igb: remove three redundant functions left in the code
[linux-2.6/mini2440.git] / drivers / net / igb / e1000_82575.c
blobbb823acc7443183b41f454b756e9206c67c483ec
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* e1000_82575
29 * e1000_82576
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/if_ether.h>
36 #include "e1000_mac.h"
37 #include "e1000_82575.h"
39 static s32 igb_get_invariants_82575(struct e1000_hw *);
40 static s32 igb_acquire_phy_82575(struct e1000_hw *);
41 static void igb_release_phy_82575(struct e1000_hw *);
42 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
43 static void igb_release_nvm_82575(struct e1000_hw *);
44 static s32 igb_check_for_link_82575(struct e1000_hw *);
45 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
46 static s32 igb_init_hw_82575(struct e1000_hw *);
47 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
48 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
49 static s32 igb_reset_hw_82575(struct e1000_hw *);
50 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
51 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
52 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *);
53 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
54 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
55 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
56 static s32 igb_configure_pcs_link_82575(struct e1000_hw *);
57 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
58 u16 *);
59 static s32 igb_get_phy_id_82575(struct e1000_hw *);
60 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
61 static bool igb_sgmii_active_82575(struct e1000_hw *);
62 static s32 igb_reset_init_script_82575(struct e1000_hw *);
63 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
66 struct e1000_dev_spec_82575 {
67 bool sgmii_active;
70 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
72 struct e1000_phy_info *phy = &hw->phy;
73 struct e1000_nvm_info *nvm = &hw->nvm;
74 struct e1000_mac_info *mac = &hw->mac;
75 struct e1000_dev_spec_82575 *dev_spec;
76 u32 eecd;
77 s32 ret_val;
78 u16 size;
79 u32 ctrl_ext = 0;
81 switch (hw->device_id) {
82 case E1000_DEV_ID_82575EB_COPPER:
83 case E1000_DEV_ID_82575EB_FIBER_SERDES:
84 case E1000_DEV_ID_82575GB_QUAD_COPPER:
85 mac->type = e1000_82575;
86 break;
87 case E1000_DEV_ID_82576:
88 case E1000_DEV_ID_82576_FIBER:
89 case E1000_DEV_ID_82576_SERDES:
90 case E1000_DEV_ID_82576_QUAD_COPPER:
91 mac->type = e1000_82576;
92 break;
93 default:
94 return -E1000_ERR_MAC_INIT;
95 break;
98 /* MAC initialization */
99 hw->dev_spec_size = sizeof(struct e1000_dev_spec_82575);
101 /* Device-specific structure allocation */
102 hw->dev_spec = kzalloc(hw->dev_spec_size, GFP_KERNEL);
104 if (!hw->dev_spec)
105 return -ENOMEM;
107 dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
109 /* Set media type */
111 * The 82575 uses bits 22:23 for link mode. The mode can be changed
112 * based on the EEPROM. We cannot rely upon device ID. There
113 * is no distinguishable difference between fiber and internal
114 * SerDes mode on the 82575. There can be an external PHY attached
115 * on the SGMII interface. For this, we'll set sgmii_active to true.
117 phy->media_type = e1000_media_type_copper;
118 dev_spec->sgmii_active = false;
120 ctrl_ext = rd32(E1000_CTRL_EXT);
121 if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
122 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
123 hw->phy.media_type = e1000_media_type_internal_serdes;
124 ctrl_ext |= E1000_CTRL_I2C_ENA;
125 } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
126 dev_spec->sgmii_active = true;
127 ctrl_ext |= E1000_CTRL_I2C_ENA;
128 } else {
129 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
131 wr32(E1000_CTRL_EXT, ctrl_ext);
133 /* Set mta register count */
134 mac->mta_reg_count = 128;
135 /* Set rar entry count */
136 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
137 if (mac->type == e1000_82576)
138 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
139 /* Set if part includes ASF firmware */
140 mac->asf_firmware_present = true;
141 /* Set if manageability features are enabled. */
142 mac->arc_subsystem_valid =
143 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
144 ? true : false;
146 /* physical interface link setup */
147 mac->ops.setup_physical_interface =
148 (hw->phy.media_type == e1000_media_type_copper)
149 ? igb_setup_copper_link_82575
150 : igb_setup_fiber_serdes_link_82575;
152 /* NVM initialization */
153 eecd = rd32(E1000_EECD);
155 nvm->opcode_bits = 8;
156 nvm->delay_usec = 1;
157 switch (nvm->override) {
158 case e1000_nvm_override_spi_large:
159 nvm->page_size = 32;
160 nvm->address_bits = 16;
161 break;
162 case e1000_nvm_override_spi_small:
163 nvm->page_size = 8;
164 nvm->address_bits = 8;
165 break;
166 default:
167 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
168 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
169 break;
172 nvm->type = e1000_nvm_eeprom_spi;
174 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
175 E1000_EECD_SIZE_EX_SHIFT);
178 * Added to a constant, "size" becomes the left-shift value
179 * for setting word_size.
181 size += NVM_WORD_SIZE_BASE_SHIFT;
183 /* EEPROM access above 16k is unsupported */
184 if (size > 14)
185 size = 14;
186 nvm->word_size = 1 << size;
188 /* setup PHY parameters */
189 if (phy->media_type != e1000_media_type_copper) {
190 phy->type = e1000_phy_none;
191 return 0;
194 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
195 phy->reset_delay_us = 100;
197 /* PHY function pointers */
198 if (igb_sgmii_active_82575(hw)) {
199 phy->ops.reset_phy = igb_phy_hw_reset_sgmii_82575;
200 phy->ops.read_phy_reg = igb_read_phy_reg_sgmii_82575;
201 phy->ops.write_phy_reg = igb_write_phy_reg_sgmii_82575;
202 } else {
203 phy->ops.reset_phy = igb_phy_hw_reset;
204 phy->ops.read_phy_reg = igb_read_phy_reg_igp;
205 phy->ops.write_phy_reg = igb_write_phy_reg_igp;
208 /* Set phy->phy_addr and phy->id. */
209 ret_val = igb_get_phy_id_82575(hw);
210 if (ret_val)
211 return ret_val;
213 /* Verify phy id and set remaining function pointers */
214 switch (phy->id) {
215 case M88E1111_I_PHY_ID:
216 phy->type = e1000_phy_m88;
217 phy->ops.get_phy_info = igb_get_phy_info_m88;
218 phy->ops.get_cable_length = igb_get_cable_length_m88;
219 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
220 break;
221 case IGP03E1000_E_PHY_ID:
222 phy->type = e1000_phy_igp_3;
223 phy->ops.get_phy_info = igb_get_phy_info_igp;
224 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
225 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
226 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
227 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
228 break;
229 default:
230 return -E1000_ERR_PHY;
233 return 0;
237 * igb_acquire_phy_82575 - Acquire rights to access PHY
238 * @hw: pointer to the HW structure
240 * Acquire access rights to the correct PHY. This is a
241 * function pointer entry point called by the api module.
243 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
245 u16 mask;
247 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
249 return igb_acquire_swfw_sync_82575(hw, mask);
253 * igb_release_phy_82575 - Release rights to access PHY
254 * @hw: pointer to the HW structure
256 * A wrapper to release access rights to the correct PHY. This is a
257 * function pointer entry point called by the api module.
259 static void igb_release_phy_82575(struct e1000_hw *hw)
261 u16 mask;
263 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
264 igb_release_swfw_sync_82575(hw, mask);
268 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
269 * @hw: pointer to the HW structure
270 * @offset: register offset to be read
271 * @data: pointer to the read data
273 * Reads the PHY register at offset using the serial gigabit media independent
274 * interface and stores the retrieved information in data.
276 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
277 u16 *data)
279 struct e1000_phy_info *phy = &hw->phy;
280 u32 i, i2ccmd = 0;
282 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
283 hw_dbg("PHY Address %u is out of range\n", offset);
284 return -E1000_ERR_PARAM;
288 * Set up Op-code, Phy Address, and register address in the I2CCMD
289 * register. The MAC will take care of interfacing with the
290 * PHY to retrieve the desired data.
292 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
293 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
294 (E1000_I2CCMD_OPCODE_READ));
296 wr32(E1000_I2CCMD, i2ccmd);
298 /* Poll the ready bit to see if the I2C read completed */
299 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
300 udelay(50);
301 i2ccmd = rd32(E1000_I2CCMD);
302 if (i2ccmd & E1000_I2CCMD_READY)
303 break;
305 if (!(i2ccmd & E1000_I2CCMD_READY)) {
306 hw_dbg("I2CCMD Read did not complete\n");
307 return -E1000_ERR_PHY;
309 if (i2ccmd & E1000_I2CCMD_ERROR) {
310 hw_dbg("I2CCMD Error bit set\n");
311 return -E1000_ERR_PHY;
314 /* Need to byte-swap the 16-bit value. */
315 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
317 return 0;
321 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
322 * @hw: pointer to the HW structure
323 * @offset: register offset to write to
324 * @data: data to write at register offset
326 * Writes the data to PHY register at the offset using the serial gigabit
327 * media independent interface.
329 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
330 u16 data)
332 struct e1000_phy_info *phy = &hw->phy;
333 u32 i, i2ccmd = 0;
334 u16 phy_data_swapped;
336 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
337 hw_dbg("PHY Address %d is out of range\n", offset);
338 return -E1000_ERR_PARAM;
341 /* Swap the data bytes for the I2C interface */
342 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
345 * Set up Op-code, Phy Address, and register address in the I2CCMD
346 * register. The MAC will take care of interfacing with the
347 * PHY to retrieve the desired data.
349 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
350 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
351 E1000_I2CCMD_OPCODE_WRITE |
352 phy_data_swapped);
354 wr32(E1000_I2CCMD, i2ccmd);
356 /* Poll the ready bit to see if the I2C read completed */
357 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
358 udelay(50);
359 i2ccmd = rd32(E1000_I2CCMD);
360 if (i2ccmd & E1000_I2CCMD_READY)
361 break;
363 if (!(i2ccmd & E1000_I2CCMD_READY)) {
364 hw_dbg("I2CCMD Write did not complete\n");
365 return -E1000_ERR_PHY;
367 if (i2ccmd & E1000_I2CCMD_ERROR) {
368 hw_dbg("I2CCMD Error bit set\n");
369 return -E1000_ERR_PHY;
372 return 0;
376 * igb_get_phy_id_82575 - Retrieve PHY addr and id
377 * @hw: pointer to the HW structure
379 * Retrieves the PHY address and ID for both PHY's which do and do not use
380 * sgmi interface.
382 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
384 struct e1000_phy_info *phy = &hw->phy;
385 s32 ret_val = 0;
386 u16 phy_id;
389 * For SGMII PHYs, we try the list of possible addresses until
390 * we find one that works. For non-SGMII PHYs
391 * (e.g. integrated copper PHYs), an address of 1 should
392 * work. The result of this function should mean phy->phy_addr
393 * and phy->id are set correctly.
395 if (!(igb_sgmii_active_82575(hw))) {
396 phy->addr = 1;
397 ret_val = igb_get_phy_id(hw);
398 goto out;
402 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
403 * Therefore, we need to test 1-7
405 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
406 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
407 if (ret_val == 0) {
408 hw_dbg("Vendor ID 0x%08X read at address %u\n",
409 phy_id, phy->addr);
411 * At the time of this writing, The M88 part is
412 * the only supported SGMII PHY product.
414 if (phy_id == M88_VENDOR)
415 break;
416 } else {
417 hw_dbg("PHY address %u was unreadable\n", phy->addr);
421 /* A valid PHY type couldn't be found. */
422 if (phy->addr == 8) {
423 phy->addr = 0;
424 ret_val = -E1000_ERR_PHY;
425 goto out;
428 ret_val = igb_get_phy_id(hw);
430 out:
431 return ret_val;
435 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
436 * @hw: pointer to the HW structure
438 * Resets the PHY using the serial gigabit media independent interface.
440 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
442 s32 ret_val;
445 * This isn't a true "hard" reset, but is the only reset
446 * available to us at this time.
449 hw_dbg("Soft resetting SGMII attached PHY...\n");
452 * SFP documentation requires the following to configure the SPF module
453 * to work on SGMII. No further documentation is given.
455 ret_val = hw->phy.ops.write_phy_reg(hw, 0x1B, 0x8084);
456 if (ret_val)
457 goto out;
459 ret_val = igb_phy_sw_reset(hw);
461 out:
462 return ret_val;
466 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
467 * @hw: pointer to the HW structure
468 * @active: true to enable LPLU, false to disable
470 * Sets the LPLU D0 state according to the active flag. When
471 * activating LPLU this function also disables smart speed
472 * and vice versa. LPLU will not be activated unless the
473 * device autonegotiation advertisement meets standards of
474 * either 10 or 10/100 or 10/100/1000 at all duplexes.
475 * This is a function pointer entry point only called by
476 * PHY setup routines.
478 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
480 struct e1000_phy_info *phy = &hw->phy;
481 s32 ret_val;
482 u16 data;
484 ret_val = phy->ops.read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
485 if (ret_val)
486 goto out;
488 if (active) {
489 data |= IGP02E1000_PM_D0_LPLU;
490 ret_val = phy->ops.write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
491 data);
492 if (ret_val)
493 goto out;
495 /* When LPLU is enabled, we should disable SmartSpeed */
496 ret_val = phy->ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
497 &data);
498 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
499 ret_val = phy->ops.write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
500 data);
501 if (ret_val)
502 goto out;
503 } else {
504 data &= ~IGP02E1000_PM_D0_LPLU;
505 ret_val = phy->ops.write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
506 data);
508 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
509 * during Dx states where the power conservation is most
510 * important. During driver activity we should enable
511 * SmartSpeed, so performance is maintained.
513 if (phy->smart_speed == e1000_smart_speed_on) {
514 ret_val = phy->ops.read_phy_reg(hw,
515 IGP01E1000_PHY_PORT_CONFIG, &data);
516 if (ret_val)
517 goto out;
519 data |= IGP01E1000_PSCFR_SMART_SPEED;
520 ret_val = phy->ops.write_phy_reg(hw,
521 IGP01E1000_PHY_PORT_CONFIG, data);
522 if (ret_val)
523 goto out;
524 } else if (phy->smart_speed == e1000_smart_speed_off) {
525 ret_val = phy->ops.read_phy_reg(hw,
526 IGP01E1000_PHY_PORT_CONFIG, &data);
527 if (ret_val)
528 goto out;
530 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
531 ret_val = phy->ops.write_phy_reg(hw,
532 IGP01E1000_PHY_PORT_CONFIG, data);
533 if (ret_val)
534 goto out;
538 out:
539 return ret_val;
543 * igb_acquire_nvm_82575 - Request for access to EEPROM
544 * @hw: pointer to the HW structure
546 * Acquire the necessary semaphores for exclusive access to the EEPROM.
547 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
548 * Return successful if access grant bit set, else clear the request for
549 * EEPROM access and return -E1000_ERR_NVM (-1).
551 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
553 s32 ret_val;
555 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
556 if (ret_val)
557 goto out;
559 ret_val = igb_acquire_nvm(hw);
561 if (ret_val)
562 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
564 out:
565 return ret_val;
569 * igb_release_nvm_82575 - Release exclusive access to EEPROM
570 * @hw: pointer to the HW structure
572 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
573 * then release the semaphores acquired.
575 static void igb_release_nvm_82575(struct e1000_hw *hw)
577 igb_release_nvm(hw);
578 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
582 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
583 * @hw: pointer to the HW structure
584 * @mask: specifies which semaphore to acquire
586 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
587 * will also specify which port we're acquiring the lock for.
589 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
591 u32 swfw_sync;
592 u32 swmask = mask;
593 u32 fwmask = mask << 16;
594 s32 ret_val = 0;
595 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
597 while (i < timeout) {
598 if (igb_get_hw_semaphore(hw)) {
599 ret_val = -E1000_ERR_SWFW_SYNC;
600 goto out;
603 swfw_sync = rd32(E1000_SW_FW_SYNC);
604 if (!(swfw_sync & (fwmask | swmask)))
605 break;
608 * Firmware currently using resource (fwmask)
609 * or other software thread using resource (swmask)
611 igb_put_hw_semaphore(hw);
612 mdelay(5);
613 i++;
616 if (i == timeout) {
617 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
618 ret_val = -E1000_ERR_SWFW_SYNC;
619 goto out;
622 swfw_sync |= swmask;
623 wr32(E1000_SW_FW_SYNC, swfw_sync);
625 igb_put_hw_semaphore(hw);
627 out:
628 return ret_val;
632 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
633 * @hw: pointer to the HW structure
634 * @mask: specifies which semaphore to acquire
636 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
637 * will also specify which port we're releasing the lock for.
639 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
641 u32 swfw_sync;
643 while (igb_get_hw_semaphore(hw) != 0);
644 /* Empty */
646 swfw_sync = rd32(E1000_SW_FW_SYNC);
647 swfw_sync &= ~mask;
648 wr32(E1000_SW_FW_SYNC, swfw_sync);
650 igb_put_hw_semaphore(hw);
654 * igb_get_cfg_done_82575 - Read config done bit
655 * @hw: pointer to the HW structure
657 * Read the management control register for the config done bit for
658 * completion status. NOTE: silicon which is EEPROM-less will fail trying
659 * to read the config done bit, so an error is *ONLY* logged and returns
660 * 0. If we were to return with error, EEPROM-less silicon
661 * would not be able to be reset or change link.
663 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
665 s32 timeout = PHY_CFG_TIMEOUT;
666 s32 ret_val = 0;
667 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
669 if (hw->bus.func == 1)
670 mask = E1000_NVM_CFG_DONE_PORT_1;
672 while (timeout) {
673 if (rd32(E1000_EEMNGCTL) & mask)
674 break;
675 msleep(1);
676 timeout--;
678 if (!timeout)
679 hw_dbg("MNG configuration cycle has not completed.\n");
681 /* If EEPROM is not marked present, init the PHY manually */
682 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
683 (hw->phy.type == e1000_phy_igp_3))
684 igb_phy_init_script_igp3(hw);
686 return ret_val;
690 * igb_check_for_link_82575 - Check for link
691 * @hw: pointer to the HW structure
693 * If sgmii is enabled, then use the pcs register to determine link, otherwise
694 * use the generic interface for determining link.
696 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
698 s32 ret_val;
699 u16 speed, duplex;
701 /* SGMII link check is done through the PCS register. */
702 if ((hw->phy.media_type != e1000_media_type_copper) ||
703 (igb_sgmii_active_82575(hw)))
704 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
705 &duplex);
706 else
707 ret_val = igb_check_for_copper_link(hw);
709 return ret_val;
712 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
713 * @hw: pointer to the HW structure
714 * @speed: stores the current speed
715 * @duplex: stores the current duplex
717 * Using the physical coding sub-layer (PCS), retrieve the current speed and
718 * duplex, then store the values in the pointers provided.
720 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
721 u16 *duplex)
723 struct e1000_mac_info *mac = &hw->mac;
724 u32 pcs;
726 /* Set up defaults for the return values of this function */
727 mac->serdes_has_link = false;
728 *speed = 0;
729 *duplex = 0;
732 * Read the PCS Status register for link state. For non-copper mode,
733 * the status register is not accurate. The PCS status register is
734 * used instead.
736 pcs = rd32(E1000_PCS_LSTAT);
739 * The link up bit determines when link is up on autoneg. The sync ok
740 * gets set once both sides sync up and agree upon link. Stable link
741 * can be determined by checking for both link up and link sync ok
743 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
744 mac->serdes_has_link = true;
746 /* Detect and store PCS speed */
747 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
748 *speed = SPEED_1000;
749 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
750 *speed = SPEED_100;
751 } else {
752 *speed = SPEED_10;
755 /* Detect and store PCS duplex */
756 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
757 *duplex = FULL_DUPLEX;
758 } else {
759 *duplex = HALF_DUPLEX;
763 return 0;
767 * igb_init_rx_addrs_82575 - Initialize receive address's
768 * @hw: pointer to the HW structure
769 * @rar_count: receive address registers
771 * Setups the receive address registers by setting the base receive address
772 * register to the devices MAC address and clearing all the other receive
773 * address registers to 0.
775 static void igb_init_rx_addrs_82575(struct e1000_hw *hw, u16 rar_count)
777 u32 i;
778 u8 addr[6] = {0,0,0,0,0,0};
780 * This function is essentially the same as that of
781 * e1000_init_rx_addrs_generic. However it also takes care
782 * of the special case where the register offset of the
783 * second set of RARs begins elsewhere. This is implicitly taken care by
784 * function e1000_rar_set_generic.
787 hw_dbg("e1000_init_rx_addrs_82575");
789 /* Setup the receive address */
790 hw_dbg("Programming MAC Address into RAR[0]\n");
791 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
793 /* Zero out the other (rar_entry_count - 1) receive addresses */
794 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
795 for (i = 1; i < rar_count; i++)
796 hw->mac.ops.rar_set(hw, addr, i);
800 * igb_update_mc_addr_list_82575 - Update Multicast addresses
801 * @hw: pointer to the HW structure
802 * @mc_addr_list: array of multicast addresses to program
803 * @mc_addr_count: number of multicast addresses to program
804 * @rar_used_count: the first RAR register free to program
805 * @rar_count: total number of supported Receive Address Registers
807 * Updates the Receive Address Registers and Multicast Table Array.
808 * The caller must have a packed mc_addr_list of multicast addresses.
809 * The parameter rar_count will usually be hw->mac.rar_entry_count
810 * unless there are workarounds that change this.
812 void igb_update_mc_addr_list_82575(struct e1000_hw *hw,
813 u8 *mc_addr_list, u32 mc_addr_count,
814 u32 rar_used_count, u32 rar_count)
816 u32 hash_value;
817 u32 i;
818 u8 addr[6] = {0,0,0,0,0,0};
820 * This function is essentially the same as that of
821 * igb_update_mc_addr_list_generic. However it also takes care
822 * of the special case where the register offset of the
823 * second set of RARs begins elsewhere. This is implicitly taken care by
824 * function e1000_rar_set_generic.
828 * Load the first set of multicast addresses into the exact
829 * filters (RAR). If there are not enough to fill the RAR
830 * array, clear the filters.
832 for (i = rar_used_count; i < rar_count; i++) {
833 if (mc_addr_count) {
834 igb_rar_set(hw, mc_addr_list, i);
835 mc_addr_count--;
836 mc_addr_list += ETH_ALEN;
837 } else {
838 igb_rar_set(hw, addr, i);
842 /* Clear the old settings from the MTA */
843 hw_dbg("Clearing MTA\n");
844 for (i = 0; i < hw->mac.mta_reg_count; i++) {
845 array_wr32(E1000_MTA, i, 0);
846 wrfl();
849 /* Load any remaining multicast addresses into the hash table. */
850 for (; mc_addr_count > 0; mc_addr_count--) {
851 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
852 hw_dbg("Hash value = 0x%03X\n", hash_value);
853 igb_mta_set(hw, hash_value);
854 mc_addr_list += ETH_ALEN;
859 * igb_shutdown_fiber_serdes_link_82575 - Remove link during power down
860 * @hw: pointer to the HW structure
862 * In the case of fiber serdes, shut down optics and PCS on driver unload
863 * when management pass thru is not enabled.
865 void igb_shutdown_fiber_serdes_link_82575(struct e1000_hw *hw)
867 u32 reg;
869 if (hw->mac.type != e1000_82576 ||
870 (hw->phy.media_type != e1000_media_type_fiber &&
871 hw->phy.media_type != e1000_media_type_internal_serdes))
872 return;
874 /* if the management interface is not enabled, then power down */
875 if (!igb_enable_mng_pass_thru(hw)) {
876 /* Disable PCS to turn off link */
877 reg = rd32(E1000_PCS_CFG0);
878 reg &= ~E1000_PCS_CFG_PCS_EN;
879 wr32(E1000_PCS_CFG0, reg);
881 /* shutdown the laser */
882 reg = rd32(E1000_CTRL_EXT);
883 reg |= E1000_CTRL_EXT_SDP7_DATA;
884 wr32(E1000_CTRL_EXT, reg);
886 /* flush the write to verify completion */
887 wrfl();
888 msleep(1);
891 return;
895 * igb_reset_hw_82575 - Reset hardware
896 * @hw: pointer to the HW structure
898 * This resets the hardware into a known state. This is a
899 * function pointer entry point called by the api module.
901 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
903 u32 ctrl, icr;
904 s32 ret_val;
907 * Prevent the PCI-E bus from sticking if there is no TLP connection
908 * on the last TLP read/write transaction when MAC is reset.
910 ret_val = igb_disable_pcie_master(hw);
911 if (ret_val)
912 hw_dbg("PCI-E Master disable polling has failed.\n");
914 hw_dbg("Masking off all interrupts\n");
915 wr32(E1000_IMC, 0xffffffff);
917 wr32(E1000_RCTL, 0);
918 wr32(E1000_TCTL, E1000_TCTL_PSP);
919 wrfl();
921 msleep(10);
923 ctrl = rd32(E1000_CTRL);
925 hw_dbg("Issuing a global reset to MAC\n");
926 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
928 ret_val = igb_get_auto_rd_done(hw);
929 if (ret_val) {
931 * When auto config read does not complete, do not
932 * return with an error. This can happen in situations
933 * where there is no eeprom and prevents getting link.
935 hw_dbg("Auto Read Done did not complete\n");
938 /* If EEPROM is not present, run manual init scripts */
939 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
940 igb_reset_init_script_82575(hw);
942 /* Clear any pending interrupt events. */
943 wr32(E1000_IMC, 0xffffffff);
944 icr = rd32(E1000_ICR);
946 igb_check_alt_mac_addr(hw);
948 return ret_val;
952 * igb_init_hw_82575 - Initialize hardware
953 * @hw: pointer to the HW structure
955 * This inits the hardware readying it for operation.
957 static s32 igb_init_hw_82575(struct e1000_hw *hw)
959 struct e1000_mac_info *mac = &hw->mac;
960 s32 ret_val;
961 u16 i, rar_count = mac->rar_entry_count;
963 /* Initialize identification LED */
964 ret_val = igb_id_led_init(hw);
965 if (ret_val) {
966 hw_dbg("Error initializing identification LED\n");
967 /* This is not fatal and we should not stop init due to this */
970 /* Disabling VLAN filtering */
971 hw_dbg("Initializing the IEEE VLAN\n");
972 igb_clear_vfta(hw);
974 /* Setup the receive address */
975 igb_init_rx_addrs_82575(hw, rar_count);
976 /* Zero out the Multicast HASH table */
977 hw_dbg("Zeroing the MTA\n");
978 for (i = 0; i < mac->mta_reg_count; i++)
979 array_wr32(E1000_MTA, i, 0);
981 /* Setup link and flow control */
982 ret_val = igb_setup_link(hw);
985 * Clear all of the statistics registers (clear on read). It is
986 * important that we do this after we have tried to establish link
987 * because the symbol error count will increment wildly if there
988 * is no link.
990 igb_clear_hw_cntrs_82575(hw);
992 return ret_val;
996 * igb_setup_copper_link_82575 - Configure copper link settings
997 * @hw: pointer to the HW structure
999 * Configures the link for auto-neg or forced speed and duplex. Then we check
1000 * for link, once link is established calls to configure collision distance
1001 * and flow control are called.
1003 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1005 u32 ctrl, led_ctrl;
1006 s32 ret_val;
1007 bool link;
1009 ctrl = rd32(E1000_CTRL);
1010 ctrl |= E1000_CTRL_SLU;
1011 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1012 wr32(E1000_CTRL, ctrl);
1014 switch (hw->phy.type) {
1015 case e1000_phy_m88:
1016 ret_val = igb_copper_link_setup_m88(hw);
1017 break;
1018 case e1000_phy_igp_3:
1019 ret_val = igb_copper_link_setup_igp(hw);
1020 /* Setup activity LED */
1021 led_ctrl = rd32(E1000_LEDCTL);
1022 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1023 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1024 wr32(E1000_LEDCTL, led_ctrl);
1025 break;
1026 default:
1027 ret_val = -E1000_ERR_PHY;
1028 break;
1031 if (ret_val)
1032 goto out;
1034 if (hw->mac.autoneg) {
1036 * Setup autoneg and flow control advertisement
1037 * and perform autonegotiation.
1039 ret_val = igb_copper_link_autoneg(hw);
1040 if (ret_val)
1041 goto out;
1042 } else {
1044 * PHY will be set to 10H, 10F, 100H or 100F
1045 * depending on user settings.
1047 hw_dbg("Forcing Speed and Duplex\n");
1048 ret_val = igb_phy_force_speed_duplex(hw);
1049 if (ret_val) {
1050 hw_dbg("Error Forcing Speed and Duplex\n");
1051 goto out;
1055 ret_val = igb_configure_pcs_link_82575(hw);
1056 if (ret_val)
1057 goto out;
1060 * Check link status. Wait up to 100 microseconds for link to become
1061 * valid.
1063 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1064 if (ret_val)
1065 goto out;
1067 if (link) {
1068 hw_dbg("Valid link established!!!\n");
1069 /* Config the MAC and PHY after link is up */
1070 igb_config_collision_dist(hw);
1071 ret_val = igb_config_fc_after_link_up(hw);
1072 } else {
1073 hw_dbg("Unable to establish link!!!\n");
1076 out:
1077 return ret_val;
1081 * igb_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
1082 * @hw: pointer to the HW structure
1084 * Configures speed and duplex for fiber and serdes links.
1086 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
1088 u32 reg;
1091 * On the 82575, SerDes loopback mode persists until it is
1092 * explicitly turned off or a power cycle is performed. A read to
1093 * the register does not indicate its status. Therefore, we ensure
1094 * loopback mode is disabled during initialization.
1096 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1098 /* Force link up, set 1gb, set both sw defined pins */
1099 reg = rd32(E1000_CTRL);
1100 reg |= E1000_CTRL_SLU |
1101 E1000_CTRL_SPD_1000 |
1102 E1000_CTRL_FRCSPD |
1103 E1000_CTRL_SWDPIN0 |
1104 E1000_CTRL_SWDPIN1;
1105 wr32(E1000_CTRL, reg);
1107 /* Set switch control to serdes energy detect */
1108 reg = rd32(E1000_CONNSW);
1109 reg |= E1000_CONNSW_ENRGSRC;
1110 wr32(E1000_CONNSW, reg);
1113 * New SerDes mode allows for forcing speed or autonegotiating speed
1114 * at 1gb. Autoneg should be default set by most drivers. This is the
1115 * mode that will be compatible with older link partners and switches.
1116 * However, both are supported by the hardware and some drivers/tools.
1118 reg = rd32(E1000_PCS_LCTL);
1120 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1121 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1123 if (hw->mac.autoneg) {
1124 /* Set PCS register for autoneg */
1125 reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1126 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1127 E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1128 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1129 hw_dbg("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
1130 } else {
1131 /* Set PCS register for forced speed */
1132 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1133 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1134 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1135 E1000_PCS_LCTL_FSD | /* Force Speed */
1136 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1137 hw_dbg("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
1140 if (hw->mac.type == e1000_82576) {
1141 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1142 igb_force_mac_fc(hw);
1145 wr32(E1000_PCS_LCTL, reg);
1147 return 0;
1151 * igb_configure_pcs_link_82575 - Configure PCS link
1152 * @hw: pointer to the HW structure
1154 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1155 * only used on copper connections where the serialized gigabit media
1156 * independent interface (sgmii) is being used. Configures the link
1157 * for auto-negotiation or forces speed/duplex.
1159 static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw)
1161 struct e1000_mac_info *mac = &hw->mac;
1162 u32 reg = 0;
1164 if (hw->phy.media_type != e1000_media_type_copper ||
1165 !(igb_sgmii_active_82575(hw)))
1166 goto out;
1168 /* For SGMII, we need to issue a PCS autoneg restart */
1169 reg = rd32(E1000_PCS_LCTL);
1171 /* AN time out should be disabled for SGMII mode */
1172 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1174 if (mac->autoneg) {
1175 /* Make sure forced speed and force link are not set */
1176 reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1179 * The PHY should be setup prior to calling this function.
1180 * All we need to do is restart autoneg and enable autoneg.
1182 reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
1183 } else {
1184 /* Set PCS register for forced speed */
1186 /* Turn off bits for full duplex, speed, and autoneg */
1187 reg &= ~(E1000_PCS_LCTL_FSV_1000 |
1188 E1000_PCS_LCTL_FSV_100 |
1189 E1000_PCS_LCTL_FDV_FULL |
1190 E1000_PCS_LCTL_AN_ENABLE);
1192 /* Check for duplex first */
1193 if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
1194 reg |= E1000_PCS_LCTL_FDV_FULL;
1196 /* Now set speed */
1197 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
1198 reg |= E1000_PCS_LCTL_FSV_100;
1200 /* Force speed and force link */
1201 reg |= E1000_PCS_LCTL_FSD |
1202 E1000_PCS_LCTL_FORCE_LINK |
1203 E1000_PCS_LCTL_FLV_LINK_UP;
1205 hw_dbg("Wrote 0x%08X to PCS_LCTL to configure forced link\n",
1206 reg);
1208 wr32(E1000_PCS_LCTL, reg);
1210 out:
1211 return 0;
1215 * igb_sgmii_active_82575 - Return sgmii state
1216 * @hw: pointer to the HW structure
1218 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1219 * which can be enabled for use in the embedded applications. Simply
1220 * return the current state of the sgmii interface.
1222 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1224 struct e1000_dev_spec_82575 *dev_spec;
1225 bool ret_val;
1227 if (hw->mac.type != e1000_82575) {
1228 ret_val = false;
1229 goto out;
1232 dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
1234 ret_val = dev_spec->sgmii_active;
1236 out:
1237 return ret_val;
1241 * igb_reset_init_script_82575 - Inits HW defaults after reset
1242 * @hw: pointer to the HW structure
1244 * Inits recommended HW defaults after a reset when there is no EEPROM
1245 * detected. This is only for the 82575.
1247 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1249 if (hw->mac.type == e1000_82575) {
1250 hw_dbg("Running reset init script for 82575\n");
1251 /* SerDes configuration via SERDESCTRL */
1252 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1253 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1254 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1255 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1257 /* CCM configuration via CCMCTL register */
1258 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1259 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1261 /* PCIe lanes configuration */
1262 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1263 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1264 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1265 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1267 /* PCIe PLL Configuration */
1268 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1269 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1270 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1273 return 0;
1277 * igb_read_mac_addr_82575 - Read device MAC address
1278 * @hw: pointer to the HW structure
1280 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1282 s32 ret_val = 0;
1284 if (igb_check_alt_mac_addr(hw))
1285 ret_val = igb_read_mac_addr(hw);
1287 return ret_val;
1291 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1292 * @hw: pointer to the HW structure
1294 * Clears the hardware counters by reading the counter registers.
1296 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1298 u32 temp;
1300 igb_clear_hw_cntrs_base(hw);
1302 temp = rd32(E1000_PRC64);
1303 temp = rd32(E1000_PRC127);
1304 temp = rd32(E1000_PRC255);
1305 temp = rd32(E1000_PRC511);
1306 temp = rd32(E1000_PRC1023);
1307 temp = rd32(E1000_PRC1522);
1308 temp = rd32(E1000_PTC64);
1309 temp = rd32(E1000_PTC127);
1310 temp = rd32(E1000_PTC255);
1311 temp = rd32(E1000_PTC511);
1312 temp = rd32(E1000_PTC1023);
1313 temp = rd32(E1000_PTC1522);
1315 temp = rd32(E1000_ALGNERRC);
1316 temp = rd32(E1000_RXERRC);
1317 temp = rd32(E1000_TNCRS);
1318 temp = rd32(E1000_CEXTERR);
1319 temp = rd32(E1000_TSCTC);
1320 temp = rd32(E1000_TSCTFC);
1322 temp = rd32(E1000_MGTPRC);
1323 temp = rd32(E1000_MGTPDC);
1324 temp = rd32(E1000_MGTPTC);
1326 temp = rd32(E1000_IAC);
1327 temp = rd32(E1000_ICRXOC);
1329 temp = rd32(E1000_ICRXPTC);
1330 temp = rd32(E1000_ICRXATC);
1331 temp = rd32(E1000_ICTXPTC);
1332 temp = rd32(E1000_ICTXATC);
1333 temp = rd32(E1000_ICTXQEC);
1334 temp = rd32(E1000_ICTXQMTC);
1335 temp = rd32(E1000_ICRXDMTC);
1337 temp = rd32(E1000_CBTMPC);
1338 temp = rd32(E1000_HTDPMC);
1339 temp = rd32(E1000_CBRMPC);
1340 temp = rd32(E1000_RPTHC);
1341 temp = rd32(E1000_HGPTC);
1342 temp = rd32(E1000_HTCBDPC);
1343 temp = rd32(E1000_HGORCL);
1344 temp = rd32(E1000_HGORCH);
1345 temp = rd32(E1000_HGOTCL);
1346 temp = rd32(E1000_HGOTCH);
1347 temp = rd32(E1000_LENERRS);
1349 /* This register should not be read in copper configurations */
1350 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1351 temp = rd32(E1000_SCVPC);
1355 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1356 * @hw: pointer to the HW structure
1358 * After rx enable if managability is enabled then there is likely some
1359 * bad data at the start of the fifo and possibly in the DMA fifo. This
1360 * function clears the fifos and flushes any packets that came in as rx was
1361 * being enabled.
1363 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1365 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1366 int i, ms_wait;
1368 if (hw->mac.type != e1000_82575 ||
1369 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1370 return;
1372 /* Disable all RX queues */
1373 for (i = 0; i < 4; i++) {
1374 rxdctl[i] = rd32(E1000_RXDCTL(i));
1375 wr32(E1000_RXDCTL(i),
1376 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1378 /* Poll all queues to verify they have shut down */
1379 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1380 msleep(1);
1381 rx_enabled = 0;
1382 for (i = 0; i < 4; i++)
1383 rx_enabled |= rd32(E1000_RXDCTL(i));
1384 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1385 break;
1388 if (ms_wait == 10)
1389 hw_dbg("Queue disable timed out after 10ms\n");
1391 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1392 * incoming packets are rejected. Set enable and wait 2ms so that
1393 * any packet that was coming in as RCTL.EN was set is flushed
1395 rfctl = rd32(E1000_RFCTL);
1396 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1398 rlpml = rd32(E1000_RLPML);
1399 wr32(E1000_RLPML, 0);
1401 rctl = rd32(E1000_RCTL);
1402 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1403 temp_rctl |= E1000_RCTL_LPE;
1405 wr32(E1000_RCTL, temp_rctl);
1406 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1407 wrfl();
1408 msleep(2);
1410 /* Enable RX queues that were previously enabled and restore our
1411 * previous state
1413 for (i = 0; i < 4; i++)
1414 wr32(E1000_RXDCTL(i), rxdctl[i]);
1415 wr32(E1000_RCTL, rctl);
1416 wrfl();
1418 wr32(E1000_RLPML, rlpml);
1419 wr32(E1000_RFCTL, rfctl);
1421 /* Flush receive errors generated by workaround */
1422 rd32(E1000_ROC);
1423 rd32(E1000_RNBC);
1424 rd32(E1000_MPC);
1427 static struct e1000_mac_operations e1000_mac_ops_82575 = {
1428 .reset_hw = igb_reset_hw_82575,
1429 .init_hw = igb_init_hw_82575,
1430 .check_for_link = igb_check_for_link_82575,
1431 .rar_set = igb_rar_set,
1432 .read_mac_addr = igb_read_mac_addr_82575,
1433 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1436 static struct e1000_phy_operations e1000_phy_ops_82575 = {
1437 .acquire_phy = igb_acquire_phy_82575,
1438 .get_cfg_done = igb_get_cfg_done_82575,
1439 .release_phy = igb_release_phy_82575,
1442 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
1443 .acquire_nvm = igb_acquire_nvm_82575,
1444 .read_nvm = igb_read_nvm_eerd,
1445 .release_nvm = igb_release_nvm_82575,
1446 .write_nvm = igb_write_nvm_spi,
1449 const struct e1000_info e1000_82575_info = {
1450 .get_invariants = igb_get_invariants_82575,
1451 .mac_ops = &e1000_mac_ops_82575,
1452 .phy_ops = &e1000_phy_ops_82575,
1453 .nvm_ops = &e1000_nvm_ops_82575,