2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
19 /* max queue in one round of service */
20 static const int cfq_quantum
= 4;
21 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max
= 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty
= 2;
26 static const int cfq_slice_sync
= HZ
/ 10;
27 static int cfq_slice_async
= HZ
/ 25;
28 static const int cfq_slice_async_rq
= 2;
29 static int cfq_slice_idle
= HZ
/ 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache
*cfq_pool
;
49 static struct kmem_cache
*cfq_ioc_pool
;
51 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
52 static struct completion
*ioc_gone
;
53 static DEFINE_SPINLOCK(ioc_gone_lock
);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define sample_valid(samples) ((samples) > 80)
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
71 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
74 * Per process-grouping structure
79 /* various state flags, see below */
82 struct cfq_data
*cfqd
;
83 /* service_tree member */
84 struct rb_node rb_node
;
85 /* service_tree key */
87 /* prio tree member */
88 struct rb_node p_node
;
89 /* prio tree root we belong to, if any */
90 struct rb_root
*p_root
;
91 /* sorted list of pending requests */
92 struct rb_root sort_list
;
93 /* if fifo isn't expired, next request to serve */
94 struct request
*next_rq
;
95 /* requests queued in sort_list */
97 /* currently allocated requests */
99 /* fifo list of requests in sort_list */
100 struct list_head fifo
;
102 unsigned long slice_end
;
104 unsigned int slice_dispatch
;
106 /* pending metadata requests */
108 /* number of requests that are on the dispatch list or inside driver */
111 /* io prio of this group */
112 unsigned short ioprio
, org_ioprio
;
113 unsigned short ioprio_class
, org_ioprio_class
;
119 * Per block device queue structure
122 struct request_queue
*queue
;
125 * rr list of queues with requests and the count of them
127 struct cfq_rb_root service_tree
;
130 * Each priority tree is sorted by next_request position. These
131 * trees are used when determining if two or more queues are
132 * interleaving requests (see cfq_close_cooperator).
134 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
136 unsigned int busy_queues
;
142 * queue-depth detection
147 int rq_in_driver_peak
;
150 * idle window management
152 struct timer_list idle_slice_timer
;
153 struct work_struct unplug_work
;
155 struct cfq_queue
*active_queue
;
156 struct cfq_io_context
*active_cic
;
159 * async queue for each priority case
161 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
162 struct cfq_queue
*async_idle_cfqq
;
164 sector_t last_position
;
167 * tunables, see top of file
169 unsigned int cfq_quantum
;
170 unsigned int cfq_fifo_expire
[2];
171 unsigned int cfq_back_penalty
;
172 unsigned int cfq_back_max
;
173 unsigned int cfq_slice
[2];
174 unsigned int cfq_slice_async_rq
;
175 unsigned int cfq_slice_idle
;
176 unsigned int cfq_latency
;
178 struct list_head cic_list
;
181 * Fallback dummy cfqq for extreme OOM conditions
183 struct cfq_queue oom_cfqq
;
185 unsigned long last_end_sync_rq
;
188 enum cfqq_state_flags
{
189 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
190 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
191 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
192 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
193 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
194 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
195 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
196 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
197 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
198 CFQ_CFQQ_FLAG_coop
, /* has done a coop jump of the queue */
201 #define CFQ_CFQQ_FNS(name) \
202 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
204 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
206 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
208 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
210 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
212 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
216 CFQ_CFQQ_FNS(wait_request
);
217 CFQ_CFQQ_FNS(must_dispatch
);
218 CFQ_CFQQ_FNS(must_alloc_slice
);
219 CFQ_CFQQ_FNS(fifo_expire
);
220 CFQ_CFQQ_FNS(idle_window
);
221 CFQ_CFQQ_FNS(prio_changed
);
222 CFQ_CFQQ_FNS(slice_new
);
227 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
229 #define cfq_log(cfqd, fmt, args...) \
230 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
232 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
233 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
234 struct io_context
*, gfp_t
);
235 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
236 struct io_context
*);
238 static inline int rq_in_driver(struct cfq_data
*cfqd
)
240 return cfqd
->rq_in_driver
[0] + cfqd
->rq_in_driver
[1];
243 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
246 return cic
->cfqq
[is_sync
];
249 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
250 struct cfq_queue
*cfqq
, bool is_sync
)
252 cic
->cfqq
[is_sync
] = cfqq
;
256 * We regard a request as SYNC, if it's either a read or has the SYNC bit
257 * set (in which case it could also be direct WRITE).
259 static inline bool cfq_bio_sync(struct bio
*bio
)
261 return bio_data_dir(bio
) == READ
|| bio_rw_flagged(bio
, BIO_RW_SYNCIO
);
265 * scheduler run of queue, if there are requests pending and no one in the
266 * driver that will restart queueing
268 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
270 if (cfqd
->busy_queues
) {
271 cfq_log(cfqd
, "schedule dispatch");
272 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
276 static int cfq_queue_empty(struct request_queue
*q
)
278 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
280 return !cfqd
->busy_queues
;
284 * Scale schedule slice based on io priority. Use the sync time slice only
285 * if a queue is marked sync and has sync io queued. A sync queue with async
286 * io only, should not get full sync slice length.
288 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
291 const int base_slice
= cfqd
->cfq_slice
[sync
];
293 WARN_ON(prio
>= IOPRIO_BE_NR
);
295 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
299 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
301 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
305 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
307 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
308 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
312 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
313 * isn't valid until the first request from the dispatch is activated
314 * and the slice time set.
316 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
318 if (cfq_cfqq_slice_new(cfqq
))
320 if (time_before(jiffies
, cfqq
->slice_end
))
327 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
328 * We choose the request that is closest to the head right now. Distance
329 * behind the head is penalized and only allowed to a certain extent.
331 static struct request
*
332 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
334 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
335 unsigned long back_max
;
336 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
337 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
338 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
340 if (rq1
== NULL
|| rq1
== rq2
)
345 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
347 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
349 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
351 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
354 s1
= blk_rq_pos(rq1
);
355 s2
= blk_rq_pos(rq2
);
357 last
= cfqd
->last_position
;
360 * by definition, 1KiB is 2 sectors
362 back_max
= cfqd
->cfq_back_max
* 2;
365 * Strict one way elevator _except_ in the case where we allow
366 * short backward seeks which are biased as twice the cost of a
367 * similar forward seek.
371 else if (s1
+ back_max
>= last
)
372 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
374 wrap
|= CFQ_RQ1_WRAP
;
378 else if (s2
+ back_max
>= last
)
379 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
381 wrap
|= CFQ_RQ2_WRAP
;
383 /* Found required data */
386 * By doing switch() on the bit mask "wrap" we avoid having to
387 * check two variables for all permutations: --> faster!
390 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
406 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
409 * Since both rqs are wrapped,
410 * start with the one that's further behind head
411 * (--> only *one* back seek required),
412 * since back seek takes more time than forward.
422 * The below is leftmost cache rbtree addon
424 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
427 root
->left
= rb_first(&root
->rb
);
430 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
435 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
441 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
445 rb_erase_init(n
, &root
->rb
);
449 * would be nice to take fifo expire time into account as well
451 static struct request
*
452 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
453 struct request
*last
)
455 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
456 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
457 struct request
*next
= NULL
, *prev
= NULL
;
459 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
462 prev
= rb_entry_rq(rbprev
);
465 next
= rb_entry_rq(rbnext
);
467 rbnext
= rb_first(&cfqq
->sort_list
);
468 if (rbnext
&& rbnext
!= &last
->rb_node
)
469 next
= rb_entry_rq(rbnext
);
472 return cfq_choose_req(cfqd
, next
, prev
);
475 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
476 struct cfq_queue
*cfqq
)
479 * just an approximation, should be ok.
481 return (cfqd
->busy_queues
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
482 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
486 * The cfqd->service_tree holds all pending cfq_queue's that have
487 * requests waiting to be processed. It is sorted in the order that
488 * we will service the queues.
490 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
493 struct rb_node
**p
, *parent
;
494 struct cfq_queue
*__cfqq
;
495 unsigned long rb_key
;
498 if (cfq_class_idle(cfqq
)) {
499 rb_key
= CFQ_IDLE_DELAY
;
500 parent
= rb_last(&cfqd
->service_tree
.rb
);
501 if (parent
&& parent
!= &cfqq
->rb_node
) {
502 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
503 rb_key
+= __cfqq
->rb_key
;
506 } else if (!add_front
) {
508 * Get our rb key offset. Subtract any residual slice
509 * value carried from last service. A negative resid
510 * count indicates slice overrun, and this should position
511 * the next service time further away in the tree.
513 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
514 rb_key
-= cfqq
->slice_resid
;
515 cfqq
->slice_resid
= 0;
518 __cfqq
= cfq_rb_first(&cfqd
->service_tree
);
519 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
522 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
524 * same position, nothing more to do
526 if (rb_key
== cfqq
->rb_key
)
529 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
534 p
= &cfqd
->service_tree
.rb
.rb_node
;
539 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
542 * sort RT queues first, we always want to give
543 * preference to them. IDLE queues goes to the back.
544 * after that, sort on the next service time.
546 if (cfq_class_rt(cfqq
) > cfq_class_rt(__cfqq
))
548 else if (cfq_class_rt(cfqq
) < cfq_class_rt(__cfqq
))
550 else if (cfq_class_idle(cfqq
) < cfq_class_idle(__cfqq
))
552 else if (cfq_class_idle(cfqq
) > cfq_class_idle(__cfqq
))
554 else if (time_before(rb_key
, __cfqq
->rb_key
))
559 if (n
== &(*p
)->rb_right
)
566 cfqd
->service_tree
.left
= &cfqq
->rb_node
;
568 cfqq
->rb_key
= rb_key
;
569 rb_link_node(&cfqq
->rb_node
, parent
, p
);
570 rb_insert_color(&cfqq
->rb_node
, &cfqd
->service_tree
.rb
);
573 static struct cfq_queue
*
574 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
575 sector_t sector
, struct rb_node
**ret_parent
,
576 struct rb_node
***rb_link
)
578 struct rb_node
**p
, *parent
;
579 struct cfq_queue
*cfqq
= NULL
;
587 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
590 * Sort strictly based on sector. Smallest to the left,
591 * largest to the right.
593 if (sector
> blk_rq_pos(cfqq
->next_rq
))
595 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
603 *ret_parent
= parent
;
609 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
611 struct rb_node
**p
, *parent
;
612 struct cfq_queue
*__cfqq
;
615 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
619 if (cfq_class_idle(cfqq
))
624 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
625 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
626 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
628 rb_link_node(&cfqq
->p_node
, parent
, p
);
629 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
635 * Update cfqq's position in the service tree.
637 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
640 * Resorting requires the cfqq to be on the RR list already.
642 if (cfq_cfqq_on_rr(cfqq
)) {
643 cfq_service_tree_add(cfqd
, cfqq
, 0);
644 cfq_prio_tree_add(cfqd
, cfqq
);
649 * add to busy list of queues for service, trying to be fair in ordering
650 * the pending list according to last request service
652 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
654 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
655 BUG_ON(cfq_cfqq_on_rr(cfqq
));
656 cfq_mark_cfqq_on_rr(cfqq
);
659 cfq_resort_rr_list(cfqd
, cfqq
);
663 * Called when the cfqq no longer has requests pending, remove it from
666 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
668 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
669 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
670 cfq_clear_cfqq_on_rr(cfqq
);
672 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
673 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
675 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
679 BUG_ON(!cfqd
->busy_queues
);
684 * rb tree support functions
686 static void cfq_del_rq_rb(struct request
*rq
)
688 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
689 struct cfq_data
*cfqd
= cfqq
->cfqd
;
690 const int sync
= rq_is_sync(rq
);
692 BUG_ON(!cfqq
->queued
[sync
]);
693 cfqq
->queued
[sync
]--;
695 elv_rb_del(&cfqq
->sort_list
, rq
);
697 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
698 cfq_del_cfqq_rr(cfqd
, cfqq
);
701 static void cfq_add_rq_rb(struct request
*rq
)
703 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
704 struct cfq_data
*cfqd
= cfqq
->cfqd
;
705 struct request
*__alias
, *prev
;
707 cfqq
->queued
[rq_is_sync(rq
)]++;
710 * looks a little odd, but the first insert might return an alias.
711 * if that happens, put the alias on the dispatch list
713 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
714 cfq_dispatch_insert(cfqd
->queue
, __alias
);
716 if (!cfq_cfqq_on_rr(cfqq
))
717 cfq_add_cfqq_rr(cfqd
, cfqq
);
720 * check if this request is a better next-serve candidate
722 prev
= cfqq
->next_rq
;
723 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
726 * adjust priority tree position, if ->next_rq changes
728 if (prev
!= cfqq
->next_rq
)
729 cfq_prio_tree_add(cfqd
, cfqq
);
731 BUG_ON(!cfqq
->next_rq
);
734 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
736 elv_rb_del(&cfqq
->sort_list
, rq
);
737 cfqq
->queued
[rq_is_sync(rq
)]--;
741 static struct request
*
742 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
744 struct task_struct
*tsk
= current
;
745 struct cfq_io_context
*cic
;
746 struct cfq_queue
*cfqq
;
748 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
752 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
754 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
756 return elv_rb_find(&cfqq
->sort_list
, sector
);
762 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
764 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
766 cfqd
->rq_in_driver
[rq_is_sync(rq
)]++;
767 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
770 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
773 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
775 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
776 const int sync
= rq_is_sync(rq
);
778 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
779 cfqd
->rq_in_driver
[sync
]--;
780 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
784 static void cfq_remove_request(struct request
*rq
)
786 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
788 if (cfqq
->next_rq
== rq
)
789 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
791 list_del_init(&rq
->queuelist
);
794 cfqq
->cfqd
->rq_queued
--;
795 if (rq_is_meta(rq
)) {
796 WARN_ON(!cfqq
->meta_pending
);
797 cfqq
->meta_pending
--;
801 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
804 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
805 struct request
*__rq
;
807 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
808 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
810 return ELEVATOR_FRONT_MERGE
;
813 return ELEVATOR_NO_MERGE
;
816 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
819 if (type
== ELEVATOR_FRONT_MERGE
) {
820 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
822 cfq_reposition_rq_rb(cfqq
, req
);
827 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
828 struct request
*next
)
831 * reposition in fifo if next is older than rq
833 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
834 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
835 list_move(&rq
->queuelist
, &next
->queuelist
);
836 rq_set_fifo_time(rq
, rq_fifo_time(next
));
839 cfq_remove_request(next
);
842 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
845 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
846 struct cfq_io_context
*cic
;
847 struct cfq_queue
*cfqq
;
850 * Disallow merge of a sync bio into an async request.
852 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
856 * Lookup the cfqq that this bio will be queued with. Allow
857 * merge only if rq is queued there.
859 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
863 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
864 return cfqq
== RQ_CFQQ(rq
);
867 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
868 struct cfq_queue
*cfqq
)
871 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
873 cfqq
->slice_dispatch
= 0;
875 cfq_clear_cfqq_wait_request(cfqq
);
876 cfq_clear_cfqq_must_dispatch(cfqq
);
877 cfq_clear_cfqq_must_alloc_slice(cfqq
);
878 cfq_clear_cfqq_fifo_expire(cfqq
);
879 cfq_mark_cfqq_slice_new(cfqq
);
881 del_timer(&cfqd
->idle_slice_timer
);
884 cfqd
->active_queue
= cfqq
;
888 * current cfqq expired its slice (or was too idle), select new one
891 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
894 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
896 if (cfq_cfqq_wait_request(cfqq
))
897 del_timer(&cfqd
->idle_slice_timer
);
899 cfq_clear_cfqq_wait_request(cfqq
);
902 * store what was left of this slice, if the queue idled/timed out
904 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
905 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
906 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
909 cfq_resort_rr_list(cfqd
, cfqq
);
911 if (cfqq
== cfqd
->active_queue
)
912 cfqd
->active_queue
= NULL
;
914 if (cfqd
->active_cic
) {
915 put_io_context(cfqd
->active_cic
->ioc
);
916 cfqd
->active_cic
= NULL
;
920 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
922 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
925 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
929 * Get next queue for service. Unless we have a queue preemption,
930 * we'll simply select the first cfqq in the service tree.
932 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
934 if (RB_EMPTY_ROOT(&cfqd
->service_tree
.rb
))
937 return cfq_rb_first(&cfqd
->service_tree
);
941 * Get and set a new active queue for service.
943 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
944 struct cfq_queue
*cfqq
)
947 cfqq
= cfq_get_next_queue(cfqd
);
949 cfq_clear_cfqq_coop(cfqq
);
952 __cfq_set_active_queue(cfqd
, cfqq
);
956 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
959 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
960 return blk_rq_pos(rq
) - cfqd
->last_position
;
962 return cfqd
->last_position
- blk_rq_pos(rq
);
965 #define CIC_SEEK_THR 8 * 1024
966 #define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
968 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct request
*rq
)
970 struct cfq_io_context
*cic
= cfqd
->active_cic
;
971 sector_t sdist
= cic
->seek_mean
;
973 if (!sample_valid(cic
->seek_samples
))
974 sdist
= CIC_SEEK_THR
;
976 return cfq_dist_from_last(cfqd
, rq
) <= sdist
;
979 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
980 struct cfq_queue
*cur_cfqq
)
982 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
983 struct rb_node
*parent
, *node
;
984 struct cfq_queue
*__cfqq
;
985 sector_t sector
= cfqd
->last_position
;
987 if (RB_EMPTY_ROOT(root
))
991 * First, if we find a request starting at the end of the last
992 * request, choose it.
994 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
999 * If the exact sector wasn't found, the parent of the NULL leaf
1000 * will contain the closest sector.
1002 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1003 if (cfq_rq_close(cfqd
, __cfqq
->next_rq
))
1006 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1007 node
= rb_next(&__cfqq
->p_node
);
1009 node
= rb_prev(&__cfqq
->p_node
);
1013 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1014 if (cfq_rq_close(cfqd
, __cfqq
->next_rq
))
1022 * cur_cfqq - passed in so that we don't decide that the current queue is
1023 * closely cooperating with itself.
1025 * So, basically we're assuming that that cur_cfqq has dispatched at least
1026 * one request, and that cfqd->last_position reflects a position on the disk
1027 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1030 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1031 struct cfq_queue
*cur_cfqq
,
1034 struct cfq_queue
*cfqq
;
1037 * A valid cfq_io_context is necessary to compare requests against
1038 * the seek_mean of the current cfqq.
1040 if (!cfqd
->active_cic
)
1044 * We should notice if some of the queues are cooperating, eg
1045 * working closely on the same area of the disk. In that case,
1046 * we can group them together and don't waste time idling.
1048 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1052 if (cfq_cfqq_coop(cfqq
))
1056 cfq_mark_cfqq_coop(cfqq
);
1060 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1062 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1063 struct cfq_io_context
*cic
;
1067 * SSD device without seek penalty, disable idling. But only do so
1068 * for devices that support queuing, otherwise we still have a problem
1069 * with sync vs async workloads.
1071 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1074 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1075 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1078 * idle is disabled, either manually or by past process history
1080 if (!cfqd
->cfq_slice_idle
|| !cfq_cfqq_idle_window(cfqq
))
1084 * still requests with the driver, don't idle
1086 if (rq_in_driver(cfqd
))
1090 * task has exited, don't wait
1092 cic
= cfqd
->active_cic
;
1093 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1097 * If our average think time is larger than the remaining time
1098 * slice, then don't idle. This avoids overrunning the allotted
1101 if (sample_valid(cic
->ttime_samples
) &&
1102 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
1105 cfq_mark_cfqq_wait_request(cfqq
);
1108 * we don't want to idle for seeks, but we do want to allow
1109 * fair distribution of slice time for a process doing back-to-back
1110 * seeks. so allow a little bit of time for him to submit a new rq
1112 sl
= cfqd
->cfq_slice_idle
;
1113 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
1114 sl
= min(sl
, msecs_to_jiffies(CFQ_MIN_TT
));
1116 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1117 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1121 * Move request from internal lists to the request queue dispatch list.
1123 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1125 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1126 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1128 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1130 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1131 cfq_remove_request(rq
);
1133 elv_dispatch_sort(q
, rq
);
1135 if (cfq_cfqq_sync(cfqq
))
1136 cfqd
->sync_flight
++;
1140 * return expired entry, or NULL to just start from scratch in rbtree
1142 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1144 struct request
*rq
= NULL
;
1146 if (cfq_cfqq_fifo_expire(cfqq
))
1149 cfq_mark_cfqq_fifo_expire(cfqq
);
1151 if (list_empty(&cfqq
->fifo
))
1154 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1155 if (time_before(jiffies
, rq_fifo_time(rq
)))
1158 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
1163 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1165 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1167 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1169 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1173 * Select a queue for service. If we have a current active queue,
1174 * check whether to continue servicing it, or retrieve and set a new one.
1176 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
1178 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1180 cfqq
= cfqd
->active_queue
;
1185 * The active queue has run out of time, expire it and select new.
1187 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
1191 * The active queue has requests and isn't expired, allow it to
1194 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
1198 * If another queue has a request waiting within our mean seek
1199 * distance, let it run. The expire code will check for close
1200 * cooperators and put the close queue at the front of the service
1203 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
, 0);
1208 * No requests pending. If the active queue still has requests in
1209 * flight or is idling for a new request, allow either of these
1210 * conditions to happen (or time out) before selecting a new queue.
1212 if (timer_pending(&cfqd
->idle_slice_timer
) ||
1213 (cfqq
->dispatched
&& cfq_cfqq_idle_window(cfqq
))) {
1219 cfq_slice_expired(cfqd
, 0);
1221 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
1226 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
1230 while (cfqq
->next_rq
) {
1231 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
1235 BUG_ON(!list_empty(&cfqq
->fifo
));
1240 * Drain our current requests. Used for barriers and when switching
1241 * io schedulers on-the-fly.
1243 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
1245 struct cfq_queue
*cfqq
;
1248 while ((cfqq
= cfq_rb_first(&cfqd
->service_tree
)) != NULL
)
1249 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1251 cfq_slice_expired(cfqd
, 0);
1253 BUG_ON(cfqd
->busy_queues
);
1255 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
1259 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1261 unsigned int max_dispatch
;
1264 * Drain async requests before we start sync IO
1266 if (cfq_cfqq_idle_window(cfqq
) && cfqd
->rq_in_driver
[BLK_RW_ASYNC
])
1270 * If this is an async queue and we have sync IO in flight, let it wait
1272 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
1275 max_dispatch
= cfqd
->cfq_quantum
;
1276 if (cfq_class_idle(cfqq
))
1280 * Does this cfqq already have too much IO in flight?
1282 if (cfqq
->dispatched
>= max_dispatch
) {
1284 * idle queue must always only have a single IO in flight
1286 if (cfq_class_idle(cfqq
))
1290 * We have other queues, don't allow more IO from this one
1292 if (cfqd
->busy_queues
> 1)
1296 * Sole queue user, allow bigger slice
1302 * Async queues must wait a bit before being allowed dispatch.
1303 * We also ramp up the dispatch depth gradually for async IO,
1304 * based on the last sync IO we serviced
1306 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
1307 unsigned long last_sync
= jiffies
- cfqd
->last_end_sync_rq
;
1310 depth
= last_sync
/ cfqd
->cfq_slice
[1];
1311 if (!depth
&& !cfqq
->dispatched
)
1313 if (depth
< max_dispatch
)
1314 max_dispatch
= depth
;
1318 * If we're below the current max, allow a dispatch
1320 return cfqq
->dispatched
< max_dispatch
;
1324 * Dispatch a request from cfqq, moving them to the request queue
1327 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1331 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1333 if (!cfq_may_dispatch(cfqd
, cfqq
))
1337 * follow expired path, else get first next available
1339 rq
= cfq_check_fifo(cfqq
);
1344 * insert request into driver dispatch list
1346 cfq_dispatch_insert(cfqd
->queue
, rq
);
1348 if (!cfqd
->active_cic
) {
1349 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1351 atomic_long_inc(&cic
->ioc
->refcount
);
1352 cfqd
->active_cic
= cic
;
1359 * Find the cfqq that we need to service and move a request from that to the
1362 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
1364 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1365 struct cfq_queue
*cfqq
;
1367 if (!cfqd
->busy_queues
)
1370 if (unlikely(force
))
1371 return cfq_forced_dispatch(cfqd
);
1373 cfqq
= cfq_select_queue(cfqd
);
1378 * Dispatch a request from this cfqq, if it is allowed
1380 if (!cfq_dispatch_request(cfqd
, cfqq
))
1383 cfqq
->slice_dispatch
++;
1384 cfq_clear_cfqq_must_dispatch(cfqq
);
1387 * expire an async queue immediately if it has used up its slice. idle
1388 * queue always expire after 1 dispatch round.
1390 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
1391 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1392 cfq_class_idle(cfqq
))) {
1393 cfqq
->slice_end
= jiffies
+ 1;
1394 cfq_slice_expired(cfqd
, 0);
1397 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
1402 * task holds one reference to the queue, dropped when task exits. each rq
1403 * in-flight on this queue also holds a reference, dropped when rq is freed.
1405 * queue lock must be held here.
1407 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1409 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1411 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1413 if (!atomic_dec_and_test(&cfqq
->ref
))
1416 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
1417 BUG_ON(rb_first(&cfqq
->sort_list
));
1418 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1419 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1421 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1422 __cfq_slice_expired(cfqd
, cfqq
, 0);
1423 cfq_schedule_dispatch(cfqd
);
1426 kmem_cache_free(cfq_pool
, cfqq
);
1430 * Must always be called with the rcu_read_lock() held
1433 __call_for_each_cic(struct io_context
*ioc
,
1434 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1436 struct cfq_io_context
*cic
;
1437 struct hlist_node
*n
;
1439 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
1444 * Call func for each cic attached to this ioc.
1447 call_for_each_cic(struct io_context
*ioc
,
1448 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1451 __call_for_each_cic(ioc
, func
);
1455 static void cfq_cic_free_rcu(struct rcu_head
*head
)
1457 struct cfq_io_context
*cic
;
1459 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
1461 kmem_cache_free(cfq_ioc_pool
, cic
);
1462 elv_ioc_count_dec(cfq_ioc_count
);
1466 * CFQ scheduler is exiting, grab exit lock and check
1467 * the pending io context count. If it hits zero,
1468 * complete ioc_gone and set it back to NULL
1470 spin_lock(&ioc_gone_lock
);
1471 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
1475 spin_unlock(&ioc_gone_lock
);
1479 static void cfq_cic_free(struct cfq_io_context
*cic
)
1481 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
1484 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1486 unsigned long flags
;
1488 BUG_ON(!cic
->dead_key
);
1490 spin_lock_irqsave(&ioc
->lock
, flags
);
1491 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
1492 hlist_del_rcu(&cic
->cic_list
);
1493 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1499 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1500 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1501 * and ->trim() which is called with the task lock held
1503 static void cfq_free_io_context(struct io_context
*ioc
)
1506 * ioc->refcount is zero here, or we are called from elv_unregister(),
1507 * so no more cic's are allowed to be linked into this ioc. So it
1508 * should be ok to iterate over the known list, we will see all cic's
1509 * since no new ones are added.
1511 __call_for_each_cic(ioc
, cic_free_func
);
1514 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1516 if (unlikely(cfqq
== cfqd
->active_queue
)) {
1517 __cfq_slice_expired(cfqd
, cfqq
, 0);
1518 cfq_schedule_dispatch(cfqd
);
1521 cfq_put_queue(cfqq
);
1524 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1525 struct cfq_io_context
*cic
)
1527 struct io_context
*ioc
= cic
->ioc
;
1529 list_del_init(&cic
->queue_list
);
1532 * Make sure key == NULL is seen for dead queues
1535 cic
->dead_key
= (unsigned long) cic
->key
;
1538 if (ioc
->ioc_data
== cic
)
1539 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
1541 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
1542 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
1543 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
1546 if (cic
->cfqq
[BLK_RW_SYNC
]) {
1547 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
1548 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
1552 static void cfq_exit_single_io_context(struct io_context
*ioc
,
1553 struct cfq_io_context
*cic
)
1555 struct cfq_data
*cfqd
= cic
->key
;
1558 struct request_queue
*q
= cfqd
->queue
;
1559 unsigned long flags
;
1561 spin_lock_irqsave(q
->queue_lock
, flags
);
1564 * Ensure we get a fresh copy of the ->key to prevent
1565 * race between exiting task and queue
1567 smp_read_barrier_depends();
1569 __cfq_exit_single_io_context(cfqd
, cic
);
1571 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1576 * The process that ioc belongs to has exited, we need to clean up
1577 * and put the internal structures we have that belongs to that process.
1579 static void cfq_exit_io_context(struct io_context
*ioc
)
1581 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
1584 static struct cfq_io_context
*
1585 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1587 struct cfq_io_context
*cic
;
1589 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
1592 cic
->last_end_request
= jiffies
;
1593 INIT_LIST_HEAD(&cic
->queue_list
);
1594 INIT_HLIST_NODE(&cic
->cic_list
);
1595 cic
->dtor
= cfq_free_io_context
;
1596 cic
->exit
= cfq_exit_io_context
;
1597 elv_ioc_count_inc(cfq_ioc_count
);
1603 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
1605 struct task_struct
*tsk
= current
;
1608 if (!cfq_cfqq_prio_changed(cfqq
))
1611 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
1612 switch (ioprio_class
) {
1614 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1615 case IOPRIO_CLASS_NONE
:
1617 * no prio set, inherit CPU scheduling settings
1619 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1620 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
1622 case IOPRIO_CLASS_RT
:
1623 cfqq
->ioprio
= task_ioprio(ioc
);
1624 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1626 case IOPRIO_CLASS_BE
:
1627 cfqq
->ioprio
= task_ioprio(ioc
);
1628 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1630 case IOPRIO_CLASS_IDLE
:
1631 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1633 cfq_clear_cfqq_idle_window(cfqq
);
1638 * keep track of original prio settings in case we have to temporarily
1639 * elevate the priority of this queue
1641 cfqq
->org_ioprio
= cfqq
->ioprio
;
1642 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1643 cfq_clear_cfqq_prio_changed(cfqq
);
1646 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1648 struct cfq_data
*cfqd
= cic
->key
;
1649 struct cfq_queue
*cfqq
;
1650 unsigned long flags
;
1652 if (unlikely(!cfqd
))
1655 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1657 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
1659 struct cfq_queue
*new_cfqq
;
1660 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
1663 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
1664 cfq_put_queue(cfqq
);
1668 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
1670 cfq_mark_cfqq_prio_changed(cfqq
);
1672 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1675 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1677 call_for_each_cic(ioc
, changed_ioprio
);
1678 ioc
->ioprio_changed
= 0;
1681 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1682 pid_t pid
, bool is_sync
)
1684 RB_CLEAR_NODE(&cfqq
->rb_node
);
1685 RB_CLEAR_NODE(&cfqq
->p_node
);
1686 INIT_LIST_HEAD(&cfqq
->fifo
);
1688 atomic_set(&cfqq
->ref
, 0);
1691 cfq_mark_cfqq_prio_changed(cfqq
);
1694 if (!cfq_class_idle(cfqq
))
1695 cfq_mark_cfqq_idle_window(cfqq
);
1696 cfq_mark_cfqq_sync(cfqq
);
1701 static struct cfq_queue
*
1702 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
1703 struct io_context
*ioc
, gfp_t gfp_mask
)
1705 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1706 struct cfq_io_context
*cic
;
1709 cic
= cfq_cic_lookup(cfqd
, ioc
);
1710 /* cic always exists here */
1711 cfqq
= cic_to_cfqq(cic
, is_sync
);
1714 * Always try a new alloc if we fell back to the OOM cfqq
1715 * originally, since it should just be a temporary situation.
1717 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
1722 } else if (gfp_mask
& __GFP_WAIT
) {
1723 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1724 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
1725 gfp_mask
| __GFP_ZERO
,
1727 spin_lock_irq(cfqd
->queue
->queue_lock
);
1731 cfqq
= kmem_cache_alloc_node(cfq_pool
,
1732 gfp_mask
| __GFP_ZERO
,
1737 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
1738 cfq_init_prio_data(cfqq
, ioc
);
1739 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
1741 cfqq
= &cfqd
->oom_cfqq
;
1745 kmem_cache_free(cfq_pool
, new_cfqq
);
1750 static struct cfq_queue
**
1751 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
1753 switch (ioprio_class
) {
1754 case IOPRIO_CLASS_RT
:
1755 return &cfqd
->async_cfqq
[0][ioprio
];
1756 case IOPRIO_CLASS_BE
:
1757 return &cfqd
->async_cfqq
[1][ioprio
];
1758 case IOPRIO_CLASS_IDLE
:
1759 return &cfqd
->async_idle_cfqq
;
1765 static struct cfq_queue
*
1766 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
1769 const int ioprio
= task_ioprio(ioc
);
1770 const int ioprio_class
= task_ioprio_class(ioc
);
1771 struct cfq_queue
**async_cfqq
= NULL
;
1772 struct cfq_queue
*cfqq
= NULL
;
1775 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
1780 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
1783 * pin the queue now that it's allocated, scheduler exit will prune it
1785 if (!is_sync
&& !(*async_cfqq
)) {
1786 atomic_inc(&cfqq
->ref
);
1790 atomic_inc(&cfqq
->ref
);
1795 * We drop cfq io contexts lazily, so we may find a dead one.
1798 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1799 struct cfq_io_context
*cic
)
1801 unsigned long flags
;
1803 WARN_ON(!list_empty(&cic
->queue_list
));
1805 spin_lock_irqsave(&ioc
->lock
, flags
);
1807 BUG_ON(ioc
->ioc_data
== cic
);
1809 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
1810 hlist_del_rcu(&cic
->cic_list
);
1811 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1816 static struct cfq_io_context
*
1817 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1819 struct cfq_io_context
*cic
;
1820 unsigned long flags
;
1829 * we maintain a last-hit cache, to avoid browsing over the tree
1831 cic
= rcu_dereference(ioc
->ioc_data
);
1832 if (cic
&& cic
->key
== cfqd
) {
1838 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
1842 /* ->key must be copied to avoid race with cfq_exit_queue() */
1845 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
1850 spin_lock_irqsave(&ioc
->lock
, flags
);
1851 rcu_assign_pointer(ioc
->ioc_data
, cic
);
1852 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1860 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1861 * the process specific cfq io context when entered from the block layer.
1862 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1864 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1865 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
1867 unsigned long flags
;
1870 ret
= radix_tree_preload(gfp_mask
);
1875 spin_lock_irqsave(&ioc
->lock
, flags
);
1876 ret
= radix_tree_insert(&ioc
->radix_root
,
1877 (unsigned long) cfqd
, cic
);
1879 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
1880 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1882 radix_tree_preload_end();
1885 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1886 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1887 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1892 printk(KERN_ERR
"cfq: cic link failed!\n");
1898 * Setup general io context and cfq io context. There can be several cfq
1899 * io contexts per general io context, if this process is doing io to more
1900 * than one device managed by cfq.
1902 static struct cfq_io_context
*
1903 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1905 struct io_context
*ioc
= NULL
;
1906 struct cfq_io_context
*cic
;
1908 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1910 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
1914 cic
= cfq_cic_lookup(cfqd
, ioc
);
1918 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1922 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
1926 smp_read_barrier_depends();
1927 if (unlikely(ioc
->ioprio_changed
))
1928 cfq_ioc_set_ioprio(ioc
);
1934 put_io_context(ioc
);
1939 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1941 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
1942 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1944 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1945 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1946 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1950 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1956 if (!cic
->last_request_pos
)
1958 else if (cic
->last_request_pos
< blk_rq_pos(rq
))
1959 sdist
= blk_rq_pos(rq
) - cic
->last_request_pos
;
1961 sdist
= cic
->last_request_pos
- blk_rq_pos(rq
);
1964 * Don't allow the seek distance to get too large from the
1965 * odd fragment, pagein, etc
1967 if (cic
->seek_samples
<= 60) /* second&third seek */
1968 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1970 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1972 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1973 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1974 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1975 do_div(total
, cic
->seek_samples
);
1976 cic
->seek_mean
= (sector_t
)total
;
1980 * Disable idle window if the process thinks too long or seeks so much that
1984 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1985 struct cfq_io_context
*cic
)
1987 int old_idle
, enable_idle
;
1990 * Don't idle for async or idle io prio class
1992 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
1995 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
1997 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
1998 (!cfqd
->cfq_latency
&& cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
2000 else if (sample_valid(cic
->ttime_samples
)) {
2001 unsigned int slice_idle
= cfqd
->cfq_slice_idle
;
2002 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
2003 slice_idle
= msecs_to_jiffies(CFQ_MIN_TT
);
2004 if (cic
->ttime_mean
> slice_idle
)
2010 if (old_idle
!= enable_idle
) {
2011 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
2013 cfq_mark_cfqq_idle_window(cfqq
);
2015 cfq_clear_cfqq_idle_window(cfqq
);
2020 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2021 * no or if we aren't sure, a 1 will cause a preempt.
2024 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
2027 struct cfq_queue
*cfqq
;
2029 cfqq
= cfqd
->active_queue
;
2033 if (cfq_slice_used(cfqq
))
2036 if (cfq_class_idle(new_cfqq
))
2039 if (cfq_class_idle(cfqq
))
2043 * if the new request is sync, but the currently running queue is
2044 * not, let the sync request have priority.
2046 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
2050 * So both queues are sync. Let the new request get disk time if
2051 * it's a metadata request and the current queue is doing regular IO.
2053 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
2057 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2059 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
2062 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
2066 * if this request is as-good as one we would expect from the
2067 * current cfqq, let it preempt
2069 if (cfq_rq_close(cfqd
, rq
))
2076 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2077 * let it have half of its nominal slice.
2079 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2081 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
2082 cfq_slice_expired(cfqd
, 1);
2085 * Put the new queue at the front of the of the current list,
2086 * so we know that it will be selected next.
2088 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2090 cfq_service_tree_add(cfqd
, cfqq
, 1);
2092 cfqq
->slice_end
= 0;
2093 cfq_mark_cfqq_slice_new(cfqq
);
2097 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2098 * something we should do about it
2101 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2104 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2108 cfqq
->meta_pending
++;
2110 cfq_update_io_thinktime(cfqd
, cic
);
2111 cfq_update_io_seektime(cfqd
, cic
, rq
);
2112 cfq_update_idle_window(cfqd
, cfqq
, cic
);
2114 cic
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
2116 if (cfqq
== cfqd
->active_queue
) {
2118 * Remember that we saw a request from this process, but
2119 * don't start queuing just yet. Otherwise we risk seeing lots
2120 * of tiny requests, because we disrupt the normal plugging
2121 * and merging. If the request is already larger than a single
2122 * page, let it rip immediately. For that case we assume that
2123 * merging is already done. Ditto for a busy system that
2124 * has other work pending, don't risk delaying until the
2125 * idle timer unplug to continue working.
2127 if (cfq_cfqq_wait_request(cfqq
)) {
2128 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
2129 cfqd
->busy_queues
> 1) {
2130 del_timer(&cfqd
->idle_slice_timer
);
2131 __blk_run_queue(cfqd
->queue
);
2133 cfq_mark_cfqq_must_dispatch(cfqq
);
2135 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
2137 * not the active queue - expire current slice if it is
2138 * idle and has expired it's mean thinktime or this new queue
2139 * has some old slice time left and is of higher priority or
2140 * this new queue is RT and the current one is BE
2142 cfq_preempt_queue(cfqd
, cfqq
);
2143 __blk_run_queue(cfqd
->queue
);
2147 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
2149 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2150 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2152 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
2153 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
2157 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
2158 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
2160 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
2164 * Update hw_tag based on peak queue depth over 50 samples under
2167 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
2169 if (rq_in_driver(cfqd
) > cfqd
->rq_in_driver_peak
)
2170 cfqd
->rq_in_driver_peak
= rq_in_driver(cfqd
);
2172 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
2173 rq_in_driver(cfqd
) <= CFQ_HW_QUEUE_MIN
)
2176 if (cfqd
->hw_tag_samples
++ < 50)
2179 if (cfqd
->rq_in_driver_peak
>= CFQ_HW_QUEUE_MIN
)
2184 cfqd
->hw_tag_samples
= 0;
2185 cfqd
->rq_in_driver_peak
= 0;
2188 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
2190 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2191 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2192 const int sync
= rq_is_sync(rq
);
2196 cfq_log_cfqq(cfqd
, cfqq
, "complete");
2198 cfq_update_hw_tag(cfqd
);
2200 WARN_ON(!cfqd
->rq_in_driver
[sync
]);
2201 WARN_ON(!cfqq
->dispatched
);
2202 cfqd
->rq_in_driver
[sync
]--;
2205 if (cfq_cfqq_sync(cfqq
))
2206 cfqd
->sync_flight
--;
2209 RQ_CIC(rq
)->last_end_request
= now
;
2210 cfqd
->last_end_sync_rq
= now
;
2214 * If this is the active queue, check if it needs to be expired,
2215 * or if we want to idle in case it has no pending requests.
2217 if (cfqd
->active_queue
== cfqq
) {
2218 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
2220 if (cfq_cfqq_slice_new(cfqq
)) {
2221 cfq_set_prio_slice(cfqd
, cfqq
);
2222 cfq_clear_cfqq_slice_new(cfqq
);
2225 * If there are no requests waiting in this queue, and
2226 * there are other queues ready to issue requests, AND
2227 * those other queues are issuing requests within our
2228 * mean seek distance, give them a chance to run instead
2231 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
2232 cfq_slice_expired(cfqd
, 1);
2233 else if (cfqq_empty
&& !cfq_close_cooperator(cfqd
, cfqq
, 1) &&
2234 sync
&& !rq_noidle(rq
))
2235 cfq_arm_slice_timer(cfqd
);
2238 if (!rq_in_driver(cfqd
))
2239 cfq_schedule_dispatch(cfqd
);
2243 * we temporarily boost lower priority queues if they are holding fs exclusive
2244 * resources. they are boosted to normal prio (CLASS_BE/4)
2246 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
2248 if (has_fs_excl()) {
2250 * boost idle prio on transactions that would lock out other
2251 * users of the filesystem
2253 if (cfq_class_idle(cfqq
))
2254 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2255 if (cfqq
->ioprio
> IOPRIO_NORM
)
2256 cfqq
->ioprio
= IOPRIO_NORM
;
2259 * check if we need to unboost the queue
2261 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
2262 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
2263 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
2264 cfqq
->ioprio
= cfqq
->org_ioprio
;
2268 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
2270 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
2271 cfq_mark_cfqq_must_alloc_slice(cfqq
);
2272 return ELV_MQUEUE_MUST
;
2275 return ELV_MQUEUE_MAY
;
2278 static int cfq_may_queue(struct request_queue
*q
, int rw
)
2280 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2281 struct task_struct
*tsk
= current
;
2282 struct cfq_io_context
*cic
;
2283 struct cfq_queue
*cfqq
;
2286 * don't force setup of a queue from here, as a call to may_queue
2287 * does not necessarily imply that a request actually will be queued.
2288 * so just lookup a possibly existing queue, or return 'may queue'
2291 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2293 return ELV_MQUEUE_MAY
;
2295 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
2297 cfq_init_prio_data(cfqq
, cic
->ioc
);
2298 cfq_prio_boost(cfqq
);
2300 return __cfq_may_queue(cfqq
);
2303 return ELV_MQUEUE_MAY
;
2307 * queue lock held here
2309 static void cfq_put_request(struct request
*rq
)
2311 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2314 const int rw
= rq_data_dir(rq
);
2316 BUG_ON(!cfqq
->allocated
[rw
]);
2317 cfqq
->allocated
[rw
]--;
2319 put_io_context(RQ_CIC(rq
)->ioc
);
2321 rq
->elevator_private
= NULL
;
2322 rq
->elevator_private2
= NULL
;
2324 cfq_put_queue(cfqq
);
2329 * Allocate cfq data structures associated with this request.
2332 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
2334 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2335 struct cfq_io_context
*cic
;
2336 const int rw
= rq_data_dir(rq
);
2337 const bool is_sync
= rq_is_sync(rq
);
2338 struct cfq_queue
*cfqq
;
2339 unsigned long flags
;
2341 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2343 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
2345 spin_lock_irqsave(q
->queue_lock
, flags
);
2350 cfqq
= cic_to_cfqq(cic
, is_sync
);
2351 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2352 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
2353 cic_set_cfqq(cic
, cfqq
, is_sync
);
2356 cfqq
->allocated
[rw
]++;
2357 atomic_inc(&cfqq
->ref
);
2359 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2361 rq
->elevator_private
= cic
;
2362 rq
->elevator_private2
= cfqq
;
2367 put_io_context(cic
->ioc
);
2369 cfq_schedule_dispatch(cfqd
);
2370 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2371 cfq_log(cfqd
, "set_request fail");
2375 static void cfq_kick_queue(struct work_struct
*work
)
2377 struct cfq_data
*cfqd
=
2378 container_of(work
, struct cfq_data
, unplug_work
);
2379 struct request_queue
*q
= cfqd
->queue
;
2381 spin_lock_irq(q
->queue_lock
);
2382 __blk_run_queue(cfqd
->queue
);
2383 spin_unlock_irq(q
->queue_lock
);
2387 * Timer running if the active_queue is currently idling inside its time slice
2389 static void cfq_idle_slice_timer(unsigned long data
)
2391 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2392 struct cfq_queue
*cfqq
;
2393 unsigned long flags
;
2396 cfq_log(cfqd
, "idle timer fired");
2398 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2400 cfqq
= cfqd
->active_queue
;
2405 * We saw a request before the queue expired, let it through
2407 if (cfq_cfqq_must_dispatch(cfqq
))
2413 if (cfq_slice_used(cfqq
))
2417 * only expire and reinvoke request handler, if there are
2418 * other queues with pending requests
2420 if (!cfqd
->busy_queues
)
2424 * not expired and it has a request pending, let it dispatch
2426 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2430 cfq_slice_expired(cfqd
, timed_out
);
2432 cfq_schedule_dispatch(cfqd
);
2434 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2437 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2439 del_timer_sync(&cfqd
->idle_slice_timer
);
2440 cancel_work_sync(&cfqd
->unplug_work
);
2443 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
2447 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
2448 if (cfqd
->async_cfqq
[0][i
])
2449 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
2450 if (cfqd
->async_cfqq
[1][i
])
2451 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
2454 if (cfqd
->async_idle_cfqq
)
2455 cfq_put_queue(cfqd
->async_idle_cfqq
);
2458 static void cfq_exit_queue(struct elevator_queue
*e
)
2460 struct cfq_data
*cfqd
= e
->elevator_data
;
2461 struct request_queue
*q
= cfqd
->queue
;
2463 cfq_shutdown_timer_wq(cfqd
);
2465 spin_lock_irq(q
->queue_lock
);
2467 if (cfqd
->active_queue
)
2468 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2470 while (!list_empty(&cfqd
->cic_list
)) {
2471 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2472 struct cfq_io_context
,
2475 __cfq_exit_single_io_context(cfqd
, cic
);
2478 cfq_put_async_queues(cfqd
);
2480 spin_unlock_irq(q
->queue_lock
);
2482 cfq_shutdown_timer_wq(cfqd
);
2487 static void *cfq_init_queue(struct request_queue
*q
)
2489 struct cfq_data
*cfqd
;
2492 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
2496 cfqd
->service_tree
= CFQ_RB_ROOT
;
2499 * Not strictly needed (since RB_ROOT just clears the node and we
2500 * zeroed cfqd on alloc), but better be safe in case someone decides
2501 * to add magic to the rb code
2503 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
2504 cfqd
->prio_trees
[i
] = RB_ROOT
;
2507 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2508 * Grab a permanent reference to it, so that the normal code flow
2509 * will not attempt to free it.
2511 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
2512 atomic_inc(&cfqd
->oom_cfqq
.ref
);
2514 INIT_LIST_HEAD(&cfqd
->cic_list
);
2518 init_timer(&cfqd
->idle_slice_timer
);
2519 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2520 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2522 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2524 cfqd
->cfq_quantum
= cfq_quantum
;
2525 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2526 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2527 cfqd
->cfq_back_max
= cfq_back_max
;
2528 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2529 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2530 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2531 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2532 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2533 cfqd
->cfq_latency
= 1;
2535 cfqd
->last_end_sync_rq
= jiffies
;
2539 static void cfq_slab_kill(void)
2542 * Caller already ensured that pending RCU callbacks are completed,
2543 * so we should have no busy allocations at this point.
2546 kmem_cache_destroy(cfq_pool
);
2548 kmem_cache_destroy(cfq_ioc_pool
);
2551 static int __init
cfq_slab_setup(void)
2553 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
2557 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
2568 * sysfs parts below -->
2571 cfq_var_show(unsigned int var
, char *page
)
2573 return sprintf(page
, "%d\n", var
);
2577 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2579 char *p
= (char *) page
;
2581 *var
= simple_strtoul(p
, &p
, 10);
2585 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2586 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2588 struct cfq_data *cfqd = e->elevator_data; \
2589 unsigned int __data = __VAR; \
2591 __data = jiffies_to_msecs(__data); \
2592 return cfq_var_show(__data, (page)); \
2594 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2595 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2596 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2597 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2598 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2599 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2600 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2601 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2602 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2603 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
2604 #undef SHOW_FUNCTION
2606 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2607 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2609 struct cfq_data *cfqd = e->elevator_data; \
2610 unsigned int __data; \
2611 int ret = cfq_var_store(&__data, (page), count); \
2612 if (__data < (MIN)) \
2614 else if (__data > (MAX)) \
2617 *(__PTR) = msecs_to_jiffies(__data); \
2619 *(__PTR) = __data; \
2622 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2623 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
2625 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
2627 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2628 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
2630 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2631 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2632 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2633 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
2635 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
2636 #undef STORE_FUNCTION
2638 #define CFQ_ATTR(name) \
2639 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2641 static struct elv_fs_entry cfq_attrs
[] = {
2643 CFQ_ATTR(fifo_expire_sync
),
2644 CFQ_ATTR(fifo_expire_async
),
2645 CFQ_ATTR(back_seek_max
),
2646 CFQ_ATTR(back_seek_penalty
),
2647 CFQ_ATTR(slice_sync
),
2648 CFQ_ATTR(slice_async
),
2649 CFQ_ATTR(slice_async_rq
),
2650 CFQ_ATTR(slice_idle
),
2651 CFQ_ATTR(low_latency
),
2655 static struct elevator_type iosched_cfq
= {
2657 .elevator_merge_fn
= cfq_merge
,
2658 .elevator_merged_fn
= cfq_merged_request
,
2659 .elevator_merge_req_fn
= cfq_merged_requests
,
2660 .elevator_allow_merge_fn
= cfq_allow_merge
,
2661 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2662 .elevator_add_req_fn
= cfq_insert_request
,
2663 .elevator_activate_req_fn
= cfq_activate_request
,
2664 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2665 .elevator_queue_empty_fn
= cfq_queue_empty
,
2666 .elevator_completed_req_fn
= cfq_completed_request
,
2667 .elevator_former_req_fn
= elv_rb_former_request
,
2668 .elevator_latter_req_fn
= elv_rb_latter_request
,
2669 .elevator_set_req_fn
= cfq_set_request
,
2670 .elevator_put_req_fn
= cfq_put_request
,
2671 .elevator_may_queue_fn
= cfq_may_queue
,
2672 .elevator_init_fn
= cfq_init_queue
,
2673 .elevator_exit_fn
= cfq_exit_queue
,
2674 .trim
= cfq_free_io_context
,
2676 .elevator_attrs
= cfq_attrs
,
2677 .elevator_name
= "cfq",
2678 .elevator_owner
= THIS_MODULE
,
2681 static int __init
cfq_init(void)
2684 * could be 0 on HZ < 1000 setups
2686 if (!cfq_slice_async
)
2687 cfq_slice_async
= 1;
2688 if (!cfq_slice_idle
)
2691 if (cfq_slab_setup())
2694 elv_register(&iosched_cfq
);
2699 static void __exit
cfq_exit(void)
2701 DECLARE_COMPLETION_ONSTACK(all_gone
);
2702 elv_unregister(&iosched_cfq
);
2703 ioc_gone
= &all_gone
;
2704 /* ioc_gone's update must be visible before reading ioc_count */
2708 * this also protects us from entering cfq_slab_kill() with
2709 * pending RCU callbacks
2711 if (elv_ioc_count_read(cfq_ioc_count
))
2712 wait_for_completion(&all_gone
);
2716 module_init(cfq_init
);
2717 module_exit(cfq_exit
);
2719 MODULE_AUTHOR("Jens Axboe");
2720 MODULE_LICENSE("GPL");
2721 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");