4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cpuset.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/freezer.h>
49 #include <asm/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/pgtable.h>
52 #include <asm/mmu_context.h>
54 extern void sem_exit (void);
56 static void exit_mm(struct task_struct
* tsk
);
58 static void __unhash_process(struct task_struct
*p
)
61 detach_pid(p
, PIDTYPE_PID
);
62 if (thread_group_leader(p
)) {
63 detach_pid(p
, PIDTYPE_PGID
);
64 detach_pid(p
, PIDTYPE_SID
);
66 list_del_rcu(&p
->tasks
);
67 __get_cpu_var(process_counts
)--;
69 list_del_rcu(&p
->thread_group
);
74 * This function expects the tasklist_lock write-locked.
76 static void __exit_signal(struct task_struct
*tsk
)
78 struct signal_struct
*sig
= tsk
->signal
;
79 struct sighand_struct
*sighand
;
82 BUG_ON(!atomic_read(&sig
->count
));
85 sighand
= rcu_dereference(tsk
->sighand
);
86 spin_lock(&sighand
->siglock
);
88 posix_cpu_timers_exit(tsk
);
89 if (atomic_dec_and_test(&sig
->count
))
90 posix_cpu_timers_exit_group(tsk
);
93 * If there is any task waiting for the group exit
96 if (sig
->group_exit_task
&& atomic_read(&sig
->count
) == sig
->notify_count
) {
97 wake_up_process(sig
->group_exit_task
);
98 sig
->group_exit_task
= NULL
;
100 if (tsk
== sig
->curr_target
)
101 sig
->curr_target
= next_thread(tsk
);
103 * Accumulate here the counters for all threads but the
104 * group leader as they die, so they can be added into
105 * the process-wide totals when those are taken.
106 * The group leader stays around as a zombie as long
107 * as there are other threads. When it gets reaped,
108 * the exit.c code will add its counts into these totals.
109 * We won't ever get here for the group leader, since it
110 * will have been the last reference on the signal_struct.
112 sig
->utime
= cputime_add(sig
->utime
, tsk
->utime
);
113 sig
->stime
= cputime_add(sig
->stime
, tsk
->stime
);
114 sig
->min_flt
+= tsk
->min_flt
;
115 sig
->maj_flt
+= tsk
->maj_flt
;
116 sig
->nvcsw
+= tsk
->nvcsw
;
117 sig
->nivcsw
+= tsk
->nivcsw
;
118 sig
->inblock
+= task_io_get_inblock(tsk
);
119 sig
->oublock
+= task_io_get_oublock(tsk
);
120 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
121 sig
= NULL
; /* Marker for below. */
124 __unhash_process(tsk
);
128 spin_unlock(&sighand
->siglock
);
131 __cleanup_sighand(sighand
);
132 clear_tsk_thread_flag(tsk
,TIF_SIGPENDING
);
133 flush_sigqueue(&tsk
->pending
);
135 flush_sigqueue(&sig
->shared_pending
);
136 taskstats_tgid_free(sig
);
137 __cleanup_signal(sig
);
141 static void delayed_put_task_struct(struct rcu_head
*rhp
)
143 put_task_struct(container_of(rhp
, struct task_struct
, rcu
));
146 void release_task(struct task_struct
* p
)
148 struct task_struct
*leader
;
151 atomic_dec(&p
->user
->processes
);
152 write_lock_irq(&tasklist_lock
);
154 BUG_ON(!list_empty(&p
->ptrace_list
) || !list_empty(&p
->ptrace_children
));
158 * If we are the last non-leader member of the thread
159 * group, and the leader is zombie, then notify the
160 * group leader's parent process. (if it wants notification.)
163 leader
= p
->group_leader
;
164 if (leader
!= p
&& thread_group_empty(leader
) && leader
->exit_state
== EXIT_ZOMBIE
) {
165 BUG_ON(leader
->exit_signal
== -1);
166 do_notify_parent(leader
, leader
->exit_signal
);
168 * If we were the last child thread and the leader has
169 * exited already, and the leader's parent ignores SIGCHLD,
170 * then we are the one who should release the leader.
172 * do_notify_parent() will have marked it self-reaping in
175 zap_leader
= (leader
->exit_signal
== -1);
178 write_unlock_irq(&tasklist_lock
);
181 call_rcu(&p
->rcu
, delayed_put_task_struct
);
184 if (unlikely(zap_leader
))
189 * This checks not only the pgrp, but falls back on the pid if no
190 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
193 * The caller must hold rcu lock or the tasklist lock.
195 struct pid
*session_of_pgrp(struct pid
*pgrp
)
197 struct task_struct
*p
;
198 struct pid
*sid
= NULL
;
200 p
= pid_task(pgrp
, PIDTYPE_PGID
);
202 p
= pid_task(pgrp
, PIDTYPE_PID
);
204 sid
= task_session(p
);
210 * Determine if a process group is "orphaned", according to the POSIX
211 * definition in 2.2.2.52. Orphaned process groups are not to be affected
212 * by terminal-generated stop signals. Newly orphaned process groups are
213 * to receive a SIGHUP and a SIGCONT.
215 * "I ask you, have you ever known what it is to be an orphan?"
217 static int will_become_orphaned_pgrp(struct pid
*pgrp
, struct task_struct
*ignored_task
)
219 struct task_struct
*p
;
222 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
223 if (p
== ignored_task
225 || is_init(p
->real_parent
))
227 if (task_pgrp(p
->real_parent
) != pgrp
&&
228 task_session(p
->real_parent
) == task_session(p
)) {
232 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
233 return ret
; /* (sighing) "Often!" */
236 int is_current_pgrp_orphaned(void)
240 read_lock(&tasklist_lock
);
241 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
242 read_unlock(&tasklist_lock
);
247 static int has_stopped_jobs(struct pid
*pgrp
)
250 struct task_struct
*p
;
252 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
253 if (p
->state
!= TASK_STOPPED
)
257 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
262 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
264 * If a kernel thread is launched as a result of a system call, or if
265 * it ever exits, it should generally reparent itself to kthreadd so it
266 * isn't in the way of other processes and is correctly cleaned up on exit.
268 * The various task state such as scheduling policy and priority may have
269 * been inherited from a user process, so we reset them to sane values here.
271 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
273 static void reparent_to_kthreadd(void)
275 write_lock_irq(&tasklist_lock
);
277 ptrace_unlink(current
);
278 /* Reparent to init */
279 remove_parent(current
);
280 current
->real_parent
= current
->parent
= kthreadd_task
;
283 /* Set the exit signal to SIGCHLD so we signal init on exit */
284 current
->exit_signal
= SIGCHLD
;
286 if (task_nice(current
) < 0)
287 set_user_nice(current
, 0);
291 security_task_reparent_to_init(current
);
292 memcpy(current
->signal
->rlim
, init_task
.signal
->rlim
,
293 sizeof(current
->signal
->rlim
));
294 atomic_inc(&(INIT_USER
->__count
));
295 write_unlock_irq(&tasklist_lock
);
296 switch_uid(INIT_USER
);
299 void __set_special_pids(pid_t session
, pid_t pgrp
)
301 struct task_struct
*curr
= current
->group_leader
;
303 if (process_session(curr
) != session
) {
304 detach_pid(curr
, PIDTYPE_SID
);
305 set_signal_session(curr
->signal
, session
);
306 attach_pid(curr
, PIDTYPE_SID
, find_pid(session
));
308 if (process_group(curr
) != pgrp
) {
309 detach_pid(curr
, PIDTYPE_PGID
);
310 curr
->signal
->pgrp
= pgrp
;
311 attach_pid(curr
, PIDTYPE_PGID
, find_pid(pgrp
));
315 static void set_special_pids(pid_t session
, pid_t pgrp
)
317 write_lock_irq(&tasklist_lock
);
318 __set_special_pids(session
, pgrp
);
319 write_unlock_irq(&tasklist_lock
);
323 * Let kernel threads use this to say that they
324 * allow a certain signal (since daemonize() will
325 * have disabled all of them by default).
327 int allow_signal(int sig
)
329 if (!valid_signal(sig
) || sig
< 1)
332 spin_lock_irq(¤t
->sighand
->siglock
);
333 sigdelset(¤t
->blocked
, sig
);
335 /* Kernel threads handle their own signals.
336 Let the signal code know it'll be handled, so
337 that they don't get converted to SIGKILL or
338 just silently dropped */
339 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= (void __user
*)2;
342 spin_unlock_irq(¤t
->sighand
->siglock
);
346 EXPORT_SYMBOL(allow_signal
);
348 int disallow_signal(int sig
)
350 if (!valid_signal(sig
) || sig
< 1)
353 spin_lock_irq(¤t
->sighand
->siglock
);
354 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= SIG_IGN
;
356 spin_unlock_irq(¤t
->sighand
->siglock
);
360 EXPORT_SYMBOL(disallow_signal
);
363 * Put all the gunge required to become a kernel thread without
364 * attached user resources in one place where it belongs.
367 void daemonize(const char *name
, ...)
370 struct fs_struct
*fs
;
373 va_start(args
, name
);
374 vsnprintf(current
->comm
, sizeof(current
->comm
), name
, args
);
378 * If we were started as result of loading a module, close all of the
379 * user space pages. We don't need them, and if we didn't close them
380 * they would be locked into memory.
384 * We don't want to have TIF_FREEZE set if the system-wide hibernation
385 * or suspend transition begins right now.
387 current
->flags
|= PF_NOFREEZE
;
389 set_special_pids(1, 1);
390 proc_clear_tty(current
);
392 /* Block and flush all signals */
393 sigfillset(&blocked
);
394 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
395 flush_signals(current
);
397 /* Become as one with the init task */
399 exit_fs(current
); /* current->fs->count--; */
402 atomic_inc(&fs
->count
);
404 exit_task_namespaces(current
);
405 current
->nsproxy
= init_task
.nsproxy
;
406 get_task_namespaces(current
);
409 current
->files
= init_task
.files
;
410 atomic_inc(¤t
->files
->count
);
412 reparent_to_kthreadd();
415 EXPORT_SYMBOL(daemonize
);
417 static void close_files(struct files_struct
* files
)
425 * It is safe to dereference the fd table without RCU or
426 * ->file_lock because this is the last reference to the
429 fdt
= files_fdtable(files
);
433 if (i
>= fdt
->max_fds
)
435 set
= fdt
->open_fds
->fds_bits
[j
++];
438 struct file
* file
= xchg(&fdt
->fd
[i
], NULL
);
440 filp_close(file
, files
);
450 struct files_struct
*get_files_struct(struct task_struct
*task
)
452 struct files_struct
*files
;
457 atomic_inc(&files
->count
);
463 void fastcall
put_files_struct(struct files_struct
*files
)
467 if (atomic_dec_and_test(&files
->count
)) {
470 * Free the fd and fdset arrays if we expanded them.
471 * If the fdtable was embedded, pass files for freeing
472 * at the end of the RCU grace period. Otherwise,
473 * you can free files immediately.
475 fdt
= files_fdtable(files
);
476 if (fdt
!= &files
->fdtab
)
477 kmem_cache_free(files_cachep
, files
);
482 EXPORT_SYMBOL(put_files_struct
);
484 void reset_files_struct(struct task_struct
*tsk
, struct files_struct
*files
)
486 struct files_struct
*old
;
492 put_files_struct(old
);
494 EXPORT_SYMBOL(reset_files_struct
);
496 static inline void __exit_files(struct task_struct
*tsk
)
498 struct files_struct
* files
= tsk
->files
;
504 put_files_struct(files
);
508 void exit_files(struct task_struct
*tsk
)
513 static inline void __put_fs_struct(struct fs_struct
*fs
)
515 /* No need to hold fs->lock if we are killing it */
516 if (atomic_dec_and_test(&fs
->count
)) {
523 mntput(fs
->altrootmnt
);
525 kmem_cache_free(fs_cachep
, fs
);
529 void put_fs_struct(struct fs_struct
*fs
)
534 static inline void __exit_fs(struct task_struct
*tsk
)
536 struct fs_struct
* fs
= tsk
->fs
;
546 void exit_fs(struct task_struct
*tsk
)
551 EXPORT_SYMBOL_GPL(exit_fs
);
554 * Turn us into a lazy TLB process if we
557 static void exit_mm(struct task_struct
* tsk
)
559 struct mm_struct
*mm
= tsk
->mm
;
565 * Serialize with any possible pending coredump.
566 * We must hold mmap_sem around checking core_waiters
567 * and clearing tsk->mm. The core-inducing thread
568 * will increment core_waiters for each thread in the
569 * group with ->mm != NULL.
571 down_read(&mm
->mmap_sem
);
572 if (mm
->core_waiters
) {
573 up_read(&mm
->mmap_sem
);
574 down_write(&mm
->mmap_sem
);
575 if (!--mm
->core_waiters
)
576 complete(mm
->core_startup_done
);
577 up_write(&mm
->mmap_sem
);
579 wait_for_completion(&mm
->core_done
);
580 down_read(&mm
->mmap_sem
);
582 atomic_inc(&mm
->mm_count
);
583 BUG_ON(mm
!= tsk
->active_mm
);
584 /* more a memory barrier than a real lock */
587 up_read(&mm
->mmap_sem
);
588 enter_lazy_tlb(mm
, current
);
589 /* We don't want this task to be frozen prematurely */
590 clear_freeze_flag(tsk
);
596 choose_new_parent(struct task_struct
*p
, struct task_struct
*reaper
)
599 * Make sure we're not reparenting to ourselves and that
600 * the parent is not a zombie.
602 BUG_ON(p
== reaper
|| reaper
->exit_state
);
603 p
->real_parent
= reaper
;
607 reparent_thread(struct task_struct
*p
, struct task_struct
*father
, int traced
)
609 if (p
->pdeath_signal
)
610 /* We already hold the tasklist_lock here. */
611 group_send_sig_info(p
->pdeath_signal
, SEND_SIG_NOINFO
, p
);
613 /* Move the child from its dying parent to the new one. */
614 if (unlikely(traced
)) {
615 /* Preserve ptrace links if someone else is tracing this child. */
616 list_del_init(&p
->ptrace_list
);
617 if (p
->parent
!= p
->real_parent
)
618 list_add(&p
->ptrace_list
, &p
->real_parent
->ptrace_children
);
620 /* If this child is being traced, then we're the one tracing it
621 * anyway, so let go of it.
625 p
->parent
= p
->real_parent
;
628 if (p
->state
== TASK_TRACED
) {
630 * If it was at a trace stop, turn it into
631 * a normal stop since it's no longer being
638 /* If this is a threaded reparent there is no need to
639 * notify anyone anything has happened.
641 if (p
->real_parent
->group_leader
== father
->group_leader
)
644 /* We don't want people slaying init. */
645 if (p
->exit_signal
!= -1)
646 p
->exit_signal
= SIGCHLD
;
648 /* If we'd notified the old parent about this child's death,
649 * also notify the new parent.
651 if (!traced
&& p
->exit_state
== EXIT_ZOMBIE
&&
652 p
->exit_signal
!= -1 && thread_group_empty(p
))
653 do_notify_parent(p
, p
->exit_signal
);
656 * process group orphan check
657 * Case ii: Our child is in a different pgrp
658 * than we are, and it was the only connection
659 * outside, so the child pgrp is now orphaned.
661 if ((task_pgrp(p
) != task_pgrp(father
)) &&
662 (task_session(p
) == task_session(father
))) {
663 struct pid
*pgrp
= task_pgrp(p
);
665 if (will_become_orphaned_pgrp(pgrp
, NULL
) &&
666 has_stopped_jobs(pgrp
)) {
667 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
668 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
674 * When we die, we re-parent all our children.
675 * Try to give them to another thread in our thread
676 * group, and if no such member exists, give it to
677 * the child reaper process (ie "init") in our pid
681 forget_original_parent(struct task_struct
*father
, struct list_head
*to_release
)
683 struct task_struct
*p
, *reaper
= father
;
684 struct list_head
*_p
, *_n
;
687 reaper
= next_thread(reaper
);
688 if (reaper
== father
) {
689 reaper
= child_reaper(father
);
692 } while (reaper
->exit_state
);
695 * There are only two places where our children can be:
697 * - in our child list
698 * - in our ptraced child list
700 * Search them and reparent children.
702 list_for_each_safe(_p
, _n
, &father
->children
) {
704 p
= list_entry(_p
, struct task_struct
, sibling
);
708 /* if father isn't the real parent, then ptrace must be enabled */
709 BUG_ON(father
!= p
->real_parent
&& !ptrace
);
711 if (father
== p
->real_parent
) {
712 /* reparent with a reaper, real father it's us */
713 choose_new_parent(p
, reaper
);
714 reparent_thread(p
, father
, 0);
716 /* reparent ptraced task to its real parent */
718 if (p
->exit_state
== EXIT_ZOMBIE
&& p
->exit_signal
!= -1 &&
719 thread_group_empty(p
))
720 do_notify_parent(p
, p
->exit_signal
);
724 * if the ptraced child is a zombie with exit_signal == -1
725 * we must collect it before we exit, or it will remain
726 * zombie forever since we prevented it from self-reap itself
727 * while it was being traced by us, to be able to see it in wait4.
729 if (unlikely(ptrace
&& p
->exit_state
== EXIT_ZOMBIE
&& p
->exit_signal
== -1))
730 list_add(&p
->ptrace_list
, to_release
);
732 list_for_each_safe(_p
, _n
, &father
->ptrace_children
) {
733 p
= list_entry(_p
, struct task_struct
, ptrace_list
);
734 choose_new_parent(p
, reaper
);
735 reparent_thread(p
, father
, 1);
740 * Send signals to all our closest relatives so that they know
741 * to properly mourn us..
743 static void exit_notify(struct task_struct
*tsk
)
746 struct task_struct
*t
;
747 struct list_head ptrace_dead
, *_p
, *_n
;
750 if (signal_pending(tsk
) && !(tsk
->signal
->flags
& SIGNAL_GROUP_EXIT
)
751 && !thread_group_empty(tsk
)) {
753 * This occurs when there was a race between our exit
754 * syscall and a group signal choosing us as the one to
755 * wake up. It could be that we are the only thread
756 * alerted to check for pending signals, but another thread
757 * should be woken now to take the signal since we will not.
758 * Now we'll wake all the threads in the group just to make
759 * sure someone gets all the pending signals.
761 read_lock(&tasklist_lock
);
762 spin_lock_irq(&tsk
->sighand
->siglock
);
763 for (t
= next_thread(tsk
); t
!= tsk
; t
= next_thread(t
))
764 if (!signal_pending(t
) && !(t
->flags
& PF_EXITING
))
765 recalc_sigpending_and_wake(t
);
766 spin_unlock_irq(&tsk
->sighand
->siglock
);
767 read_unlock(&tasklist_lock
);
770 write_lock_irq(&tasklist_lock
);
773 * This does two things:
775 * A. Make init inherit all the child processes
776 * B. Check to see if any process groups have become orphaned
777 * as a result of our exiting, and if they have any stopped
778 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
781 INIT_LIST_HEAD(&ptrace_dead
);
782 forget_original_parent(tsk
, &ptrace_dead
);
783 BUG_ON(!list_empty(&tsk
->children
));
784 BUG_ON(!list_empty(&tsk
->ptrace_children
));
787 * Check to see if any process groups have become orphaned
788 * as a result of our exiting, and if they have any stopped
789 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
791 * Case i: Our father is in a different pgrp than we are
792 * and we were the only connection outside, so our pgrp
793 * is about to become orphaned.
796 t
= tsk
->real_parent
;
798 pgrp
= task_pgrp(tsk
);
799 if ((task_pgrp(t
) != pgrp
) &&
800 (task_session(t
) == task_session(tsk
)) &&
801 will_become_orphaned_pgrp(pgrp
, tsk
) &&
802 has_stopped_jobs(pgrp
)) {
803 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
804 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
807 /* Let father know we died
809 * Thread signals are configurable, but you aren't going to use
810 * that to send signals to arbitary processes.
811 * That stops right now.
813 * If the parent exec id doesn't match the exec id we saved
814 * when we started then we know the parent has changed security
817 * If our self_exec id doesn't match our parent_exec_id then
818 * we have changed execution domain as these two values started
819 * the same after a fork.
821 if (tsk
->exit_signal
!= SIGCHLD
&& tsk
->exit_signal
!= -1 &&
822 ( tsk
->parent_exec_id
!= t
->self_exec_id
||
823 tsk
->self_exec_id
!= tsk
->parent_exec_id
)
824 && !capable(CAP_KILL
))
825 tsk
->exit_signal
= SIGCHLD
;
828 /* If something other than our normal parent is ptracing us, then
829 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
830 * only has special meaning to our real parent.
832 if (tsk
->exit_signal
!= -1 && thread_group_empty(tsk
)) {
833 int signal
= tsk
->parent
== tsk
->real_parent
? tsk
->exit_signal
: SIGCHLD
;
834 do_notify_parent(tsk
, signal
);
835 } else if (tsk
->ptrace
) {
836 do_notify_parent(tsk
, SIGCHLD
);
840 if (tsk
->exit_signal
== -1 && likely(!tsk
->ptrace
))
842 tsk
->exit_state
= state
;
844 write_unlock_irq(&tasklist_lock
);
846 list_for_each_safe(_p
, _n
, &ptrace_dead
) {
848 t
= list_entry(_p
, struct task_struct
, ptrace_list
);
852 /* If the process is dead, release it - nobody will wait for it */
853 if (state
== EXIT_DEAD
)
857 #ifdef CONFIG_DEBUG_STACK_USAGE
858 static void check_stack_usage(void)
860 static DEFINE_SPINLOCK(low_water_lock
);
861 static int lowest_to_date
= THREAD_SIZE
;
862 unsigned long *n
= end_of_stack(current
);
867 free
= (unsigned long)n
- (unsigned long)end_of_stack(current
);
869 if (free
>= lowest_to_date
)
872 spin_lock(&low_water_lock
);
873 if (free
< lowest_to_date
) {
874 printk(KERN_WARNING
"%s used greatest stack depth: %lu bytes "
876 current
->comm
, free
);
877 lowest_to_date
= free
;
879 spin_unlock(&low_water_lock
);
882 static inline void check_stack_usage(void) {}
885 fastcall NORET_TYPE
void do_exit(long code
)
887 struct task_struct
*tsk
= current
;
890 profile_task_exit(tsk
);
892 WARN_ON(atomic_read(&tsk
->fs_excl
));
894 if (unlikely(in_interrupt()))
895 panic("Aiee, killing interrupt handler!");
896 if (unlikely(!tsk
->pid
))
897 panic("Attempted to kill the idle task!");
898 if (unlikely(tsk
== child_reaper(tsk
))) {
899 if (tsk
->nsproxy
->pid_ns
!= &init_pid_ns
)
900 tsk
->nsproxy
->pid_ns
->child_reaper
= init_pid_ns
.child_reaper
;
902 panic("Attempted to kill init!");
906 if (unlikely(current
->ptrace
& PT_TRACE_EXIT
)) {
907 current
->ptrace_message
= code
;
908 ptrace_notify((PTRACE_EVENT_EXIT
<< 8) | SIGTRAP
);
912 * We're taking recursive faults here in do_exit. Safest is to just
913 * leave this task alone and wait for reboot.
915 if (unlikely(tsk
->flags
& PF_EXITING
)) {
917 "Fixing recursive fault but reboot is needed!\n");
919 * We can do this unlocked here. The futex code uses
920 * this flag just to verify whether the pi state
921 * cleanup has been done or not. In the worst case it
922 * loops once more. We pretend that the cleanup was
923 * done as there is no way to return. Either the
924 * OWNER_DIED bit is set by now or we push the blocked
925 * task into the wait for ever nirwana as well.
927 tsk
->flags
|= PF_EXITPIDONE
;
930 set_current_state(TASK_UNINTERRUPTIBLE
);
935 * tsk->flags are checked in the futex code to protect against
936 * an exiting task cleaning up the robust pi futexes.
938 spin_lock_irq(&tsk
->pi_lock
);
939 tsk
->flags
|= PF_EXITING
;
940 spin_unlock_irq(&tsk
->pi_lock
);
942 if (unlikely(in_atomic()))
943 printk(KERN_INFO
"note: %s[%d] exited with preempt_count %d\n",
944 current
->comm
, current
->pid
,
947 acct_update_integrals(tsk
);
949 update_hiwater_rss(tsk
->mm
);
950 update_hiwater_vm(tsk
->mm
);
952 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
954 hrtimer_cancel(&tsk
->signal
->real_timer
);
955 exit_itimers(tsk
->signal
);
957 acct_collect(code
, group_dead
);
958 if (unlikely(tsk
->robust_list
))
959 exit_robust_list(tsk
);
960 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
961 if (unlikely(tsk
->compat_robust_list
))
962 compat_exit_robust_list(tsk
);
966 if (unlikely(tsk
->audit_context
))
969 tsk
->exit_code
= code
;
970 taskstats_exit(tsk
, group_dead
);
984 if (group_dead
&& tsk
->signal
->leader
)
985 disassociate_ctty(1);
987 module_put(task_thread_info(tsk
)->exec_domain
->module
);
989 module_put(tsk
->binfmt
->module
);
991 proc_exit_connector(tsk
);
992 exit_task_namespaces(tsk
);
995 mpol_free(tsk
->mempolicy
);
996 tsk
->mempolicy
= NULL
;
999 * This must happen late, after the PID is not
1002 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
1003 exit_pi_state_list(tsk
);
1004 if (unlikely(current
->pi_state_cache
))
1005 kfree(current
->pi_state_cache
);
1007 * Make sure we are holding no locks:
1009 debug_check_no_locks_held(tsk
);
1011 * We can do this unlocked here. The futex code uses this flag
1012 * just to verify whether the pi state cleanup has been done
1013 * or not. In the worst case it loops once more.
1015 tsk
->flags
|= PF_EXITPIDONE
;
1017 if (tsk
->io_context
)
1020 if (tsk
->splice_pipe
)
1021 __free_pipe_info(tsk
->splice_pipe
);
1024 /* causes final put_task_struct in finish_task_switch(). */
1025 tsk
->state
= TASK_DEAD
;
1029 /* Avoid "noreturn function does return". */
1031 cpu_relax(); /* For when BUG is null */
1034 EXPORT_SYMBOL_GPL(do_exit
);
1036 NORET_TYPE
void complete_and_exit(struct completion
*comp
, long code
)
1044 EXPORT_SYMBOL(complete_and_exit
);
1046 asmlinkage
long sys_exit(int error_code
)
1048 do_exit((error_code
&0xff)<<8);
1052 * Take down every thread in the group. This is called by fatal signals
1053 * as well as by sys_exit_group (below).
1056 do_group_exit(int exit_code
)
1058 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
1060 if (current
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1061 exit_code
= current
->signal
->group_exit_code
;
1062 else if (!thread_group_empty(current
)) {
1063 struct signal_struct
*const sig
= current
->signal
;
1064 struct sighand_struct
*const sighand
= current
->sighand
;
1065 spin_lock_irq(&sighand
->siglock
);
1066 if (sig
->flags
& SIGNAL_GROUP_EXIT
)
1067 /* Another thread got here before we took the lock. */
1068 exit_code
= sig
->group_exit_code
;
1070 sig
->group_exit_code
= exit_code
;
1071 zap_other_threads(current
);
1073 spin_unlock_irq(&sighand
->siglock
);
1081 * this kills every thread in the thread group. Note that any externally
1082 * wait4()-ing process will get the correct exit code - even if this
1083 * thread is not the thread group leader.
1085 asmlinkage
void sys_exit_group(int error_code
)
1087 do_group_exit((error_code
& 0xff) << 8);
1090 static int eligible_child(pid_t pid
, int options
, struct task_struct
*p
)
1098 if (process_group(p
) != process_group(current
))
1100 } else if (pid
!= -1) {
1101 if (process_group(p
) != -pid
)
1106 * Do not consider detached threads that are
1109 if (p
->exit_signal
== -1 && !p
->ptrace
)
1112 /* Wait for all children (clone and not) if __WALL is set;
1113 * otherwise, wait for clone children *only* if __WCLONE is
1114 * set; otherwise, wait for non-clone children *only*. (Note:
1115 * A "clone" child here is one that reports to its parent
1116 * using a signal other than SIGCHLD.) */
1117 if (((p
->exit_signal
!= SIGCHLD
) ^ ((options
& __WCLONE
) != 0))
1118 && !(options
& __WALL
))
1121 * Do not consider thread group leaders that are
1122 * in a non-empty thread group:
1124 if (delay_group_leader(p
))
1127 err
= security_task_wait(p
);
1134 static int wait_noreap_copyout(struct task_struct
*p
, pid_t pid
, uid_t uid
,
1135 int why
, int status
,
1136 struct siginfo __user
*infop
,
1137 struct rusage __user
*rusagep
)
1139 int retval
= rusagep
? getrusage(p
, RUSAGE_BOTH
, rusagep
) : 0;
1143 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1145 retval
= put_user(0, &infop
->si_errno
);
1147 retval
= put_user((short)why
, &infop
->si_code
);
1149 retval
= put_user(pid
, &infop
->si_pid
);
1151 retval
= put_user(uid
, &infop
->si_uid
);
1153 retval
= put_user(status
, &infop
->si_status
);
1160 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1161 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1162 * the lock and this task is uninteresting. If we return nonzero, we have
1163 * released the lock and the system call should return.
1165 static int wait_task_zombie(struct task_struct
*p
, int noreap
,
1166 struct siginfo __user
*infop
,
1167 int __user
*stat_addr
, struct rusage __user
*ru
)
1169 unsigned long state
;
1173 if (unlikely(noreap
)) {
1176 int exit_code
= p
->exit_code
;
1179 if (unlikely(p
->exit_state
!= EXIT_ZOMBIE
))
1181 if (unlikely(p
->exit_signal
== -1 && p
->ptrace
== 0))
1184 read_unlock(&tasklist_lock
);
1185 if ((exit_code
& 0x7f) == 0) {
1187 status
= exit_code
>> 8;
1189 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1190 status
= exit_code
& 0x7f;
1192 return wait_noreap_copyout(p
, pid
, uid
, why
,
1197 * Try to move the task's state to DEAD
1198 * only one thread is allowed to do this:
1200 state
= xchg(&p
->exit_state
, EXIT_DEAD
);
1201 if (state
!= EXIT_ZOMBIE
) {
1202 BUG_ON(state
!= EXIT_DEAD
);
1205 if (unlikely(p
->exit_signal
== -1 && p
->ptrace
== 0)) {
1207 * This can only happen in a race with a ptraced thread
1208 * dying on another processor.
1213 if (likely(p
->real_parent
== p
->parent
) && likely(p
->signal
)) {
1214 struct signal_struct
*psig
;
1215 struct signal_struct
*sig
;
1218 * The resource counters for the group leader are in its
1219 * own task_struct. Those for dead threads in the group
1220 * are in its signal_struct, as are those for the child
1221 * processes it has previously reaped. All these
1222 * accumulate in the parent's signal_struct c* fields.
1224 * We don't bother to take a lock here to protect these
1225 * p->signal fields, because they are only touched by
1226 * __exit_signal, which runs with tasklist_lock
1227 * write-locked anyway, and so is excluded here. We do
1228 * need to protect the access to p->parent->signal fields,
1229 * as other threads in the parent group can be right
1230 * here reaping other children at the same time.
1232 spin_lock_irq(&p
->parent
->sighand
->siglock
);
1233 psig
= p
->parent
->signal
;
1236 cputime_add(psig
->cutime
,
1237 cputime_add(p
->utime
,
1238 cputime_add(sig
->utime
,
1241 cputime_add(psig
->cstime
,
1242 cputime_add(p
->stime
,
1243 cputime_add(sig
->stime
,
1246 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1248 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1250 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1252 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1254 task_io_get_inblock(p
) +
1255 sig
->inblock
+ sig
->cinblock
;
1257 task_io_get_oublock(p
) +
1258 sig
->oublock
+ sig
->coublock
;
1259 spin_unlock_irq(&p
->parent
->sighand
->siglock
);
1263 * Now we are sure this task is interesting, and no other
1264 * thread can reap it because we set its state to EXIT_DEAD.
1266 read_unlock(&tasklist_lock
);
1268 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1269 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1270 ? p
->signal
->group_exit_code
: p
->exit_code
;
1271 if (!retval
&& stat_addr
)
1272 retval
= put_user(status
, stat_addr
);
1273 if (!retval
&& infop
)
1274 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1275 if (!retval
&& infop
)
1276 retval
= put_user(0, &infop
->si_errno
);
1277 if (!retval
&& infop
) {
1280 if ((status
& 0x7f) == 0) {
1284 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1287 retval
= put_user((short)why
, &infop
->si_code
);
1289 retval
= put_user(status
, &infop
->si_status
);
1291 if (!retval
&& infop
)
1292 retval
= put_user(p
->pid
, &infop
->si_pid
);
1293 if (!retval
&& infop
)
1294 retval
= put_user(p
->uid
, &infop
->si_uid
);
1296 // TODO: is this safe?
1297 p
->exit_state
= EXIT_ZOMBIE
;
1301 if (p
->real_parent
!= p
->parent
) {
1302 write_lock_irq(&tasklist_lock
);
1303 /* Double-check with lock held. */
1304 if (p
->real_parent
!= p
->parent
) {
1306 // TODO: is this safe?
1307 p
->exit_state
= EXIT_ZOMBIE
;
1309 * If this is not a detached task, notify the parent.
1310 * If it's still not detached after that, don't release
1313 if (p
->exit_signal
!= -1) {
1314 do_notify_parent(p
, p
->exit_signal
);
1315 if (p
->exit_signal
!= -1)
1319 write_unlock_irq(&tasklist_lock
);
1328 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1329 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1330 * the lock and this task is uninteresting. If we return nonzero, we have
1331 * released the lock and the system call should return.
1333 static int wait_task_stopped(struct task_struct
*p
, int delayed_group_leader
,
1334 int noreap
, struct siginfo __user
*infop
,
1335 int __user
*stat_addr
, struct rusage __user
*ru
)
1337 int retval
, exit_code
;
1341 if (delayed_group_leader
&& !(p
->ptrace
& PT_PTRACED
) &&
1342 p
->signal
&& p
->signal
->group_stop_count
> 0)
1344 * A group stop is in progress and this is the group leader.
1345 * We won't report until all threads have stopped.
1350 * Now we are pretty sure this task is interesting.
1351 * Make sure it doesn't get reaped out from under us while we
1352 * give up the lock and then examine it below. We don't want to
1353 * keep holding onto the tasklist_lock while we call getrusage and
1354 * possibly take page faults for user memory.
1357 read_unlock(&tasklist_lock
);
1359 if (unlikely(noreap
)) {
1362 int why
= (p
->ptrace
& PT_PTRACED
) ? CLD_TRAPPED
: CLD_STOPPED
;
1364 exit_code
= p
->exit_code
;
1365 if (unlikely(!exit_code
) ||
1366 unlikely(p
->state
& TASK_TRACED
))
1368 return wait_noreap_copyout(p
, pid
, uid
,
1369 why
, (exit_code
<< 8) | 0x7f,
1373 write_lock_irq(&tasklist_lock
);
1376 * This uses xchg to be atomic with the thread resuming and setting
1377 * it. It must also be done with the write lock held to prevent a
1378 * race with the EXIT_ZOMBIE case.
1380 exit_code
= xchg(&p
->exit_code
, 0);
1381 if (unlikely(p
->exit_state
)) {
1383 * The task resumed and then died. Let the next iteration
1384 * catch it in EXIT_ZOMBIE. Note that exit_code might
1385 * already be zero here if it resumed and did _exit(0).
1386 * The task itself is dead and won't touch exit_code again;
1387 * other processors in this function are locked out.
1389 p
->exit_code
= exit_code
;
1392 if (unlikely(exit_code
== 0)) {
1394 * Another thread in this function got to it first, or it
1395 * resumed, or it resumed and then died.
1397 write_unlock_irq(&tasklist_lock
);
1401 * We are returning to the wait loop without having successfully
1402 * removed the process and having released the lock. We cannot
1403 * continue, since the "p" task pointer is potentially stale.
1405 * Return -EAGAIN, and do_wait() will restart the loop from the
1406 * beginning. Do _not_ re-acquire the lock.
1411 /* move to end of parent's list to avoid starvation */
1415 write_unlock_irq(&tasklist_lock
);
1417 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1418 if (!retval
&& stat_addr
)
1419 retval
= put_user((exit_code
<< 8) | 0x7f, stat_addr
);
1420 if (!retval
&& infop
)
1421 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1422 if (!retval
&& infop
)
1423 retval
= put_user(0, &infop
->si_errno
);
1424 if (!retval
&& infop
)
1425 retval
= put_user((short)((p
->ptrace
& PT_PTRACED
)
1426 ? CLD_TRAPPED
: CLD_STOPPED
),
1428 if (!retval
&& infop
)
1429 retval
= put_user(exit_code
, &infop
->si_status
);
1430 if (!retval
&& infop
)
1431 retval
= put_user(p
->pid
, &infop
->si_pid
);
1432 if (!retval
&& infop
)
1433 retval
= put_user(p
->uid
, &infop
->si_uid
);
1443 * Handle do_wait work for one task in a live, non-stopped state.
1444 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1445 * the lock and this task is uninteresting. If we return nonzero, we have
1446 * released the lock and the system call should return.
1448 static int wait_task_continued(struct task_struct
*p
, int noreap
,
1449 struct siginfo __user
*infop
,
1450 int __user
*stat_addr
, struct rusage __user
*ru
)
1456 if (unlikely(!p
->signal
))
1459 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1462 spin_lock_irq(&p
->sighand
->siglock
);
1463 /* Re-check with the lock held. */
1464 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1465 spin_unlock_irq(&p
->sighand
->siglock
);
1469 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1470 spin_unlock_irq(&p
->sighand
->siglock
);
1475 read_unlock(&tasklist_lock
);
1478 retval
= ru
? getrusage(p
, RUSAGE_BOTH
, ru
) : 0;
1480 if (!retval
&& stat_addr
)
1481 retval
= put_user(0xffff, stat_addr
);
1485 retval
= wait_noreap_copyout(p
, pid
, uid
,
1486 CLD_CONTINUED
, SIGCONT
,
1488 BUG_ON(retval
== 0);
1495 static inline int my_ptrace_child(struct task_struct
*p
)
1497 if (!(p
->ptrace
& PT_PTRACED
))
1499 if (!(p
->ptrace
& PT_ATTACHED
))
1502 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1503 * we are the attacher. If we are the real parent, this is a race
1504 * inside ptrace_attach. It is waiting for the tasklist_lock,
1505 * which we have to switch the parent links, but has already set
1506 * the flags in p->ptrace.
1508 return (p
->parent
!= p
->real_parent
);
1511 static long do_wait(pid_t pid
, int options
, struct siginfo __user
*infop
,
1512 int __user
*stat_addr
, struct rusage __user
*ru
)
1514 DECLARE_WAITQUEUE(wait
, current
);
1515 struct task_struct
*tsk
;
1517 int allowed
, denied
;
1519 add_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1522 * We will set this flag if we see any child that might later
1523 * match our criteria, even if we are not able to reap it yet.
1526 allowed
= denied
= 0;
1527 current
->state
= TASK_INTERRUPTIBLE
;
1528 read_lock(&tasklist_lock
);
1531 struct task_struct
*p
;
1532 struct list_head
*_p
;
1535 list_for_each(_p
,&tsk
->children
) {
1536 p
= list_entry(_p
, struct task_struct
, sibling
);
1538 ret
= eligible_child(pid
, options
, p
);
1542 if (unlikely(ret
< 0)) {
1551 * When we hit the race with PTRACE_ATTACH,
1552 * we will not report this child. But the
1553 * race means it has not yet been moved to
1554 * our ptrace_children list, so we need to
1555 * set the flag here to avoid a spurious ECHILD
1556 * when the race happens with the only child.
1559 if (!my_ptrace_child(p
))
1564 * It's stopped now, so it might later
1565 * continue, exit, or stop again.
1568 if (!(options
& WUNTRACED
) &&
1569 !my_ptrace_child(p
))
1571 retval
= wait_task_stopped(p
, ret
== 2,
1572 (options
& WNOWAIT
),
1575 if (retval
== -EAGAIN
)
1577 if (retval
!= 0) /* He released the lock. */
1582 if (p
->exit_state
== EXIT_DEAD
)
1584 // case EXIT_ZOMBIE:
1585 if (p
->exit_state
== EXIT_ZOMBIE
) {
1587 * Eligible but we cannot release
1591 goto check_continued
;
1592 if (!likely(options
& WEXITED
))
1594 retval
= wait_task_zombie(
1595 p
, (options
& WNOWAIT
),
1596 infop
, stat_addr
, ru
);
1597 /* He released the lock. */
1604 * It's running now, so it might later
1605 * exit, stop, or stop and then continue.
1608 if (!unlikely(options
& WCONTINUED
))
1610 retval
= wait_task_continued(
1611 p
, (options
& WNOWAIT
),
1612 infop
, stat_addr
, ru
);
1613 if (retval
!= 0) /* He released the lock. */
1619 list_for_each(_p
, &tsk
->ptrace_children
) {
1620 p
= list_entry(_p
, struct task_struct
,
1622 if (!eligible_child(pid
, options
, p
))
1628 if (options
& __WNOTHREAD
)
1630 tsk
= next_thread(tsk
);
1631 BUG_ON(tsk
->signal
!= current
->signal
);
1632 } while (tsk
!= current
);
1634 read_unlock(&tasklist_lock
);
1637 if (options
& WNOHANG
)
1639 retval
= -ERESTARTSYS
;
1640 if (signal_pending(current
))
1646 if (unlikely(denied
) && !allowed
)
1649 current
->state
= TASK_RUNNING
;
1650 remove_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1656 * For a WNOHANG return, clear out all the fields
1657 * we would set so the user can easily tell the
1661 retval
= put_user(0, &infop
->si_signo
);
1663 retval
= put_user(0, &infop
->si_errno
);
1665 retval
= put_user(0, &infop
->si_code
);
1667 retval
= put_user(0, &infop
->si_pid
);
1669 retval
= put_user(0, &infop
->si_uid
);
1671 retval
= put_user(0, &infop
->si_status
);
1677 asmlinkage
long sys_waitid(int which
, pid_t pid
,
1678 struct siginfo __user
*infop
, int options
,
1679 struct rusage __user
*ru
)
1683 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
))
1685 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1705 ret
= do_wait(pid
, options
, infop
, NULL
, ru
);
1707 /* avoid REGPARM breakage on x86: */
1708 prevent_tail_call(ret
);
1712 asmlinkage
long sys_wait4(pid_t pid
, int __user
*stat_addr
,
1713 int options
, struct rusage __user
*ru
)
1717 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1718 __WNOTHREAD
|__WCLONE
|__WALL
))
1720 ret
= do_wait(pid
, options
| WEXITED
, NULL
, stat_addr
, ru
);
1722 /* avoid REGPARM breakage on x86: */
1723 prevent_tail_call(ret
);
1727 #ifdef __ARCH_WANT_SYS_WAITPID
1730 * sys_waitpid() remains for compatibility. waitpid() should be
1731 * implemented by calling sys_wait4() from libc.a.
1733 asmlinkage
long sys_waitpid(pid_t pid
, int __user
*stat_addr
, int options
)
1735 return sys_wait4(pid
, stat_addr
, options
, NULL
);