_task_prep_smp(struct mvs_info
*mvi
,
450 struct mvs_task_exec_info
*tei
)
453 struct sas_task
*task
= tei
->task
;
454 struct mvs_cmd_hdr
*hdr
= tei
->hdr
;
455 struct domain_device
*dev
= task
->dev
;
456 struct asd_sas_port
*sas_port
= dev
->port
;
457 struct scatterlist
*sg_req
, *sg_resp
;
458 u32 req_len
, resp_len
, tag
= tei
->tag
;
461 dma_addr_t buf_tmp_dma
;
463 struct mvs_slot_info
*slot
= &mvi
->slot_info
[tag
];
464 u32 flags
= (tei
->n_elem
<< MCH_PRD_LEN_SHIFT
);
470 * DMA-map SMP request, response buffers
472 sg_req
= &task
->smp_task
.smp_req
;
473 elem
= dma_map_sg(mvi
->dev
, sg_req
, 1, PCI_DMA_TODEVICE
);
476 req_len
= sg_dma_len(sg_req
);
478 sg_resp
= &task
->smp_task
.smp_resp
;
479 elem
= dma_map_sg(mvi
->dev
, sg_resp
, 1, PCI_DMA_FROMDEVICE
);
484 resp_len
= SB_RFB_MAX
;
486 /* must be in dwords */
487 if ((req_len
& 0x3) || (resp_len
& 0x3)) {
493 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
496 /* region 1: command table area (MVS_SSP_CMD_SZ bytes) ***** */
498 buf_tmp_dma
= slot
->buf_dma
;
502 hdr
->cmd_tbl
= cpu_to_le64(buf_tmp_dma
);
504 buf_tmp_dma
+= req_len
;
505 slot
->cmd_size
= req_len
;
507 hdr
->cmd_tbl
= cpu_to_le64(sg_dma_address(sg_req
));
510 /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
512 hdr
->open_frame
= cpu_to_le64(buf_tmp_dma
);
514 buf_tmp
+= MVS_OAF_SZ
;
515 buf_tmp_dma
+= MVS_OAF_SZ
;
517 /* region 3: PRD table *********************************** */
520 hdr
->prd_tbl
= cpu_to_le64(buf_tmp_dma
);
524 i
= MVS_CHIP_DISP
->prd_size() * tei
->n_elem
;
528 /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
529 slot
->response
= buf_tmp
;
530 hdr
->status_buf
= cpu_to_le64(buf_tmp_dma
);
531 if (mvi
->flags
& MVF_FLAG_SOC
)
532 hdr
->reserved
[0] = 0;
535 * Fill in TX ring and command slot header
537 slot
->tx
= mvi
->tx_prod
;
538 mvi
->tx
[mvi
->tx_prod
] = cpu_to_le32((TXQ_CMD_SMP
<< TXQ_CMD_SHIFT
) |
540 (sas_port
->phy_mask
<< TXQ_PHY_SHIFT
));
543 hdr
->lens
= cpu_to_le32(((resp_len
/ 4) << 16) | ((req_len
- 4) / 4));
544 hdr
->tags
= cpu_to_le32(tag
);
547 /* generate open address frame hdr (first 12 bytes) */
548 /* initiator, SMP, ftype 1h */
549 buf_oaf
[0] = (1 << 7) | (PROTOCOL_SMP
<< 4) | 0x01;
550 buf_oaf
[1] = dev
->linkrate
& 0xf;
551 *(u16
*)(buf_oaf
+ 2) = 0xFFFF; /* SAS SPEC */
552 memcpy(buf_oaf
+ 4, dev
->sas_addr
, SAS_ADDR_SIZE
);
554 /* fill in PRD (scatter/gather) table, if any */
555 MVS_CHIP_DISP
->make_prd(task
->scatter
, tei
->n_elem
, buf_prd
);
559 from
= kmap_atomic(sg_page(sg_req
), KM_IRQ0
);
560 memcpy(buf_cmd
, from
+ sg_req
->offset
, req_len
);
561 kunmap_atomic(from
, KM_IRQ0
);
566 dma_unmap_sg(mvi
->dev
, &tei
->task
->smp_task
.smp_resp
, 1,
569 dma_unmap_sg(mvi
->dev
, &tei
->task
->smp_task
.smp_req
, 1,
574 static u32
mvs_get_ncq_tag(struct sas_task
*task
, u32
*tag
)
576 struct ata_queued_cmd
*qc
= task
->uldd_task
;
579 if (qc
->tf
.command
== ATA_CMD_FPDMA_WRITE
||
580 qc
->tf
.command
== ATA_CMD_FPDMA_READ
) {
589 static int mvs_task_prep_ata(struct mvs_info
*mvi
,
590 struct mvs_task_exec_info
*tei
)
592 struct sas_task
*task
= tei
->task
;
593 struct domain_device
*dev
= task
->dev
;
594 struct mvs_device
*mvi_dev
= dev
->lldd_dev
;
595 struct mvs_cmd_hdr
*hdr
= tei
->hdr
;
596 struct asd_sas_port
*sas_port
= dev
->port
;
597 struct mvs_slot_info
*slot
;
599 u32 tag
= tei
->tag
, hdr_tag
;
602 u8
*buf_cmd
, *buf_oaf
;
603 dma_addr_t buf_tmp_dma
;
604 u32 i
, req_len
, resp_len
;
605 const u32 max_resp_len
= SB_RFB_MAX
;
607 if (mvs_assign_reg_set(mvi
, mvi_dev
) == MVS_ID_NOT_MAPPED
) {
608 mv_dprintk("Have not enough regiset for dev %d.\n",
612 slot
= &mvi
->slot_info
[tag
];
613 slot
->tx
= mvi
->tx_prod
;
614 del_q
= TXQ_MODE_I
| tag
|
615 (TXQ_CMD_STP
<< TXQ_CMD_SHIFT
) |
616 (sas_port
->phy_mask
<< TXQ_PHY_SHIFT
) |
617 (mvi_dev
->taskfileset
<< TXQ_SRS_SHIFT
);
618 mvi
->tx
[mvi
->tx_prod
] = cpu_to_le32(del_q
);
620 #ifndef DISABLE_HOTPLUG_DMA_FIX
621 if (task
->data_dir
== DMA_FROM_DEVICE
)
622 flags
= (MVS_CHIP_DISP
->prd_count() << MCH_PRD_LEN_SHIFT
);
624 flags
= (tei
->n_elem
<< MCH_PRD_LEN_SHIFT
);
626 flags
= (tei
->n_elem
<< MCH_PRD_LEN_SHIFT
);
628 if (task
->ata_task
.use_ncq
)
630 if (dev
->sata_dev
.command_set
== ATAPI_COMMAND_SET
) {
631 if (task
->ata_task
.fis
.command
!= ATA_CMD_ID_ATAPI
)
635 /* FIXME: fill in port multiplier number */
637 hdr
->flags
= cpu_to_le32(flags
);
639 /* FIXME: the low order order 5 bits for the TAG if enable NCQ */
640 if (task
->ata_task
.use_ncq
&& mvs_get_ncq_tag(task
, &hdr_tag
))
641 task
->ata_task
.fis
.sector_count
|= (u8
) (hdr_tag
<< 3);
645 hdr
->tags
= cpu_to_le32(hdr_tag
);
647 hdr
->data_len
= cpu_to_le32(task
->total_xfer_len
);
650 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
653 /* region 1: command table area (MVS_ATA_CMD_SZ bytes) ************** */
654 buf_cmd
= buf_tmp
= slot
->buf
;
655 buf_tmp_dma
= slot
->buf_dma
;
657 hdr
->cmd_tbl
= cpu_to_le64(buf_tmp_dma
);
659 buf_tmp
+= MVS_ATA_CMD_SZ
;
660 buf_tmp_dma
+= MVS_ATA_CMD_SZ
;
662 slot
->cmd_size
= MVS_ATA_CMD_SZ
;
665 /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
666 /* used for STP. unused for SATA? */
668 hdr
->open_frame
= cpu_to_le64(buf_tmp_dma
);
670 buf_tmp
+= MVS_OAF_SZ
;
671 buf_tmp_dma
+= MVS_OAF_SZ
;
673 /* region 3: PRD table ********************************************* */
677 hdr
->prd_tbl
= cpu_to_le64(buf_tmp_dma
);
680 i
= MVS_CHIP_DISP
->prd_size() * MVS_CHIP_DISP
->prd_count();
685 /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
686 /* FIXME: probably unused, for SATA. kept here just in case
687 * we get a STP/SATA error information record
689 slot
->response
= buf_tmp
;
690 hdr
->status_buf
= cpu_to_le64(buf_tmp_dma
);
691 if (mvi
->flags
& MVF_FLAG_SOC
)
692 hdr
->reserved
[0] = 0;
694 req_len
= sizeof(struct host_to_dev_fis
);
695 resp_len
= MVS_SLOT_BUF_SZ
- MVS_ATA_CMD_SZ
-
696 sizeof(struct mvs_err_info
) - i
;
698 /* request, response lengths */
699 resp_len
= min(resp_len
, max_resp_len
);
700 hdr
->lens
= cpu_to_le32(((resp_len
/ 4) << 16) | (req_len
/ 4));
702 if (likely(!task
->ata_task
.device_control_reg_update
))
703 task
->ata_task
.fis
.flags
|= 0x80; /* C=1: update ATA cmd reg */
704 /* fill in command FIS and ATAPI CDB */
705 memcpy(buf_cmd
, &task
->ata_task
.fis
, sizeof(struct host_to_dev_fis
));
706 if (dev
->sata_dev
.command_set
== ATAPI_COMMAND_SET
)
707 memcpy(buf_cmd
+ STP_ATAPI_CMD
,
708 task
->ata_task
.atapi_packet
, 16);
710 /* generate open address frame hdr (first 12 bytes) */
711 /* initiator, STP, ftype 1h */
712 buf_oaf
[0] = (1 << 7) | (PROTOCOL_STP
<< 4) | 0x1;
713 buf_oaf
[1] = dev
->linkrate
& 0xf;
714 *(u16
*)(buf_oaf
+ 2) = cpu_to_be16(mvi_dev
->device_id
+ 1);
715 memcpy(buf_oaf
+ 4, dev
->sas_addr
, SAS_ADDR_SIZE
);
717 /* fill in PRD (scatter/gather) table, if any */
718 MVS_CHIP_DISP
->make_prd(task
->scatter
, tei
->n_elem
, buf_prd
);
719 #ifndef DISABLE_HOTPLUG_DMA_FIX
720 if (task
->data_dir
== DMA_FROM_DEVICE
)
721 MVS_CHIP_DISP
->dma_fix(mvi
->bulk_buffer_dma
,
722 TRASH_BUCKET_SIZE
, tei
->n_elem
, buf_prd
);
727 static int mvs_task_prep_ssp(struct mvs_info
*mvi
,
728 struct mvs_task_exec_info
*tei
, int is_tmf
,
729 struct mvs_tmf_task
*tmf
)
731 struct sas_task
*task
= tei
->task
;
732 struct mvs_cmd_hdr
*hdr
= tei
->hdr
;
733 struct mvs_port
*port
= tei
->port
;
734 struct domain_device
*dev
= task
->dev
;
735 struct mvs_device
*mvi_dev
= dev
->lldd_dev
;
736 struct asd_sas_port
*sas_port
= dev
->port
;
737 struct mvs_slot_info
*slot
;
739 struct ssp_frame_hdr
*ssp_hdr
;
741 u8
*buf_cmd
, *buf_oaf
, fburst
= 0;
742 dma_addr_t buf_tmp_dma
;
744 u32 resp_len
, req_len
, i
, tag
= tei
->tag
;
745 const u32 max_resp_len
= SB_RFB_MAX
;
748 slot
= &mvi
->slot_info
[tag
];
750 phy_mask
= ((port
->wide_port_phymap
) ? port
->wide_port_phymap
:
751 sas_port
->phy_mask
) & TXQ_PHY_MASK
;
753 slot
->tx
= mvi
->tx_prod
;
754 mvi
->tx
[mvi
->tx_prod
] = cpu_to_le32(TXQ_MODE_I
| tag
|
755 (TXQ_CMD_SSP
<< TXQ_CMD_SHIFT
) |
756 (phy_mask
<< TXQ_PHY_SHIFT
));
759 if (task
->ssp_task
.enable_first_burst
) {
764 flags
|= (MCH_SSP_FR_TASK
<< MCH_SSP_FR_TYPE_SHIFT
);
766 flags
|= (MCH_SSP_FR_CMD
<< MCH_SSP_FR_TYPE_SHIFT
);
767 hdr
->flags
= cpu_to_le32(flags
| (tei
->n_elem
<< MCH_PRD_LEN_SHIFT
));
768 hdr
->tags
= cpu_to_le32(tag
);
769 hdr
->data_len
= cpu_to_le32(task
->total_xfer_len
);
772 * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs
775 /* region 1: command table area (MVS_SSP_CMD_SZ bytes) ************** */
776 buf_cmd
= buf_tmp
= slot
->buf
;
777 buf_tmp_dma
= slot
->buf_dma
;
779 hdr
->cmd_tbl
= cpu_to_le64(buf_tmp_dma
);
781 buf_tmp
+= MVS_SSP_CMD_SZ
;
782 buf_tmp_dma
+= MVS_SSP_CMD_SZ
;
784 slot
->cmd_size
= MVS_SSP_CMD_SZ
;
787 /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */
789 hdr
->open_frame
= cpu_to_le64(buf_tmp_dma
);
791 buf_tmp
+= MVS_OAF_SZ
;
792 buf_tmp_dma
+= MVS_OAF_SZ
;
794 /* region 3: PRD table ********************************************* */
797 hdr
->prd_tbl
= cpu_to_le64(buf_tmp_dma
);
801 i
= MVS_CHIP_DISP
->prd_size() * tei
->n_elem
;
805 /* region 4: status buffer (larger the PRD, smaller this buf) ****** */
806 slot
->response
= buf_tmp
;
807 hdr
->status_buf
= cpu_to_le64(buf_tmp_dma
);
808 if (mvi
->flags
& MVF_FLAG_SOC
)
809 hdr
->reserved
[0] = 0;
811 resp_len
= MVS_SLOT_BUF_SZ
- MVS_SSP_CMD_SZ
- MVS_OAF_SZ
-
812 sizeof(struct mvs_err_info
) - i
;
813 resp_len
= min(resp_len
, max_resp_len
);
815 req_len
= sizeof(struct ssp_frame_hdr
) + 28;
817 /* request, response lengths */
818 hdr
->lens
= cpu_to_le32(((resp_len
/ 4) << 16) | (req_len
/ 4));
820 /* generate open address frame hdr (first 12 bytes) */
821 /* initiator, SSP, ftype 1h */
822 buf_oaf
[0] = (1 << 7) | (PROTOCOL_SSP
<< 4) | 0x1;
823 buf_oaf
[1] = dev
->linkrate
& 0xf;
824 *(u16
*)(buf_oaf
+ 2) = cpu_to_be16(mvi_dev
->device_id
+ 1);
825 memcpy(buf_oaf
+ 4, dev
->sas_addr
, SAS_ADDR_SIZE
);
827 /* fill in SSP frame header (Command Table.SSP frame header) */
828 ssp_hdr
= (struct ssp_frame_hdr
*)buf_cmd
;
831 ssp_hdr
->frame_type
= SSP_TASK
;
833 ssp_hdr
->frame_type
= SSP_COMMAND
;
835 memcpy(ssp_hdr
->hashed_dest_addr
, dev
->hashed_sas_addr
,
836 HASHED_SAS_ADDR_SIZE
);
837 memcpy(ssp_hdr
->hashed_src_addr
,
838 dev
->hashed_sas_addr
, HASHED_SAS_ADDR_SIZE
);
839 ssp_hdr
->tag
= cpu_to_be16(tag
);
841 /* fill in IU for TASK and Command Frame */
842 buf_cmd
+= sizeof(*ssp_hdr
);
843 memcpy(buf_cmd
, &task
->ssp_task
.LUN
, 8);
845 if (ssp_hdr
->frame_type
!= SSP_TASK
) {
846 buf_cmd
[9] = fburst
| task
->ssp_task
.task_attr
|
847 (task
->ssp_task
.task_prio
<< 3);
848 memcpy(buf_cmd
+ 12, &task
->ssp_task
.cdb
, 16);
850 buf_cmd
[10] = tmf
->tmf
;
855 (tmf
->tag_of_task_to_be_managed
>> 8) & 0xff;
857 tmf
->tag_of_task_to_be_managed
& 0xff;
863 /* fill in PRD (scatter/gather) table, if any */
864 MVS_CHIP_DISP
->make_prd(task
->scatter
, tei
->n_elem
, buf_prd
);
868 #define DEV_IS_GONE(mvi_dev) ((!mvi_dev || (mvi_dev->dev_type == NO_DEVICE)))
869 static int mvs_task_exec(struct sas_task
*task
, const int num
, gfp_t gfp_flags
,
870 struct completion
*completion
,int is_tmf
,
871 struct mvs_tmf_task
*tmf
)
873 struct domain_device
*dev
= task
->dev
;
874 struct mvs_device
*mvi_dev
= (struct mvs_device
*)dev
->lldd_dev
;
875 struct mvs_info
*mvi
= mvi_dev
->mvi_info
;
876 struct mvs_task_exec_info tei
;
877 struct sas_task
*t
= task
;
878 struct mvs_slot_info
*slot
;
879 u32 tag
= 0xdeadbeef, rc
, n_elem
= 0;
880 u32 n
= num
, pass
= 0;
881 unsigned long flags
= 0;
884 struct task_status_struct
*tsm
= &t
->task_status
;
886 tsm
->resp
= SAS_TASK_UNDELIVERED
;
887 tsm
->stat
= SAS_PHY_DOWN
;
892 spin_lock_irqsave(&mvi
->lock
, flags
);
895 mvi_dev
= dev
->lldd_dev
;
896 if (DEV_IS_GONE(mvi_dev
)) {
898 mv_dprintk("device %d not ready.\n",
901 mv_dprintk("device %016llx not ready.\n",
902 SAS_ADDR(dev
->sas_addr
));
908 if (dev
->port
->id
>= mvi
->chip
->n_phy
)
909 tei
.port
= &mvi
->port
[dev
->port
->id
- mvi
->chip
->n_phy
];
911 tei
.port
= &mvi
->port
[dev
->port
->id
];
913 if (!tei
.port
->port_attached
) {
914 if (sas_protocol_ata(t
->task_proto
)) {
915 mv_dprintk("port %d does not"
916 "attached device.\n", dev
->port
->id
);
920 struct task_status_struct
*ts
= &t
->task_status
;
921 ts
->resp
= SAS_TASK_UNDELIVERED
;
922 ts
->stat
= SAS_PHY_DOWN
;
925 t
= list_entry(t
->list
.next
,
926 struct sas_task
, list
);
931 if (!sas_protocol_ata(t
->task_proto
)) {
932 if (t
->num_scatter
) {
933 n_elem
= dma_map_sg(mvi
->dev
,
943 n_elem
= t
->num_scatter
;
946 rc
= mvs_tag_alloc(mvi
, &tag
);
950 slot
= &mvi
->slot_info
[tag
];
954 slot
->n_elem
= n_elem
;
955 slot
->slot_tag
= tag
;
956 memset(slot
->buf
, 0, MVS_SLOT_BUF_SZ
);
959 tei
.hdr
= &mvi
->slot
[tag
];
962 switch (t
->task_proto
) {
963 case SAS_PROTOCOL_SMP
:
964 rc
= mvs_task_prep_smp(mvi
, &tei
);
966 case SAS_PROTOCOL_SSP
:
967 rc
= mvs_task_prep_ssp(mvi
, &tei
, is_tmf
, tmf
);
969 case SAS_PROTOCOL_SATA
:
970 case SAS_PROTOCOL_STP
:
971 case SAS_PROTOCOL_SATA
| SAS_PROTOCOL_STP
:
972 rc
= mvs_task_prep_ata(mvi
, &tei
);
975 dev_printk(KERN_ERR
, mvi
->dev
,
976 "unknown sas_task proto: 0x%x\n",
983 mv_dprintk("rc is %x\n", rc
);
987 slot
->port
= tei
.port
;
989 list_add_tail(&slot
->entry
, &tei
.port
->list
);
990 /* TODO: select normal or high priority */
991 spin_lock(&t
->task_state_lock
);
992 t
->task_state_flags
|= SAS_TASK_AT_INITIATOR
;
993 spin_unlock(&t
->task_state_lock
);
995 mvs_hba_memory_dump(mvi
, tag
, t
->task_proto
);
996 mvi_dev
->runing_req
++;
998 mvi
->tx_prod
= (mvi
->tx_prod
+ 1) & (MVS_CHIP_SLOT_SZ
- 1);
1000 t
= list_entry(t
->list
.next
, struct sas_task
, list
);
1006 mvs_tag_free(mvi
, tag
);
1009 dev_printk(KERN_ERR
, mvi
->dev
, "mvsas exec failed[%d]!\n", rc
);
1010 if (!sas_protocol_ata(t
->task_proto
))
1012 dma_unmap_sg(mvi
->dev
, t
->scatter
, n_elem
,
1016 MVS_CHIP_DISP
->start_delivery(mvi
,
1017 (mvi
->tx_prod
- 1) & (MVS_CHIP_SLOT_SZ
- 1));
1019 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1023 int mvs_queue_command(struct sas_task
*task
, const int num
,
1026 return mvs_task_exec(task
, num
, gfp_flags
, NULL
, 0, NULL
);
1029 static void mvs_slot_free(struct mvs_info
*mvi
, u32 rx_desc
)
1031 u32 slot_idx
= rx_desc
& RXQ_SLOT_MASK
;
1032 mvs_tag_clear(mvi
, slot_idx
);
1035 static void mvs_slot_task_free(struct mvs_info
*mvi
, struct sas_task
*task
,
1036 struct mvs_slot_info
*slot
, u32 slot_idx
)
1040 if (!sas_protocol_ata(task
->task_proto
))
1042 dma_unmap_sg(mvi
->dev
, task
->scatter
,
1043 slot
->n_elem
, task
->data_dir
);
1045 switch (task
->task_proto
) {
1046 case SAS_PROTOCOL_SMP
:
1047 dma_unmap_sg(mvi
->dev
, &task
->smp_task
.smp_resp
, 1,
1048 PCI_DMA_FROMDEVICE
);
1049 dma_unmap_sg(mvi
->dev
, &task
->smp_task
.smp_req
, 1,
1053 case SAS_PROTOCOL_SATA
:
1054 case SAS_PROTOCOL_STP
:
1055 case SAS_PROTOCOL_SSP
:
1060 list_del_init(&slot
->entry
);
1061 task
->lldd_task
= NULL
;
1064 slot
->slot_tag
= 0xFFFFFFFF;
1065 mvs_slot_free(mvi
, slot_idx
);
1068 static void mvs_update_wideport(struct mvs_info
*mvi
, int i
)
1070 struct mvs_phy
*phy
= &mvi
->phy
[i
];
1071 struct mvs_port
*port
= phy
->port
;
1074 for_each_phy(port
->wide_port_phymap
, j
, no
) {
1076 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, no
,
1078 MVS_CHIP_DISP
->write_port_cfg_data(mvi
, no
,
1079 port
->wide_port_phymap
);
1081 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, no
,
1083 MVS_CHIP_DISP
->write_port_cfg_data(mvi
, no
,
1089 static u32
mvs_is_phy_ready(struct mvs_info
*mvi
, int i
)
1092 struct mvs_phy
*phy
= &mvi
->phy
[i
];
1093 struct mvs_port
*port
= phy
->port
;
1095 tmp
= MVS_CHIP_DISP
->read_phy_ctl(mvi
, i
);
1096 if ((tmp
& PHY_READY_MASK
) && !(phy
->irq_status
& PHYEV_POOF
)) {
1098 phy
->phy_attached
= 1;
1103 if (phy
->phy_type
& PORT_TYPE_SAS
) {
1104 port
->wide_port_phymap
&= ~(1U << i
);
1105 if (!port
->wide_port_phymap
)
1106 port
->port_attached
= 0;
1107 mvs_update_wideport(mvi
, i
);
1108 } else if (phy
->phy_type
& PORT_TYPE_SATA
)
1109 port
->port_attached
= 0;
1111 phy
->phy_attached
= 0;
1112 phy
->phy_type
&= ~(PORT_TYPE_SAS
| PORT_TYPE_SATA
);
1117 static void *mvs_get_d2h_reg(struct mvs_info
*mvi
, int i
, void *buf
)
1119 u32
*s
= (u32
*) buf
;
1124 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, i
, PHYR_SATA_SIG3
);
1125 s
[3] = MVS_CHIP_DISP
->read_port_cfg_data(mvi
, i
);
1127 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, i
, PHYR_SATA_SIG2
);
1128 s
[2] = MVS_CHIP_DISP
->read_port_cfg_data(mvi
, i
);
1130 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, i
, PHYR_SATA_SIG1
);
1131 s
[1] = MVS_CHIP_DISP
->read_port_cfg_data(mvi
, i
);
1133 MVS_CHIP_DISP
->write_port_cfg_addr(mvi
, i
, PHYR_SATA_SIG0
);
1134 s
[0] = MVS_CHIP_DISP
->read_port_cfg_data(mvi
, i
);
1136 /* Workaround: take some ATAPI devices for ATA */
1137 if (((s
[1] & 0x00FFFFFF) == 0x00EB1401) && (*(u8
*)&s
[3] == 0x01))
1138 s
[1] = 0x00EB1401 | (*((u8
*)&s
[1] + 3) & 0x10);
1143 static u32
mvs_is_sig_fis_received(u32 irq_status
)
1145 return irq_status
& PHYEV_SIG_FIS
;
1148 void mvs_update_phyinfo(struct mvs_info
*mvi
, int i
, int get_st
)
1150 struct mvs_phy
*phy
= &mvi
->phy
[i
];
1151 struct sas_identify_frame
*id
;
1153 id
= (struct sas_identify_frame
*)phy
->frame_rcvd
;
1156 phy
->irq_status
= MVS_CHIP_DISP
->read_port_irq_stat(mvi
, i
);
1157 phy
->phy_status
= mvs_is_phy_ready(mvi
, i
);
1160 if (phy
->phy_status
) {
1162 struct asd_sas_phy
*sas_phy
= &mvi
->phy
[i
].sas_phy
;
1164 oob_done
= MVS_CHIP_DISP
->oob_done(mvi
, i
);
1166 MVS_CHIP_DISP
->fix_phy_info(mvi
, i
, id
);
1167 if (phy
->phy_type
& PORT_TYPE_SATA
) {
1168 phy
->identify
.target_port_protocols
= SAS_PROTOCOL_STP
;
1169 if (mvs_is_sig_fis_received(phy
->irq_status
)) {
1170 phy
->phy_attached
= 1;
1171 phy
->att_dev_sas_addr
=
1172 i
+ mvi
->id
* mvi
->chip
->n_phy
;
1174 sas_phy
->oob_mode
= SATA_OOB_MODE
;
1175 phy
->frame_rcvd_size
=
1176 sizeof(struct dev_to_host_fis
);
1177 mvs_get_d2h_reg(mvi
, i
, id
);
1180 dev_printk(KERN_DEBUG
, mvi
->dev
,
1181 "Phy%d : No sig fis\n", i
);
1182 tmp
= MVS_CHIP_DISP
->read_port_irq_mask(mvi
, i
);
1183 MVS_CHIP_DISP
->write_port_irq_mask(mvi
, i
,
1184 tmp
| PHYEV_SIG_FIS
);
1185 phy
->phy_attached
= 0;
1186 phy
->phy_type
&= ~PORT_TYPE_SATA
;
1187 MVS_CHIP_DISP
->phy_reset(mvi
, i
, 0);
1190 } else if (phy
->phy_type
& PORT_TYPE_SAS
1191 || phy
->att_dev_info
& PORT_SSP_INIT_MASK
) {
1192 phy
->phy_attached
= 1;
1193 phy
->identify
.device_type
=
1194 phy
->att_dev_info
& PORT_DEV_TYPE_MASK
;
1196 if (phy
->identify
.device_type
== SAS_END_DEV
)
1197 phy
->identify
.target_port_protocols
=
1199 else if (phy
->identify
.device_type
!= NO_DEVICE
)
1200 phy
->identify
.target_port_protocols
=
1203 sas_phy
->oob_mode
= SAS_OOB_MODE
;
1204 phy
->frame_rcvd_size
=
1205 sizeof(struct sas_identify_frame
);
1207 memcpy(sas_phy
->attached_sas_addr
,
1208 &phy
->att_dev_sas_addr
, SAS_ADDR_SIZE
);
1210 if (MVS_CHIP_DISP
->phy_work_around
)
1211 MVS_CHIP_DISP
->phy_work_around(mvi
, i
);
1213 mv_dprintk("port %d attach dev info is %x\n",
1214 i
+ mvi
->id
* mvi
->chip
->n_phy
, phy
->att_dev_info
);
1215 mv_dprintk("port %d attach sas addr is %llx\n",
1216 i
+ mvi
->id
* mvi
->chip
->n_phy
, phy
->att_dev_sas_addr
);
1219 MVS_CHIP_DISP
->write_port_irq_stat(mvi
, i
, phy
->irq_status
);
1222 static void mvs_port_notify_formed(struct asd_sas_phy
*sas_phy
, int lock
)
1224 struct sas_ha_struct
*sas_ha
= sas_phy
->ha
;
1225 struct mvs_info
*mvi
= NULL
; int i
= 0, hi
;
1226 struct mvs_phy
*phy
= sas_phy
->lldd_phy
;
1227 struct asd_sas_port
*sas_port
= sas_phy
->port
;
1228 struct mvs_port
*port
;
1229 unsigned long flags
= 0;
1233 while (sas_ha
->sas_phy
[i
]) {
1234 if (sas_ha
->sas_phy
[i
] == sas_phy
)
1238 hi
= i
/((struct mvs_prv_info
*)sas_ha
->lldd_ha
)->n_phy
;
1239 mvi
= ((struct mvs_prv_info
*)sas_ha
->lldd_ha
)->mvi
[hi
];
1240 if (sas_port
->id
>= mvi
->chip
->n_phy
)
1241 port
= &mvi
->port
[sas_port
->id
- mvi
->chip
->n_phy
];
1243 port
= &mvi
->port
[sas_port
->id
];
1245 spin_lock_irqsave(&mvi
->lock
, flags
);
1246 port
->port_attached
= 1;
1248 if (phy
->phy_type
& PORT_TYPE_SAS
) {
1249 port
->wide_port_phymap
= sas_port
->phy_mask
;
1250 mv_printk("set wide port phy map %x\n", sas_port
->phy_mask
);
1251 mvs_update_wideport(mvi
, sas_phy
->id
);
1254 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1257 static void mvs_port_notify_deformed(struct asd_sas_phy
*sas_phy
, int lock
)
1263 void mvs_port_formed(struct asd_sas_phy
*sas_phy
)
1265 mvs_port_notify_formed(sas_phy
, 1);
1268 void mvs_port_deformed(struct asd_sas_phy
*sas_phy
)
1270 mvs_port_notify_deformed(sas_phy
, 1);
1273 struct mvs_device
*mvs_alloc_dev(struct mvs_info
*mvi
)
1276 for (dev
= 0; dev
< MVS_MAX_DEVICES
; dev
++) {
1277 if (mvi
->devices
[dev
].dev_type
== NO_DEVICE
) {
1278 mvi
->devices
[dev
].device_id
= dev
;
1279 return &mvi
->devices
[dev
];
1283 if (dev
== MVS_MAX_DEVICES
)
1284 mv_printk("max support %d devices, ignore ..\n",
1290 void mvs_free_dev(struct mvs_device
*mvi_dev
)
1292 u32 id
= mvi_dev
->device_id
;
1293 memset(mvi_dev
, 0, sizeof(*mvi_dev
));
1294 mvi_dev
->device_id
= id
;
1295 mvi_dev
->dev_type
= NO_DEVICE
;
1296 mvi_dev
->dev_status
= MVS_DEV_NORMAL
;
1297 mvi_dev
->taskfileset
= MVS_ID_NOT_MAPPED
;
1300 int mvs_dev_found_notify(struct domain_device
*dev
, int lock
)
1302 unsigned long flags
= 0;
1304 struct mvs_info
*mvi
= NULL
;
1305 struct domain_device
*parent_dev
= dev
->parent
;
1306 struct mvs_device
*mvi_device
;
1308 mvi
= mvs_find_dev_mvi(dev
);
1311 spin_lock_irqsave(&mvi
->lock
, flags
);
1313 mvi_device
= mvs_alloc_dev(mvi
);
1318 dev
->lldd_dev
= mvi_device
;
1319 mvi_device
->dev_type
= dev
->dev_type
;
1320 mvi_device
->mvi_info
= mvi
;
1321 if (parent_dev
&& DEV_IS_EXPANDER(parent_dev
->dev_type
)) {
1323 u8 phy_num
= parent_dev
->ex_dev
.num_phys
;
1325 for (phy_id
= 0; phy_id
< phy_num
; phy_id
++) {
1326 phy
= &parent_dev
->ex_dev
.ex_phy
[phy_id
];
1327 if (SAS_ADDR(phy
->attached_sas_addr
) ==
1328 SAS_ADDR(dev
->sas_addr
)) {
1329 mvi_device
->attached_phy
= phy_id
;
1334 if (phy_id
== phy_num
) {
1335 mv_printk("Error: no attached dev:%016llx"
1337 SAS_ADDR(dev
->sas_addr
),
1338 SAS_ADDR(parent_dev
->sas_addr
));
1345 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1349 int mvs_dev_found(struct domain_device
*dev
)
1351 return mvs_dev_found_notify(dev
, 1);
1354 void mvs_dev_gone_notify(struct domain_device
*dev
, int lock
)
1356 unsigned long flags
= 0;
1357 struct mvs_device
*mvi_dev
= dev
->lldd_dev
;
1358 struct mvs_info
*mvi
= mvi_dev
->mvi_info
;
1361 spin_lock_irqsave(&mvi
->lock
, flags
);
1364 mv_dprintk("found dev[%d:%x] is gone.\n",
1365 mvi_dev
->device_id
, mvi_dev
->dev_type
);
1366 mvs_free_reg_set(mvi
, mvi_dev
);
1367 mvs_free_dev(mvi_dev
);
1369 mv_dprintk("found dev has gone.\n");
1371 dev
->lldd_dev
= NULL
;
1374 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1378 void mvs_dev_gone(struct domain_device
*dev
)
1380 mvs_dev_gone_notify(dev
, 1);
1383 static struct sas_task
*mvs_alloc_task(void)
1385 struct sas_task
*task
= kzalloc(sizeof(struct sas_task
), GFP_KERNEL
);
1388 INIT_LIST_HEAD(&task
->list
);
1389 spin_lock_init(&task
->task_state_lock
);
1390 task
->task_state_flags
= SAS_TASK_STATE_PENDING
;
1391 init_timer(&task
->timer
);
1392 init_completion(&task
->completion
);
1397 static void mvs_free_task(struct sas_task
*task
)
1400 BUG_ON(!list_empty(&task
->list
));
1405 static void mvs_task_done(struct sas_task
*task
)
1407 if (!del_timer(&task
->timer
))
1409 complete(&task
->completion
);
1412 static void mvs_tmf_timedout(unsigned long data
)
1414 struct sas_task
*task
= (struct sas_task
*)data
;
1416 task
->task_state_flags
|= SAS_TASK_STATE_ABORTED
;
1417 complete(&task
->completion
);
1421 #define MVS_TASK_TIMEOUT 20
1422 static int mvs_exec_internal_tmf_task(struct domain_device
*dev
,
1423 void *parameter
, u32 para_len
, struct mvs_tmf_task
*tmf
)
1426 struct sas_task
*task
= NULL
;
1428 for (retry
= 0; retry
< 3; retry
++) {
1429 task
= mvs_alloc_task();
1434 task
->task_proto
= dev
->tproto
;
1436 memcpy(&task
->ssp_task
, parameter
, para_len
);
1437 task
->task_done
= mvs_task_done
;
1439 task
->timer
.data
= (unsigned long) task
;
1440 task
->timer
.function
= mvs_tmf_timedout
;
1441 task
->timer
.expires
= jiffies
+ MVS_TASK_TIMEOUT
*HZ
;
1442 add_timer(&task
->timer
);
1444 res
= mvs_task_exec(task
, 1, GFP_KERNEL
, NULL
, 1, tmf
);
1447 del_timer(&task
->timer
);
1448 mv_printk("executing internel task failed:%d\n", res
);
1452 wait_for_completion(&task
->completion
);
1453 res
= -TMF_RESP_FUNC_FAILED
;
1454 /* Even TMF timed out, return direct. */
1455 if ((task
->task_state_flags
& SAS_TASK_STATE_ABORTED
)) {
1456 if (!(task
->task_state_flags
& SAS_TASK_STATE_DONE
)) {
1457 mv_printk("TMF task[%x] timeout.\n", tmf
->tmf
);
1462 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
1463 task
->task_status
.stat
== SAM_GOOD
) {
1464 res
= TMF_RESP_FUNC_COMPLETE
;
1468 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
1469 task
->task_status
.stat
== SAS_DATA_UNDERRUN
) {
1470 /* no error, but return the number of bytes of
1472 res
= task
->task_status
.residual
;
1476 if (task
->task_status
.resp
== SAS_TASK_COMPLETE
&&
1477 task
->task_status
.stat
== SAS_DATA_OVERRUN
) {
1478 mv_dprintk("blocked task error.\n");
1482 mv_dprintk(" task to dev %016llx response: 0x%x "
1484 SAS_ADDR(dev
->sas_addr
),
1485 task
->task_status
.resp
,
1486 task
->task_status
.stat
);
1487 mvs_free_task(task
);
1493 BUG_ON(retry
== 3 && task
!= NULL
);
1495 mvs_free_task(task
);
1499 static int mvs_debug_issue_ssp_tmf(struct domain_device
*dev
,
1500 u8
*lun
, struct mvs_tmf_task
*tmf
)
1502 struct sas_ssp_task ssp_task
;
1503 DECLARE_COMPLETION_ONSTACK(completion
);
1504 if (!(dev
->tproto
& SAS_PROTOCOL_SSP
))
1505 return TMF_RESP_FUNC_ESUPP
;
1507 strncpy((u8
*)&ssp_task
.LUN
, lun
, 8);
1509 return mvs_exec_internal_tmf_task(dev
, &ssp_task
,
1510 sizeof(ssp_task
), tmf
);
1514 /* Standard mandates link reset for ATA (type 0)
1515 and hard reset for SSP (type 1) , only for RECOVERY */
1516 static int mvs_debug_I_T_nexus_reset(struct domain_device
*dev
)
1519 struct sas_phy
*phy
= sas_find_local_phy(dev
);
1520 int reset_type
= (dev
->dev_type
== SATA_DEV
||
1521 (dev
->tproto
& SAS_PROTOCOL_STP
)) ? 0 : 1;
1522 rc
= sas_phy_reset(phy
, reset_type
);
1527 /* mandatory SAM-3 */
1528 int mvs_lu_reset(struct domain_device
*dev
, u8
*lun
)
1530 unsigned long flags
;
1531 int i
, phyno
[WIDE_PORT_MAX_PHY
], num
, rc
= TMF_RESP_FUNC_FAILED
;
1532 struct mvs_tmf_task tmf_task
;
1533 struct mvs_device
* mvi_dev
= dev
->lldd_dev
;
1534 struct mvs_info
*mvi
= mvi_dev
->mvi_info
;
1536 tmf_task
.tmf
= TMF_LU_RESET
;
1537 mvi_dev
->dev_status
= MVS_DEV_EH
;
1538 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
, &tmf_task
);
1539 if (rc
== TMF_RESP_FUNC_COMPLETE
) {
1540 num
= mvs_find_dev_phyno(dev
, phyno
);
1541 spin_lock_irqsave(&mvi
->lock
, flags
);
1542 for (i
= 0; i
< num
; i
++)
1543 mvs_release_task(mvi
, phyno
[i
], dev
);
1544 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1546 /* If failed, fall-through I_T_Nexus reset */
1547 mv_printk("%s for device[%x]:rc= %d\n", __func__
,
1548 mvi_dev
->device_id
, rc
);
1552 int mvs_I_T_nexus_reset(struct domain_device
*dev
)
1554 unsigned long flags
;
1555 int i
, phyno
[WIDE_PORT_MAX_PHY
], num
, rc
= TMF_RESP_FUNC_FAILED
;
1556 struct mvs_device
* mvi_dev
= (struct mvs_device
*)dev
->lldd_dev
;
1557 struct mvs_info
*mvi
= mvi_dev
->mvi_info
;
1559 if (mvi_dev
->dev_status
!= MVS_DEV_EH
)
1560 return TMF_RESP_FUNC_COMPLETE
;
1561 rc
= mvs_debug_I_T_nexus_reset(dev
);
1562 mv_printk("%s for device[%x]:rc= %d\n",
1563 __func__
, mvi_dev
->device_id
, rc
);
1566 num
= mvs_find_dev_phyno(dev
, phyno
);
1567 spin_lock_irqsave(&mvi
->lock
, flags
);
1568 for (i
= 0; i
< num
; i
++)
1569 mvs_release_task(mvi
, phyno
[i
], dev
);
1570 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1574 /* optional SAM-3 */
1575 int mvs_query_task(struct sas_task
*task
)
1578 struct scsi_lun lun
;
1579 struct mvs_tmf_task tmf_task
;
1580 int rc
= TMF_RESP_FUNC_FAILED
;
1582 if (task
->lldd_task
&& task
->task_proto
& SAS_PROTOCOL_SSP
) {
1583 struct scsi_cmnd
* cmnd
= (struct scsi_cmnd
*)task
->uldd_task
;
1584 struct domain_device
*dev
= task
->dev
;
1585 struct mvs_device
*mvi_dev
= (struct mvs_device
*)dev
->lldd_dev
;
1586 struct mvs_info
*mvi
= mvi_dev
->mvi_info
;
1588 int_to_scsilun(cmnd
->device
->lun
, &lun
);
1589 rc
= mvs_find_tag(mvi
, task
, &tag
);
1591 rc
= TMF_RESP_FUNC_FAILED
;
1595 tmf_task
.tmf
= TMF_QUERY_TASK
;
1596 tmf_task
.tag_of_task_to_be_managed
= cpu_to_le16(tag
);
1598 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
.scsi_lun
, &tmf_task
);
1600 /* The task is still in Lun, release it then */
1601 case TMF_RESP_FUNC_SUCC
:
1602 /* The task is not in Lun or failed, reset the phy */
1603 case TMF_RESP_FUNC_FAILED
:
1604 case TMF_RESP_FUNC_COMPLETE
:
1608 mv_printk("%s:rc= %d\n", __func__
, rc
);
1612 /* mandatory SAM-3, still need free task/slot info */
1613 int mvs_abort_task(struct sas_task
*task
)
1615 struct scsi_lun lun
;
1616 struct mvs_tmf_task tmf_task
;
1617 struct domain_device
*dev
= task
->dev
;
1618 struct mvs_device
*mvi_dev
= (struct mvs_device
*)dev
->lldd_dev
;
1619 struct mvs_info
*mvi
= mvi_dev
->mvi_info
;
1620 int rc
= TMF_RESP_FUNC_FAILED
;
1621 unsigned long flags
;
1626 spin_lock_irqsave(&task
->task_state_lock
, flags
);
1627 if (task
->task_state_flags
& SAS_TASK_STATE_DONE
) {
1628 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
1629 rc
= TMF_RESP_FUNC_COMPLETE
;
1632 spin_unlock_irqrestore(&task
->task_state_lock
, flags
);
1633 if (task
->lldd_task
&& task
->task_proto
& SAS_PROTOCOL_SSP
) {
1634 struct scsi_cmnd
* cmnd
= (struct scsi_cmnd
*)task
->uldd_task
;
1636 int_to_scsilun(cmnd
->device
->lun
, &lun
);
1637 rc
= mvs_find_tag(mvi
, task
, &tag
);
1639 mv_printk("No such tag in %s\n", __func__
);
1640 rc
= TMF_RESP_FUNC_FAILED
;
1644 tmf_task
.tmf
= TMF_ABORT_TASK
;
1645 tmf_task
.tag_of_task_to_be_managed
= cpu_to_le16(tag
);
1647 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
.scsi_lun
, &tmf_task
);
1649 /* if successful, clear the task and callback forwards.*/
1650 if (rc
== TMF_RESP_FUNC_COMPLETE
) {
1652 struct mvs_slot_info
*slot
;
1654 if (task
->lldd_task
) {
1655 slot
= task
->lldd_task
;
1656 slot_no
= (u32
) (slot
- mvi
->slot_info
);
1657 mvs_slot_complete(mvi
, slot_no
, 1);
1660 } else if (task
->task_proto
& SAS_PROTOCOL_SATA
||
1661 task
->task_proto
& SAS_PROTOCOL_STP
) {
1662 /* to do free register_set */
1668 if (rc
!= TMF_RESP_FUNC_COMPLETE
)
1669 mv_printk("%s:rc= %d\n", __func__
, rc
);
1673 int mvs_abort_task_set(struct domain_device
*dev
, u8
*lun
)
1675 int rc
= TMF_RESP_FUNC_FAILED
;
1676 struct mvs_tmf_task tmf_task
;
1678 tmf_task
.tmf
= TMF_ABORT_TASK_SET
;
1679 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
, &tmf_task
);
1684 int mvs_clear_aca(struct domain_device
*dev
, u8
*lun
)
1686 int rc
= TMF_RESP_FUNC_FAILED
;
1687 struct mvs_tmf_task tmf_task
;
1689 tmf_task
.tmf
= TMF_CLEAR_ACA
;
1690 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
, &tmf_task
);
1695 int mvs_clear_task_set(struct domain_device
*dev
, u8
*lun
)
1697 int rc
= TMF_RESP_FUNC_FAILED
;
1698 struct mvs_tmf_task tmf_task
;
1700 tmf_task
.tmf
= TMF_CLEAR_TASK_SET
;
1701 rc
= mvs_debug_issue_ssp_tmf(dev
, lun
, &tmf_task
);
1706 static int mvs_sata_done(struct mvs_info
*mvi
, struct sas_task
*task
,
1707 u32 slot_idx
, int err
)
1709 struct mvs_device
*mvi_dev
= task
->dev
->lldd_dev
;
1710 struct task_status_struct
*tstat
= &task
->task_status
;
1711 struct ata_task_resp
*resp
= (struct ata_task_resp
*)tstat
->buf
;
1712 int stat
= SAM_GOOD
;
1715 resp
->frame_len
= sizeof(struct dev_to_host_fis
);
1716 memcpy(&resp
->ending_fis
[0],
1717 SATA_RECEIVED_D2H_FIS(mvi_dev
->taskfileset
),
1718 sizeof(struct dev_to_host_fis
));
1719 tstat
->buf_valid_size
= sizeof(*resp
);
1721 stat
= SAS_PROTO_RESPONSE
;
1725 static int mvs_slot_err(struct mvs_info
*mvi
, struct sas_task
*task
,
1728 struct mvs_slot_info
*slot
= &mvi
->slot_info
[slot_idx
];
1730 u32 err_dw0
= le32_to_cpu(*(u32
*) (slot
->response
));
1732 enum mvs_port_type type
= PORT_TYPE_SAS
;
1734 if (err_dw0
& CMD_ISS_STPD
)
1735 MVS_CHIP_DISP
->issue_stop(mvi
, type
, tfs
);
1737 MVS_CHIP_DISP
->command_active(mvi
, slot_idx
);
1739 stat
= SAM_CHECK_COND
;
1740 switch (task
->task_proto
) {
1741 case SAS_PROTOCOL_SSP
:
1742 stat
= SAS_ABORTED_TASK
;
1744 case SAS_PROTOCOL_SMP
:
1745 stat
= SAM_CHECK_COND
;
1748 case SAS_PROTOCOL_SATA
:
1749 case SAS_PROTOCOL_STP
:
1750 case SAS_PROTOCOL_SATA
| SAS_PROTOCOL_STP
:
1752 if (err_dw0
== 0x80400002)
1753 mv_printk("find reserved error, why?\n");
1755 task
->ata_task
.use_ncq
= 0;
1756 stat
= SAS_PROTO_RESPONSE
;
1757 mvs_sata_done(mvi
, task
, slot_idx
, 1);
1768 int mvs_slot_complete(struct mvs_info
*mvi
, u32 rx_desc
, u32 flags
)
1770 u32 slot_idx
= rx_desc
& RXQ_SLOT_MASK
;
1771 struct mvs_slot_info
*slot
= &mvi
->slot_info
[slot_idx
];
1772 struct sas_task
*task
= slot
->task
;
1773 struct mvs_device
*mvi_dev
= NULL
;
1774 struct task_status_struct
*tstat
;
1778 enum exec_status sts
;
1782 if (unlikely(!task
|| !task
->lldd_task
))
1785 tstat
= &task
->task_status
;
1786 mvi_dev
= task
->dev
->lldd_dev
;
1788 mvs_hba_cq_dump(mvi
);
1790 spin_lock(&task
->task_state_lock
);
1791 task
->task_state_flags
&=
1792 ~(SAS_TASK_STATE_PENDING
| SAS_TASK_AT_INITIATOR
);
1793 task
->task_state_flags
|= SAS_TASK_STATE_DONE
;
1795 aborted
= task
->task_state_flags
& SAS_TASK_STATE_ABORTED
;
1796 spin_unlock(&task
->task_state_lock
);
1798 memset(tstat
, 0, sizeof(*tstat
));
1799 tstat
->resp
= SAS_TASK_COMPLETE
;
1801 if (unlikely(aborted
)) {
1802 tstat
->stat
= SAS_ABORTED_TASK
;
1804 mvi_dev
->runing_req
--;
1805 if (sas_protocol_ata(task
->task_proto
))
1806 mvs_free_reg_set(mvi
, mvi_dev
);
1808 mvs_slot_task_free(mvi
, task
, slot
, slot_idx
);
1812 if (unlikely(!mvi_dev
|| !slot
->port
->port_attached
|| flags
)) {
1813 mv_dprintk("port has not device.\n");
1814 tstat
->stat
= SAS_PHY_DOWN
;
1819 if (unlikely((rx_desc & RXQ_ERR) || (*(u64 *) slot->response))) {
1820 mv_dprintk("Find device[%016llx] RXQ_ERR %X,
1821 err info:%016llx\n",
1822 SAS_ADDR(task->dev->sas_addr),
1823 rx_desc, (u64)(*(u64 *) slot->response));
1827 /* error info record present */
1828 if (unlikely((rx_desc
& RXQ_ERR
) && (*(u64
*) slot
->response
))) {
1829 tstat
->stat
= mvs_slot_err(mvi
, task
, slot_idx
);
1833 switch (task
->task_proto
) {
1834 case SAS_PROTOCOL_SSP
:
1835 /* hw says status == 0, datapres == 0 */
1836 if (rx_desc
& RXQ_GOOD
) {
1837 tstat
->stat
= SAM_GOOD
;
1838 tstat
->resp
= SAS_TASK_COMPLETE
;
1840 /* response frame present */
1841 else if (rx_desc
& RXQ_RSP
) {
1842 struct ssp_response_iu
*iu
= slot
->response
+
1843 sizeof(struct mvs_err_info
);
1844 sas_ssp_task_response(mvi
->dev
, task
, iu
);
1846 tstat
->stat
= SAM_CHECK_COND
;
1849 case SAS_PROTOCOL_SMP
: {
1850 struct scatterlist
*sg_resp
= &task
->smp_task
.smp_resp
;
1851 tstat
->stat
= SAM_GOOD
;
1852 to
= kmap_atomic(sg_page(sg_resp
), KM_IRQ0
);
1853 memcpy(to
+ sg_resp
->offset
,
1854 slot
->response
+ sizeof(struct mvs_err_info
),
1855 sg_dma_len(sg_resp
));
1856 kunmap_atomic(to
, KM_IRQ0
);
1860 case SAS_PROTOCOL_SATA
:
1861 case SAS_PROTOCOL_STP
:
1862 case SAS_PROTOCOL_SATA
| SAS_PROTOCOL_STP
: {
1863 tstat
->stat
= mvs_sata_done(mvi
, task
, slot_idx
, 0);
1868 tstat
->stat
= SAM_CHECK_COND
;
1874 mvi_dev
->runing_req
--;
1875 if (sas_protocol_ata(task
->task_proto
))
1876 mvs_free_reg_set(mvi
, mvi_dev
);
1878 mvs_slot_task_free(mvi
, task
, slot
, slot_idx
);
1881 spin_unlock(&mvi
->lock
);
1882 if (task
->task_done
)
1883 task
->task_done(task
);
1885 mv_dprintk("why has not task_done.\n");
1886 spin_lock(&mvi
->lock
);
1891 void mvs_release_task(struct mvs_info
*mvi
,
1892 int phy_no
, struct domain_device
*dev
)
1894 int i
= 0; u32 slot_idx
;
1895 struct mvs_phy
*phy
;
1896 struct mvs_port
*port
;
1897 struct mvs_slot_info
*slot
, *slot2
;
1899 phy
= &mvi
->phy
[phy_no
];
1904 list_for_each_entry_safe(slot
, slot2
, &port
->list
, entry
) {
1905 struct sas_task
*task
;
1906 slot_idx
= (u32
) (slot
- mvi
->slot_info
);
1909 if (dev
&& task
->dev
!= dev
)
1912 mv_printk("Release slot [%x] tag[%x], task [%p]:\n",
1913 slot_idx
, slot
->slot_tag
, task
);
1915 if (task
->task_proto
& SAS_PROTOCOL_SSP
) {
1916 mv_printk("attached with SSP task CDB[");
1917 for (i
= 0; i
< 16; i
++)
1918 mv_printk(" %02x", task
->ssp_task
.cdb
[i
]);
1922 mvs_slot_complete(mvi
, slot_idx
, 1);
1926 static void mvs_phy_disconnected(struct mvs_phy
*phy
)
1928 phy
->phy_attached
= 0;
1929 phy
->att_dev_info
= 0;
1930 phy
->att_dev_sas_addr
= 0;
1933 static void mvs_work_queue(struct work_struct
*work
)
1935 struct delayed_work
*dw
= container_of(work
, struct delayed_work
, work
);
1936 struct mvs_wq
*mwq
= container_of(dw
, struct mvs_wq
, work_q
);
1937 struct mvs_info
*mvi
= mwq
->mvi
;
1938 unsigned long flags
;
1940 spin_lock_irqsave(&mvi
->lock
, flags
);
1941 if (mwq
->handler
& PHY_PLUG_EVENT
) {
1942 u32 phy_no
= (unsigned long) mwq
->data
;
1943 struct sas_ha_struct
*sas_ha
= mvi
->sas
;
1944 struct mvs_phy
*phy
= &mvi
->phy
[phy_no
];
1945 struct asd_sas_phy
*sas_phy
= &phy
->sas_phy
;
1947 if (phy
->phy_event
& PHY_PLUG_OUT
) {
1949 struct sas_identify_frame
*id
;
1950 id
= (struct sas_identify_frame
*)phy
->frame_rcvd
;
1951 tmp
= MVS_CHIP_DISP
->read_phy_ctl(mvi
, phy_no
);
1952 phy
->phy_event
&= ~PHY_PLUG_OUT
;
1953 if (!(tmp
& PHY_READY_MASK
)) {
1954 sas_phy_disconnected(sas_phy
);
1955 mvs_phy_disconnected(phy
);
1956 sas_ha
->notify_phy_event(sas_phy
,
1957 PHYE_LOSS_OF_SIGNAL
);
1958 mv_dprintk("phy%d Removed Device\n", phy_no
);
1960 MVS_CHIP_DISP
->detect_porttype(mvi
, phy_no
);
1961 mvs_update_phyinfo(mvi
, phy_no
, 1);
1962 mvs_bytes_dmaed(mvi
, phy_no
);
1963 mvs_port_notify_formed(sas_phy
, 0);
1964 mv_dprintk("phy%d Attached Device\n", phy_no
);
1968 list_del(&mwq
->entry
);
1969 spin_unlock_irqrestore(&mvi
->lock
, flags
);
1973 static int mvs_handle_event(struct mvs_info
*mvi
, void *data
, int handler
)
1978 mwq
= kmalloc(sizeof(struct mvs_wq
), GFP_ATOMIC
);
1982 mwq
->handler
= handler
;
1983 MV_INIT_DELAYED_WORK(&mwq
->work_q
, mvs_work_queue
, mwq
);
1984 list_add_tail(&mwq
->entry
, &mvi
->wq_list
);
1985 schedule_delayed_work(&mwq
->work_q
, HZ
* 2);
1992 static void mvs_sig_time_out(unsigned long tphy
)
1994 struct mvs_phy
*phy
= (struct mvs_phy
*)tphy
;
1995 struct mvs_info
*mvi
= phy
->mvi
;
1998 for (phy_no
= 0; phy_no
< mvi
->chip
->n_phy
; phy_no
++) {
1999 if (&mvi
->phy
[phy_no
] == phy
) {
2000 mv_dprintk("Get signature time out, reset phy %d\n",
2001 phy_no
+mvi
->id
*mvi
->chip
->n_phy
);
2002 MVS_CHIP_DISP
->phy_reset(mvi
, phy_no
, 1);
2007 static void mvs_sig_remove_timer(struct mvs_phy
*phy
)
2009 if (phy
->timer
.function
)
2010 del_timer(&phy
->timer
);
2011 phy
->timer
.function
= NULL
;
2014 void mvs_int_port(struct mvs_info
*mvi
, int phy_no
, u32 events
)
2017 struct sas_ha_struct
*sas_ha
= mvi
->sas
;
2018 struct mvs_phy
*phy
= &mvi
->phy
[phy_no
];
2019 struct asd_sas_phy
*sas_phy
= &phy
->sas_phy
;
2021 phy
->irq_status
= MVS_CHIP_DISP
->read_port_irq_stat(mvi
, phy_no
);
2022 mv_dprintk("port %d ctrl sts=0x%X.\n", phy_no
+mvi
->id
*mvi
->chip
->n_phy
,
2023 MVS_CHIP_DISP
->read_phy_ctl(mvi
, phy_no
));
2024 mv_dprintk("Port %d irq sts = 0x%X\n", phy_no
+mvi
->id
*mvi
->chip
->n_phy
,
2028 * events is port event now ,
2029 * we need check the interrupt status which belongs to per port.
2032 if (phy
->irq_status
& PHYEV_DCDR_ERR
)
2033 mv_dprintk("port %d STP decoding error.\n",
2034 phy_no
+mvi
->id
*mvi
->chip
->n_phy
);
2036 if (phy
->irq_status
& PHYEV_POOF
) {
2037 if (!(phy
->phy_event
& PHY_PLUG_OUT
)) {
2038 int dev_sata
= phy
->phy_type
& PORT_TYPE_SATA
;
2040 mvs_release_task(mvi
, phy_no
, NULL
);
2041 phy
->phy_event
|= PHY_PLUG_OUT
;
2042 mvs_handle_event(mvi
,
2043 (void *)(unsigned long)phy_no
,
2045 ready
= mvs_is_phy_ready(mvi
, phy_no
);
2047 mv_dprintk("phy%d Unplug Notice\n",
2049 mvi
->id
* mvi
->chip
->n_phy
);
2050 if (ready
|| dev_sata
) {
2051 if (MVS_CHIP_DISP
->stp_reset
)
2052 MVS_CHIP_DISP
->stp_reset(mvi
,
2055 MVS_CHIP_DISP
->phy_reset(mvi
,
2062 if (phy
->irq_status
& PHYEV_COMWAKE
) {
2063 tmp
= MVS_CHIP_DISP
->read_port_irq_mask(mvi
, phy_no
);
2064 MVS_CHIP_DISP
->write_port_irq_mask(mvi
, phy_no
,
2065 tmp
| PHYEV_SIG_FIS
);
2066 if (phy
->timer
.function
== NULL
) {
2067 phy
->timer
.data
= (unsigned long)phy
;
2068 phy
->timer
.function
= mvs_sig_time_out
;
2069 phy
->timer
.expires
= jiffies
+ 10*HZ
;
2070 add_timer(&phy
->timer
);
2073 if (phy
->irq_status
& (PHYEV_SIG_FIS
| PHYEV_ID_DONE
)) {
2074 phy
->phy_status
= mvs_is_phy_ready(mvi
, phy_no
);
2075 mvs_sig_remove_timer(phy
);
2076 mv_dprintk("notify plug in on phy[%d]\n", phy_no
);
2077 if (phy
->phy_status
) {
2079 MVS_CHIP_DISP
->detect_porttype(mvi
, phy_no
);
2080 if (phy
->phy_type
& PORT_TYPE_SATA
) {
2081 tmp
= MVS_CHIP_DISP
->read_port_irq_mask(
2083 tmp
&= ~PHYEV_SIG_FIS
;
2084 MVS_CHIP_DISP
->write_port_irq_mask(mvi
,
2087 mvs_update_phyinfo(mvi
, phy_no
, 0);
2088 mvs_bytes_dmaed(mvi
, phy_no
);
2089 /* whether driver is going to handle hot plug */
2090 if (phy
->phy_event
& PHY_PLUG_OUT
) {
2091 mvs_port_notify_formed(sas_phy
, 0);
2092 phy
->phy_event
&= ~PHY_PLUG_OUT
;
2095 mv_dprintk("plugin interrupt but phy%d is gone\n",
2096 phy_no
+ mvi
->id
*mvi
->chip
->n_phy
);
2098 } else if (phy
->irq_status
& PHYEV_BROAD_CH
) {
2099 mv_dprintk("port %d broadcast change.\n",
2100 phy_no
+ mvi
->id
*mvi
->chip
->n_phy
);
2101 /* exception for Samsung disk drive*/
2103 sas_ha
->notify_port_event(sas_phy
, PORTE_BROADCAST_RCVD
);
2105 MVS_CHIP_DISP
->write_port_irq_stat(mvi
, phy_no
, phy
->irq_status
);
2108 int mvs_int_rx(struct mvs_info
*mvi
, bool self_clear
)
2110 u32 rx_prod_idx
, rx_desc
;
2113 /* the first dword in the RX ring is special: it contains
2114 * a mirror of the hardware's RX producer index, so that
2115 * we don't have to stall the CPU reading that register.
2116 * The actual RX ring is offset by one dword, due to this.
2118 rx_prod_idx
= mvi
->rx_cons
;
2119 mvi
->rx_cons
= le32_to_cpu(mvi
->rx
[0]);
2120 if (mvi
->rx_cons
== 0xfff) /* h/w hasn't touched RX ring yet */
2123 /* The CMPL_Q may come late, read from register and try again
2124 * note: if coalescing is enabled,
2125 * it will need to read from register every time for sure
2127 if (unlikely(mvi
->rx_cons
== rx_prod_idx
))
2128 mvi
->rx_cons
= MVS_CHIP_DISP
->rx_update(mvi
) & RX_RING_SZ_MASK
;
2130 if (mvi
->rx_cons
== rx_prod_idx
)
2133 while (mvi
->rx_cons
!= rx_prod_idx
) {
2134 /* increment our internal RX consumer pointer */
2135 rx_prod_idx
= (rx_prod_idx
+ 1) & (MVS_RX_RING_SZ
- 1);
2136 rx_desc
= le32_to_cpu(mvi
->rx
[rx_prod_idx
+ 1]);
2138 if (likely(rx_desc
& RXQ_DONE
))
2139 mvs_slot_complete(mvi
, rx_desc
, 0);
2140 if (rx_desc
& RXQ_ATTN
) {
2142 } else if (rx_desc
& RXQ_ERR
) {
2143 if (!(rx_desc
& RXQ_DONE
))
2144 mvs_slot_complete(mvi
, rx_desc
, 0);
2145 } else if (rx_desc
& RXQ_SLOT_RESET
) {
2146 mvs_slot_free(mvi
, rx_desc
);
2150 if (attn
&& self_clear
)
2151 MVS_CHIP_DISP
->int_full(mvi
);