ACPI: fix "Time Problems with 2.6.23-rc1-gf695baf2"
[linux-2.6/mini2440.git] / mm / memory.c
blobca8cac11bd2cf4930533f306a0209bbbea0e9c31
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/tlb.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr;
66 struct page *mem_map;
68 EXPORT_SYMBOL(max_mapnr);
69 EXPORT_SYMBOL(mem_map);
70 #endif
72 unsigned long num_physpages;
74 * A number of key systems in x86 including ioremap() rely on the assumption
75 * that high_memory defines the upper bound on direct map memory, then end
76 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78 * and ZONE_HIGHMEM.
80 void * high_memory;
82 EXPORT_SYMBOL(num_physpages);
83 EXPORT_SYMBOL(high_memory);
85 int randomize_va_space __read_mostly = 1;
87 static int __init disable_randmaps(char *s)
89 randomize_va_space = 0;
90 return 1;
92 __setup("norandmaps", disable_randmaps);
96 * If a p?d_bad entry is found while walking page tables, report
97 * the error, before resetting entry to p?d_none. Usually (but
98 * very seldom) called out from the p?d_none_or_clear_bad macros.
101 void pgd_clear_bad(pgd_t *pgd)
103 pgd_ERROR(*pgd);
104 pgd_clear(pgd);
107 void pud_clear_bad(pud_t *pud)
109 pud_ERROR(*pud);
110 pud_clear(pud);
113 void pmd_clear_bad(pmd_t *pmd)
115 pmd_ERROR(*pmd);
116 pmd_clear(pmd);
120 * Note: this doesn't free the actual pages themselves. That
121 * has been handled earlier when unmapping all the memory regions.
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
125 struct page *page = pmd_page(*pmd);
126 pmd_clear(pmd);
127 pte_lock_deinit(page);
128 pte_free_tlb(tlb, page);
129 dec_zone_page_state(page, NR_PAGETABLE);
130 tlb->mm->nr_ptes--;
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134 unsigned long addr, unsigned long end,
135 unsigned long floor, unsigned long ceiling)
137 pmd_t *pmd;
138 unsigned long next;
139 unsigned long start;
141 start = addr;
142 pmd = pmd_offset(pud, addr);
143 do {
144 next = pmd_addr_end(addr, end);
145 if (pmd_none_or_clear_bad(pmd))
146 continue;
147 free_pte_range(tlb, pmd);
148 } while (pmd++, addr = next, addr != end);
150 start &= PUD_MASK;
151 if (start < floor)
152 return;
153 if (ceiling) {
154 ceiling &= PUD_MASK;
155 if (!ceiling)
156 return;
158 if (end - 1 > ceiling - 1)
159 return;
161 pmd = pmd_offset(pud, start);
162 pud_clear(pud);
163 pmd_free_tlb(tlb, pmd);
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167 unsigned long addr, unsigned long end,
168 unsigned long floor, unsigned long ceiling)
170 pud_t *pud;
171 unsigned long next;
172 unsigned long start;
174 start = addr;
175 pud = pud_offset(pgd, addr);
176 do {
177 next = pud_addr_end(addr, end);
178 if (pud_none_or_clear_bad(pud))
179 continue;
180 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181 } while (pud++, addr = next, addr != end);
183 start &= PGDIR_MASK;
184 if (start < floor)
185 return;
186 if (ceiling) {
187 ceiling &= PGDIR_MASK;
188 if (!ceiling)
189 return;
191 if (end - 1 > ceiling - 1)
192 return;
194 pud = pud_offset(pgd, start);
195 pgd_clear(pgd);
196 pud_free_tlb(tlb, pud);
200 * This function frees user-level page tables of a process.
202 * Must be called with pagetable lock held.
204 void free_pgd_range(struct mmu_gather **tlb,
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
208 pgd_t *pgd;
209 unsigned long next;
210 unsigned long start;
213 * The next few lines have given us lots of grief...
215 * Why are we testing PMD* at this top level? Because often
216 * there will be no work to do at all, and we'd prefer not to
217 * go all the way down to the bottom just to discover that.
219 * Why all these "- 1"s? Because 0 represents both the bottom
220 * of the address space and the top of it (using -1 for the
221 * top wouldn't help much: the masks would do the wrong thing).
222 * The rule is that addr 0 and floor 0 refer to the bottom of
223 * the address space, but end 0 and ceiling 0 refer to the top
224 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 * that end 0 case should be mythical).
227 * Wherever addr is brought up or ceiling brought down, we must
228 * be careful to reject "the opposite 0" before it confuses the
229 * subsequent tests. But what about where end is brought down
230 * by PMD_SIZE below? no, end can't go down to 0 there.
232 * Whereas we round start (addr) and ceiling down, by different
233 * masks at different levels, in order to test whether a table
234 * now has no other vmas using it, so can be freed, we don't
235 * bother to round floor or end up - the tests don't need that.
238 addr &= PMD_MASK;
239 if (addr < floor) {
240 addr += PMD_SIZE;
241 if (!addr)
242 return;
244 if (ceiling) {
245 ceiling &= PMD_MASK;
246 if (!ceiling)
247 return;
249 if (end - 1 > ceiling - 1)
250 end -= PMD_SIZE;
251 if (addr > end - 1)
252 return;
254 start = addr;
255 pgd = pgd_offset((*tlb)->mm, addr);
256 do {
257 next = pgd_addr_end(addr, end);
258 if (pgd_none_or_clear_bad(pgd))
259 continue;
260 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261 } while (pgd++, addr = next, addr != end);
263 if (!(*tlb)->fullmm)
264 flush_tlb_pgtables((*tlb)->mm, start, end);
267 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
268 unsigned long floor, unsigned long ceiling)
270 while (vma) {
271 struct vm_area_struct *next = vma->vm_next;
272 unsigned long addr = vma->vm_start;
275 * Hide vma from rmap and vmtruncate before freeing pgtables
277 anon_vma_unlink(vma);
278 unlink_file_vma(vma);
280 if (is_vm_hugetlb_page(vma)) {
281 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
282 floor, next? next->vm_start: ceiling);
283 } else {
285 * Optimization: gather nearby vmas into one call down
287 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
288 && !is_vm_hugetlb_page(next)) {
289 vma = next;
290 next = vma->vm_next;
291 anon_vma_unlink(vma);
292 unlink_file_vma(vma);
294 free_pgd_range(tlb, addr, vma->vm_end,
295 floor, next? next->vm_start: ceiling);
297 vma = next;
301 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
303 struct page *new = pte_alloc_one(mm, address);
304 if (!new)
305 return -ENOMEM;
307 pte_lock_init(new);
308 spin_lock(&mm->page_table_lock);
309 if (pmd_present(*pmd)) { /* Another has populated it */
310 pte_lock_deinit(new);
311 pte_free(new);
312 } else {
313 mm->nr_ptes++;
314 inc_zone_page_state(new, NR_PAGETABLE);
315 pmd_populate(mm, pmd, new);
317 spin_unlock(&mm->page_table_lock);
318 return 0;
321 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
323 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
324 if (!new)
325 return -ENOMEM;
327 spin_lock(&init_mm.page_table_lock);
328 if (pmd_present(*pmd)) /* Another has populated it */
329 pte_free_kernel(new);
330 else
331 pmd_populate_kernel(&init_mm, pmd, new);
332 spin_unlock(&init_mm.page_table_lock);
333 return 0;
336 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
338 if (file_rss)
339 add_mm_counter(mm, file_rss, file_rss);
340 if (anon_rss)
341 add_mm_counter(mm, anon_rss, anon_rss);
345 * This function is called to print an error when a bad pte
346 * is found. For example, we might have a PFN-mapped pte in
347 * a region that doesn't allow it.
349 * The calling function must still handle the error.
351 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
353 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
354 "vm_flags = %lx, vaddr = %lx\n",
355 (long long)pte_val(pte),
356 (vma->vm_mm == current->mm ? current->comm : "???"),
357 vma->vm_flags, vaddr);
358 dump_stack();
361 static inline int is_cow_mapping(unsigned int flags)
363 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
367 * This function gets the "struct page" associated with a pte.
369 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
370 * will have each page table entry just pointing to a raw page frame
371 * number, and as far as the VM layer is concerned, those do not have
372 * pages associated with them - even if the PFN might point to memory
373 * that otherwise is perfectly fine and has a "struct page".
375 * The way we recognize those mappings is through the rules set up
376 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
377 * and the vm_pgoff will point to the first PFN mapped: thus every
378 * page that is a raw mapping will always honor the rule
380 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
382 * and if that isn't true, the page has been COW'ed (in which case it
383 * _does_ have a "struct page" associated with it even if it is in a
384 * VM_PFNMAP range).
386 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
388 unsigned long pfn = pte_pfn(pte);
390 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
391 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
392 if (pfn == vma->vm_pgoff + off)
393 return NULL;
394 if (!is_cow_mapping(vma->vm_flags))
395 return NULL;
399 * Add some anal sanity checks for now. Eventually,
400 * we should just do "return pfn_to_page(pfn)", but
401 * in the meantime we check that we get a valid pfn,
402 * and that the resulting page looks ok.
404 if (unlikely(!pfn_valid(pfn))) {
405 print_bad_pte(vma, pte, addr);
406 return NULL;
410 * NOTE! We still have PageReserved() pages in the page
411 * tables.
413 * The PAGE_ZERO() pages and various VDSO mappings can
414 * cause them to exist.
416 return pfn_to_page(pfn);
420 * copy one vm_area from one task to the other. Assumes the page tables
421 * already present in the new task to be cleared in the whole range
422 * covered by this vma.
425 static inline void
426 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
427 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
428 unsigned long addr, int *rss)
430 unsigned long vm_flags = vma->vm_flags;
431 pte_t pte = *src_pte;
432 struct page *page;
434 /* pte contains position in swap or file, so copy. */
435 if (unlikely(!pte_present(pte))) {
436 if (!pte_file(pte)) {
437 swp_entry_t entry = pte_to_swp_entry(pte);
439 swap_duplicate(entry);
440 /* make sure dst_mm is on swapoff's mmlist. */
441 if (unlikely(list_empty(&dst_mm->mmlist))) {
442 spin_lock(&mmlist_lock);
443 if (list_empty(&dst_mm->mmlist))
444 list_add(&dst_mm->mmlist,
445 &src_mm->mmlist);
446 spin_unlock(&mmlist_lock);
448 if (is_write_migration_entry(entry) &&
449 is_cow_mapping(vm_flags)) {
451 * COW mappings require pages in both parent
452 * and child to be set to read.
454 make_migration_entry_read(&entry);
455 pte = swp_entry_to_pte(entry);
456 set_pte_at(src_mm, addr, src_pte, pte);
459 goto out_set_pte;
463 * If it's a COW mapping, write protect it both
464 * in the parent and the child
466 if (is_cow_mapping(vm_flags)) {
467 ptep_set_wrprotect(src_mm, addr, src_pte);
468 pte = pte_wrprotect(pte);
472 * If it's a shared mapping, mark it clean in
473 * the child
475 if (vm_flags & VM_SHARED)
476 pte = pte_mkclean(pte);
477 pte = pte_mkold(pte);
479 page = vm_normal_page(vma, addr, pte);
480 if (page) {
481 get_page(page);
482 page_dup_rmap(page, vma, addr);
483 rss[!!PageAnon(page)]++;
486 out_set_pte:
487 set_pte_at(dst_mm, addr, dst_pte, pte);
490 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
491 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
492 unsigned long addr, unsigned long end)
494 pte_t *src_pte, *dst_pte;
495 spinlock_t *src_ptl, *dst_ptl;
496 int progress = 0;
497 int rss[2];
499 again:
500 rss[1] = rss[0] = 0;
501 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
502 if (!dst_pte)
503 return -ENOMEM;
504 src_pte = pte_offset_map_nested(src_pmd, addr);
505 src_ptl = pte_lockptr(src_mm, src_pmd);
506 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
507 arch_enter_lazy_mmu_mode();
509 do {
511 * We are holding two locks at this point - either of them
512 * could generate latencies in another task on another CPU.
514 if (progress >= 32) {
515 progress = 0;
516 if (need_resched() ||
517 need_lockbreak(src_ptl) ||
518 need_lockbreak(dst_ptl))
519 break;
521 if (pte_none(*src_pte)) {
522 progress++;
523 continue;
525 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
526 progress += 8;
527 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
529 arch_leave_lazy_mmu_mode();
530 spin_unlock(src_ptl);
531 pte_unmap_nested(src_pte - 1);
532 add_mm_rss(dst_mm, rss[0], rss[1]);
533 pte_unmap_unlock(dst_pte - 1, dst_ptl);
534 cond_resched();
535 if (addr != end)
536 goto again;
537 return 0;
540 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
541 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
542 unsigned long addr, unsigned long end)
544 pmd_t *src_pmd, *dst_pmd;
545 unsigned long next;
547 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
548 if (!dst_pmd)
549 return -ENOMEM;
550 src_pmd = pmd_offset(src_pud, addr);
551 do {
552 next = pmd_addr_end(addr, end);
553 if (pmd_none_or_clear_bad(src_pmd))
554 continue;
555 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
556 vma, addr, next))
557 return -ENOMEM;
558 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
559 return 0;
562 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
563 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
564 unsigned long addr, unsigned long end)
566 pud_t *src_pud, *dst_pud;
567 unsigned long next;
569 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
570 if (!dst_pud)
571 return -ENOMEM;
572 src_pud = pud_offset(src_pgd, addr);
573 do {
574 next = pud_addr_end(addr, end);
575 if (pud_none_or_clear_bad(src_pud))
576 continue;
577 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
578 vma, addr, next))
579 return -ENOMEM;
580 } while (dst_pud++, src_pud++, addr = next, addr != end);
581 return 0;
584 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
585 struct vm_area_struct *vma)
587 pgd_t *src_pgd, *dst_pgd;
588 unsigned long next;
589 unsigned long addr = vma->vm_start;
590 unsigned long end = vma->vm_end;
593 * Don't copy ptes where a page fault will fill them correctly.
594 * Fork becomes much lighter when there are big shared or private
595 * readonly mappings. The tradeoff is that copy_page_range is more
596 * efficient than faulting.
598 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
599 if (!vma->anon_vma)
600 return 0;
603 if (is_vm_hugetlb_page(vma))
604 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
606 dst_pgd = pgd_offset(dst_mm, addr);
607 src_pgd = pgd_offset(src_mm, addr);
608 do {
609 next = pgd_addr_end(addr, end);
610 if (pgd_none_or_clear_bad(src_pgd))
611 continue;
612 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
613 vma, addr, next))
614 return -ENOMEM;
615 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
616 return 0;
619 static unsigned long zap_pte_range(struct mmu_gather *tlb,
620 struct vm_area_struct *vma, pmd_t *pmd,
621 unsigned long addr, unsigned long end,
622 long *zap_work, struct zap_details *details)
624 struct mm_struct *mm = tlb->mm;
625 pte_t *pte;
626 spinlock_t *ptl;
627 int file_rss = 0;
628 int anon_rss = 0;
630 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
631 arch_enter_lazy_mmu_mode();
632 do {
633 pte_t ptent = *pte;
634 if (pte_none(ptent)) {
635 (*zap_work)--;
636 continue;
639 (*zap_work) -= PAGE_SIZE;
641 if (pte_present(ptent)) {
642 struct page *page;
644 page = vm_normal_page(vma, addr, ptent);
645 if (unlikely(details) && page) {
647 * unmap_shared_mapping_pages() wants to
648 * invalidate cache without truncating:
649 * unmap shared but keep private pages.
651 if (details->check_mapping &&
652 details->check_mapping != page->mapping)
653 continue;
655 * Each page->index must be checked when
656 * invalidating or truncating nonlinear.
658 if (details->nonlinear_vma &&
659 (page->index < details->first_index ||
660 page->index > details->last_index))
661 continue;
663 ptent = ptep_get_and_clear_full(mm, addr, pte,
664 tlb->fullmm);
665 tlb_remove_tlb_entry(tlb, pte, addr);
666 if (unlikely(!page))
667 continue;
668 if (unlikely(details) && details->nonlinear_vma
669 && linear_page_index(details->nonlinear_vma,
670 addr) != page->index)
671 set_pte_at(mm, addr, pte,
672 pgoff_to_pte(page->index));
673 if (PageAnon(page))
674 anon_rss--;
675 else {
676 if (pte_dirty(ptent))
677 set_page_dirty(page);
678 if (pte_young(ptent))
679 SetPageReferenced(page);
680 file_rss--;
682 page_remove_rmap(page, vma);
683 tlb_remove_page(tlb, page);
684 continue;
687 * If details->check_mapping, we leave swap entries;
688 * if details->nonlinear_vma, we leave file entries.
690 if (unlikely(details))
691 continue;
692 if (!pte_file(ptent))
693 free_swap_and_cache(pte_to_swp_entry(ptent));
694 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
695 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
697 add_mm_rss(mm, file_rss, anon_rss);
698 arch_leave_lazy_mmu_mode();
699 pte_unmap_unlock(pte - 1, ptl);
701 return addr;
704 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
705 struct vm_area_struct *vma, pud_t *pud,
706 unsigned long addr, unsigned long end,
707 long *zap_work, struct zap_details *details)
709 pmd_t *pmd;
710 unsigned long next;
712 pmd = pmd_offset(pud, addr);
713 do {
714 next = pmd_addr_end(addr, end);
715 if (pmd_none_or_clear_bad(pmd)) {
716 (*zap_work)--;
717 continue;
719 next = zap_pte_range(tlb, vma, pmd, addr, next,
720 zap_work, details);
721 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
723 return addr;
726 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
727 struct vm_area_struct *vma, pgd_t *pgd,
728 unsigned long addr, unsigned long end,
729 long *zap_work, struct zap_details *details)
731 pud_t *pud;
732 unsigned long next;
734 pud = pud_offset(pgd, addr);
735 do {
736 next = pud_addr_end(addr, end);
737 if (pud_none_or_clear_bad(pud)) {
738 (*zap_work)--;
739 continue;
741 next = zap_pmd_range(tlb, vma, pud, addr, next,
742 zap_work, details);
743 } while (pud++, addr = next, (addr != end && *zap_work > 0));
745 return addr;
748 static unsigned long unmap_page_range(struct mmu_gather *tlb,
749 struct vm_area_struct *vma,
750 unsigned long addr, unsigned long end,
751 long *zap_work, struct zap_details *details)
753 pgd_t *pgd;
754 unsigned long next;
756 if (details && !details->check_mapping && !details->nonlinear_vma)
757 details = NULL;
759 BUG_ON(addr >= end);
760 tlb_start_vma(tlb, vma);
761 pgd = pgd_offset(vma->vm_mm, addr);
762 do {
763 next = pgd_addr_end(addr, end);
764 if (pgd_none_or_clear_bad(pgd)) {
765 (*zap_work)--;
766 continue;
768 next = zap_pud_range(tlb, vma, pgd, addr, next,
769 zap_work, details);
770 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
771 tlb_end_vma(tlb, vma);
773 return addr;
776 #ifdef CONFIG_PREEMPT
777 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
778 #else
779 /* No preempt: go for improved straight-line efficiency */
780 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
781 #endif
784 * unmap_vmas - unmap a range of memory covered by a list of vma's
785 * @tlbp: address of the caller's struct mmu_gather
786 * @vma: the starting vma
787 * @start_addr: virtual address at which to start unmapping
788 * @end_addr: virtual address at which to end unmapping
789 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
790 * @details: details of nonlinear truncation or shared cache invalidation
792 * Returns the end address of the unmapping (restart addr if interrupted).
794 * Unmap all pages in the vma list.
796 * We aim to not hold locks for too long (for scheduling latency reasons).
797 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
798 * return the ending mmu_gather to the caller.
800 * Only addresses between `start' and `end' will be unmapped.
802 * The VMA list must be sorted in ascending virtual address order.
804 * unmap_vmas() assumes that the caller will flush the whole unmapped address
805 * range after unmap_vmas() returns. So the only responsibility here is to
806 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
807 * drops the lock and schedules.
809 unsigned long unmap_vmas(struct mmu_gather **tlbp,
810 struct vm_area_struct *vma, unsigned long start_addr,
811 unsigned long end_addr, unsigned long *nr_accounted,
812 struct zap_details *details)
814 long zap_work = ZAP_BLOCK_SIZE;
815 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
816 int tlb_start_valid = 0;
817 unsigned long start = start_addr;
818 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
819 int fullmm = (*tlbp)->fullmm;
821 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
822 unsigned long end;
824 start = max(vma->vm_start, start_addr);
825 if (start >= vma->vm_end)
826 continue;
827 end = min(vma->vm_end, end_addr);
828 if (end <= vma->vm_start)
829 continue;
831 if (vma->vm_flags & VM_ACCOUNT)
832 *nr_accounted += (end - start) >> PAGE_SHIFT;
834 while (start != end) {
835 if (!tlb_start_valid) {
836 tlb_start = start;
837 tlb_start_valid = 1;
840 if (unlikely(is_vm_hugetlb_page(vma))) {
841 unmap_hugepage_range(vma, start, end);
842 zap_work -= (end - start) /
843 (HPAGE_SIZE / PAGE_SIZE);
844 start = end;
845 } else
846 start = unmap_page_range(*tlbp, vma,
847 start, end, &zap_work, details);
849 if (zap_work > 0) {
850 BUG_ON(start != end);
851 break;
854 tlb_finish_mmu(*tlbp, tlb_start, start);
856 if (need_resched() ||
857 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
858 if (i_mmap_lock) {
859 *tlbp = NULL;
860 goto out;
862 cond_resched();
865 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
866 tlb_start_valid = 0;
867 zap_work = ZAP_BLOCK_SIZE;
870 out:
871 return start; /* which is now the end (or restart) address */
875 * zap_page_range - remove user pages in a given range
876 * @vma: vm_area_struct holding the applicable pages
877 * @address: starting address of pages to zap
878 * @size: number of bytes to zap
879 * @details: details of nonlinear truncation or shared cache invalidation
881 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
882 unsigned long size, struct zap_details *details)
884 struct mm_struct *mm = vma->vm_mm;
885 struct mmu_gather *tlb;
886 unsigned long end = address + size;
887 unsigned long nr_accounted = 0;
889 lru_add_drain();
890 tlb = tlb_gather_mmu(mm, 0);
891 update_hiwater_rss(mm);
892 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
893 if (tlb)
894 tlb_finish_mmu(tlb, address, end);
895 return end;
899 * Do a quick page-table lookup for a single page.
901 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
902 unsigned int flags)
904 pgd_t *pgd;
905 pud_t *pud;
906 pmd_t *pmd;
907 pte_t *ptep, pte;
908 spinlock_t *ptl;
909 struct page *page;
910 struct mm_struct *mm = vma->vm_mm;
912 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
913 if (!IS_ERR(page)) {
914 BUG_ON(flags & FOLL_GET);
915 goto out;
918 page = NULL;
919 pgd = pgd_offset(mm, address);
920 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
921 goto no_page_table;
923 pud = pud_offset(pgd, address);
924 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
925 goto no_page_table;
927 pmd = pmd_offset(pud, address);
928 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
929 goto no_page_table;
931 if (pmd_huge(*pmd)) {
932 BUG_ON(flags & FOLL_GET);
933 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
934 goto out;
937 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
938 if (!ptep)
939 goto out;
941 pte = *ptep;
942 if (!pte_present(pte))
943 goto unlock;
944 if ((flags & FOLL_WRITE) && !pte_write(pte))
945 goto unlock;
946 page = vm_normal_page(vma, address, pte);
947 if (unlikely(!page))
948 goto unlock;
950 if (flags & FOLL_GET)
951 get_page(page);
952 if (flags & FOLL_TOUCH) {
953 if ((flags & FOLL_WRITE) &&
954 !pte_dirty(pte) && !PageDirty(page))
955 set_page_dirty(page);
956 mark_page_accessed(page);
958 unlock:
959 pte_unmap_unlock(ptep, ptl);
960 out:
961 return page;
963 no_page_table:
965 * When core dumping an enormous anonymous area that nobody
966 * has touched so far, we don't want to allocate page tables.
968 if (flags & FOLL_ANON) {
969 page = ZERO_PAGE(address);
970 if (flags & FOLL_GET)
971 get_page(page);
972 BUG_ON(flags & FOLL_WRITE);
974 return page;
977 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
978 unsigned long start, int len, int write, int force,
979 struct page **pages, struct vm_area_struct **vmas)
981 int i;
982 unsigned int vm_flags;
985 * Require read or write permissions.
986 * If 'force' is set, we only require the "MAY" flags.
988 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
989 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
990 i = 0;
992 do {
993 struct vm_area_struct *vma;
994 unsigned int foll_flags;
996 vma = find_extend_vma(mm, start);
997 if (!vma && in_gate_area(tsk, start)) {
998 unsigned long pg = start & PAGE_MASK;
999 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1000 pgd_t *pgd;
1001 pud_t *pud;
1002 pmd_t *pmd;
1003 pte_t *pte;
1004 if (write) /* user gate pages are read-only */
1005 return i ? : -EFAULT;
1006 if (pg > TASK_SIZE)
1007 pgd = pgd_offset_k(pg);
1008 else
1009 pgd = pgd_offset_gate(mm, pg);
1010 BUG_ON(pgd_none(*pgd));
1011 pud = pud_offset(pgd, pg);
1012 BUG_ON(pud_none(*pud));
1013 pmd = pmd_offset(pud, pg);
1014 if (pmd_none(*pmd))
1015 return i ? : -EFAULT;
1016 pte = pte_offset_map(pmd, pg);
1017 if (pte_none(*pte)) {
1018 pte_unmap(pte);
1019 return i ? : -EFAULT;
1021 if (pages) {
1022 struct page *page = vm_normal_page(gate_vma, start, *pte);
1023 pages[i] = page;
1024 if (page)
1025 get_page(page);
1027 pte_unmap(pte);
1028 if (vmas)
1029 vmas[i] = gate_vma;
1030 i++;
1031 start += PAGE_SIZE;
1032 len--;
1033 continue;
1036 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1037 || !(vm_flags & vma->vm_flags))
1038 return i ? : -EFAULT;
1040 if (is_vm_hugetlb_page(vma)) {
1041 i = follow_hugetlb_page(mm, vma, pages, vmas,
1042 &start, &len, i);
1043 continue;
1046 foll_flags = FOLL_TOUCH;
1047 if (pages)
1048 foll_flags |= FOLL_GET;
1049 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1050 (!vma->vm_ops || (!vma->vm_ops->nopage &&
1051 !vma->vm_ops->fault)))
1052 foll_flags |= FOLL_ANON;
1054 do {
1055 struct page *page;
1058 * If tsk is ooming, cut off its access to large memory
1059 * allocations. It has a pending SIGKILL, but it can't
1060 * be processed until returning to user space.
1062 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1063 return -ENOMEM;
1065 if (write)
1066 foll_flags |= FOLL_WRITE;
1068 cond_resched();
1069 while (!(page = follow_page(vma, start, foll_flags))) {
1070 int ret;
1071 ret = handle_mm_fault(mm, vma, start,
1072 foll_flags & FOLL_WRITE);
1073 if (ret & VM_FAULT_ERROR) {
1074 if (ret & VM_FAULT_OOM)
1075 return i ? i : -ENOMEM;
1076 else if (ret & VM_FAULT_SIGBUS)
1077 return i ? i : -EFAULT;
1078 BUG();
1080 if (ret & VM_FAULT_MAJOR)
1081 tsk->maj_flt++;
1082 else
1083 tsk->min_flt++;
1086 * The VM_FAULT_WRITE bit tells us that
1087 * do_wp_page has broken COW when necessary,
1088 * even if maybe_mkwrite decided not to set
1089 * pte_write. We can thus safely do subsequent
1090 * page lookups as if they were reads.
1092 if (ret & VM_FAULT_WRITE)
1093 foll_flags &= ~FOLL_WRITE;
1095 cond_resched();
1097 if (pages) {
1098 pages[i] = page;
1100 flush_anon_page(vma, page, start);
1101 flush_dcache_page(page);
1103 if (vmas)
1104 vmas[i] = vma;
1105 i++;
1106 start += PAGE_SIZE;
1107 len--;
1108 } while (len && start < vma->vm_end);
1109 } while (len);
1110 return i;
1112 EXPORT_SYMBOL(get_user_pages);
1114 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1115 unsigned long addr, unsigned long end, pgprot_t prot)
1117 pte_t *pte;
1118 spinlock_t *ptl;
1119 int err = 0;
1121 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1122 if (!pte)
1123 return -EAGAIN;
1124 arch_enter_lazy_mmu_mode();
1125 do {
1126 struct page *page = ZERO_PAGE(addr);
1127 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1129 if (unlikely(!pte_none(*pte))) {
1130 err = -EEXIST;
1131 pte++;
1132 break;
1134 page_cache_get(page);
1135 page_add_file_rmap(page);
1136 inc_mm_counter(mm, file_rss);
1137 set_pte_at(mm, addr, pte, zero_pte);
1138 } while (pte++, addr += PAGE_SIZE, addr != end);
1139 arch_leave_lazy_mmu_mode();
1140 pte_unmap_unlock(pte - 1, ptl);
1141 return err;
1144 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1145 unsigned long addr, unsigned long end, pgprot_t prot)
1147 pmd_t *pmd;
1148 unsigned long next;
1149 int err;
1151 pmd = pmd_alloc(mm, pud, addr);
1152 if (!pmd)
1153 return -EAGAIN;
1154 do {
1155 next = pmd_addr_end(addr, end);
1156 err = zeromap_pte_range(mm, pmd, addr, next, prot);
1157 if (err)
1158 break;
1159 } while (pmd++, addr = next, addr != end);
1160 return err;
1163 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1164 unsigned long addr, unsigned long end, pgprot_t prot)
1166 pud_t *pud;
1167 unsigned long next;
1168 int err;
1170 pud = pud_alloc(mm, pgd, addr);
1171 if (!pud)
1172 return -EAGAIN;
1173 do {
1174 next = pud_addr_end(addr, end);
1175 err = zeromap_pmd_range(mm, pud, addr, next, prot);
1176 if (err)
1177 break;
1178 } while (pud++, addr = next, addr != end);
1179 return err;
1182 int zeromap_page_range(struct vm_area_struct *vma,
1183 unsigned long addr, unsigned long size, pgprot_t prot)
1185 pgd_t *pgd;
1186 unsigned long next;
1187 unsigned long end = addr + size;
1188 struct mm_struct *mm = vma->vm_mm;
1189 int err;
1191 BUG_ON(addr >= end);
1192 pgd = pgd_offset(mm, addr);
1193 flush_cache_range(vma, addr, end);
1194 do {
1195 next = pgd_addr_end(addr, end);
1196 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1197 if (err)
1198 break;
1199 } while (pgd++, addr = next, addr != end);
1200 return err;
1203 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1205 pgd_t * pgd = pgd_offset(mm, addr);
1206 pud_t * pud = pud_alloc(mm, pgd, addr);
1207 if (pud) {
1208 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1209 if (pmd)
1210 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1212 return NULL;
1216 * This is the old fallback for page remapping.
1218 * For historical reasons, it only allows reserved pages. Only
1219 * old drivers should use this, and they needed to mark their
1220 * pages reserved for the old functions anyway.
1222 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1224 int retval;
1225 pte_t *pte;
1226 spinlock_t *ptl;
1228 retval = -EINVAL;
1229 if (PageAnon(page))
1230 goto out;
1231 retval = -ENOMEM;
1232 flush_dcache_page(page);
1233 pte = get_locked_pte(mm, addr, &ptl);
1234 if (!pte)
1235 goto out;
1236 retval = -EBUSY;
1237 if (!pte_none(*pte))
1238 goto out_unlock;
1240 /* Ok, finally just insert the thing.. */
1241 get_page(page);
1242 inc_mm_counter(mm, file_rss);
1243 page_add_file_rmap(page);
1244 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1246 retval = 0;
1247 out_unlock:
1248 pte_unmap_unlock(pte, ptl);
1249 out:
1250 return retval;
1254 * vm_insert_page - insert single page into user vma
1255 * @vma: user vma to map to
1256 * @addr: target user address of this page
1257 * @page: source kernel page
1259 * This allows drivers to insert individual pages they've allocated
1260 * into a user vma.
1262 * The page has to be a nice clean _individual_ kernel allocation.
1263 * If you allocate a compound page, you need to have marked it as
1264 * such (__GFP_COMP), or manually just split the page up yourself
1265 * (see split_page()).
1267 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1268 * took an arbitrary page protection parameter. This doesn't allow
1269 * that. Your vma protection will have to be set up correctly, which
1270 * means that if you want a shared writable mapping, you'd better
1271 * ask for a shared writable mapping!
1273 * The page does not need to be reserved.
1275 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1277 if (addr < vma->vm_start || addr >= vma->vm_end)
1278 return -EFAULT;
1279 if (!page_count(page))
1280 return -EINVAL;
1281 vma->vm_flags |= VM_INSERTPAGE;
1282 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1284 EXPORT_SYMBOL(vm_insert_page);
1287 * vm_insert_pfn - insert single pfn into user vma
1288 * @vma: user vma to map to
1289 * @addr: target user address of this page
1290 * @pfn: source kernel pfn
1292 * Similar to vm_inert_page, this allows drivers to insert individual pages
1293 * they've allocated into a user vma. Same comments apply.
1295 * This function should only be called from a vm_ops->fault handler, and
1296 * in that case the handler should return NULL.
1298 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1299 unsigned long pfn)
1301 struct mm_struct *mm = vma->vm_mm;
1302 int retval;
1303 pte_t *pte, entry;
1304 spinlock_t *ptl;
1306 BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1307 BUG_ON(is_cow_mapping(vma->vm_flags));
1309 retval = -ENOMEM;
1310 pte = get_locked_pte(mm, addr, &ptl);
1311 if (!pte)
1312 goto out;
1313 retval = -EBUSY;
1314 if (!pte_none(*pte))
1315 goto out_unlock;
1317 /* Ok, finally just insert the thing.. */
1318 entry = pfn_pte(pfn, vma->vm_page_prot);
1319 set_pte_at(mm, addr, pte, entry);
1320 update_mmu_cache(vma, addr, entry);
1322 retval = 0;
1323 out_unlock:
1324 pte_unmap_unlock(pte, ptl);
1326 out:
1327 return retval;
1329 EXPORT_SYMBOL(vm_insert_pfn);
1332 * maps a range of physical memory into the requested pages. the old
1333 * mappings are removed. any references to nonexistent pages results
1334 * in null mappings (currently treated as "copy-on-access")
1336 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1337 unsigned long addr, unsigned long end,
1338 unsigned long pfn, pgprot_t prot)
1340 pte_t *pte;
1341 spinlock_t *ptl;
1343 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1344 if (!pte)
1345 return -ENOMEM;
1346 arch_enter_lazy_mmu_mode();
1347 do {
1348 BUG_ON(!pte_none(*pte));
1349 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1350 pfn++;
1351 } while (pte++, addr += PAGE_SIZE, addr != end);
1352 arch_leave_lazy_mmu_mode();
1353 pte_unmap_unlock(pte - 1, ptl);
1354 return 0;
1357 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1358 unsigned long addr, unsigned long end,
1359 unsigned long pfn, pgprot_t prot)
1361 pmd_t *pmd;
1362 unsigned long next;
1364 pfn -= addr >> PAGE_SHIFT;
1365 pmd = pmd_alloc(mm, pud, addr);
1366 if (!pmd)
1367 return -ENOMEM;
1368 do {
1369 next = pmd_addr_end(addr, end);
1370 if (remap_pte_range(mm, pmd, addr, next,
1371 pfn + (addr >> PAGE_SHIFT), prot))
1372 return -ENOMEM;
1373 } while (pmd++, addr = next, addr != end);
1374 return 0;
1377 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1378 unsigned long addr, unsigned long end,
1379 unsigned long pfn, pgprot_t prot)
1381 pud_t *pud;
1382 unsigned long next;
1384 pfn -= addr >> PAGE_SHIFT;
1385 pud = pud_alloc(mm, pgd, addr);
1386 if (!pud)
1387 return -ENOMEM;
1388 do {
1389 next = pud_addr_end(addr, end);
1390 if (remap_pmd_range(mm, pud, addr, next,
1391 pfn + (addr >> PAGE_SHIFT), prot))
1392 return -ENOMEM;
1393 } while (pud++, addr = next, addr != end);
1394 return 0;
1398 * remap_pfn_range - remap kernel memory to userspace
1399 * @vma: user vma to map to
1400 * @addr: target user address to start at
1401 * @pfn: physical address of kernel memory
1402 * @size: size of map area
1403 * @prot: page protection flags for this mapping
1405 * Note: this is only safe if the mm semaphore is held when called.
1407 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1408 unsigned long pfn, unsigned long size, pgprot_t prot)
1410 pgd_t *pgd;
1411 unsigned long next;
1412 unsigned long end = addr + PAGE_ALIGN(size);
1413 struct mm_struct *mm = vma->vm_mm;
1414 int err;
1417 * Physically remapped pages are special. Tell the
1418 * rest of the world about it:
1419 * VM_IO tells people not to look at these pages
1420 * (accesses can have side effects).
1421 * VM_RESERVED is specified all over the place, because
1422 * in 2.4 it kept swapout's vma scan off this vma; but
1423 * in 2.6 the LRU scan won't even find its pages, so this
1424 * flag means no more than count its pages in reserved_vm,
1425 * and omit it from core dump, even when VM_IO turned off.
1426 * VM_PFNMAP tells the core MM that the base pages are just
1427 * raw PFN mappings, and do not have a "struct page" associated
1428 * with them.
1430 * There's a horrible special case to handle copy-on-write
1431 * behaviour that some programs depend on. We mark the "original"
1432 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1434 if (is_cow_mapping(vma->vm_flags)) {
1435 if (addr != vma->vm_start || end != vma->vm_end)
1436 return -EINVAL;
1437 vma->vm_pgoff = pfn;
1440 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1442 BUG_ON(addr >= end);
1443 pfn -= addr >> PAGE_SHIFT;
1444 pgd = pgd_offset(mm, addr);
1445 flush_cache_range(vma, addr, end);
1446 do {
1447 next = pgd_addr_end(addr, end);
1448 err = remap_pud_range(mm, pgd, addr, next,
1449 pfn + (addr >> PAGE_SHIFT), prot);
1450 if (err)
1451 break;
1452 } while (pgd++, addr = next, addr != end);
1453 return err;
1455 EXPORT_SYMBOL(remap_pfn_range);
1457 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1458 unsigned long addr, unsigned long end,
1459 pte_fn_t fn, void *data)
1461 pte_t *pte;
1462 int err;
1463 struct page *pmd_page;
1464 spinlock_t *uninitialized_var(ptl);
1466 pte = (mm == &init_mm) ?
1467 pte_alloc_kernel(pmd, addr) :
1468 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1469 if (!pte)
1470 return -ENOMEM;
1472 BUG_ON(pmd_huge(*pmd));
1474 pmd_page = pmd_page(*pmd);
1476 do {
1477 err = fn(pte, pmd_page, addr, data);
1478 if (err)
1479 break;
1480 } while (pte++, addr += PAGE_SIZE, addr != end);
1482 if (mm != &init_mm)
1483 pte_unmap_unlock(pte-1, ptl);
1484 return err;
1487 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1488 unsigned long addr, unsigned long end,
1489 pte_fn_t fn, void *data)
1491 pmd_t *pmd;
1492 unsigned long next;
1493 int err;
1495 pmd = pmd_alloc(mm, pud, addr);
1496 if (!pmd)
1497 return -ENOMEM;
1498 do {
1499 next = pmd_addr_end(addr, end);
1500 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1501 if (err)
1502 break;
1503 } while (pmd++, addr = next, addr != end);
1504 return err;
1507 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1508 unsigned long addr, unsigned long end,
1509 pte_fn_t fn, void *data)
1511 pud_t *pud;
1512 unsigned long next;
1513 int err;
1515 pud = pud_alloc(mm, pgd, addr);
1516 if (!pud)
1517 return -ENOMEM;
1518 do {
1519 next = pud_addr_end(addr, end);
1520 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1521 if (err)
1522 break;
1523 } while (pud++, addr = next, addr != end);
1524 return err;
1528 * Scan a region of virtual memory, filling in page tables as necessary
1529 * and calling a provided function on each leaf page table.
1531 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1532 unsigned long size, pte_fn_t fn, void *data)
1534 pgd_t *pgd;
1535 unsigned long next;
1536 unsigned long end = addr + size;
1537 int err;
1539 BUG_ON(addr >= end);
1540 pgd = pgd_offset(mm, addr);
1541 do {
1542 next = pgd_addr_end(addr, end);
1543 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1544 if (err)
1545 break;
1546 } while (pgd++, addr = next, addr != end);
1547 return err;
1549 EXPORT_SYMBOL_GPL(apply_to_page_range);
1552 * handle_pte_fault chooses page fault handler according to an entry
1553 * which was read non-atomically. Before making any commitment, on
1554 * those architectures or configurations (e.g. i386 with PAE) which
1555 * might give a mix of unmatched parts, do_swap_page and do_file_page
1556 * must check under lock before unmapping the pte and proceeding
1557 * (but do_wp_page is only called after already making such a check;
1558 * and do_anonymous_page and do_no_page can safely check later on).
1560 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1561 pte_t *page_table, pte_t orig_pte)
1563 int same = 1;
1564 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1565 if (sizeof(pte_t) > sizeof(unsigned long)) {
1566 spinlock_t *ptl = pte_lockptr(mm, pmd);
1567 spin_lock(ptl);
1568 same = pte_same(*page_table, orig_pte);
1569 spin_unlock(ptl);
1571 #endif
1572 pte_unmap(page_table);
1573 return same;
1577 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1578 * servicing faults for write access. In the normal case, do always want
1579 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1580 * that do not have writing enabled, when used by access_process_vm.
1582 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1584 if (likely(vma->vm_flags & VM_WRITE))
1585 pte = pte_mkwrite(pte);
1586 return pte;
1589 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1592 * If the source page was a PFN mapping, we don't have
1593 * a "struct page" for it. We do a best-effort copy by
1594 * just copying from the original user address. If that
1595 * fails, we just zero-fill it. Live with it.
1597 if (unlikely(!src)) {
1598 void *kaddr = kmap_atomic(dst, KM_USER0);
1599 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1602 * This really shouldn't fail, because the page is there
1603 * in the page tables. But it might just be unreadable,
1604 * in which case we just give up and fill the result with
1605 * zeroes.
1607 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1608 memset(kaddr, 0, PAGE_SIZE);
1609 kunmap_atomic(kaddr, KM_USER0);
1610 flush_dcache_page(dst);
1611 return;
1614 copy_user_highpage(dst, src, va, vma);
1618 * This routine handles present pages, when users try to write
1619 * to a shared page. It is done by copying the page to a new address
1620 * and decrementing the shared-page counter for the old page.
1622 * Note that this routine assumes that the protection checks have been
1623 * done by the caller (the low-level page fault routine in most cases).
1624 * Thus we can safely just mark it writable once we've done any necessary
1625 * COW.
1627 * We also mark the page dirty at this point even though the page will
1628 * change only once the write actually happens. This avoids a few races,
1629 * and potentially makes it more efficient.
1631 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1632 * but allow concurrent faults), with pte both mapped and locked.
1633 * We return with mmap_sem still held, but pte unmapped and unlocked.
1635 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1636 unsigned long address, pte_t *page_table, pmd_t *pmd,
1637 spinlock_t *ptl, pte_t orig_pte)
1639 struct page *old_page, *new_page;
1640 pte_t entry;
1641 int reuse = 0, ret = 0;
1642 struct page *dirty_page = NULL;
1644 old_page = vm_normal_page(vma, address, orig_pte);
1645 if (!old_page)
1646 goto gotten;
1649 * Take out anonymous pages first, anonymous shared vmas are
1650 * not dirty accountable.
1652 if (PageAnon(old_page)) {
1653 if (!TestSetPageLocked(old_page)) {
1654 reuse = can_share_swap_page(old_page);
1655 unlock_page(old_page);
1657 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1658 (VM_WRITE|VM_SHARED))) {
1660 * Only catch write-faults on shared writable pages,
1661 * read-only shared pages can get COWed by
1662 * get_user_pages(.write=1, .force=1).
1664 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1666 * Notify the address space that the page is about to
1667 * become writable so that it can prohibit this or wait
1668 * for the page to get into an appropriate state.
1670 * We do this without the lock held, so that it can
1671 * sleep if it needs to.
1673 page_cache_get(old_page);
1674 pte_unmap_unlock(page_table, ptl);
1676 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1677 goto unwritable_page;
1680 * Since we dropped the lock we need to revalidate
1681 * the PTE as someone else may have changed it. If
1682 * they did, we just return, as we can count on the
1683 * MMU to tell us if they didn't also make it writable.
1685 page_table = pte_offset_map_lock(mm, pmd, address,
1686 &ptl);
1687 page_cache_release(old_page);
1688 if (!pte_same(*page_table, orig_pte))
1689 goto unlock;
1691 dirty_page = old_page;
1692 get_page(dirty_page);
1693 reuse = 1;
1696 if (reuse) {
1697 flush_cache_page(vma, address, pte_pfn(orig_pte));
1698 entry = pte_mkyoung(orig_pte);
1699 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1700 if (ptep_set_access_flags(vma, address, page_table, entry,1)) {
1701 update_mmu_cache(vma, address, entry);
1702 lazy_mmu_prot_update(entry);
1704 ret |= VM_FAULT_WRITE;
1705 goto unlock;
1709 * Ok, we need to copy. Oh, well..
1711 page_cache_get(old_page);
1712 gotten:
1713 pte_unmap_unlock(page_table, ptl);
1715 if (unlikely(anon_vma_prepare(vma)))
1716 goto oom;
1717 if (old_page == ZERO_PAGE(address)) {
1718 new_page = alloc_zeroed_user_highpage_movable(vma, address);
1719 if (!new_page)
1720 goto oom;
1721 } else {
1722 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1723 if (!new_page)
1724 goto oom;
1725 cow_user_page(new_page, old_page, address, vma);
1729 * Re-check the pte - we dropped the lock
1731 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1732 if (likely(pte_same(*page_table, orig_pte))) {
1733 if (old_page) {
1734 page_remove_rmap(old_page, vma);
1735 if (!PageAnon(old_page)) {
1736 dec_mm_counter(mm, file_rss);
1737 inc_mm_counter(mm, anon_rss);
1739 } else
1740 inc_mm_counter(mm, anon_rss);
1741 flush_cache_page(vma, address, pte_pfn(orig_pte));
1742 entry = mk_pte(new_page, vma->vm_page_prot);
1743 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1744 lazy_mmu_prot_update(entry);
1746 * Clear the pte entry and flush it first, before updating the
1747 * pte with the new entry. This will avoid a race condition
1748 * seen in the presence of one thread doing SMC and another
1749 * thread doing COW.
1751 ptep_clear_flush(vma, address, page_table);
1752 set_pte_at(mm, address, page_table, entry);
1753 update_mmu_cache(vma, address, entry);
1754 lru_cache_add_active(new_page);
1755 page_add_new_anon_rmap(new_page, vma, address);
1757 /* Free the old page.. */
1758 new_page = old_page;
1759 ret |= VM_FAULT_WRITE;
1761 if (new_page)
1762 page_cache_release(new_page);
1763 if (old_page)
1764 page_cache_release(old_page);
1765 unlock:
1766 pte_unmap_unlock(page_table, ptl);
1767 if (dirty_page) {
1769 * Yes, Virginia, this is actually required to prevent a race
1770 * with clear_page_dirty_for_io() from clearing the page dirty
1771 * bit after it clear all dirty ptes, but before a racing
1772 * do_wp_page installs a dirty pte.
1774 * do_no_page is protected similarly.
1776 wait_on_page_locked(dirty_page);
1777 set_page_dirty_balance(dirty_page);
1778 put_page(dirty_page);
1780 return ret;
1781 oom:
1782 if (old_page)
1783 page_cache_release(old_page);
1784 return VM_FAULT_OOM;
1786 unwritable_page:
1787 page_cache_release(old_page);
1788 return VM_FAULT_SIGBUS;
1792 * Helper functions for unmap_mapping_range().
1794 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1796 * We have to restart searching the prio_tree whenever we drop the lock,
1797 * since the iterator is only valid while the lock is held, and anyway
1798 * a later vma might be split and reinserted earlier while lock dropped.
1800 * The list of nonlinear vmas could be handled more efficiently, using
1801 * a placeholder, but handle it in the same way until a need is shown.
1802 * It is important to search the prio_tree before nonlinear list: a vma
1803 * may become nonlinear and be shifted from prio_tree to nonlinear list
1804 * while the lock is dropped; but never shifted from list to prio_tree.
1806 * In order to make forward progress despite restarting the search,
1807 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1808 * quickly skip it next time around. Since the prio_tree search only
1809 * shows us those vmas affected by unmapping the range in question, we
1810 * can't efficiently keep all vmas in step with mapping->truncate_count:
1811 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1812 * mapping->truncate_count and vma->vm_truncate_count are protected by
1813 * i_mmap_lock.
1815 * In order to make forward progress despite repeatedly restarting some
1816 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1817 * and restart from that address when we reach that vma again. It might
1818 * have been split or merged, shrunk or extended, but never shifted: so
1819 * restart_addr remains valid so long as it remains in the vma's range.
1820 * unmap_mapping_range forces truncate_count to leap over page-aligned
1821 * values so we can save vma's restart_addr in its truncate_count field.
1823 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1825 static void reset_vma_truncate_counts(struct address_space *mapping)
1827 struct vm_area_struct *vma;
1828 struct prio_tree_iter iter;
1830 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1831 vma->vm_truncate_count = 0;
1832 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1833 vma->vm_truncate_count = 0;
1836 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1837 unsigned long start_addr, unsigned long end_addr,
1838 struct zap_details *details)
1840 unsigned long restart_addr;
1841 int need_break;
1844 * files that support invalidating or truncating portions of the
1845 * file from under mmaped areas must have their ->fault function
1846 * return a locked page (and set VM_FAULT_LOCKED in the return).
1847 * This provides synchronisation against concurrent unmapping here.
1850 again:
1851 restart_addr = vma->vm_truncate_count;
1852 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1853 start_addr = restart_addr;
1854 if (start_addr >= end_addr) {
1855 /* Top of vma has been split off since last time */
1856 vma->vm_truncate_count = details->truncate_count;
1857 return 0;
1861 restart_addr = zap_page_range(vma, start_addr,
1862 end_addr - start_addr, details);
1863 need_break = need_resched() ||
1864 need_lockbreak(details->i_mmap_lock);
1866 if (restart_addr >= end_addr) {
1867 /* We have now completed this vma: mark it so */
1868 vma->vm_truncate_count = details->truncate_count;
1869 if (!need_break)
1870 return 0;
1871 } else {
1872 /* Note restart_addr in vma's truncate_count field */
1873 vma->vm_truncate_count = restart_addr;
1874 if (!need_break)
1875 goto again;
1878 spin_unlock(details->i_mmap_lock);
1879 cond_resched();
1880 spin_lock(details->i_mmap_lock);
1881 return -EINTR;
1884 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1885 struct zap_details *details)
1887 struct vm_area_struct *vma;
1888 struct prio_tree_iter iter;
1889 pgoff_t vba, vea, zba, zea;
1891 restart:
1892 vma_prio_tree_foreach(vma, &iter, root,
1893 details->first_index, details->last_index) {
1894 /* Skip quickly over those we have already dealt with */
1895 if (vma->vm_truncate_count == details->truncate_count)
1896 continue;
1898 vba = vma->vm_pgoff;
1899 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1900 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1901 zba = details->first_index;
1902 if (zba < vba)
1903 zba = vba;
1904 zea = details->last_index;
1905 if (zea > vea)
1906 zea = vea;
1908 if (unmap_mapping_range_vma(vma,
1909 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1910 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1911 details) < 0)
1912 goto restart;
1916 static inline void unmap_mapping_range_list(struct list_head *head,
1917 struct zap_details *details)
1919 struct vm_area_struct *vma;
1922 * In nonlinear VMAs there is no correspondence between virtual address
1923 * offset and file offset. So we must perform an exhaustive search
1924 * across *all* the pages in each nonlinear VMA, not just the pages
1925 * whose virtual address lies outside the file truncation point.
1927 restart:
1928 list_for_each_entry(vma, head, shared.vm_set.list) {
1929 /* Skip quickly over those we have already dealt with */
1930 if (vma->vm_truncate_count == details->truncate_count)
1931 continue;
1932 details->nonlinear_vma = vma;
1933 if (unmap_mapping_range_vma(vma, vma->vm_start,
1934 vma->vm_end, details) < 0)
1935 goto restart;
1940 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1941 * @mapping: the address space containing mmaps to be unmapped.
1942 * @holebegin: byte in first page to unmap, relative to the start of
1943 * the underlying file. This will be rounded down to a PAGE_SIZE
1944 * boundary. Note that this is different from vmtruncate(), which
1945 * must keep the partial page. In contrast, we must get rid of
1946 * partial pages.
1947 * @holelen: size of prospective hole in bytes. This will be rounded
1948 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1949 * end of the file.
1950 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1951 * but 0 when invalidating pagecache, don't throw away private data.
1953 void unmap_mapping_range(struct address_space *mapping,
1954 loff_t const holebegin, loff_t const holelen, int even_cows)
1956 struct zap_details details;
1957 pgoff_t hba = holebegin >> PAGE_SHIFT;
1958 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1960 /* Check for overflow. */
1961 if (sizeof(holelen) > sizeof(hlen)) {
1962 long long holeend =
1963 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1964 if (holeend & ~(long long)ULONG_MAX)
1965 hlen = ULONG_MAX - hba + 1;
1968 details.check_mapping = even_cows? NULL: mapping;
1969 details.nonlinear_vma = NULL;
1970 details.first_index = hba;
1971 details.last_index = hba + hlen - 1;
1972 if (details.last_index < details.first_index)
1973 details.last_index = ULONG_MAX;
1974 details.i_mmap_lock = &mapping->i_mmap_lock;
1976 spin_lock(&mapping->i_mmap_lock);
1978 /* Protect against endless unmapping loops */
1979 mapping->truncate_count++;
1980 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1981 if (mapping->truncate_count == 0)
1982 reset_vma_truncate_counts(mapping);
1983 mapping->truncate_count++;
1985 details.truncate_count = mapping->truncate_count;
1987 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1988 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1989 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1990 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1991 spin_unlock(&mapping->i_mmap_lock);
1993 EXPORT_SYMBOL(unmap_mapping_range);
1996 * vmtruncate - unmap mappings "freed" by truncate() syscall
1997 * @inode: inode of the file used
1998 * @offset: file offset to start truncating
2000 * NOTE! We have to be ready to update the memory sharing
2001 * between the file and the memory map for a potential last
2002 * incomplete page. Ugly, but necessary.
2004 int vmtruncate(struct inode * inode, loff_t offset)
2006 struct address_space *mapping = inode->i_mapping;
2007 unsigned long limit;
2009 if (inode->i_size < offset)
2010 goto do_expand;
2012 * truncation of in-use swapfiles is disallowed - it would cause
2013 * subsequent swapout to scribble on the now-freed blocks.
2015 if (IS_SWAPFILE(inode))
2016 goto out_busy;
2017 i_size_write(inode, offset);
2020 * unmap_mapping_range is called twice, first simply for efficiency
2021 * so that truncate_inode_pages does fewer single-page unmaps. However
2022 * after this first call, and before truncate_inode_pages finishes,
2023 * it is possible for private pages to be COWed, which remain after
2024 * truncate_inode_pages finishes, hence the second unmap_mapping_range
2025 * call must be made for correctness.
2027 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2028 truncate_inode_pages(mapping, offset);
2029 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2030 goto out_truncate;
2032 do_expand:
2033 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2034 if (limit != RLIM_INFINITY && offset > limit)
2035 goto out_sig;
2036 if (offset > inode->i_sb->s_maxbytes)
2037 goto out_big;
2038 i_size_write(inode, offset);
2040 out_truncate:
2041 if (inode->i_op && inode->i_op->truncate)
2042 inode->i_op->truncate(inode);
2043 return 0;
2044 out_sig:
2045 send_sig(SIGXFSZ, current, 0);
2046 out_big:
2047 return -EFBIG;
2048 out_busy:
2049 return -ETXTBSY;
2051 EXPORT_SYMBOL(vmtruncate);
2053 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2055 struct address_space *mapping = inode->i_mapping;
2058 * If the underlying filesystem is not going to provide
2059 * a way to truncate a range of blocks (punch a hole) -
2060 * we should return failure right now.
2062 if (!inode->i_op || !inode->i_op->truncate_range)
2063 return -ENOSYS;
2065 mutex_lock(&inode->i_mutex);
2066 down_write(&inode->i_alloc_sem);
2067 unmap_mapping_range(mapping, offset, (end - offset), 1);
2068 truncate_inode_pages_range(mapping, offset, end);
2069 unmap_mapping_range(mapping, offset, (end - offset), 1);
2070 inode->i_op->truncate_range(inode, offset, end);
2071 up_write(&inode->i_alloc_sem);
2072 mutex_unlock(&inode->i_mutex);
2074 return 0;
2078 * swapin_readahead - swap in pages in hope we need them soon
2079 * @entry: swap entry of this memory
2080 * @addr: address to start
2081 * @vma: user vma this addresses belong to
2083 * Primitive swap readahead code. We simply read an aligned block of
2084 * (1 << page_cluster) entries in the swap area. This method is chosen
2085 * because it doesn't cost us any seek time. We also make sure to queue
2086 * the 'original' request together with the readahead ones...
2088 * This has been extended to use the NUMA policies from the mm triggering
2089 * the readahead.
2091 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
2093 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
2095 #ifdef CONFIG_NUMA
2096 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
2097 #endif
2098 int i, num;
2099 struct page *new_page;
2100 unsigned long offset;
2103 * Get the number of handles we should do readahead io to.
2105 num = valid_swaphandles(entry, &offset);
2106 for (i = 0; i < num; offset++, i++) {
2107 /* Ok, do the async read-ahead now */
2108 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
2109 offset), vma, addr);
2110 if (!new_page)
2111 break;
2112 page_cache_release(new_page);
2113 #ifdef CONFIG_NUMA
2115 * Find the next applicable VMA for the NUMA policy.
2117 addr += PAGE_SIZE;
2118 if (addr == 0)
2119 vma = NULL;
2120 if (vma) {
2121 if (addr >= vma->vm_end) {
2122 vma = next_vma;
2123 next_vma = vma ? vma->vm_next : NULL;
2125 if (vma && addr < vma->vm_start)
2126 vma = NULL;
2127 } else {
2128 if (next_vma && addr >= next_vma->vm_start) {
2129 vma = next_vma;
2130 next_vma = vma->vm_next;
2133 #endif
2135 lru_add_drain(); /* Push any new pages onto the LRU now */
2139 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2140 * but allow concurrent faults), and pte mapped but not yet locked.
2141 * We return with mmap_sem still held, but pte unmapped and unlocked.
2143 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2144 unsigned long address, pte_t *page_table, pmd_t *pmd,
2145 int write_access, pte_t orig_pte)
2147 spinlock_t *ptl;
2148 struct page *page;
2149 swp_entry_t entry;
2150 pte_t pte;
2151 int ret = 0;
2153 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2154 goto out;
2156 entry = pte_to_swp_entry(orig_pte);
2157 if (is_migration_entry(entry)) {
2158 migration_entry_wait(mm, pmd, address);
2159 goto out;
2161 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2162 page = lookup_swap_cache(entry);
2163 if (!page) {
2164 grab_swap_token(); /* Contend for token _before_ read-in */
2165 swapin_readahead(entry, address, vma);
2166 page = read_swap_cache_async(entry, vma, address);
2167 if (!page) {
2169 * Back out if somebody else faulted in this pte
2170 * while we released the pte lock.
2172 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2173 if (likely(pte_same(*page_table, orig_pte)))
2174 ret = VM_FAULT_OOM;
2175 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2176 goto unlock;
2179 /* Had to read the page from swap area: Major fault */
2180 ret = VM_FAULT_MAJOR;
2181 count_vm_event(PGMAJFAULT);
2184 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2185 mark_page_accessed(page);
2186 lock_page(page);
2189 * Back out if somebody else already faulted in this pte.
2191 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2192 if (unlikely(!pte_same(*page_table, orig_pte)))
2193 goto out_nomap;
2195 if (unlikely(!PageUptodate(page))) {
2196 ret = VM_FAULT_SIGBUS;
2197 goto out_nomap;
2200 /* The page isn't present yet, go ahead with the fault. */
2202 inc_mm_counter(mm, anon_rss);
2203 pte = mk_pte(page, vma->vm_page_prot);
2204 if (write_access && can_share_swap_page(page)) {
2205 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2206 write_access = 0;
2209 flush_icache_page(vma, page);
2210 set_pte_at(mm, address, page_table, pte);
2211 page_add_anon_rmap(page, vma, address);
2213 swap_free(entry);
2214 if (vm_swap_full())
2215 remove_exclusive_swap_page(page);
2216 unlock_page(page);
2218 if (write_access) {
2219 /* XXX: We could OR the do_wp_page code with this one? */
2220 if (do_wp_page(mm, vma, address,
2221 page_table, pmd, ptl, pte) & VM_FAULT_OOM)
2222 ret = VM_FAULT_OOM;
2223 goto out;
2226 /* No need to invalidate - it was non-present before */
2227 update_mmu_cache(vma, address, pte);
2228 unlock:
2229 pte_unmap_unlock(page_table, ptl);
2230 out:
2231 return ret;
2232 out_nomap:
2233 pte_unmap_unlock(page_table, ptl);
2234 unlock_page(page);
2235 page_cache_release(page);
2236 return ret;
2240 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2241 * but allow concurrent faults), and pte mapped but not yet locked.
2242 * We return with mmap_sem still held, but pte unmapped and unlocked.
2244 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2245 unsigned long address, pte_t *page_table, pmd_t *pmd,
2246 int write_access)
2248 struct page *page;
2249 spinlock_t *ptl;
2250 pte_t entry;
2252 if (write_access) {
2253 /* Allocate our own private page. */
2254 pte_unmap(page_table);
2256 if (unlikely(anon_vma_prepare(vma)))
2257 goto oom;
2258 page = alloc_zeroed_user_highpage_movable(vma, address);
2259 if (!page)
2260 goto oom;
2262 entry = mk_pte(page, vma->vm_page_prot);
2263 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2265 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2266 if (!pte_none(*page_table))
2267 goto release;
2268 inc_mm_counter(mm, anon_rss);
2269 lru_cache_add_active(page);
2270 page_add_new_anon_rmap(page, vma, address);
2271 } else {
2272 /* Map the ZERO_PAGE - vm_page_prot is readonly */
2273 page = ZERO_PAGE(address);
2274 page_cache_get(page);
2275 entry = mk_pte(page, vma->vm_page_prot);
2277 ptl = pte_lockptr(mm, pmd);
2278 spin_lock(ptl);
2279 if (!pte_none(*page_table))
2280 goto release;
2281 inc_mm_counter(mm, file_rss);
2282 page_add_file_rmap(page);
2285 set_pte_at(mm, address, page_table, entry);
2287 /* No need to invalidate - it was non-present before */
2288 update_mmu_cache(vma, address, entry);
2289 lazy_mmu_prot_update(entry);
2290 unlock:
2291 pte_unmap_unlock(page_table, ptl);
2292 return 0;
2293 release:
2294 page_cache_release(page);
2295 goto unlock;
2296 oom:
2297 return VM_FAULT_OOM;
2301 * __do_fault() tries to create a new page mapping. It aggressively
2302 * tries to share with existing pages, but makes a separate copy if
2303 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2304 * the next page fault.
2306 * As this is called only for pages that do not currently exist, we
2307 * do not need to flush old virtual caches or the TLB.
2309 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2310 * but allow concurrent faults), and pte mapped but not yet locked.
2311 * We return with mmap_sem still held, but pte unmapped and unlocked.
2313 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2314 unsigned long address, pte_t *page_table, pmd_t *pmd,
2315 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2317 spinlock_t *ptl;
2318 struct page *page;
2319 pte_t entry;
2320 int anon = 0;
2321 struct page *dirty_page = NULL;
2322 struct vm_fault vmf;
2323 int ret;
2325 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2326 vmf.pgoff = pgoff;
2327 vmf.flags = flags;
2328 vmf.page = NULL;
2330 pte_unmap(page_table);
2331 BUG_ON(vma->vm_flags & VM_PFNMAP);
2333 if (likely(vma->vm_ops->fault)) {
2334 ret = vma->vm_ops->fault(vma, &vmf);
2335 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2336 return ret;
2337 } else {
2338 /* Legacy ->nopage path */
2339 ret = 0;
2340 vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2341 /* no page was available -- either SIGBUS or OOM */
2342 if (unlikely(vmf.page == NOPAGE_SIGBUS))
2343 return VM_FAULT_SIGBUS;
2344 else if (unlikely(vmf.page == NOPAGE_OOM))
2345 return VM_FAULT_OOM;
2349 * For consistency in subsequent calls, make the faulted page always
2350 * locked.
2352 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2353 lock_page(vmf.page);
2354 else
2355 VM_BUG_ON(!PageLocked(vmf.page));
2358 * Should we do an early C-O-W break?
2360 page = vmf.page;
2361 if (flags & FAULT_FLAG_WRITE) {
2362 if (!(vma->vm_flags & VM_SHARED)) {
2363 anon = 1;
2364 if (unlikely(anon_vma_prepare(vma))) {
2365 ret = VM_FAULT_OOM;
2366 goto out;
2368 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2369 vma, address);
2370 if (!page) {
2371 ret = VM_FAULT_OOM;
2372 goto out;
2374 copy_user_highpage(page, vmf.page, address, vma);
2375 } else {
2377 * If the page will be shareable, see if the backing
2378 * address space wants to know that the page is about
2379 * to become writable
2381 if (vma->vm_ops->page_mkwrite) {
2382 unlock_page(page);
2383 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2384 ret = VM_FAULT_SIGBUS;
2385 anon = 1; /* no anon but release vmf.page */
2386 goto out_unlocked;
2388 lock_page(page);
2390 * XXX: this is not quite right (racy vs
2391 * invalidate) to unlock and relock the page
2392 * like this, however a better fix requires
2393 * reworking page_mkwrite locking API, which
2394 * is better done later.
2396 if (!page->mapping) {
2397 ret = 0;
2398 anon = 1; /* no anon but release vmf.page */
2399 goto out;
2406 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2409 * This silly early PAGE_DIRTY setting removes a race
2410 * due to the bad i386 page protection. But it's valid
2411 * for other architectures too.
2413 * Note that if write_access is true, we either now have
2414 * an exclusive copy of the page, or this is a shared mapping,
2415 * so we can make it writable and dirty to avoid having to
2416 * handle that later.
2418 /* Only go through if we didn't race with anybody else... */
2419 if (likely(pte_same(*page_table, orig_pte))) {
2420 flush_icache_page(vma, page);
2421 entry = mk_pte(page, vma->vm_page_prot);
2422 if (flags & FAULT_FLAG_WRITE)
2423 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2424 set_pte_at(mm, address, page_table, entry);
2425 if (anon) {
2426 inc_mm_counter(mm, anon_rss);
2427 lru_cache_add_active(page);
2428 page_add_new_anon_rmap(page, vma, address);
2429 } else {
2430 inc_mm_counter(mm, file_rss);
2431 page_add_file_rmap(page);
2432 if (flags & FAULT_FLAG_WRITE) {
2433 dirty_page = page;
2434 get_page(dirty_page);
2438 /* no need to invalidate: a not-present page won't be cached */
2439 update_mmu_cache(vma, address, entry);
2440 lazy_mmu_prot_update(entry);
2441 } else {
2442 if (anon)
2443 page_cache_release(page);
2444 else
2445 anon = 1; /* no anon but release faulted_page */
2448 pte_unmap_unlock(page_table, ptl);
2450 out:
2451 unlock_page(vmf.page);
2452 out_unlocked:
2453 if (anon)
2454 page_cache_release(vmf.page);
2455 else if (dirty_page) {
2456 set_page_dirty_balance(dirty_page);
2457 put_page(dirty_page);
2460 return ret;
2463 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2464 unsigned long address, pte_t *page_table, pmd_t *pmd,
2465 int write_access, pte_t orig_pte)
2467 pgoff_t pgoff = (((address & PAGE_MASK)
2468 - vma->vm_start) >> PAGE_CACHE_SHIFT) + vma->vm_pgoff;
2469 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2471 return __do_fault(mm, vma, address, page_table, pmd, pgoff,
2472 flags, orig_pte);
2477 * do_no_pfn() tries to create a new page mapping for a page without
2478 * a struct_page backing it
2480 * As this is called only for pages that do not currently exist, we
2481 * do not need to flush old virtual caches or the TLB.
2483 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2484 * but allow concurrent faults), and pte mapped but not yet locked.
2485 * We return with mmap_sem still held, but pte unmapped and unlocked.
2487 * It is expected that the ->nopfn handler always returns the same pfn
2488 * for a given virtual mapping.
2490 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2492 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2493 unsigned long address, pte_t *page_table, pmd_t *pmd,
2494 int write_access)
2496 spinlock_t *ptl;
2497 pte_t entry;
2498 unsigned long pfn;
2500 pte_unmap(page_table);
2501 BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2502 BUG_ON(is_cow_mapping(vma->vm_flags));
2504 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2505 if (unlikely(pfn == NOPFN_OOM))
2506 return VM_FAULT_OOM;
2507 else if (unlikely(pfn == NOPFN_SIGBUS))
2508 return VM_FAULT_SIGBUS;
2509 else if (unlikely(pfn == NOPFN_REFAULT))
2510 return 0;
2512 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2514 /* Only go through if we didn't race with anybody else... */
2515 if (pte_none(*page_table)) {
2516 entry = pfn_pte(pfn, vma->vm_page_prot);
2517 if (write_access)
2518 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2519 set_pte_at(mm, address, page_table, entry);
2521 pte_unmap_unlock(page_table, ptl);
2522 return 0;
2526 * Fault of a previously existing named mapping. Repopulate the pte
2527 * from the encoded file_pte if possible. This enables swappable
2528 * nonlinear vmas.
2530 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2531 * but allow concurrent faults), and pte mapped but not yet locked.
2532 * We return with mmap_sem still held, but pte unmapped and unlocked.
2534 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2535 unsigned long address, pte_t *page_table, pmd_t *pmd,
2536 int write_access, pte_t orig_pte)
2538 unsigned int flags = FAULT_FLAG_NONLINEAR |
2539 (write_access ? FAULT_FLAG_WRITE : 0);
2540 pgoff_t pgoff;
2542 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2543 return 0;
2545 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2546 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2548 * Page table corrupted: show pte and kill process.
2550 print_bad_pte(vma, orig_pte, address);
2551 return VM_FAULT_OOM;
2554 pgoff = pte_to_pgoff(orig_pte);
2556 return __do_fault(mm, vma, address, page_table, pmd, pgoff,
2557 flags, orig_pte);
2561 * These routines also need to handle stuff like marking pages dirty
2562 * and/or accessed for architectures that don't do it in hardware (most
2563 * RISC architectures). The early dirtying is also good on the i386.
2565 * There is also a hook called "update_mmu_cache()" that architectures
2566 * with external mmu caches can use to update those (ie the Sparc or
2567 * PowerPC hashed page tables that act as extended TLBs).
2569 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2570 * but allow concurrent faults), and pte mapped but not yet locked.
2571 * We return with mmap_sem still held, but pte unmapped and unlocked.
2573 static inline int handle_pte_fault(struct mm_struct *mm,
2574 struct vm_area_struct *vma, unsigned long address,
2575 pte_t *pte, pmd_t *pmd, int write_access)
2577 pte_t entry;
2578 spinlock_t *ptl;
2580 entry = *pte;
2581 if (!pte_present(entry)) {
2582 if (pte_none(entry)) {
2583 if (vma->vm_ops) {
2584 if (vma->vm_ops->fault || vma->vm_ops->nopage)
2585 return do_linear_fault(mm, vma, address,
2586 pte, pmd, write_access, entry);
2587 if (unlikely(vma->vm_ops->nopfn))
2588 return do_no_pfn(mm, vma, address, pte,
2589 pmd, write_access);
2591 return do_anonymous_page(mm, vma, address,
2592 pte, pmd, write_access);
2594 if (pte_file(entry))
2595 return do_nonlinear_fault(mm, vma, address,
2596 pte, pmd, write_access, entry);
2597 return do_swap_page(mm, vma, address,
2598 pte, pmd, write_access, entry);
2601 ptl = pte_lockptr(mm, pmd);
2602 spin_lock(ptl);
2603 if (unlikely(!pte_same(*pte, entry)))
2604 goto unlock;
2605 if (write_access) {
2606 if (!pte_write(entry))
2607 return do_wp_page(mm, vma, address,
2608 pte, pmd, ptl, entry);
2609 entry = pte_mkdirty(entry);
2611 entry = pte_mkyoung(entry);
2612 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2613 update_mmu_cache(vma, address, entry);
2614 lazy_mmu_prot_update(entry);
2615 } else {
2617 * This is needed only for protection faults but the arch code
2618 * is not yet telling us if this is a protection fault or not.
2619 * This still avoids useless tlb flushes for .text page faults
2620 * with threads.
2622 if (write_access)
2623 flush_tlb_page(vma, address);
2625 unlock:
2626 pte_unmap_unlock(pte, ptl);
2627 return 0;
2631 * By the time we get here, we already hold the mm semaphore
2633 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2634 unsigned long address, int write_access)
2636 pgd_t *pgd;
2637 pud_t *pud;
2638 pmd_t *pmd;
2639 pte_t *pte;
2641 __set_current_state(TASK_RUNNING);
2643 count_vm_event(PGFAULT);
2645 if (unlikely(is_vm_hugetlb_page(vma)))
2646 return hugetlb_fault(mm, vma, address, write_access);
2648 pgd = pgd_offset(mm, address);
2649 pud = pud_alloc(mm, pgd, address);
2650 if (!pud)
2651 return VM_FAULT_OOM;
2652 pmd = pmd_alloc(mm, pud, address);
2653 if (!pmd)
2654 return VM_FAULT_OOM;
2655 pte = pte_alloc_map(mm, pmd, address);
2656 if (!pte)
2657 return VM_FAULT_OOM;
2659 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2662 #ifndef __PAGETABLE_PUD_FOLDED
2664 * Allocate page upper directory.
2665 * We've already handled the fast-path in-line.
2667 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2669 pud_t *new = pud_alloc_one(mm, address);
2670 if (!new)
2671 return -ENOMEM;
2673 spin_lock(&mm->page_table_lock);
2674 if (pgd_present(*pgd)) /* Another has populated it */
2675 pud_free(new);
2676 else
2677 pgd_populate(mm, pgd, new);
2678 spin_unlock(&mm->page_table_lock);
2679 return 0;
2681 #endif /* __PAGETABLE_PUD_FOLDED */
2683 #ifndef __PAGETABLE_PMD_FOLDED
2685 * Allocate page middle directory.
2686 * We've already handled the fast-path in-line.
2688 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2690 pmd_t *new = pmd_alloc_one(mm, address);
2691 if (!new)
2692 return -ENOMEM;
2694 spin_lock(&mm->page_table_lock);
2695 #ifndef __ARCH_HAS_4LEVEL_HACK
2696 if (pud_present(*pud)) /* Another has populated it */
2697 pmd_free(new);
2698 else
2699 pud_populate(mm, pud, new);
2700 #else
2701 if (pgd_present(*pud)) /* Another has populated it */
2702 pmd_free(new);
2703 else
2704 pgd_populate(mm, pud, new);
2705 #endif /* __ARCH_HAS_4LEVEL_HACK */
2706 spin_unlock(&mm->page_table_lock);
2707 return 0;
2709 #endif /* __PAGETABLE_PMD_FOLDED */
2711 int make_pages_present(unsigned long addr, unsigned long end)
2713 int ret, len, write;
2714 struct vm_area_struct * vma;
2716 vma = find_vma(current->mm, addr);
2717 if (!vma)
2718 return -1;
2719 write = (vma->vm_flags & VM_WRITE) != 0;
2720 BUG_ON(addr >= end);
2721 BUG_ON(end > vma->vm_end);
2722 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2723 ret = get_user_pages(current, current->mm, addr,
2724 len, write, 0, NULL, NULL);
2725 if (ret < 0)
2726 return ret;
2727 return ret == len ? 0 : -1;
2731 * Map a vmalloc()-space virtual address to the physical page.
2733 struct page * vmalloc_to_page(void * vmalloc_addr)
2735 unsigned long addr = (unsigned long) vmalloc_addr;
2736 struct page *page = NULL;
2737 pgd_t *pgd = pgd_offset_k(addr);
2738 pud_t *pud;
2739 pmd_t *pmd;
2740 pte_t *ptep, pte;
2742 if (!pgd_none(*pgd)) {
2743 pud = pud_offset(pgd, addr);
2744 if (!pud_none(*pud)) {
2745 pmd = pmd_offset(pud, addr);
2746 if (!pmd_none(*pmd)) {
2747 ptep = pte_offset_map(pmd, addr);
2748 pte = *ptep;
2749 if (pte_present(pte))
2750 page = pte_page(pte);
2751 pte_unmap(ptep);
2755 return page;
2758 EXPORT_SYMBOL(vmalloc_to_page);
2761 * Map a vmalloc()-space virtual address to the physical page frame number.
2763 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2765 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2768 EXPORT_SYMBOL(vmalloc_to_pfn);
2770 #if !defined(__HAVE_ARCH_GATE_AREA)
2772 #if defined(AT_SYSINFO_EHDR)
2773 static struct vm_area_struct gate_vma;
2775 static int __init gate_vma_init(void)
2777 gate_vma.vm_mm = NULL;
2778 gate_vma.vm_start = FIXADDR_USER_START;
2779 gate_vma.vm_end = FIXADDR_USER_END;
2780 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2781 gate_vma.vm_page_prot = __P101;
2783 * Make sure the vDSO gets into every core dump.
2784 * Dumping its contents makes post-mortem fully interpretable later
2785 * without matching up the same kernel and hardware config to see
2786 * what PC values meant.
2788 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2789 return 0;
2791 __initcall(gate_vma_init);
2792 #endif
2794 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2796 #ifdef AT_SYSINFO_EHDR
2797 return &gate_vma;
2798 #else
2799 return NULL;
2800 #endif
2803 int in_gate_area_no_task(unsigned long addr)
2805 #ifdef AT_SYSINFO_EHDR
2806 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2807 return 1;
2808 #endif
2809 return 0;
2812 #endif /* __HAVE_ARCH_GATE_AREA */
2815 * Access another process' address space.
2816 * Source/target buffer must be kernel space,
2817 * Do not walk the page table directly, use get_user_pages
2819 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2821 struct mm_struct *mm;
2822 struct vm_area_struct *vma;
2823 struct page *page;
2824 void *old_buf = buf;
2826 mm = get_task_mm(tsk);
2827 if (!mm)
2828 return 0;
2830 down_read(&mm->mmap_sem);
2831 /* ignore errors, just check how much was sucessfully transfered */
2832 while (len) {
2833 int bytes, ret, offset;
2834 void *maddr;
2836 ret = get_user_pages(tsk, mm, addr, 1,
2837 write, 1, &page, &vma);
2838 if (ret <= 0)
2839 break;
2841 bytes = len;
2842 offset = addr & (PAGE_SIZE-1);
2843 if (bytes > PAGE_SIZE-offset)
2844 bytes = PAGE_SIZE-offset;
2846 maddr = kmap(page);
2847 if (write) {
2848 copy_to_user_page(vma, page, addr,
2849 maddr + offset, buf, bytes);
2850 set_page_dirty_lock(page);
2851 } else {
2852 copy_from_user_page(vma, page, addr,
2853 buf, maddr + offset, bytes);
2855 kunmap(page);
2856 page_cache_release(page);
2857 len -= bytes;
2858 buf += bytes;
2859 addr += bytes;
2861 up_read(&mm->mmap_sem);
2862 mmput(mm);
2864 return buf - old_buf;
2866 EXPORT_SYMBOL_GPL(access_process_vm);