ACPI: fix "Time Problems with 2.6.23-rc1-gf695baf2"
[linux-2.6/mini2440.git] / fs / mbcache.c
blob1046cbefbfbf4f56be9640dacacc1d884af492f4
1 /*
2 * linux/fs/mbcache.c
3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
4 */
6 /*
7 * Filesystem Meta Information Block Cache (mbcache)
9 * The mbcache caches blocks of block devices that need to be located
10 * by their device/block number, as well as by other criteria (such
11 * as the block's contents).
13 * There can only be one cache entry in a cache per device and block number.
14 * Additional indexes need not be unique in this sense. The number of
15 * additional indexes (=other criteria) can be hardwired at compile time
16 * or specified at cache create time.
18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
19 * in the cache. A valid entry is in the main hash tables of the cache,
20 * and may also be in the lru list. An invalid entry is not in any hashes
21 * or lists.
23 * A valid cache entry is only in the lru list if no handles refer to it.
24 * Invalid cache entries will be freed when the last handle to the cache
25 * entry is released. Entries that cannot be freed immediately are put
26 * back on the lru list.
29 #include <linux/kernel.h>
30 #include <linux/module.h>
32 #include <linux/hash.h>
33 #include <linux/fs.h>
34 #include <linux/mm.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/init.h>
38 #include <linux/mbcache.h>
41 #ifdef MB_CACHE_DEBUG
42 # define mb_debug(f...) do { \
43 printk(KERN_DEBUG f); \
44 printk("\n"); \
45 } while (0)
46 #define mb_assert(c) do { if (!(c)) \
47 printk(KERN_ERR "assertion " #c " failed\n"); \
48 } while(0)
49 #else
50 # define mb_debug(f...) do { } while(0)
51 # define mb_assert(c) do { } while(0)
52 #endif
53 #define mb_error(f...) do { \
54 printk(KERN_ERR f); \
55 printk("\n"); \
56 } while(0)
58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
62 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
64 MODULE_LICENSE("GPL");
66 EXPORT_SYMBOL(mb_cache_create);
67 EXPORT_SYMBOL(mb_cache_shrink);
68 EXPORT_SYMBOL(mb_cache_destroy);
69 EXPORT_SYMBOL(mb_cache_entry_alloc);
70 EXPORT_SYMBOL(mb_cache_entry_insert);
71 EXPORT_SYMBOL(mb_cache_entry_release);
72 EXPORT_SYMBOL(mb_cache_entry_free);
73 EXPORT_SYMBOL(mb_cache_entry_get);
74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
75 EXPORT_SYMBOL(mb_cache_entry_find_first);
76 EXPORT_SYMBOL(mb_cache_entry_find_next);
77 #endif
79 struct mb_cache {
80 struct list_head c_cache_list;
81 const char *c_name;
82 struct mb_cache_op c_op;
83 atomic_t c_entry_count;
84 int c_bucket_bits;
85 #ifndef MB_CACHE_INDEXES_COUNT
86 int c_indexes_count;
87 #endif
88 struct kmem_cache *c_entry_cache;
89 struct list_head *c_block_hash;
90 struct list_head *c_indexes_hash[0];
95 * Global data: list of all mbcache's, lru list, and a spinlock for
96 * accessing cache data structures on SMP machines. The lru list is
97 * global across all mbcaches.
100 static LIST_HEAD(mb_cache_list);
101 static LIST_HEAD(mb_cache_lru_list);
102 static DEFINE_SPINLOCK(mb_cache_spinlock);
104 static inline int
105 mb_cache_indexes(struct mb_cache *cache)
107 #ifdef MB_CACHE_INDEXES_COUNT
108 return MB_CACHE_INDEXES_COUNT;
109 #else
110 return cache->c_indexes_count;
111 #endif
115 * What the mbcache registers as to get shrunk dynamically.
118 static int mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask);
120 static struct shrinker mb_cache_shrinker = {
121 .shrink = mb_cache_shrink_fn,
122 .seeks = DEFAULT_SEEKS,
125 static inline int
126 __mb_cache_entry_is_hashed(struct mb_cache_entry *ce)
128 return !list_empty(&ce->e_block_list);
132 static void
133 __mb_cache_entry_unhash(struct mb_cache_entry *ce)
135 int n;
137 if (__mb_cache_entry_is_hashed(ce)) {
138 list_del_init(&ce->e_block_list);
139 for (n=0; n<mb_cache_indexes(ce->e_cache); n++)
140 list_del(&ce->e_indexes[n].o_list);
145 static void
146 __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
148 struct mb_cache *cache = ce->e_cache;
150 mb_assert(!(ce->e_used || ce->e_queued));
151 if (cache->c_op.free && cache->c_op.free(ce, gfp_mask)) {
152 /* free failed -- put back on the lru list
153 for freeing later. */
154 spin_lock(&mb_cache_spinlock);
155 list_add(&ce->e_lru_list, &mb_cache_lru_list);
156 spin_unlock(&mb_cache_spinlock);
157 } else {
158 kmem_cache_free(cache->c_entry_cache, ce);
159 atomic_dec(&cache->c_entry_count);
164 static void
165 __mb_cache_entry_release_unlock(struct mb_cache_entry *ce)
166 __releases(mb_cache_spinlock)
168 /* Wake up all processes queuing for this cache entry. */
169 if (ce->e_queued)
170 wake_up_all(&mb_cache_queue);
171 if (ce->e_used >= MB_CACHE_WRITER)
172 ce->e_used -= MB_CACHE_WRITER;
173 ce->e_used--;
174 if (!(ce->e_used || ce->e_queued)) {
175 if (!__mb_cache_entry_is_hashed(ce))
176 goto forget;
177 mb_assert(list_empty(&ce->e_lru_list));
178 list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
180 spin_unlock(&mb_cache_spinlock);
181 return;
182 forget:
183 spin_unlock(&mb_cache_spinlock);
184 __mb_cache_entry_forget(ce, GFP_KERNEL);
189 * mb_cache_shrink_fn() memory pressure callback
191 * This function is called by the kernel memory management when memory
192 * gets low.
194 * @nr_to_scan: Number of objects to scan
195 * @gfp_mask: (ignored)
197 * Returns the number of objects which are present in the cache.
199 static int
200 mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask)
202 LIST_HEAD(free_list);
203 struct list_head *l, *ltmp;
204 int count = 0;
206 spin_lock(&mb_cache_spinlock);
207 list_for_each(l, &mb_cache_list) {
208 struct mb_cache *cache =
209 list_entry(l, struct mb_cache, c_cache_list);
210 mb_debug("cache %s (%d)", cache->c_name,
211 atomic_read(&cache->c_entry_count));
212 count += atomic_read(&cache->c_entry_count);
214 mb_debug("trying to free %d entries", nr_to_scan);
215 if (nr_to_scan == 0) {
216 spin_unlock(&mb_cache_spinlock);
217 goto out;
219 while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) {
220 struct mb_cache_entry *ce =
221 list_entry(mb_cache_lru_list.next,
222 struct mb_cache_entry, e_lru_list);
223 list_move_tail(&ce->e_lru_list, &free_list);
224 __mb_cache_entry_unhash(ce);
226 spin_unlock(&mb_cache_spinlock);
227 list_for_each_safe(l, ltmp, &free_list) {
228 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
229 e_lru_list), gfp_mask);
231 out:
232 return (count / 100) * sysctl_vfs_cache_pressure;
237 * mb_cache_create() create a new cache
239 * All entries in one cache are equal size. Cache entries may be from
240 * multiple devices. If this is the first mbcache created, registers
241 * the cache with kernel memory management. Returns NULL if no more
242 * memory was available.
244 * @name: name of the cache (informal)
245 * @cache_op: contains the callback called when freeing a cache entry
246 * @entry_size: The size of a cache entry, including
247 * struct mb_cache_entry
248 * @indexes_count: number of additional indexes in the cache. Must equal
249 * MB_CACHE_INDEXES_COUNT if the number of indexes is
250 * hardwired.
251 * @bucket_bits: log2(number of hash buckets)
253 struct mb_cache *
254 mb_cache_create(const char *name, struct mb_cache_op *cache_op,
255 size_t entry_size, int indexes_count, int bucket_bits)
257 int m=0, n, bucket_count = 1 << bucket_bits;
258 struct mb_cache *cache = NULL;
260 if(entry_size < sizeof(struct mb_cache_entry) +
261 indexes_count * sizeof(((struct mb_cache_entry *) 0)->e_indexes[0]))
262 return NULL;
264 cache = kmalloc(sizeof(struct mb_cache) +
265 indexes_count * sizeof(struct list_head), GFP_KERNEL);
266 if (!cache)
267 goto fail;
268 cache->c_name = name;
269 cache->c_op.free = NULL;
270 if (cache_op)
271 cache->c_op.free = cache_op->free;
272 atomic_set(&cache->c_entry_count, 0);
273 cache->c_bucket_bits = bucket_bits;
274 #ifdef MB_CACHE_INDEXES_COUNT
275 mb_assert(indexes_count == MB_CACHE_INDEXES_COUNT);
276 #else
277 cache->c_indexes_count = indexes_count;
278 #endif
279 cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head),
280 GFP_KERNEL);
281 if (!cache->c_block_hash)
282 goto fail;
283 for (n=0; n<bucket_count; n++)
284 INIT_LIST_HEAD(&cache->c_block_hash[n]);
285 for (m=0; m<indexes_count; m++) {
286 cache->c_indexes_hash[m] = kmalloc(bucket_count *
287 sizeof(struct list_head),
288 GFP_KERNEL);
289 if (!cache->c_indexes_hash[m])
290 goto fail;
291 for (n=0; n<bucket_count; n++)
292 INIT_LIST_HEAD(&cache->c_indexes_hash[m][n]);
294 cache->c_entry_cache = kmem_cache_create(name, entry_size, 0,
295 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
296 if (!cache->c_entry_cache)
297 goto fail;
299 spin_lock(&mb_cache_spinlock);
300 list_add(&cache->c_cache_list, &mb_cache_list);
301 spin_unlock(&mb_cache_spinlock);
302 return cache;
304 fail:
305 if (cache) {
306 while (--m >= 0)
307 kfree(cache->c_indexes_hash[m]);
308 kfree(cache->c_block_hash);
309 kfree(cache);
311 return NULL;
316 * mb_cache_shrink()
318 * Removes all cache entries of a device from the cache. All cache entries
319 * currently in use cannot be freed, and thus remain in the cache. All others
320 * are freed.
322 * @bdev: which device's cache entries to shrink
324 void
325 mb_cache_shrink(struct block_device *bdev)
327 LIST_HEAD(free_list);
328 struct list_head *l, *ltmp;
330 spin_lock(&mb_cache_spinlock);
331 list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
332 struct mb_cache_entry *ce =
333 list_entry(l, struct mb_cache_entry, e_lru_list);
334 if (ce->e_bdev == bdev) {
335 list_move_tail(&ce->e_lru_list, &free_list);
336 __mb_cache_entry_unhash(ce);
339 spin_unlock(&mb_cache_spinlock);
340 list_for_each_safe(l, ltmp, &free_list) {
341 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
342 e_lru_list), GFP_KERNEL);
348 * mb_cache_destroy()
350 * Shrinks the cache to its minimum possible size (hopefully 0 entries),
351 * and then destroys it. If this was the last mbcache, un-registers the
352 * mbcache from kernel memory management.
354 void
355 mb_cache_destroy(struct mb_cache *cache)
357 LIST_HEAD(free_list);
358 struct list_head *l, *ltmp;
359 int n;
361 spin_lock(&mb_cache_spinlock);
362 list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
363 struct mb_cache_entry *ce =
364 list_entry(l, struct mb_cache_entry, e_lru_list);
365 if (ce->e_cache == cache) {
366 list_move_tail(&ce->e_lru_list, &free_list);
367 __mb_cache_entry_unhash(ce);
370 list_del(&cache->c_cache_list);
371 spin_unlock(&mb_cache_spinlock);
373 list_for_each_safe(l, ltmp, &free_list) {
374 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
375 e_lru_list), GFP_KERNEL);
378 if (atomic_read(&cache->c_entry_count) > 0) {
379 mb_error("cache %s: %d orphaned entries",
380 cache->c_name,
381 atomic_read(&cache->c_entry_count));
384 kmem_cache_destroy(cache->c_entry_cache);
386 for (n=0; n < mb_cache_indexes(cache); n++)
387 kfree(cache->c_indexes_hash[n]);
388 kfree(cache->c_block_hash);
389 kfree(cache);
394 * mb_cache_entry_alloc()
396 * Allocates a new cache entry. The new entry will not be valid initially,
397 * and thus cannot be looked up yet. It should be filled with data, and
398 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
399 * if no more memory was available.
401 struct mb_cache_entry *
402 mb_cache_entry_alloc(struct mb_cache *cache)
404 struct mb_cache_entry *ce;
406 atomic_inc(&cache->c_entry_count);
407 ce = kmem_cache_alloc(cache->c_entry_cache, GFP_KERNEL);
408 if (ce) {
409 INIT_LIST_HEAD(&ce->e_lru_list);
410 INIT_LIST_HEAD(&ce->e_block_list);
411 ce->e_cache = cache;
412 ce->e_used = 1 + MB_CACHE_WRITER;
413 ce->e_queued = 0;
415 return ce;
420 * mb_cache_entry_insert()
422 * Inserts an entry that was allocated using mb_cache_entry_alloc() into
423 * the cache. After this, the cache entry can be looked up, but is not yet
424 * in the lru list as the caller still holds a handle to it. Returns 0 on
425 * success, or -EBUSY if a cache entry for that device + inode exists
426 * already (this may happen after a failed lookup, but when another process
427 * has inserted the same cache entry in the meantime).
429 * @bdev: device the cache entry belongs to
430 * @block: block number
431 * @keys: array of additional keys. There must be indexes_count entries
432 * in the array (as specified when creating the cache).
435 mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
436 sector_t block, unsigned int keys[])
438 struct mb_cache *cache = ce->e_cache;
439 unsigned int bucket;
440 struct list_head *l;
441 int error = -EBUSY, n;
443 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
444 cache->c_bucket_bits);
445 spin_lock(&mb_cache_spinlock);
446 list_for_each_prev(l, &cache->c_block_hash[bucket]) {
447 struct mb_cache_entry *ce =
448 list_entry(l, struct mb_cache_entry, e_block_list);
449 if (ce->e_bdev == bdev && ce->e_block == block)
450 goto out;
452 __mb_cache_entry_unhash(ce);
453 ce->e_bdev = bdev;
454 ce->e_block = block;
455 list_add(&ce->e_block_list, &cache->c_block_hash[bucket]);
456 for (n=0; n<mb_cache_indexes(cache); n++) {
457 ce->e_indexes[n].o_key = keys[n];
458 bucket = hash_long(keys[n], cache->c_bucket_bits);
459 list_add(&ce->e_indexes[n].o_list,
460 &cache->c_indexes_hash[n][bucket]);
462 error = 0;
463 out:
464 spin_unlock(&mb_cache_spinlock);
465 return error;
470 * mb_cache_entry_release()
472 * Release a handle to a cache entry. When the last handle to a cache entry
473 * is released it is either freed (if it is invalid) or otherwise inserted
474 * in to the lru list.
476 void
477 mb_cache_entry_release(struct mb_cache_entry *ce)
479 spin_lock(&mb_cache_spinlock);
480 __mb_cache_entry_release_unlock(ce);
485 * mb_cache_entry_free()
487 * This is equivalent to the sequence mb_cache_entry_takeout() --
488 * mb_cache_entry_release().
490 void
491 mb_cache_entry_free(struct mb_cache_entry *ce)
493 spin_lock(&mb_cache_spinlock);
494 mb_assert(list_empty(&ce->e_lru_list));
495 __mb_cache_entry_unhash(ce);
496 __mb_cache_entry_release_unlock(ce);
501 * mb_cache_entry_get()
503 * Get a cache entry by device / block number. (There can only be one entry
504 * in the cache per device and block.) Returns NULL if no such cache entry
505 * exists. The returned cache entry is locked for exclusive access ("single
506 * writer").
508 struct mb_cache_entry *
509 mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
510 sector_t block)
512 unsigned int bucket;
513 struct list_head *l;
514 struct mb_cache_entry *ce;
516 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
517 cache->c_bucket_bits);
518 spin_lock(&mb_cache_spinlock);
519 list_for_each(l, &cache->c_block_hash[bucket]) {
520 ce = list_entry(l, struct mb_cache_entry, e_block_list);
521 if (ce->e_bdev == bdev && ce->e_block == block) {
522 DEFINE_WAIT(wait);
524 if (!list_empty(&ce->e_lru_list))
525 list_del_init(&ce->e_lru_list);
527 while (ce->e_used > 0) {
528 ce->e_queued++;
529 prepare_to_wait(&mb_cache_queue, &wait,
530 TASK_UNINTERRUPTIBLE);
531 spin_unlock(&mb_cache_spinlock);
532 schedule();
533 spin_lock(&mb_cache_spinlock);
534 ce->e_queued--;
536 finish_wait(&mb_cache_queue, &wait);
537 ce->e_used += 1 + MB_CACHE_WRITER;
539 if (!__mb_cache_entry_is_hashed(ce)) {
540 __mb_cache_entry_release_unlock(ce);
541 return NULL;
543 goto cleanup;
546 ce = NULL;
548 cleanup:
549 spin_unlock(&mb_cache_spinlock);
550 return ce;
553 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
555 static struct mb_cache_entry *
556 __mb_cache_entry_find(struct list_head *l, struct list_head *head,
557 int index, struct block_device *bdev, unsigned int key)
559 while (l != head) {
560 struct mb_cache_entry *ce =
561 list_entry(l, struct mb_cache_entry,
562 e_indexes[index].o_list);
563 if (ce->e_bdev == bdev && ce->e_indexes[index].o_key == key) {
564 DEFINE_WAIT(wait);
566 if (!list_empty(&ce->e_lru_list))
567 list_del_init(&ce->e_lru_list);
569 /* Incrementing before holding the lock gives readers
570 priority over writers. */
571 ce->e_used++;
572 while (ce->e_used >= MB_CACHE_WRITER) {
573 ce->e_queued++;
574 prepare_to_wait(&mb_cache_queue, &wait,
575 TASK_UNINTERRUPTIBLE);
576 spin_unlock(&mb_cache_spinlock);
577 schedule();
578 spin_lock(&mb_cache_spinlock);
579 ce->e_queued--;
581 finish_wait(&mb_cache_queue, &wait);
583 if (!__mb_cache_entry_is_hashed(ce)) {
584 __mb_cache_entry_release_unlock(ce);
585 spin_lock(&mb_cache_spinlock);
586 return ERR_PTR(-EAGAIN);
588 return ce;
590 l = l->next;
592 return NULL;
597 * mb_cache_entry_find_first()
599 * Find the first cache entry on a given device with a certain key in
600 * an additional index. Additonal matches can be found with
601 * mb_cache_entry_find_next(). Returns NULL if no match was found. The
602 * returned cache entry is locked for shared access ("multiple readers").
604 * @cache: the cache to search
605 * @index: the number of the additonal index to search (0<=index<indexes_count)
606 * @bdev: the device the cache entry should belong to
607 * @key: the key in the index
609 struct mb_cache_entry *
610 mb_cache_entry_find_first(struct mb_cache *cache, int index,
611 struct block_device *bdev, unsigned int key)
613 unsigned int bucket = hash_long(key, cache->c_bucket_bits);
614 struct list_head *l;
615 struct mb_cache_entry *ce;
617 mb_assert(index < mb_cache_indexes(cache));
618 spin_lock(&mb_cache_spinlock);
619 l = cache->c_indexes_hash[index][bucket].next;
620 ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket],
621 index, bdev, key);
622 spin_unlock(&mb_cache_spinlock);
623 return ce;
628 * mb_cache_entry_find_next()
630 * Find the next cache entry on a given device with a certain key in an
631 * additional index. Returns NULL if no match could be found. The previous
632 * entry is atomatically released, so that mb_cache_entry_find_next() can
633 * be called like this:
635 * entry = mb_cache_entry_find_first();
636 * while (entry) {
637 * ...
638 * entry = mb_cache_entry_find_next(entry, ...);
641 * @prev: The previous match
642 * @index: the number of the additonal index to search (0<=index<indexes_count)
643 * @bdev: the device the cache entry should belong to
644 * @key: the key in the index
646 struct mb_cache_entry *
647 mb_cache_entry_find_next(struct mb_cache_entry *prev, int index,
648 struct block_device *bdev, unsigned int key)
650 struct mb_cache *cache = prev->e_cache;
651 unsigned int bucket = hash_long(key, cache->c_bucket_bits);
652 struct list_head *l;
653 struct mb_cache_entry *ce;
655 mb_assert(index < mb_cache_indexes(cache));
656 spin_lock(&mb_cache_spinlock);
657 l = prev->e_indexes[index].o_list.next;
658 ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket],
659 index, bdev, key);
660 __mb_cache_entry_release_unlock(prev);
661 return ce;
664 #endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
666 static int __init init_mbcache(void)
668 register_shrinker(&mb_cache_shrinker);
669 return 0;
672 static void __exit exit_mbcache(void)
674 unregister_shrinker(&mb_cache_shrinker);
677 module_init(init_mbcache)
678 module_exit(exit_mbcache)