[PATCH] i386: Implement vmi_kmap_atomic_pte
[linux-2.6/mini2440.git] / kernel / time / tick-broadcast.c
blobeadfce2fff74c89f30849f1af213cde5a88dee14
1 /*
2 * linux/kernel/time/tick-broadcast.c
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/irq.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
23 #include "tick-internal.h"
26 * Broadcast support for broken x86 hardware, where the local apic
27 * timer stops in C3 state.
30 struct tick_device tick_broadcast_device;
31 static cpumask_t tick_broadcast_mask;
32 static DEFINE_SPINLOCK(tick_broadcast_lock);
35 * Debugging: see timer_list.c
37 struct tick_device *tick_get_broadcast_device(void)
39 return &tick_broadcast_device;
42 cpumask_t *tick_get_broadcast_mask(void)
44 return &tick_broadcast_mask;
48 * Start the device in periodic mode
50 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
52 if (bc && bc->mode == CLOCK_EVT_MODE_SHUTDOWN)
53 tick_setup_periodic(bc, 1);
57 * Check, if the device can be utilized as broadcast device:
59 int tick_check_broadcast_device(struct clock_event_device *dev)
61 if (tick_broadcast_device.evtdev ||
62 (dev->features & CLOCK_EVT_FEAT_C3STOP))
63 return 0;
65 clockevents_exchange_device(NULL, dev);
66 tick_broadcast_device.evtdev = dev;
67 if (!cpus_empty(tick_broadcast_mask))
68 tick_broadcast_start_periodic(dev);
69 return 1;
73 * Check, if the device is the broadcast device
75 int tick_is_broadcast_device(struct clock_event_device *dev)
77 return (dev && tick_broadcast_device.evtdev == dev);
81 * Check, if the device is disfunctional and a place holder, which
82 * needs to be handled by the broadcast device.
84 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
86 unsigned long flags;
87 int ret = 0;
89 spin_lock_irqsave(&tick_broadcast_lock, flags);
92 * Devices might be registered with both periodic and oneshot
93 * mode disabled. This signals, that the device needs to be
94 * operated from the broadcast device and is a placeholder for
95 * the cpu local device.
97 if (!tick_device_is_functional(dev)) {
98 dev->event_handler = tick_handle_periodic;
99 cpu_set(cpu, tick_broadcast_mask);
100 tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
101 ret = 1;
104 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
105 return ret;
109 * Broadcast the event to the cpus, which are set in the mask
111 int tick_do_broadcast(cpumask_t mask)
113 int ret = 0, cpu = smp_processor_id();
114 struct tick_device *td;
117 * Check, if the current cpu is in the mask
119 if (cpu_isset(cpu, mask)) {
120 cpu_clear(cpu, mask);
121 td = &per_cpu(tick_cpu_device, cpu);
122 td->evtdev->event_handler(td->evtdev);
123 ret = 1;
126 if (!cpus_empty(mask)) {
128 * It might be necessary to actually check whether the devices
129 * have different broadcast functions. For now, just use the
130 * one of the first device. This works as long as we have this
131 * misfeature only on x86 (lapic)
133 cpu = first_cpu(mask);
134 td = &per_cpu(tick_cpu_device, cpu);
135 td->evtdev->broadcast(mask);
136 ret = 1;
138 return ret;
142 * Periodic broadcast:
143 * - invoke the broadcast handlers
145 static void tick_do_periodic_broadcast(void)
147 cpumask_t mask;
149 spin_lock(&tick_broadcast_lock);
151 cpus_and(mask, cpu_online_map, tick_broadcast_mask);
152 tick_do_broadcast(mask);
154 spin_unlock(&tick_broadcast_lock);
158 * Event handler for periodic broadcast ticks
160 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
162 dev->next_event.tv64 = KTIME_MAX;
164 tick_do_periodic_broadcast();
167 * The device is in periodic mode. No reprogramming necessary:
169 if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
170 return;
173 * Setup the next period for devices, which do not have
174 * periodic mode:
176 for (;;) {
177 ktime_t next = ktime_add(dev->next_event, tick_period);
179 if (!clockevents_program_event(dev, next, ktime_get()))
180 return;
181 tick_do_periodic_broadcast();
186 * Powerstate information: The system enters/leaves a state, where
187 * affected devices might stop
189 static void tick_do_broadcast_on_off(void *why)
191 struct clock_event_device *bc, *dev;
192 struct tick_device *td;
193 unsigned long flags, *reason = why;
194 int cpu;
196 spin_lock_irqsave(&tick_broadcast_lock, flags);
198 cpu = smp_processor_id();
199 td = &per_cpu(tick_cpu_device, cpu);
200 dev = td->evtdev;
201 bc = tick_broadcast_device.evtdev;
204 * Is the device in broadcast mode forever or is it not
205 * affected by the powerstate ?
207 if (!dev || !tick_device_is_functional(dev) ||
208 !(dev->features & CLOCK_EVT_FEAT_C3STOP))
209 goto out;
211 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_ON) {
212 if (!cpu_isset(cpu, tick_broadcast_mask)) {
213 cpu_set(cpu, tick_broadcast_mask);
214 if (td->mode == TICKDEV_MODE_PERIODIC)
215 clockevents_set_mode(dev,
216 CLOCK_EVT_MODE_SHUTDOWN);
218 } else {
219 if (cpu_isset(cpu, tick_broadcast_mask)) {
220 cpu_clear(cpu, tick_broadcast_mask);
221 if (td->mode == TICKDEV_MODE_PERIODIC)
222 tick_setup_periodic(dev, 0);
226 if (cpus_empty(tick_broadcast_mask))
227 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
228 else {
229 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
230 tick_broadcast_start_periodic(bc);
231 else
232 tick_broadcast_setup_oneshot(bc);
234 out:
235 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
239 * Powerstate information: The system enters/leaves a state, where
240 * affected devices might stop.
242 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
244 int cpu = get_cpu();
246 if (cpu == *oncpu)
247 tick_do_broadcast_on_off(&reason);
248 else
249 smp_call_function_single(*oncpu, tick_do_broadcast_on_off,
250 &reason, 1, 1);
251 put_cpu();
255 * Set the periodic handler depending on broadcast on/off
257 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
259 if (!broadcast)
260 dev->event_handler = tick_handle_periodic;
261 else
262 dev->event_handler = tick_handle_periodic_broadcast;
266 * Remove a CPU from broadcasting
268 void tick_shutdown_broadcast(unsigned int *cpup)
270 struct clock_event_device *bc;
271 unsigned long flags;
272 unsigned int cpu = *cpup;
274 spin_lock_irqsave(&tick_broadcast_lock, flags);
276 bc = tick_broadcast_device.evtdev;
277 cpu_clear(cpu, tick_broadcast_mask);
279 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
280 if (bc && cpus_empty(tick_broadcast_mask))
281 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
284 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
287 void tick_suspend_broadcast(void)
289 struct clock_event_device *bc;
290 unsigned long flags;
292 spin_lock_irqsave(&tick_broadcast_lock, flags);
294 bc = tick_broadcast_device.evtdev;
295 if (bc && tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
296 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
298 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
301 int tick_resume_broadcast(void)
303 struct clock_event_device *bc;
304 unsigned long flags;
305 int broadcast = 0;
307 spin_lock_irqsave(&tick_broadcast_lock, flags);
309 bc = tick_broadcast_device.evtdev;
311 if (bc) {
312 switch (tick_broadcast_device.mode) {
313 case TICKDEV_MODE_PERIODIC:
314 if(!cpus_empty(tick_broadcast_mask))
315 tick_broadcast_start_periodic(bc);
316 broadcast = cpu_isset(smp_processor_id(),
317 tick_broadcast_mask);
318 break;
319 case TICKDEV_MODE_ONESHOT:
320 broadcast = tick_resume_broadcast_oneshot(bc);
321 break;
324 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
326 return broadcast;
330 #ifdef CONFIG_TICK_ONESHOT
332 static cpumask_t tick_broadcast_oneshot_mask;
335 * Debugging: see timer_list.c
337 cpumask_t *tick_get_broadcast_oneshot_mask(void)
339 return &tick_broadcast_oneshot_mask;
342 static int tick_broadcast_set_event(ktime_t expires, int force)
344 struct clock_event_device *bc = tick_broadcast_device.evtdev;
345 ktime_t now = ktime_get();
346 int res;
348 for(;;) {
349 res = clockevents_program_event(bc, expires, now);
350 if (!res || !force)
351 return res;
352 now = ktime_get();
353 expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
357 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
359 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
361 if(!cpus_empty(tick_broadcast_oneshot_mask))
362 tick_broadcast_set_event(ktime_get(), 1);
364 return cpu_isset(smp_processor_id(), tick_broadcast_oneshot_mask);
368 * Reprogram the broadcast device:
370 * Called with tick_broadcast_lock held and interrupts disabled.
372 static int tick_broadcast_reprogram(void)
374 ktime_t expires = { .tv64 = KTIME_MAX };
375 struct tick_device *td;
376 int cpu;
379 * Find the event which expires next:
381 for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
382 cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
383 td = &per_cpu(tick_cpu_device, cpu);
384 if (td->evtdev->next_event.tv64 < expires.tv64)
385 expires = td->evtdev->next_event;
388 if (expires.tv64 == KTIME_MAX)
389 return 0;
391 return tick_broadcast_set_event(expires, 0);
395 * Handle oneshot mode broadcasting
397 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
399 struct tick_device *td;
400 cpumask_t mask;
401 ktime_t now;
402 int cpu;
404 spin_lock(&tick_broadcast_lock);
405 again:
406 dev->next_event.tv64 = KTIME_MAX;
407 mask = CPU_MASK_NONE;
408 now = ktime_get();
409 /* Find all expired events */
410 for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
411 cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
412 td = &per_cpu(tick_cpu_device, cpu);
413 if (td->evtdev->next_event.tv64 <= now.tv64)
414 cpu_set(cpu, mask);
418 * Wakeup the cpus which have an expired event. The broadcast
419 * device is reprogrammed in the return from idle code.
421 if (!tick_do_broadcast(mask)) {
423 * The global event did not expire any CPU local
424 * events. This happens in dyntick mode, as the
425 * maximum PIT delta is quite small.
427 if (tick_broadcast_reprogram())
428 goto again;
430 spin_unlock(&tick_broadcast_lock);
434 * Powerstate information: The system enters/leaves a state, where
435 * affected devices might stop
437 void tick_broadcast_oneshot_control(unsigned long reason)
439 struct clock_event_device *bc, *dev;
440 struct tick_device *td;
441 unsigned long flags;
442 int cpu;
444 spin_lock_irqsave(&tick_broadcast_lock, flags);
447 * Periodic mode does not care about the enter/exit of power
448 * states
450 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
451 goto out;
453 bc = tick_broadcast_device.evtdev;
454 cpu = smp_processor_id();
455 td = &per_cpu(tick_cpu_device, cpu);
456 dev = td->evtdev;
458 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
459 goto out;
461 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
462 if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
463 cpu_set(cpu, tick_broadcast_oneshot_mask);
464 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
465 if (dev->next_event.tv64 < bc->next_event.tv64)
466 tick_broadcast_set_event(dev->next_event, 1);
468 } else {
469 if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
470 cpu_clear(cpu, tick_broadcast_oneshot_mask);
471 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
472 if (dev->next_event.tv64 != KTIME_MAX)
473 tick_program_event(dev->next_event, 1);
477 out:
478 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
482 * tick_broadcast_setup_highres - setup the broadcast device for highres
484 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
486 if (bc->mode != CLOCK_EVT_MODE_ONESHOT) {
487 bc->event_handler = tick_handle_oneshot_broadcast;
488 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
489 bc->next_event.tv64 = KTIME_MAX;
494 * Select oneshot operating mode for the broadcast device
496 void tick_broadcast_switch_to_oneshot(void)
498 struct clock_event_device *bc;
499 unsigned long flags;
501 spin_lock_irqsave(&tick_broadcast_lock, flags);
503 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
504 bc = tick_broadcast_device.evtdev;
505 if (bc)
506 tick_broadcast_setup_oneshot(bc);
507 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
512 * Remove a dead CPU from broadcasting
514 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
516 struct clock_event_device *bc;
517 unsigned long flags;
518 unsigned int cpu = *cpup;
520 spin_lock_irqsave(&tick_broadcast_lock, flags);
522 bc = tick_broadcast_device.evtdev;
523 cpu_clear(cpu, tick_broadcast_oneshot_mask);
525 if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT) {
526 if (bc && cpus_empty(tick_broadcast_oneshot_mask))
527 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
530 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
533 #endif