percpu, module: implement reserved allocation and use it for module percpu variables
[linux-2.6/mini2440.git] / arch / x86 / kernel / setup_percpu.c
blobdd4eabc747c8ae13096d7508a050b4c12544785b
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/init.h>
4 #include <linux/bootmem.h>
5 #include <linux/percpu.h>
6 #include <linux/kexec.h>
7 #include <linux/crash_dump.h>
8 #include <linux/smp.h>
9 #include <linux/topology.h>
10 #include <linux/pfn.h>
11 #include <asm/sections.h>
12 #include <asm/processor.h>
13 #include <asm/setup.h>
14 #include <asm/mpspec.h>
15 #include <asm/apicdef.h>
16 #include <asm/highmem.h>
17 #include <asm/proto.h>
18 #include <asm/cpumask.h>
19 #include <asm/cpu.h>
20 #include <asm/stackprotector.h>
22 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
23 # define DBG(x...) printk(KERN_DEBUG x)
24 #else
25 # define DBG(x...)
26 #endif
28 DEFINE_PER_CPU(int, cpu_number);
29 EXPORT_PER_CPU_SYMBOL(cpu_number);
31 #ifdef CONFIG_X86_64
32 #define BOOT_PERCPU_OFFSET ((unsigned long)__per_cpu_load)
33 #else
34 #define BOOT_PERCPU_OFFSET 0
35 #endif
37 DEFINE_PER_CPU(unsigned long, this_cpu_off) = BOOT_PERCPU_OFFSET;
38 EXPORT_PER_CPU_SYMBOL(this_cpu_off);
40 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly = {
41 [0 ... NR_CPUS-1] = BOOT_PERCPU_OFFSET,
43 EXPORT_SYMBOL(__per_cpu_offset);
45 /**
46 * pcpu_need_numa - determine percpu allocation needs to consider NUMA
48 * If NUMA is not configured or there is only one NUMA node available,
49 * there is no reason to consider NUMA. This function determines
50 * whether percpu allocation should consider NUMA or not.
52 * RETURNS:
53 * true if NUMA should be considered; otherwise, false.
55 static bool __init pcpu_need_numa(void)
57 #ifdef CONFIG_NEED_MULTIPLE_NODES
58 pg_data_t *last = NULL;
59 unsigned int cpu;
61 for_each_possible_cpu(cpu) {
62 int node = early_cpu_to_node(cpu);
64 if (node_online(node) && NODE_DATA(node) &&
65 last && last != NODE_DATA(node))
66 return true;
68 last = NODE_DATA(node);
70 #endif
71 return false;
74 /**
75 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
76 * @cpu: cpu to allocate for
77 * @size: size allocation in bytes
78 * @align: alignment
80 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
81 * does the right thing for NUMA regardless of the current
82 * configuration.
84 * RETURNS:
85 * Pointer to the allocated area on success, NULL on failure.
87 static void * __init pcpu_alloc_bootmem(unsigned int cpu, unsigned long size,
88 unsigned long align)
90 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
91 #ifdef CONFIG_NEED_MULTIPLE_NODES
92 int node = early_cpu_to_node(cpu);
93 void *ptr;
95 if (!node_online(node) || !NODE_DATA(node)) {
96 ptr = __alloc_bootmem_nopanic(size, align, goal);
97 pr_info("cpu %d has no node %d or node-local memory\n",
98 cpu, node);
99 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
100 cpu, size, __pa(ptr));
101 } else {
102 ptr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
103 size, align, goal);
104 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
105 "%016lx\n", cpu, size, node, __pa(ptr));
107 return ptr;
108 #else
109 return __alloc_bootmem_nopanic(size, align, goal);
110 #endif
114 * Remap allocator
116 * This allocator uses PMD page as unit. A PMD page is allocated for
117 * each cpu and each is remapped into vmalloc area using PMD mapping.
118 * As PMD page is quite large, only part of it is used for the first
119 * chunk. Unused part is returned to the bootmem allocator.
121 * So, the PMD pages are mapped twice - once to the physical mapping
122 * and to the vmalloc area for the first percpu chunk. The double
123 * mapping does add one more PMD TLB entry pressure but still is much
124 * better than only using 4k mappings while still being NUMA friendly.
126 #ifdef CONFIG_NEED_MULTIPLE_NODES
127 static size_t pcpur_size __initdata;
128 static void **pcpur_ptrs __initdata;
130 static struct page * __init pcpur_get_page(unsigned int cpu, int pageno)
132 size_t off = (size_t)pageno << PAGE_SHIFT;
134 if (off >= pcpur_size)
135 return NULL;
137 return virt_to_page(pcpur_ptrs[cpu] + off);
140 static ssize_t __init setup_pcpu_remap(size_t static_size)
142 static struct vm_struct vm;
143 pg_data_t *last;
144 size_t ptrs_size;
145 unsigned int cpu;
146 ssize_t ret;
149 * If large page isn't supported, there's no benefit in doing
150 * this. Also, on non-NUMA, embedding is better.
152 if (!cpu_has_pse || pcpu_need_numa())
153 return -EINVAL;
155 last = NULL;
156 for_each_possible_cpu(cpu) {
157 int node = early_cpu_to_node(cpu);
159 if (node_online(node) && NODE_DATA(node) &&
160 last && last != NODE_DATA(node))
161 goto proceed;
163 last = NODE_DATA(node);
165 return -EINVAL;
167 proceed:
169 * Currently supports only single page. Supporting multiple
170 * pages won't be too difficult if it ever becomes necessary.
172 pcpur_size = PFN_ALIGN(static_size + PERCPU_DYNAMIC_RESERVE);
173 if (pcpur_size > PMD_SIZE) {
174 pr_warning("PERCPU: static data is larger than large page, "
175 "can't use large page\n");
176 return -EINVAL;
179 /* allocate pointer array and alloc large pages */
180 ptrs_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpur_ptrs[0]));
181 pcpur_ptrs = alloc_bootmem(ptrs_size);
183 for_each_possible_cpu(cpu) {
184 pcpur_ptrs[cpu] = pcpu_alloc_bootmem(cpu, PMD_SIZE, PMD_SIZE);
185 if (!pcpur_ptrs[cpu])
186 goto enomem;
189 * Only use pcpur_size bytes and give back the rest.
191 * Ingo: The 2MB up-rounding bootmem is needed to make
192 * sure the partial 2MB page is still fully RAM - it's
193 * not well-specified to have a PAT-incompatible area
194 * (unmapped RAM, device memory, etc.) in that hole.
196 free_bootmem(__pa(pcpur_ptrs[cpu] + pcpur_size),
197 PMD_SIZE - pcpur_size);
199 memcpy(pcpur_ptrs[cpu], __per_cpu_load, static_size);
202 /* allocate address and map */
203 vm.flags = VM_ALLOC;
204 vm.size = num_possible_cpus() * PMD_SIZE;
205 vm_area_register_early(&vm, PMD_SIZE);
207 for_each_possible_cpu(cpu) {
208 pmd_t *pmd;
210 pmd = populate_extra_pmd((unsigned long)vm.addr
211 + cpu * PMD_SIZE);
212 set_pmd(pmd, pfn_pmd(page_to_pfn(virt_to_page(pcpur_ptrs[cpu])),
213 PAGE_KERNEL_LARGE));
216 /* we're ready, commit */
217 pr_info("PERCPU: Remapped at %p with large pages, static data "
218 "%zu bytes\n", vm.addr, static_size);
220 ret = pcpu_setup_first_chunk(pcpur_get_page, static_size, 0, PMD_SIZE,
221 pcpur_size - static_size, vm.addr, NULL);
222 goto out_free_ar;
224 enomem:
225 for_each_possible_cpu(cpu)
226 if (pcpur_ptrs[cpu])
227 free_bootmem(__pa(pcpur_ptrs[cpu]), PMD_SIZE);
228 ret = -ENOMEM;
229 out_free_ar:
230 free_bootmem(__pa(pcpur_ptrs), ptrs_size);
231 return ret;
233 #else
234 static ssize_t __init setup_pcpu_remap(size_t static_size)
236 return -EINVAL;
238 #endif
241 * Embedding allocator
243 * The first chunk is sized to just contain the static area plus
244 * module and dynamic reserves, and allocated as a contiguous area
245 * using bootmem allocator and used as-is without being mapped into
246 * vmalloc area. This enables the first chunk to piggy back on the
247 * linear physical PMD mapping and doesn't add any additional pressure
248 * to TLB. Note that if the needed size is smaller than the minimum
249 * unit size, the leftover is returned to the bootmem allocator.
251 static void *pcpue_ptr __initdata;
252 static size_t pcpue_size __initdata;
253 static size_t pcpue_unit_size __initdata;
255 static struct page * __init pcpue_get_page(unsigned int cpu, int pageno)
257 size_t off = (size_t)pageno << PAGE_SHIFT;
259 if (off >= pcpue_size)
260 return NULL;
262 return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off);
265 static ssize_t __init setup_pcpu_embed(size_t static_size)
267 unsigned int cpu;
268 size_t dyn_size;
271 * If large page isn't supported, there's no benefit in doing
272 * this. Also, embedding allocation doesn't play well with
273 * NUMA.
275 if (!cpu_has_pse || pcpu_need_numa())
276 return -EINVAL;
278 /* allocate and copy */
279 pcpue_size = PFN_ALIGN(static_size + PERCPU_DYNAMIC_RESERVE);
280 pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE);
281 dyn_size = pcpue_size - static_size;
283 pcpue_ptr = pcpu_alloc_bootmem(0, num_possible_cpus() * pcpue_unit_size,
284 PAGE_SIZE);
285 if (!pcpue_ptr)
286 return -ENOMEM;
288 for_each_possible_cpu(cpu) {
289 void *ptr = pcpue_ptr + cpu * pcpue_unit_size;
291 free_bootmem(__pa(ptr + pcpue_size),
292 pcpue_unit_size - pcpue_size);
293 memcpy(ptr, __per_cpu_load, static_size);
296 /* we're ready, commit */
297 pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
298 pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size);
300 return pcpu_setup_first_chunk(pcpue_get_page, static_size, 0,
301 pcpue_unit_size, dyn_size,
302 pcpue_ptr, NULL);
306 * 4k page allocator
308 * This is the basic allocator. Static percpu area is allocated
309 * page-by-page and most of initialization is done by the generic
310 * setup function.
312 static struct page **pcpu4k_pages __initdata;
313 static int pcpu4k_nr_static_pages __initdata;
315 static struct page * __init pcpu4k_get_page(unsigned int cpu, int pageno)
317 if (pageno < pcpu4k_nr_static_pages)
318 return pcpu4k_pages[cpu * pcpu4k_nr_static_pages + pageno];
319 return NULL;
322 static void __init pcpu4k_populate_pte(unsigned long addr)
324 populate_extra_pte(addr);
327 static ssize_t __init setup_pcpu_4k(size_t static_size)
329 size_t pages_size;
330 unsigned int cpu;
331 int i, j;
332 ssize_t ret;
334 pcpu4k_nr_static_pages = PFN_UP(static_size);
336 /* unaligned allocations can't be freed, round up to page size */
337 pages_size = PFN_ALIGN(pcpu4k_nr_static_pages * num_possible_cpus()
338 * sizeof(pcpu4k_pages[0]));
339 pcpu4k_pages = alloc_bootmem(pages_size);
341 /* allocate and copy */
342 j = 0;
343 for_each_possible_cpu(cpu)
344 for (i = 0; i < pcpu4k_nr_static_pages; i++) {
345 void *ptr;
347 ptr = pcpu_alloc_bootmem(cpu, PAGE_SIZE, PAGE_SIZE);
348 if (!ptr)
349 goto enomem;
351 memcpy(ptr, __per_cpu_load + i * PAGE_SIZE, PAGE_SIZE);
352 pcpu4k_pages[j++] = virt_to_page(ptr);
355 /* we're ready, commit */
356 pr_info("PERCPU: Allocated %d 4k pages, static data %zu bytes\n",
357 pcpu4k_nr_static_pages, static_size);
359 ret = pcpu_setup_first_chunk(pcpu4k_get_page, static_size, 0, -1, -1,
360 NULL, pcpu4k_populate_pte);
361 goto out_free_ar;
363 enomem:
364 while (--j >= 0)
365 free_bootmem(__pa(page_address(pcpu4k_pages[j])), PAGE_SIZE);
366 ret = -ENOMEM;
367 out_free_ar:
368 free_bootmem(__pa(pcpu4k_pages), pages_size);
369 return ret;
372 static inline void setup_percpu_segment(int cpu)
374 #ifdef CONFIG_X86_32
375 struct desc_struct gdt;
377 pack_descriptor(&gdt, per_cpu_offset(cpu), 0xFFFFF,
378 0x2 | DESCTYPE_S, 0x8);
379 gdt.s = 1;
380 write_gdt_entry(get_cpu_gdt_table(cpu),
381 GDT_ENTRY_PERCPU, &gdt, DESCTYPE_S);
382 #endif
386 * Great future plan:
387 * Declare PDA itself and support (irqstack,tss,pgd) as per cpu data.
388 * Always point %gs to its beginning
390 void __init setup_per_cpu_areas(void)
392 size_t static_size = __per_cpu_end - __per_cpu_start;
393 unsigned int cpu;
394 unsigned long delta;
395 size_t pcpu_unit_size;
396 ssize_t ret;
398 pr_info("NR_CPUS:%d nr_cpumask_bits:%d nr_cpu_ids:%d nr_node_ids:%d\n",
399 NR_CPUS, nr_cpumask_bits, nr_cpu_ids, nr_node_ids);
402 * Allocate percpu area. If PSE is supported, try to make use
403 * of large page mappings. Please read comments on top of
404 * each allocator for details.
406 ret = setup_pcpu_remap(static_size);
407 if (ret < 0)
408 ret = setup_pcpu_embed(static_size);
409 if (ret < 0)
410 ret = setup_pcpu_4k(static_size);
411 if (ret < 0)
412 panic("cannot allocate static percpu area (%zu bytes, err=%zd)",
413 static_size, ret);
415 pcpu_unit_size = ret;
417 /* alrighty, percpu areas up and running */
418 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
419 for_each_possible_cpu(cpu) {
420 per_cpu_offset(cpu) = delta + cpu * pcpu_unit_size;
421 per_cpu(this_cpu_off, cpu) = per_cpu_offset(cpu);
422 per_cpu(cpu_number, cpu) = cpu;
423 setup_percpu_segment(cpu);
424 setup_stack_canary_segment(cpu);
426 * Copy data used in early init routines from the
427 * initial arrays to the per cpu data areas. These
428 * arrays then become expendable and the *_early_ptr's
429 * are zeroed indicating that the static arrays are
430 * gone.
432 #ifdef CONFIG_X86_LOCAL_APIC
433 per_cpu(x86_cpu_to_apicid, cpu) =
434 early_per_cpu_map(x86_cpu_to_apicid, cpu);
435 per_cpu(x86_bios_cpu_apicid, cpu) =
436 early_per_cpu_map(x86_bios_cpu_apicid, cpu);
437 #endif
438 #ifdef CONFIG_X86_64
439 per_cpu(irq_stack_ptr, cpu) =
440 per_cpu(irq_stack_union.irq_stack, cpu) +
441 IRQ_STACK_SIZE - 64;
442 #ifdef CONFIG_NUMA
443 per_cpu(x86_cpu_to_node_map, cpu) =
444 early_per_cpu_map(x86_cpu_to_node_map, cpu);
445 #endif
446 #endif
448 * Up to this point, the boot CPU has been using .data.init
449 * area. Reload any changed state for the boot CPU.
451 if (cpu == boot_cpu_id)
452 switch_to_new_gdt(cpu);
455 /* indicate the early static arrays will soon be gone */
456 #ifdef CONFIG_X86_LOCAL_APIC
457 early_per_cpu_ptr(x86_cpu_to_apicid) = NULL;
458 early_per_cpu_ptr(x86_bios_cpu_apicid) = NULL;
459 #endif
460 #if defined(CONFIG_X86_64) && defined(CONFIG_NUMA)
461 early_per_cpu_ptr(x86_cpu_to_node_map) = NULL;
462 #endif
464 /* Setup node to cpumask map */
465 setup_node_to_cpumask_map();
467 /* Setup cpu initialized, callin, callout masks */
468 setup_cpu_local_masks();