ACPI: PCI: follow typical PCI INTx swizzling pattern
[linux-2.6/mini2440.git] / fs / nfs / dir.c
blob3e64b98f3a9337ab241624fc5a544425e7f05e45
1 /*
2 * linux/fs/nfs/dir.c
4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
43 /* #define NFS_DEBUG_VERBOSE 1 */
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, struct dentry *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
60 const struct file_operations nfs_dir_operations = {
61 .llseek = nfs_llseek_dir,
62 .read = generic_read_dir,
63 .readdir = nfs_readdir,
64 .open = nfs_opendir,
65 .release = nfs_release,
66 .fsync = nfs_fsync_dir,
69 const struct inode_operations nfs_dir_inode_operations = {
70 .create = nfs_create,
71 .lookup = nfs_lookup,
72 .link = nfs_link,
73 .unlink = nfs_unlink,
74 .symlink = nfs_symlink,
75 .mkdir = nfs_mkdir,
76 .rmdir = nfs_rmdir,
77 .mknod = nfs_mknod,
78 .rename = nfs_rename,
79 .permission = nfs_permission,
80 .getattr = nfs_getattr,
81 .setattr = nfs_setattr,
84 #ifdef CONFIG_NFS_V3
85 const struct inode_operations nfs3_dir_inode_operations = {
86 .create = nfs_create,
87 .lookup = nfs_lookup,
88 .link = nfs_link,
89 .unlink = nfs_unlink,
90 .symlink = nfs_symlink,
91 .mkdir = nfs_mkdir,
92 .rmdir = nfs_rmdir,
93 .mknod = nfs_mknod,
94 .rename = nfs_rename,
95 .permission = nfs_permission,
96 .getattr = nfs_getattr,
97 .setattr = nfs_setattr,
98 .listxattr = nfs3_listxattr,
99 .getxattr = nfs3_getxattr,
100 .setxattr = nfs3_setxattr,
101 .removexattr = nfs3_removexattr,
103 #endif /* CONFIG_NFS_V3 */
105 #ifdef CONFIG_NFS_V4
107 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
108 const struct inode_operations nfs4_dir_inode_operations = {
109 .create = nfs_create,
110 .lookup = nfs_atomic_lookup,
111 .link = nfs_link,
112 .unlink = nfs_unlink,
113 .symlink = nfs_symlink,
114 .mkdir = nfs_mkdir,
115 .rmdir = nfs_rmdir,
116 .mknod = nfs_mknod,
117 .rename = nfs_rename,
118 .permission = nfs_permission,
119 .getattr = nfs_getattr,
120 .setattr = nfs_setattr,
121 .getxattr = nfs4_getxattr,
122 .setxattr = nfs4_setxattr,
123 .listxattr = nfs4_listxattr,
126 #endif /* CONFIG_NFS_V4 */
129 * Open file
131 static int
132 nfs_opendir(struct inode *inode, struct file *filp)
134 int res;
136 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
137 filp->f_path.dentry->d_parent->d_name.name,
138 filp->f_path.dentry->d_name.name);
140 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
142 /* Call generic open code in order to cache credentials */
143 res = nfs_open(inode, filp);
144 return res;
147 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
148 typedef struct {
149 struct file *file;
150 struct page *page;
151 unsigned long page_index;
152 __be32 *ptr;
153 u64 *dir_cookie;
154 loff_t current_index;
155 struct nfs_entry *entry;
156 decode_dirent_t decode;
157 int plus;
158 unsigned long timestamp;
159 unsigned long gencount;
160 int timestamp_valid;
161 } nfs_readdir_descriptor_t;
163 /* Now we cache directories properly, by stuffing the dirent
164 * data directly in the page cache.
166 * Inode invalidation due to refresh etc. takes care of
167 * _everything_, no sloppy entry flushing logic, no extraneous
168 * copying, network direct to page cache, the way it was meant
169 * to be.
171 * NOTE: Dirent information verification is done always by the
172 * page-in of the RPC reply, nowhere else, this simplies
173 * things substantially.
175 static
176 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
178 struct file *file = desc->file;
179 struct inode *inode = file->f_path.dentry->d_inode;
180 struct rpc_cred *cred = nfs_file_cred(file);
181 unsigned long timestamp, gencount;
182 int error;
184 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
185 __func__, (long long)desc->entry->cookie,
186 page->index);
188 again:
189 timestamp = jiffies;
190 gencount = nfs_inc_attr_generation_counter();
191 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
192 NFS_SERVER(inode)->dtsize, desc->plus);
193 if (error < 0) {
194 /* We requested READDIRPLUS, but the server doesn't grok it */
195 if (error == -ENOTSUPP && desc->plus) {
196 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
197 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
198 desc->plus = 0;
199 goto again;
201 goto error;
203 desc->timestamp = timestamp;
204 desc->gencount = gencount;
205 desc->timestamp_valid = 1;
206 SetPageUptodate(page);
207 /* Ensure consistent page alignment of the data.
208 * Note: assumes we have exclusive access to this mapping either
209 * through inode->i_mutex or some other mechanism.
211 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
212 /* Should never happen */
213 nfs_zap_mapping(inode, inode->i_mapping);
215 unlock_page(page);
216 return 0;
217 error:
218 unlock_page(page);
219 return -EIO;
222 static inline
223 int dir_decode(nfs_readdir_descriptor_t *desc)
225 __be32 *p = desc->ptr;
226 p = desc->decode(p, desc->entry, desc->plus);
227 if (IS_ERR(p))
228 return PTR_ERR(p);
229 desc->ptr = p;
230 if (desc->timestamp_valid) {
231 desc->entry->fattr->time_start = desc->timestamp;
232 desc->entry->fattr->gencount = desc->gencount;
233 } else
234 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
235 return 0;
238 static inline
239 void dir_page_release(nfs_readdir_descriptor_t *desc)
241 kunmap(desc->page);
242 page_cache_release(desc->page);
243 desc->page = NULL;
244 desc->ptr = NULL;
248 * Given a pointer to a buffer that has already been filled by a call
249 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
251 * If the end of the buffer has been reached, return -EAGAIN, if not,
252 * return the offset within the buffer of the next entry to be
253 * read.
255 static inline
256 int find_dirent(nfs_readdir_descriptor_t *desc)
258 struct nfs_entry *entry = desc->entry;
259 int loop_count = 0,
260 status;
262 while((status = dir_decode(desc)) == 0) {
263 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
264 __func__, (unsigned long long)entry->cookie);
265 if (entry->prev_cookie == *desc->dir_cookie)
266 break;
267 if (loop_count++ > 200) {
268 loop_count = 0;
269 schedule();
272 return status;
276 * Given a pointer to a buffer that has already been filled by a call
277 * to readdir, find the entry at offset 'desc->file->f_pos'.
279 * If the end of the buffer has been reached, return -EAGAIN, if not,
280 * return the offset within the buffer of the next entry to be
281 * read.
283 static inline
284 int find_dirent_index(nfs_readdir_descriptor_t *desc)
286 struct nfs_entry *entry = desc->entry;
287 int loop_count = 0,
288 status;
290 for(;;) {
291 status = dir_decode(desc);
292 if (status)
293 break;
295 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
296 (unsigned long long)entry->cookie, desc->current_index);
298 if (desc->file->f_pos == desc->current_index) {
299 *desc->dir_cookie = entry->cookie;
300 break;
302 desc->current_index++;
303 if (loop_count++ > 200) {
304 loop_count = 0;
305 schedule();
308 return status;
312 * Find the given page, and call find_dirent() or find_dirent_index in
313 * order to try to return the next entry.
315 static inline
316 int find_dirent_page(nfs_readdir_descriptor_t *desc)
318 struct inode *inode = desc->file->f_path.dentry->d_inode;
319 struct page *page;
320 int status;
322 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
323 __func__, desc->page_index,
324 (long long) *desc->dir_cookie);
326 /* If we find the page in the page_cache, we cannot be sure
327 * how fresh the data is, so we will ignore readdir_plus attributes.
329 desc->timestamp_valid = 0;
330 page = read_cache_page(inode->i_mapping, desc->page_index,
331 (filler_t *)nfs_readdir_filler, desc);
332 if (IS_ERR(page)) {
333 status = PTR_ERR(page);
334 goto out;
337 /* NOTE: Someone else may have changed the READDIRPLUS flag */
338 desc->page = page;
339 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
340 if (*desc->dir_cookie != 0)
341 status = find_dirent(desc);
342 else
343 status = find_dirent_index(desc);
344 if (status < 0)
345 dir_page_release(desc);
346 out:
347 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
348 return status;
352 * Recurse through the page cache pages, and return a
353 * filled nfs_entry structure of the next directory entry if possible.
355 * The target for the search is '*desc->dir_cookie' if non-0,
356 * 'desc->file->f_pos' otherwise
358 static inline
359 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
361 int loop_count = 0;
362 int res;
364 /* Always search-by-index from the beginning of the cache */
365 if (*desc->dir_cookie == 0) {
366 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
367 (long long)desc->file->f_pos);
368 desc->page_index = 0;
369 desc->entry->cookie = desc->entry->prev_cookie = 0;
370 desc->entry->eof = 0;
371 desc->current_index = 0;
372 } else
373 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
374 (unsigned long long)*desc->dir_cookie);
376 for (;;) {
377 res = find_dirent_page(desc);
378 if (res != -EAGAIN)
379 break;
380 /* Align to beginning of next page */
381 desc->page_index ++;
382 if (loop_count++ > 200) {
383 loop_count = 0;
384 schedule();
388 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
389 return res;
392 static inline unsigned int dt_type(struct inode *inode)
394 return (inode->i_mode >> 12) & 15;
397 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
400 * Once we've found the start of the dirent within a page: fill 'er up...
402 static
403 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
404 filldir_t filldir)
406 struct file *file = desc->file;
407 struct nfs_entry *entry = desc->entry;
408 struct dentry *dentry = NULL;
409 u64 fileid;
410 int loop_count = 0,
411 res;
413 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
414 (unsigned long long)entry->cookie);
416 for(;;) {
417 unsigned d_type = DT_UNKNOWN;
418 /* Note: entry->prev_cookie contains the cookie for
419 * retrieving the current dirent on the server */
420 fileid = entry->ino;
422 /* Get a dentry if we have one */
423 if (dentry != NULL)
424 dput(dentry);
425 dentry = nfs_readdir_lookup(desc);
427 /* Use readdirplus info */
428 if (dentry != NULL && dentry->d_inode != NULL) {
429 d_type = dt_type(dentry->d_inode);
430 fileid = NFS_FILEID(dentry->d_inode);
433 res = filldir(dirent, entry->name, entry->len,
434 file->f_pos, nfs_compat_user_ino64(fileid),
435 d_type);
436 if (res < 0)
437 break;
438 file->f_pos++;
439 *desc->dir_cookie = entry->cookie;
440 if (dir_decode(desc) != 0) {
441 desc->page_index ++;
442 break;
444 if (loop_count++ > 200) {
445 loop_count = 0;
446 schedule();
449 dir_page_release(desc);
450 if (dentry != NULL)
451 dput(dentry);
452 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
453 (unsigned long long)*desc->dir_cookie, res);
454 return res;
458 * If we cannot find a cookie in our cache, we suspect that this is
459 * because it points to a deleted file, so we ask the server to return
460 * whatever it thinks is the next entry. We then feed this to filldir.
461 * If all goes well, we should then be able to find our way round the
462 * cache on the next call to readdir_search_pagecache();
464 * NOTE: we cannot add the anonymous page to the pagecache because
465 * the data it contains might not be page aligned. Besides,
466 * we should already have a complete representation of the
467 * directory in the page cache by the time we get here.
469 static inline
470 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
471 filldir_t filldir)
473 struct file *file = desc->file;
474 struct inode *inode = file->f_path.dentry->d_inode;
475 struct rpc_cred *cred = nfs_file_cred(file);
476 struct page *page = NULL;
477 int status;
478 unsigned long timestamp, gencount;
480 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
481 (unsigned long long)*desc->dir_cookie);
483 page = alloc_page(GFP_HIGHUSER);
484 if (!page) {
485 status = -ENOMEM;
486 goto out;
488 timestamp = jiffies;
489 gencount = nfs_inc_attr_generation_counter();
490 status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
491 *desc->dir_cookie, page,
492 NFS_SERVER(inode)->dtsize,
493 desc->plus);
494 desc->page = page;
495 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
496 if (status >= 0) {
497 desc->timestamp = timestamp;
498 desc->gencount = gencount;
499 desc->timestamp_valid = 1;
500 if ((status = dir_decode(desc)) == 0)
501 desc->entry->prev_cookie = *desc->dir_cookie;
502 } else
503 status = -EIO;
504 if (status < 0)
505 goto out_release;
507 status = nfs_do_filldir(desc, dirent, filldir);
509 /* Reset read descriptor so it searches the page cache from
510 * the start upon the next call to readdir_search_pagecache() */
511 desc->page_index = 0;
512 desc->entry->cookie = desc->entry->prev_cookie = 0;
513 desc->entry->eof = 0;
514 out:
515 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
516 __func__, status);
517 return status;
518 out_release:
519 dir_page_release(desc);
520 goto out;
523 /* The file offset position represents the dirent entry number. A
524 last cookie cache takes care of the common case of reading the
525 whole directory.
527 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
529 struct dentry *dentry = filp->f_path.dentry;
530 struct inode *inode = dentry->d_inode;
531 nfs_readdir_descriptor_t my_desc,
532 *desc = &my_desc;
533 struct nfs_entry my_entry;
534 struct nfs_fh fh;
535 struct nfs_fattr fattr;
536 long res;
538 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
539 dentry->d_parent->d_name.name, dentry->d_name.name,
540 (long long)filp->f_pos);
541 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
544 * filp->f_pos points to the dirent entry number.
545 * *desc->dir_cookie has the cookie for the next entry. We have
546 * to either find the entry with the appropriate number or
547 * revalidate the cookie.
549 memset(desc, 0, sizeof(*desc));
551 desc->file = filp;
552 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
553 desc->decode = NFS_PROTO(inode)->decode_dirent;
554 desc->plus = NFS_USE_READDIRPLUS(inode);
556 my_entry.cookie = my_entry.prev_cookie = 0;
557 my_entry.eof = 0;
558 my_entry.fh = &fh;
559 my_entry.fattr = &fattr;
560 nfs_fattr_init(&fattr);
561 desc->entry = &my_entry;
563 nfs_block_sillyrename(dentry);
564 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
565 if (res < 0)
566 goto out;
568 while(!desc->entry->eof) {
569 res = readdir_search_pagecache(desc);
571 if (res == -EBADCOOKIE) {
572 /* This means either end of directory */
573 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
574 /* Or that the server has 'lost' a cookie */
575 res = uncached_readdir(desc, dirent, filldir);
576 if (res >= 0)
577 continue;
579 res = 0;
580 break;
582 if (res == -ETOOSMALL && desc->plus) {
583 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
584 nfs_zap_caches(inode);
585 desc->plus = 0;
586 desc->entry->eof = 0;
587 continue;
589 if (res < 0)
590 break;
592 res = nfs_do_filldir(desc, dirent, filldir);
593 if (res < 0) {
594 res = 0;
595 break;
598 out:
599 nfs_unblock_sillyrename(dentry);
600 if (res > 0)
601 res = 0;
602 dfprintk(FILE, "NFS: readdir(%s/%s) returns %ld\n",
603 dentry->d_parent->d_name.name, dentry->d_name.name,
604 res);
605 return res;
608 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
610 struct dentry *dentry = filp->f_path.dentry;
611 struct inode *inode = dentry->d_inode;
613 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
614 dentry->d_parent->d_name.name,
615 dentry->d_name.name,
616 offset, origin);
618 mutex_lock(&inode->i_mutex);
619 switch (origin) {
620 case 1:
621 offset += filp->f_pos;
622 case 0:
623 if (offset >= 0)
624 break;
625 default:
626 offset = -EINVAL;
627 goto out;
629 if (offset != filp->f_pos) {
630 filp->f_pos = offset;
631 nfs_file_open_context(filp)->dir_cookie = 0;
633 out:
634 mutex_unlock(&inode->i_mutex);
635 return offset;
639 * All directory operations under NFS are synchronous, so fsync()
640 * is a dummy operation.
642 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
644 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
645 dentry->d_parent->d_name.name, dentry->d_name.name,
646 datasync);
648 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
649 return 0;
653 * nfs_force_lookup_revalidate - Mark the directory as having changed
654 * @dir - pointer to directory inode
656 * This forces the revalidation code in nfs_lookup_revalidate() to do a
657 * full lookup on all child dentries of 'dir' whenever a change occurs
658 * on the server that might have invalidated our dcache.
660 * The caller should be holding dir->i_lock
662 void nfs_force_lookup_revalidate(struct inode *dir)
664 NFS_I(dir)->cache_change_attribute++;
668 * A check for whether or not the parent directory has changed.
669 * In the case it has, we assume that the dentries are untrustworthy
670 * and may need to be looked up again.
672 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
674 if (IS_ROOT(dentry))
675 return 1;
676 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
677 return 0;
678 if (!nfs_verify_change_attribute(dir, dentry->d_time))
679 return 0;
680 /* Revalidate nfsi->cache_change_attribute before we declare a match */
681 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
682 return 0;
683 if (!nfs_verify_change_attribute(dir, dentry->d_time))
684 return 0;
685 return 1;
689 * Return the intent data that applies to this particular path component
691 * Note that the current set of intents only apply to the very last
692 * component of the path.
693 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
695 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
697 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
698 return 0;
699 return nd->flags & mask;
703 * Use intent information to check whether or not we're going to do
704 * an O_EXCL create using this path component.
706 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
708 if (NFS_PROTO(dir)->version == 2)
709 return 0;
710 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
714 * Inode and filehandle revalidation for lookups.
716 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
717 * or if the intent information indicates that we're about to open this
718 * particular file and the "nocto" mount flag is not set.
721 static inline
722 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
724 struct nfs_server *server = NFS_SERVER(inode);
726 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
727 return 0;
728 if (nd != NULL) {
729 /* VFS wants an on-the-wire revalidation */
730 if (nd->flags & LOOKUP_REVAL)
731 goto out_force;
732 /* This is an open(2) */
733 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
734 !(server->flags & NFS_MOUNT_NOCTO) &&
735 (S_ISREG(inode->i_mode) ||
736 S_ISDIR(inode->i_mode)))
737 goto out_force;
738 return 0;
740 return nfs_revalidate_inode(server, inode);
741 out_force:
742 return __nfs_revalidate_inode(server, inode);
746 * We judge how long we want to trust negative
747 * dentries by looking at the parent inode mtime.
749 * If parent mtime has changed, we revalidate, else we wait for a
750 * period corresponding to the parent's attribute cache timeout value.
752 static inline
753 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
754 struct nameidata *nd)
756 /* Don't revalidate a negative dentry if we're creating a new file */
757 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
758 return 0;
759 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
760 return 1;
761 return !nfs_check_verifier(dir, dentry);
765 * This is called every time the dcache has a lookup hit,
766 * and we should check whether we can really trust that
767 * lookup.
769 * NOTE! The hit can be a negative hit too, don't assume
770 * we have an inode!
772 * If the parent directory is seen to have changed, we throw out the
773 * cached dentry and do a new lookup.
775 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
777 struct inode *dir;
778 struct inode *inode;
779 struct dentry *parent;
780 int error;
781 struct nfs_fh fhandle;
782 struct nfs_fattr fattr;
784 parent = dget_parent(dentry);
785 dir = parent->d_inode;
786 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
787 inode = dentry->d_inode;
789 if (!inode) {
790 if (nfs_neg_need_reval(dir, dentry, nd))
791 goto out_bad;
792 goto out_valid;
795 if (is_bad_inode(inode)) {
796 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
797 __func__, dentry->d_parent->d_name.name,
798 dentry->d_name.name);
799 goto out_bad;
802 /* Force a full look up iff the parent directory has changed */
803 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
804 if (nfs_lookup_verify_inode(inode, nd))
805 goto out_zap_parent;
806 goto out_valid;
809 if (NFS_STALE(inode))
810 goto out_bad;
812 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
813 if (error)
814 goto out_bad;
815 if (nfs_compare_fh(NFS_FH(inode), &fhandle))
816 goto out_bad;
817 if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
818 goto out_bad;
820 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
821 out_valid:
822 dput(parent);
823 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
824 __func__, dentry->d_parent->d_name.name,
825 dentry->d_name.name);
826 return 1;
827 out_zap_parent:
828 nfs_zap_caches(dir);
829 out_bad:
830 nfs_mark_for_revalidate(dir);
831 if (inode && S_ISDIR(inode->i_mode)) {
832 /* Purge readdir caches. */
833 nfs_zap_caches(inode);
834 /* If we have submounts, don't unhash ! */
835 if (have_submounts(dentry))
836 goto out_valid;
837 shrink_dcache_parent(dentry);
839 d_drop(dentry);
840 dput(parent);
841 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
842 __func__, dentry->d_parent->d_name.name,
843 dentry->d_name.name);
844 return 0;
848 * This is called from dput() when d_count is going to 0.
850 static int nfs_dentry_delete(struct dentry *dentry)
852 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
853 dentry->d_parent->d_name.name, dentry->d_name.name,
854 dentry->d_flags);
856 /* Unhash any dentry with a stale inode */
857 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
858 return 1;
860 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
861 /* Unhash it, so that ->d_iput() would be called */
862 return 1;
864 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
865 /* Unhash it, so that ancestors of killed async unlink
866 * files will be cleaned up during umount */
867 return 1;
869 return 0;
873 static void nfs_drop_nlink(struct inode *inode)
875 spin_lock(&inode->i_lock);
876 if (inode->i_nlink > 0)
877 drop_nlink(inode);
878 spin_unlock(&inode->i_lock);
882 * Called when the dentry loses inode.
883 * We use it to clean up silly-renamed files.
885 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
887 if (S_ISDIR(inode->i_mode))
888 /* drop any readdir cache as it could easily be old */
889 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
891 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
892 drop_nlink(inode);
893 nfs_complete_unlink(dentry, inode);
895 iput(inode);
898 struct dentry_operations nfs_dentry_operations = {
899 .d_revalidate = nfs_lookup_revalidate,
900 .d_delete = nfs_dentry_delete,
901 .d_iput = nfs_dentry_iput,
904 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
906 struct dentry *res;
907 struct dentry *parent;
908 struct inode *inode = NULL;
909 int error;
910 struct nfs_fh fhandle;
911 struct nfs_fattr fattr;
913 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
914 dentry->d_parent->d_name.name, dentry->d_name.name);
915 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
917 res = ERR_PTR(-ENAMETOOLONG);
918 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
919 goto out;
921 res = ERR_PTR(-ENOMEM);
922 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
925 * If we're doing an exclusive create, optimize away the lookup
926 * but don't hash the dentry.
928 if (nfs_is_exclusive_create(dir, nd)) {
929 d_instantiate(dentry, NULL);
930 res = NULL;
931 goto out;
934 parent = dentry->d_parent;
935 /* Protect against concurrent sillydeletes */
936 nfs_block_sillyrename(parent);
937 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
938 if (error == -ENOENT)
939 goto no_entry;
940 if (error < 0) {
941 res = ERR_PTR(error);
942 goto out_unblock_sillyrename;
944 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
945 res = (struct dentry *)inode;
946 if (IS_ERR(res))
947 goto out_unblock_sillyrename;
949 no_entry:
950 res = d_materialise_unique(dentry, inode);
951 if (res != NULL) {
952 if (IS_ERR(res))
953 goto out_unblock_sillyrename;
954 dentry = res;
956 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
957 out_unblock_sillyrename:
958 nfs_unblock_sillyrename(parent);
959 out:
960 return res;
963 #ifdef CONFIG_NFS_V4
964 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
966 struct dentry_operations nfs4_dentry_operations = {
967 .d_revalidate = nfs_open_revalidate,
968 .d_delete = nfs_dentry_delete,
969 .d_iput = nfs_dentry_iput,
973 * Use intent information to determine whether we need to substitute
974 * the NFSv4-style stateful OPEN for the LOOKUP call
976 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
978 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
979 return 0;
980 /* NFS does not (yet) have a stateful open for directories */
981 if (nd->flags & LOOKUP_DIRECTORY)
982 return 0;
983 /* Are we trying to write to a read only partition? */
984 if (__mnt_is_readonly(nd->path.mnt) &&
985 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
986 return 0;
987 return 1;
990 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
992 struct dentry *res = NULL;
993 int error;
995 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
996 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
998 /* Check that we are indeed trying to open this file */
999 if (!is_atomic_open(dir, nd))
1000 goto no_open;
1002 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1003 res = ERR_PTR(-ENAMETOOLONG);
1004 goto out;
1006 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1008 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1009 * the dentry. */
1010 if (nd->flags & LOOKUP_EXCL) {
1011 d_instantiate(dentry, NULL);
1012 goto out;
1015 /* Open the file on the server */
1016 res = nfs4_atomic_open(dir, dentry, nd);
1017 if (IS_ERR(res)) {
1018 error = PTR_ERR(res);
1019 switch (error) {
1020 /* Make a negative dentry */
1021 case -ENOENT:
1022 res = NULL;
1023 goto out;
1024 /* This turned out not to be a regular file */
1025 case -EISDIR:
1026 case -ENOTDIR:
1027 goto no_open;
1028 case -ELOOP:
1029 if (!(nd->intent.open.flags & O_NOFOLLOW))
1030 goto no_open;
1031 /* case -EINVAL: */
1032 default:
1033 goto out;
1035 } else if (res != NULL)
1036 dentry = res;
1037 out:
1038 return res;
1039 no_open:
1040 return nfs_lookup(dir, dentry, nd);
1043 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1045 struct dentry *parent = NULL;
1046 struct inode *inode = dentry->d_inode;
1047 struct inode *dir;
1048 int openflags, ret = 0;
1050 parent = dget_parent(dentry);
1051 dir = parent->d_inode;
1052 if (!is_atomic_open(dir, nd))
1053 goto no_open;
1054 /* We can't create new files in nfs_open_revalidate(), so we
1055 * optimize away revalidation of negative dentries.
1057 if (inode == NULL) {
1058 if (!nfs_neg_need_reval(dir, dentry, nd))
1059 ret = 1;
1060 goto out;
1063 /* NFS only supports OPEN on regular files */
1064 if (!S_ISREG(inode->i_mode))
1065 goto no_open;
1066 openflags = nd->intent.open.flags;
1067 /* We cannot do exclusive creation on a positive dentry */
1068 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1069 goto no_open;
1070 /* We can't create new files, or truncate existing ones here */
1071 openflags &= ~(O_CREAT|O_TRUNC);
1074 * Note: we're not holding inode->i_mutex and so may be racing with
1075 * operations that change the directory. We therefore save the
1076 * change attribute *before* we do the RPC call.
1078 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1079 out:
1080 dput(parent);
1081 if (!ret)
1082 d_drop(dentry);
1083 return ret;
1084 no_open:
1085 dput(parent);
1086 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1087 return 1;
1088 return nfs_lookup_revalidate(dentry, nd);
1090 #endif /* CONFIG_NFSV4 */
1092 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1094 struct dentry *parent = desc->file->f_path.dentry;
1095 struct inode *dir = parent->d_inode;
1096 struct nfs_entry *entry = desc->entry;
1097 struct dentry *dentry, *alias;
1098 struct qstr name = {
1099 .name = entry->name,
1100 .len = entry->len,
1102 struct inode *inode;
1103 unsigned long verf = nfs_save_change_attribute(dir);
1105 switch (name.len) {
1106 case 2:
1107 if (name.name[0] == '.' && name.name[1] == '.')
1108 return dget_parent(parent);
1109 break;
1110 case 1:
1111 if (name.name[0] == '.')
1112 return dget(parent);
1115 spin_lock(&dir->i_lock);
1116 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1117 spin_unlock(&dir->i_lock);
1118 return NULL;
1120 spin_unlock(&dir->i_lock);
1122 name.hash = full_name_hash(name.name, name.len);
1123 dentry = d_lookup(parent, &name);
1124 if (dentry != NULL) {
1125 /* Is this a positive dentry that matches the readdir info? */
1126 if (dentry->d_inode != NULL &&
1127 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1128 d_mountpoint(dentry))) {
1129 if (!desc->plus || entry->fh->size == 0)
1130 return dentry;
1131 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1132 entry->fh) == 0)
1133 goto out_renew;
1135 /* No, so d_drop to allow one to be created */
1136 d_drop(dentry);
1137 dput(dentry);
1139 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1140 return NULL;
1141 if (name.len > NFS_SERVER(dir)->namelen)
1142 return NULL;
1143 /* Note: caller is already holding the dir->i_mutex! */
1144 dentry = d_alloc(parent, &name);
1145 if (dentry == NULL)
1146 return NULL;
1147 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1148 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1149 if (IS_ERR(inode)) {
1150 dput(dentry);
1151 return NULL;
1154 alias = d_materialise_unique(dentry, inode);
1155 if (alias != NULL) {
1156 dput(dentry);
1157 if (IS_ERR(alias))
1158 return NULL;
1159 dentry = alias;
1162 out_renew:
1163 nfs_set_verifier(dentry, verf);
1164 return dentry;
1168 * Code common to create, mkdir, and mknod.
1170 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1171 struct nfs_fattr *fattr)
1173 struct dentry *parent = dget_parent(dentry);
1174 struct inode *dir = parent->d_inode;
1175 struct inode *inode;
1176 int error = -EACCES;
1178 d_drop(dentry);
1180 /* We may have been initialized further down */
1181 if (dentry->d_inode)
1182 goto out;
1183 if (fhandle->size == 0) {
1184 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1185 if (error)
1186 goto out_error;
1188 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1189 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1190 struct nfs_server *server = NFS_SB(dentry->d_sb);
1191 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1192 if (error < 0)
1193 goto out_error;
1195 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1196 error = PTR_ERR(inode);
1197 if (IS_ERR(inode))
1198 goto out_error;
1199 d_add(dentry, inode);
1200 out:
1201 dput(parent);
1202 return 0;
1203 out_error:
1204 nfs_mark_for_revalidate(dir);
1205 dput(parent);
1206 return error;
1210 * Following a failed create operation, we drop the dentry rather
1211 * than retain a negative dentry. This avoids a problem in the event
1212 * that the operation succeeded on the server, but an error in the
1213 * reply path made it appear to have failed.
1215 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1216 struct nameidata *nd)
1218 struct iattr attr;
1219 int error;
1220 int open_flags = 0;
1222 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1223 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1225 attr.ia_mode = mode;
1226 attr.ia_valid = ATTR_MODE;
1228 if ((nd->flags & LOOKUP_CREATE) != 0)
1229 open_flags = nd->intent.open.flags;
1231 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1232 if (error != 0)
1233 goto out_err;
1234 return 0;
1235 out_err:
1236 d_drop(dentry);
1237 return error;
1241 * See comments for nfs_proc_create regarding failed operations.
1243 static int
1244 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1246 struct iattr attr;
1247 int status;
1249 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1250 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1252 if (!new_valid_dev(rdev))
1253 return -EINVAL;
1255 attr.ia_mode = mode;
1256 attr.ia_valid = ATTR_MODE;
1258 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1259 if (status != 0)
1260 goto out_err;
1261 return 0;
1262 out_err:
1263 d_drop(dentry);
1264 return status;
1268 * See comments for nfs_proc_create regarding failed operations.
1270 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1272 struct iattr attr;
1273 int error;
1275 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1276 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1278 attr.ia_valid = ATTR_MODE;
1279 attr.ia_mode = mode | S_IFDIR;
1281 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1282 if (error != 0)
1283 goto out_err;
1284 return 0;
1285 out_err:
1286 d_drop(dentry);
1287 return error;
1290 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1292 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1293 d_delete(dentry);
1296 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1298 int error;
1300 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1301 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1303 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1304 /* Ensure the VFS deletes this inode */
1305 if (error == 0 && dentry->d_inode != NULL)
1306 clear_nlink(dentry->d_inode);
1307 else if (error == -ENOENT)
1308 nfs_dentry_handle_enoent(dentry);
1310 return error;
1313 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1315 static unsigned int sillycounter;
1316 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2;
1317 const int countersize = sizeof(sillycounter)*2;
1318 const int slen = sizeof(".nfs")+fileidsize+countersize-1;
1319 char silly[slen+1];
1320 struct qstr qsilly;
1321 struct dentry *sdentry;
1322 int error = -EIO;
1324 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1325 dentry->d_parent->d_name.name, dentry->d_name.name,
1326 atomic_read(&dentry->d_count));
1327 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1330 * We don't allow a dentry to be silly-renamed twice.
1332 error = -EBUSY;
1333 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1334 goto out;
1336 sprintf(silly, ".nfs%*.*Lx",
1337 fileidsize, fileidsize,
1338 (unsigned long long)NFS_FILEID(dentry->d_inode));
1340 /* Return delegation in anticipation of the rename */
1341 nfs_inode_return_delegation(dentry->d_inode);
1343 sdentry = NULL;
1344 do {
1345 char *suffix = silly + slen - countersize;
1347 dput(sdentry);
1348 sillycounter++;
1349 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1351 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1352 dentry->d_name.name, silly);
1354 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1356 * N.B. Better to return EBUSY here ... it could be
1357 * dangerous to delete the file while it's in use.
1359 if (IS_ERR(sdentry))
1360 goto out;
1361 } while(sdentry->d_inode != NULL); /* need negative lookup */
1363 qsilly.name = silly;
1364 qsilly.len = strlen(silly);
1365 if (dentry->d_inode) {
1366 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1367 dir, &qsilly);
1368 nfs_mark_for_revalidate(dentry->d_inode);
1369 } else
1370 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1371 dir, &qsilly);
1372 if (!error) {
1373 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1374 d_move(dentry, sdentry);
1375 error = nfs_async_unlink(dir, dentry);
1376 /* If we return 0 we don't unlink */
1378 dput(sdentry);
1379 out:
1380 return error;
1384 * Remove a file after making sure there are no pending writes,
1385 * and after checking that the file has only one user.
1387 * We invalidate the attribute cache and free the inode prior to the operation
1388 * to avoid possible races if the server reuses the inode.
1390 static int nfs_safe_remove(struct dentry *dentry)
1392 struct inode *dir = dentry->d_parent->d_inode;
1393 struct inode *inode = dentry->d_inode;
1394 int error = -EBUSY;
1396 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1397 dentry->d_parent->d_name.name, dentry->d_name.name);
1399 /* If the dentry was sillyrenamed, we simply call d_delete() */
1400 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1401 error = 0;
1402 goto out;
1405 if (inode != NULL) {
1406 nfs_inode_return_delegation(inode);
1407 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1408 /* The VFS may want to delete this inode */
1409 if (error == 0)
1410 nfs_drop_nlink(inode);
1411 nfs_mark_for_revalidate(inode);
1412 } else
1413 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1414 if (error == -ENOENT)
1415 nfs_dentry_handle_enoent(dentry);
1416 out:
1417 return error;
1420 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1421 * belongs to an active ".nfs..." file and we return -EBUSY.
1423 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1425 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1427 int error;
1428 int need_rehash = 0;
1430 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1431 dir->i_ino, dentry->d_name.name);
1433 spin_lock(&dcache_lock);
1434 spin_lock(&dentry->d_lock);
1435 if (atomic_read(&dentry->d_count) > 1) {
1436 spin_unlock(&dentry->d_lock);
1437 spin_unlock(&dcache_lock);
1438 /* Start asynchronous writeout of the inode */
1439 write_inode_now(dentry->d_inode, 0);
1440 error = nfs_sillyrename(dir, dentry);
1441 return error;
1443 if (!d_unhashed(dentry)) {
1444 __d_drop(dentry);
1445 need_rehash = 1;
1447 spin_unlock(&dentry->d_lock);
1448 spin_unlock(&dcache_lock);
1449 error = nfs_safe_remove(dentry);
1450 if (!error || error == -ENOENT) {
1451 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1452 } else if (need_rehash)
1453 d_rehash(dentry);
1454 return error;
1458 * To create a symbolic link, most file systems instantiate a new inode,
1459 * add a page to it containing the path, then write it out to the disk
1460 * using prepare_write/commit_write.
1462 * Unfortunately the NFS client can't create the in-core inode first
1463 * because it needs a file handle to create an in-core inode (see
1464 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1465 * symlink request has completed on the server.
1467 * So instead we allocate a raw page, copy the symname into it, then do
1468 * the SYMLINK request with the page as the buffer. If it succeeds, we
1469 * now have a new file handle and can instantiate an in-core NFS inode
1470 * and move the raw page into its mapping.
1472 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1474 struct pagevec lru_pvec;
1475 struct page *page;
1476 char *kaddr;
1477 struct iattr attr;
1478 unsigned int pathlen = strlen(symname);
1479 int error;
1481 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1482 dir->i_ino, dentry->d_name.name, symname);
1484 if (pathlen > PAGE_SIZE)
1485 return -ENAMETOOLONG;
1487 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1488 attr.ia_valid = ATTR_MODE;
1490 page = alloc_page(GFP_HIGHUSER);
1491 if (!page)
1492 return -ENOMEM;
1494 kaddr = kmap_atomic(page, KM_USER0);
1495 memcpy(kaddr, symname, pathlen);
1496 if (pathlen < PAGE_SIZE)
1497 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1498 kunmap_atomic(kaddr, KM_USER0);
1500 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1501 if (error != 0) {
1502 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1503 dir->i_sb->s_id, dir->i_ino,
1504 dentry->d_name.name, symname, error);
1505 d_drop(dentry);
1506 __free_page(page);
1507 return error;
1511 * No big deal if we can't add this page to the page cache here.
1512 * READLINK will get the missing page from the server if needed.
1514 pagevec_init(&lru_pvec, 0);
1515 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1516 GFP_KERNEL)) {
1517 pagevec_add(&lru_pvec, page);
1518 pagevec_lru_add_file(&lru_pvec);
1519 SetPageUptodate(page);
1520 unlock_page(page);
1521 } else
1522 __free_page(page);
1524 return 0;
1527 static int
1528 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1530 struct inode *inode = old_dentry->d_inode;
1531 int error;
1533 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1534 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1535 dentry->d_parent->d_name.name, dentry->d_name.name);
1537 d_drop(dentry);
1538 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1539 if (error == 0) {
1540 atomic_inc(&inode->i_count);
1541 d_add(dentry, inode);
1543 return error;
1547 * RENAME
1548 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1549 * different file handle for the same inode after a rename (e.g. when
1550 * moving to a different directory). A fail-safe method to do so would
1551 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1552 * rename the old file using the sillyrename stuff. This way, the original
1553 * file in old_dir will go away when the last process iput()s the inode.
1555 * FIXED.
1557 * It actually works quite well. One needs to have the possibility for
1558 * at least one ".nfs..." file in each directory the file ever gets
1559 * moved or linked to which happens automagically with the new
1560 * implementation that only depends on the dcache stuff instead of
1561 * using the inode layer
1563 * Unfortunately, things are a little more complicated than indicated
1564 * above. For a cross-directory move, we want to make sure we can get
1565 * rid of the old inode after the operation. This means there must be
1566 * no pending writes (if it's a file), and the use count must be 1.
1567 * If these conditions are met, we can drop the dentries before doing
1568 * the rename.
1570 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1571 struct inode *new_dir, struct dentry *new_dentry)
1573 struct inode *old_inode = old_dentry->d_inode;
1574 struct inode *new_inode = new_dentry->d_inode;
1575 struct dentry *dentry = NULL, *rehash = NULL;
1576 int error = -EBUSY;
1579 * To prevent any new references to the target during the rename,
1580 * we unhash the dentry and free the inode in advance.
1582 if (!d_unhashed(new_dentry)) {
1583 d_drop(new_dentry);
1584 rehash = new_dentry;
1587 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1588 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1589 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1590 atomic_read(&new_dentry->d_count));
1593 * First check whether the target is busy ... we can't
1594 * safely do _any_ rename if the target is in use.
1596 * For files, make a copy of the dentry and then do a
1597 * silly-rename. If the silly-rename succeeds, the
1598 * copied dentry is hashed and becomes the new target.
1600 if (!new_inode)
1601 goto go_ahead;
1602 if (S_ISDIR(new_inode->i_mode)) {
1603 error = -EISDIR;
1604 if (!S_ISDIR(old_inode->i_mode))
1605 goto out;
1606 } else if (atomic_read(&new_dentry->d_count) > 2) {
1607 int err;
1608 /* copy the target dentry's name */
1609 dentry = d_alloc(new_dentry->d_parent,
1610 &new_dentry->d_name);
1611 if (!dentry)
1612 goto out;
1614 /* silly-rename the existing target ... */
1615 err = nfs_sillyrename(new_dir, new_dentry);
1616 if (!err) {
1617 new_dentry = rehash = dentry;
1618 new_inode = NULL;
1619 /* instantiate the replacement target */
1620 d_instantiate(new_dentry, NULL);
1621 } else if (atomic_read(&new_dentry->d_count) > 1)
1622 /* dentry still busy? */
1623 goto out;
1624 } else
1625 nfs_drop_nlink(new_inode);
1627 go_ahead:
1629 * ... prune child dentries and writebacks if needed.
1631 if (atomic_read(&old_dentry->d_count) > 1) {
1632 if (S_ISREG(old_inode->i_mode))
1633 nfs_wb_all(old_inode);
1634 shrink_dcache_parent(old_dentry);
1636 nfs_inode_return_delegation(old_inode);
1638 if (new_inode != NULL) {
1639 nfs_inode_return_delegation(new_inode);
1640 d_delete(new_dentry);
1643 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1644 new_dir, &new_dentry->d_name);
1645 nfs_mark_for_revalidate(old_inode);
1646 out:
1647 if (rehash)
1648 d_rehash(rehash);
1649 if (!error) {
1650 d_move(old_dentry, new_dentry);
1651 nfs_set_verifier(new_dentry,
1652 nfs_save_change_attribute(new_dir));
1653 } else if (error == -ENOENT)
1654 nfs_dentry_handle_enoent(old_dentry);
1656 /* new dentry created? */
1657 if (dentry)
1658 dput(dentry);
1659 return error;
1662 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1663 static LIST_HEAD(nfs_access_lru_list);
1664 static atomic_long_t nfs_access_nr_entries;
1666 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1668 put_rpccred(entry->cred);
1669 kfree(entry);
1670 smp_mb__before_atomic_dec();
1671 atomic_long_dec(&nfs_access_nr_entries);
1672 smp_mb__after_atomic_dec();
1675 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1677 LIST_HEAD(head);
1678 struct nfs_inode *nfsi;
1679 struct nfs_access_entry *cache;
1681 restart:
1682 spin_lock(&nfs_access_lru_lock);
1683 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1684 struct rw_semaphore *s_umount;
1685 struct inode *inode;
1687 if (nr_to_scan-- == 0)
1688 break;
1689 s_umount = &nfsi->vfs_inode.i_sb->s_umount;
1690 if (!down_read_trylock(s_umount))
1691 continue;
1692 inode = igrab(&nfsi->vfs_inode);
1693 if (inode == NULL) {
1694 up_read(s_umount);
1695 continue;
1697 spin_lock(&inode->i_lock);
1698 if (list_empty(&nfsi->access_cache_entry_lru))
1699 goto remove_lru_entry;
1700 cache = list_entry(nfsi->access_cache_entry_lru.next,
1701 struct nfs_access_entry, lru);
1702 list_move(&cache->lru, &head);
1703 rb_erase(&cache->rb_node, &nfsi->access_cache);
1704 if (!list_empty(&nfsi->access_cache_entry_lru))
1705 list_move_tail(&nfsi->access_cache_inode_lru,
1706 &nfs_access_lru_list);
1707 else {
1708 remove_lru_entry:
1709 list_del_init(&nfsi->access_cache_inode_lru);
1710 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1712 spin_unlock(&inode->i_lock);
1713 spin_unlock(&nfs_access_lru_lock);
1714 iput(inode);
1715 up_read(s_umount);
1716 goto restart;
1718 spin_unlock(&nfs_access_lru_lock);
1719 while (!list_empty(&head)) {
1720 cache = list_entry(head.next, struct nfs_access_entry, lru);
1721 list_del(&cache->lru);
1722 nfs_access_free_entry(cache);
1724 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1727 static void __nfs_access_zap_cache(struct inode *inode)
1729 struct nfs_inode *nfsi = NFS_I(inode);
1730 struct rb_root *root_node = &nfsi->access_cache;
1731 struct rb_node *n, *dispose = NULL;
1732 struct nfs_access_entry *entry;
1734 /* Unhook entries from the cache */
1735 while ((n = rb_first(root_node)) != NULL) {
1736 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1737 rb_erase(n, root_node);
1738 list_del(&entry->lru);
1739 n->rb_left = dispose;
1740 dispose = n;
1742 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1743 spin_unlock(&inode->i_lock);
1745 /* Now kill them all! */
1746 while (dispose != NULL) {
1747 n = dispose;
1748 dispose = n->rb_left;
1749 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1753 void nfs_access_zap_cache(struct inode *inode)
1755 /* Remove from global LRU init */
1756 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1757 spin_lock(&nfs_access_lru_lock);
1758 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1759 spin_unlock(&nfs_access_lru_lock);
1762 spin_lock(&inode->i_lock);
1763 /* This will release the spinlock */
1764 __nfs_access_zap_cache(inode);
1767 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1769 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1770 struct nfs_access_entry *entry;
1772 while (n != NULL) {
1773 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1775 if (cred < entry->cred)
1776 n = n->rb_left;
1777 else if (cred > entry->cred)
1778 n = n->rb_right;
1779 else
1780 return entry;
1782 return NULL;
1785 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1787 struct nfs_inode *nfsi = NFS_I(inode);
1788 struct nfs_access_entry *cache;
1789 int err = -ENOENT;
1791 spin_lock(&inode->i_lock);
1792 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1793 goto out_zap;
1794 cache = nfs_access_search_rbtree(inode, cred);
1795 if (cache == NULL)
1796 goto out;
1797 if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1798 goto out_stale;
1799 res->jiffies = cache->jiffies;
1800 res->cred = cache->cred;
1801 res->mask = cache->mask;
1802 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1803 err = 0;
1804 out:
1805 spin_unlock(&inode->i_lock);
1806 return err;
1807 out_stale:
1808 rb_erase(&cache->rb_node, &nfsi->access_cache);
1809 list_del(&cache->lru);
1810 spin_unlock(&inode->i_lock);
1811 nfs_access_free_entry(cache);
1812 return -ENOENT;
1813 out_zap:
1814 /* This will release the spinlock */
1815 __nfs_access_zap_cache(inode);
1816 return -ENOENT;
1819 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1821 struct nfs_inode *nfsi = NFS_I(inode);
1822 struct rb_root *root_node = &nfsi->access_cache;
1823 struct rb_node **p = &root_node->rb_node;
1824 struct rb_node *parent = NULL;
1825 struct nfs_access_entry *entry;
1827 spin_lock(&inode->i_lock);
1828 while (*p != NULL) {
1829 parent = *p;
1830 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1832 if (set->cred < entry->cred)
1833 p = &parent->rb_left;
1834 else if (set->cred > entry->cred)
1835 p = &parent->rb_right;
1836 else
1837 goto found;
1839 rb_link_node(&set->rb_node, parent, p);
1840 rb_insert_color(&set->rb_node, root_node);
1841 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1842 spin_unlock(&inode->i_lock);
1843 return;
1844 found:
1845 rb_replace_node(parent, &set->rb_node, root_node);
1846 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1847 list_del(&entry->lru);
1848 spin_unlock(&inode->i_lock);
1849 nfs_access_free_entry(entry);
1852 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1854 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1855 if (cache == NULL)
1856 return;
1857 RB_CLEAR_NODE(&cache->rb_node);
1858 cache->jiffies = set->jiffies;
1859 cache->cred = get_rpccred(set->cred);
1860 cache->mask = set->mask;
1862 nfs_access_add_rbtree(inode, cache);
1864 /* Update accounting */
1865 smp_mb__before_atomic_inc();
1866 atomic_long_inc(&nfs_access_nr_entries);
1867 smp_mb__after_atomic_inc();
1869 /* Add inode to global LRU list */
1870 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1871 spin_lock(&nfs_access_lru_lock);
1872 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1873 spin_unlock(&nfs_access_lru_lock);
1877 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1879 struct nfs_access_entry cache;
1880 int status;
1882 status = nfs_access_get_cached(inode, cred, &cache);
1883 if (status == 0)
1884 goto out;
1886 /* Be clever: ask server to check for all possible rights */
1887 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1888 cache.cred = cred;
1889 cache.jiffies = jiffies;
1890 status = NFS_PROTO(inode)->access(inode, &cache);
1891 if (status != 0)
1892 return status;
1893 nfs_access_add_cache(inode, &cache);
1894 out:
1895 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1896 return 0;
1897 return -EACCES;
1900 static int nfs_open_permission_mask(int openflags)
1902 int mask = 0;
1904 if (openflags & FMODE_READ)
1905 mask |= MAY_READ;
1906 if (openflags & FMODE_WRITE)
1907 mask |= MAY_WRITE;
1908 if (openflags & FMODE_EXEC)
1909 mask |= MAY_EXEC;
1910 return mask;
1913 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1915 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1918 int nfs_permission(struct inode *inode, int mask)
1920 struct rpc_cred *cred;
1921 int res = 0;
1923 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1925 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1926 goto out;
1927 /* Is this sys_access() ? */
1928 if (mask & MAY_ACCESS)
1929 goto force_lookup;
1931 switch (inode->i_mode & S_IFMT) {
1932 case S_IFLNK:
1933 goto out;
1934 case S_IFREG:
1935 /* NFSv4 has atomic_open... */
1936 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1937 && (mask & MAY_OPEN))
1938 goto out;
1939 break;
1940 case S_IFDIR:
1942 * Optimize away all write operations, since the server
1943 * will check permissions when we perform the op.
1945 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1946 goto out;
1949 force_lookup:
1950 if (!NFS_PROTO(inode)->access)
1951 goto out_notsup;
1953 cred = rpc_lookup_cred();
1954 if (!IS_ERR(cred)) {
1955 res = nfs_do_access(inode, cred, mask);
1956 put_rpccred(cred);
1957 } else
1958 res = PTR_ERR(cred);
1959 out:
1960 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
1961 res = -EACCES;
1963 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1964 inode->i_sb->s_id, inode->i_ino, mask, res);
1965 return res;
1966 out_notsup:
1967 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1968 if (res == 0)
1969 res = generic_permission(inode, mask, NULL);
1970 goto out;
1974 * Local variables:
1975 * version-control: t
1976 * kept-new-versions: 5
1977 * End: