sound: oxygen: handle cards with missing EEPROM
[linux-2.6/mini2440.git] / mm / page_alloc.c
blobb91020e8d727d293713452851802bb2243c8043d
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
55 * Array of node states.
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 [N_CPU] = { { [0] = 1UL } },
66 #endif /* NUMA */
68 EXPORT_SYMBOL(node_states);
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 unsigned long highest_memmap_pfn __read_mostly;
73 int percpu_pagelist_fraction;
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
79 static void __free_pages_ok(struct page *page, unsigned int order);
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
101 #endif
105 EXPORT_SYMBOL(totalram_pages);
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 "DMA32",
113 #endif
114 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 "HighMem",
117 #endif
118 "Movable",
121 int min_free_kbytes = 1024;
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
170 int page_group_by_mobility_disabled __read_mostly;
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
193 return ret;
196 static int page_is_consistent(struct zone *zone, struct page *page)
198 if (!pfn_valid_within(page_to_pfn(page)))
199 return 0;
200 if (zone != page_zone(page))
201 return 0;
203 return 1;
206 * Temporary debugging check for pages not lying within a given zone.
208 static int bad_range(struct zone *zone, struct page *page)
210 if (page_outside_zone_boundaries(zone, page))
211 return 1;
212 if (!page_is_consistent(zone, page))
213 return 1;
215 return 0;
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
220 return 0;
222 #endif
224 static void bad_page(struct page *page)
226 static unsigned long resume;
227 static unsigned long nr_shown;
228 static unsigned long nr_unshown;
231 * Allow a burst of 60 reports, then keep quiet for that minute;
232 * or allow a steady drip of one report per second.
234 if (nr_shown == 60) {
235 if (time_before(jiffies, resume)) {
236 nr_unshown++;
237 goto out;
239 if (nr_unshown) {
240 printk(KERN_ALERT
241 "BUG: Bad page state: %lu messages suppressed\n",
242 nr_unshown);
243 nr_unshown = 0;
245 nr_shown = 0;
247 if (nr_shown++ == 0)
248 resume = jiffies + 60 * HZ;
250 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
251 current->comm, page_to_pfn(page));
252 printk(KERN_ALERT
253 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
254 page, (void *)page->flags, page_count(page),
255 page_mapcount(page), page->mapping, page->index);
257 dump_stack();
258 out:
259 /* Leave bad fields for debug, except PageBuddy could make trouble */
260 __ClearPageBuddy(page);
261 add_taint(TAINT_BAD_PAGE);
265 * Higher-order pages are called "compound pages". They are structured thusly:
267 * The first PAGE_SIZE page is called the "head page".
269 * The remaining PAGE_SIZE pages are called "tail pages".
271 * All pages have PG_compound set. All pages have their ->private pointing at
272 * the head page (even the head page has this).
274 * The first tail page's ->lru.next holds the address of the compound page's
275 * put_page() function. Its ->lru.prev holds the order of allocation.
276 * This usage means that zero-order pages may not be compound.
279 static void free_compound_page(struct page *page)
281 __free_pages_ok(page, compound_order(page));
284 void prep_compound_page(struct page *page, unsigned long order)
286 int i;
287 int nr_pages = 1 << order;
289 set_compound_page_dtor(page, free_compound_page);
290 set_compound_order(page, order);
291 __SetPageHead(page);
292 for (i = 1; i < nr_pages; i++) {
293 struct page *p = page + i;
295 __SetPageTail(p);
296 p->first_page = page;
300 #ifdef CONFIG_HUGETLBFS
301 void prep_compound_gigantic_page(struct page *page, unsigned long order)
303 int i;
304 int nr_pages = 1 << order;
305 struct page *p = page + 1;
307 set_compound_page_dtor(page, free_compound_page);
308 set_compound_order(page, order);
309 __SetPageHead(page);
310 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
311 __SetPageTail(p);
312 p->first_page = page;
315 #endif
317 static int destroy_compound_page(struct page *page, unsigned long order)
319 int i;
320 int nr_pages = 1 << order;
321 int bad = 0;
323 if (unlikely(compound_order(page) != order) ||
324 unlikely(!PageHead(page))) {
325 bad_page(page);
326 bad++;
329 __ClearPageHead(page);
331 for (i = 1; i < nr_pages; i++) {
332 struct page *p = page + i;
334 if (unlikely(!PageTail(p) || (p->first_page != page))) {
335 bad_page(page);
336 bad++;
338 __ClearPageTail(p);
341 return bad;
344 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
346 int i;
349 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
350 * and __GFP_HIGHMEM from hard or soft interrupt context.
352 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
353 for (i = 0; i < (1 << order); i++)
354 clear_highpage(page + i);
357 static inline void set_page_order(struct page *page, int order)
359 set_page_private(page, order);
360 __SetPageBuddy(page);
363 static inline void rmv_page_order(struct page *page)
365 __ClearPageBuddy(page);
366 set_page_private(page, 0);
370 * Locate the struct page for both the matching buddy in our
371 * pair (buddy1) and the combined O(n+1) page they form (page).
373 * 1) Any buddy B1 will have an order O twin B2 which satisfies
374 * the following equation:
375 * B2 = B1 ^ (1 << O)
376 * For example, if the starting buddy (buddy2) is #8 its order
377 * 1 buddy is #10:
378 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
380 * 2) Any buddy B will have an order O+1 parent P which
381 * satisfies the following equation:
382 * P = B & ~(1 << O)
384 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
386 static inline struct page *
387 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
389 unsigned long buddy_idx = page_idx ^ (1 << order);
391 return page + (buddy_idx - page_idx);
394 static inline unsigned long
395 __find_combined_index(unsigned long page_idx, unsigned int order)
397 return (page_idx & ~(1 << order));
401 * This function checks whether a page is free && is the buddy
402 * we can do coalesce a page and its buddy if
403 * (a) the buddy is not in a hole &&
404 * (b) the buddy is in the buddy system &&
405 * (c) a page and its buddy have the same order &&
406 * (d) a page and its buddy are in the same zone.
408 * For recording whether a page is in the buddy system, we use PG_buddy.
409 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
411 * For recording page's order, we use page_private(page).
413 static inline int page_is_buddy(struct page *page, struct page *buddy,
414 int order)
416 if (!pfn_valid_within(page_to_pfn(buddy)))
417 return 0;
419 if (page_zone_id(page) != page_zone_id(buddy))
420 return 0;
422 if (PageBuddy(buddy) && page_order(buddy) == order) {
423 BUG_ON(page_count(buddy) != 0);
424 return 1;
426 return 0;
430 * Freeing function for a buddy system allocator.
432 * The concept of a buddy system is to maintain direct-mapped table
433 * (containing bit values) for memory blocks of various "orders".
434 * The bottom level table contains the map for the smallest allocatable
435 * units of memory (here, pages), and each level above it describes
436 * pairs of units from the levels below, hence, "buddies".
437 * At a high level, all that happens here is marking the table entry
438 * at the bottom level available, and propagating the changes upward
439 * as necessary, plus some accounting needed to play nicely with other
440 * parts of the VM system.
441 * At each level, we keep a list of pages, which are heads of continuous
442 * free pages of length of (1 << order) and marked with PG_buddy. Page's
443 * order is recorded in page_private(page) field.
444 * So when we are allocating or freeing one, we can derive the state of the
445 * other. That is, if we allocate a small block, and both were
446 * free, the remainder of the region must be split into blocks.
447 * If a block is freed, and its buddy is also free, then this
448 * triggers coalescing into a block of larger size.
450 * -- wli
453 static inline void __free_one_page(struct page *page,
454 struct zone *zone, unsigned int order)
456 unsigned long page_idx;
457 int order_size = 1 << order;
458 int migratetype = get_pageblock_migratetype(page);
460 if (unlikely(PageCompound(page)))
461 if (unlikely(destroy_compound_page(page, order)))
462 return;
464 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
466 VM_BUG_ON(page_idx & (order_size - 1));
467 VM_BUG_ON(bad_range(zone, page));
469 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
470 while (order < MAX_ORDER-1) {
471 unsigned long combined_idx;
472 struct page *buddy;
474 buddy = __page_find_buddy(page, page_idx, order);
475 if (!page_is_buddy(page, buddy, order))
476 break;
478 /* Our buddy is free, merge with it and move up one order. */
479 list_del(&buddy->lru);
480 zone->free_area[order].nr_free--;
481 rmv_page_order(buddy);
482 combined_idx = __find_combined_index(page_idx, order);
483 page = page + (combined_idx - page_idx);
484 page_idx = combined_idx;
485 order++;
487 set_page_order(page, order);
488 list_add(&page->lru,
489 &zone->free_area[order].free_list[migratetype]);
490 zone->free_area[order].nr_free++;
493 static inline int free_pages_check(struct page *page)
495 free_page_mlock(page);
496 if (unlikely(page_mapcount(page) |
497 (page->mapping != NULL) |
498 (page_count(page) != 0) |
499 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
500 bad_page(page);
501 return 1;
503 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
504 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
505 return 0;
509 * Frees a list of pages.
510 * Assumes all pages on list are in same zone, and of same order.
511 * count is the number of pages to free.
513 * If the zone was previously in an "all pages pinned" state then look to
514 * see if this freeing clears that state.
516 * And clear the zone's pages_scanned counter, to hold off the "all pages are
517 * pinned" detection logic.
519 static void free_pages_bulk(struct zone *zone, int count,
520 struct list_head *list, int order)
522 spin_lock(&zone->lock);
523 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
524 zone->pages_scanned = 0;
525 while (count--) {
526 struct page *page;
528 VM_BUG_ON(list_empty(list));
529 page = list_entry(list->prev, struct page, lru);
530 /* have to delete it as __free_one_page list manipulates */
531 list_del(&page->lru);
532 __free_one_page(page, zone, order);
534 spin_unlock(&zone->lock);
537 static void free_one_page(struct zone *zone, struct page *page, int order)
539 spin_lock(&zone->lock);
540 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
541 zone->pages_scanned = 0;
542 __free_one_page(page, zone, order);
543 spin_unlock(&zone->lock);
546 static void __free_pages_ok(struct page *page, unsigned int order)
548 unsigned long flags;
549 int i;
550 int bad = 0;
552 for (i = 0 ; i < (1 << order) ; ++i)
553 bad += free_pages_check(page + i);
554 if (bad)
555 return;
557 if (!PageHighMem(page)) {
558 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
559 debug_check_no_obj_freed(page_address(page),
560 PAGE_SIZE << order);
562 arch_free_page(page, order);
563 kernel_map_pages(page, 1 << order, 0);
565 local_irq_save(flags);
566 __count_vm_events(PGFREE, 1 << order);
567 free_one_page(page_zone(page), page, order);
568 local_irq_restore(flags);
572 * permit the bootmem allocator to evade page validation on high-order frees
574 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
576 if (order == 0) {
577 __ClearPageReserved(page);
578 set_page_count(page, 0);
579 set_page_refcounted(page);
580 __free_page(page);
581 } else {
582 int loop;
584 prefetchw(page);
585 for (loop = 0; loop < BITS_PER_LONG; loop++) {
586 struct page *p = &page[loop];
588 if (loop + 1 < BITS_PER_LONG)
589 prefetchw(p + 1);
590 __ClearPageReserved(p);
591 set_page_count(p, 0);
594 set_page_refcounted(page);
595 __free_pages(page, order);
601 * The order of subdivision here is critical for the IO subsystem.
602 * Please do not alter this order without good reasons and regression
603 * testing. Specifically, as large blocks of memory are subdivided,
604 * the order in which smaller blocks are delivered depends on the order
605 * they're subdivided in this function. This is the primary factor
606 * influencing the order in which pages are delivered to the IO
607 * subsystem according to empirical testing, and this is also justified
608 * by considering the behavior of a buddy system containing a single
609 * large block of memory acted on by a series of small allocations.
610 * This behavior is a critical factor in sglist merging's success.
612 * -- wli
614 static inline void expand(struct zone *zone, struct page *page,
615 int low, int high, struct free_area *area,
616 int migratetype)
618 unsigned long size = 1 << high;
620 while (high > low) {
621 area--;
622 high--;
623 size >>= 1;
624 VM_BUG_ON(bad_range(zone, &page[size]));
625 list_add(&page[size].lru, &area->free_list[migratetype]);
626 area->nr_free++;
627 set_page_order(&page[size], high);
632 * This page is about to be returned from the page allocator
634 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
636 if (unlikely(page_mapcount(page) |
637 (page->mapping != NULL) |
638 (page_count(page) != 0) |
639 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
640 bad_page(page);
641 return 1;
644 set_page_private(page, 0);
645 set_page_refcounted(page);
647 arch_alloc_page(page, order);
648 kernel_map_pages(page, 1 << order, 1);
650 if (gfp_flags & __GFP_ZERO)
651 prep_zero_page(page, order, gfp_flags);
653 if (order && (gfp_flags & __GFP_COMP))
654 prep_compound_page(page, order);
656 return 0;
660 * Go through the free lists for the given migratetype and remove
661 * the smallest available page from the freelists
663 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
664 int migratetype)
666 unsigned int current_order;
667 struct free_area * area;
668 struct page *page;
670 /* Find a page of the appropriate size in the preferred list */
671 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
672 area = &(zone->free_area[current_order]);
673 if (list_empty(&area->free_list[migratetype]))
674 continue;
676 page = list_entry(area->free_list[migratetype].next,
677 struct page, lru);
678 list_del(&page->lru);
679 rmv_page_order(page);
680 area->nr_free--;
681 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
682 expand(zone, page, order, current_order, area, migratetype);
683 return page;
686 return NULL;
691 * This array describes the order lists are fallen back to when
692 * the free lists for the desirable migrate type are depleted
694 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
695 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
696 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
697 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
698 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
702 * Move the free pages in a range to the free lists of the requested type.
703 * Note that start_page and end_pages are not aligned on a pageblock
704 * boundary. If alignment is required, use move_freepages_block()
706 static int move_freepages(struct zone *zone,
707 struct page *start_page, struct page *end_page,
708 int migratetype)
710 struct page *page;
711 unsigned long order;
712 int pages_moved = 0;
714 #ifndef CONFIG_HOLES_IN_ZONE
716 * page_zone is not safe to call in this context when
717 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
718 * anyway as we check zone boundaries in move_freepages_block().
719 * Remove at a later date when no bug reports exist related to
720 * grouping pages by mobility
722 BUG_ON(page_zone(start_page) != page_zone(end_page));
723 #endif
725 for (page = start_page; page <= end_page;) {
726 /* Make sure we are not inadvertently changing nodes */
727 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
729 if (!pfn_valid_within(page_to_pfn(page))) {
730 page++;
731 continue;
734 if (!PageBuddy(page)) {
735 page++;
736 continue;
739 order = page_order(page);
740 list_del(&page->lru);
741 list_add(&page->lru,
742 &zone->free_area[order].free_list[migratetype]);
743 page += 1 << order;
744 pages_moved += 1 << order;
747 return pages_moved;
750 static int move_freepages_block(struct zone *zone, struct page *page,
751 int migratetype)
753 unsigned long start_pfn, end_pfn;
754 struct page *start_page, *end_page;
756 start_pfn = page_to_pfn(page);
757 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
758 start_page = pfn_to_page(start_pfn);
759 end_page = start_page + pageblock_nr_pages - 1;
760 end_pfn = start_pfn + pageblock_nr_pages - 1;
762 /* Do not cross zone boundaries */
763 if (start_pfn < zone->zone_start_pfn)
764 start_page = page;
765 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
766 return 0;
768 return move_freepages(zone, start_page, end_page, migratetype);
771 /* Remove an element from the buddy allocator from the fallback list */
772 static struct page *__rmqueue_fallback(struct zone *zone, int order,
773 int start_migratetype)
775 struct free_area * area;
776 int current_order;
777 struct page *page;
778 int migratetype, i;
780 /* Find the largest possible block of pages in the other list */
781 for (current_order = MAX_ORDER-1; current_order >= order;
782 --current_order) {
783 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
784 migratetype = fallbacks[start_migratetype][i];
786 /* MIGRATE_RESERVE handled later if necessary */
787 if (migratetype == MIGRATE_RESERVE)
788 continue;
790 area = &(zone->free_area[current_order]);
791 if (list_empty(&area->free_list[migratetype]))
792 continue;
794 page = list_entry(area->free_list[migratetype].next,
795 struct page, lru);
796 area->nr_free--;
799 * If breaking a large block of pages, move all free
800 * pages to the preferred allocation list. If falling
801 * back for a reclaimable kernel allocation, be more
802 * agressive about taking ownership of free pages
804 if (unlikely(current_order >= (pageblock_order >> 1)) ||
805 start_migratetype == MIGRATE_RECLAIMABLE) {
806 unsigned long pages;
807 pages = move_freepages_block(zone, page,
808 start_migratetype);
810 /* Claim the whole block if over half of it is free */
811 if (pages >= (1 << (pageblock_order-1)))
812 set_pageblock_migratetype(page,
813 start_migratetype);
815 migratetype = start_migratetype;
818 /* Remove the page from the freelists */
819 list_del(&page->lru);
820 rmv_page_order(page);
821 __mod_zone_page_state(zone, NR_FREE_PAGES,
822 -(1UL << order));
824 if (current_order == pageblock_order)
825 set_pageblock_migratetype(page,
826 start_migratetype);
828 expand(zone, page, order, current_order, area, migratetype);
829 return page;
833 /* Use MIGRATE_RESERVE rather than fail an allocation */
834 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
838 * Do the hard work of removing an element from the buddy allocator.
839 * Call me with the zone->lock already held.
841 static struct page *__rmqueue(struct zone *zone, unsigned int order,
842 int migratetype)
844 struct page *page;
846 page = __rmqueue_smallest(zone, order, migratetype);
848 if (unlikely(!page))
849 page = __rmqueue_fallback(zone, order, migratetype);
851 return page;
855 * Obtain a specified number of elements from the buddy allocator, all under
856 * a single hold of the lock, for efficiency. Add them to the supplied list.
857 * Returns the number of new pages which were placed at *list.
859 static int rmqueue_bulk(struct zone *zone, unsigned int order,
860 unsigned long count, struct list_head *list,
861 int migratetype, int cold)
863 int i;
865 spin_lock(&zone->lock);
866 for (i = 0; i < count; ++i) {
867 struct page *page = __rmqueue(zone, order, migratetype);
868 if (unlikely(page == NULL))
869 break;
872 * Split buddy pages returned by expand() are received here
873 * in physical page order. The page is added to the callers and
874 * list and the list head then moves forward. From the callers
875 * perspective, the linked list is ordered by page number in
876 * some conditions. This is useful for IO devices that can
877 * merge IO requests if the physical pages are ordered
878 * properly.
880 if (likely(cold == 0))
881 list_add(&page->lru, list);
882 else
883 list_add_tail(&page->lru, list);
884 set_page_private(page, migratetype);
885 list = &page->lru;
887 spin_unlock(&zone->lock);
888 return i;
891 #ifdef CONFIG_NUMA
893 * Called from the vmstat counter updater to drain pagesets of this
894 * currently executing processor on remote nodes after they have
895 * expired.
897 * Note that this function must be called with the thread pinned to
898 * a single processor.
900 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
902 unsigned long flags;
903 int to_drain;
905 local_irq_save(flags);
906 if (pcp->count >= pcp->batch)
907 to_drain = pcp->batch;
908 else
909 to_drain = pcp->count;
910 free_pages_bulk(zone, to_drain, &pcp->list, 0);
911 pcp->count -= to_drain;
912 local_irq_restore(flags);
914 #endif
917 * Drain pages of the indicated processor.
919 * The processor must either be the current processor and the
920 * thread pinned to the current processor or a processor that
921 * is not online.
923 static void drain_pages(unsigned int cpu)
925 unsigned long flags;
926 struct zone *zone;
928 for_each_populated_zone(zone) {
929 struct per_cpu_pageset *pset;
930 struct per_cpu_pages *pcp;
932 pset = zone_pcp(zone, cpu);
934 pcp = &pset->pcp;
935 local_irq_save(flags);
936 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
937 pcp->count = 0;
938 local_irq_restore(flags);
943 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
945 void drain_local_pages(void *arg)
947 drain_pages(smp_processor_id());
951 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
953 void drain_all_pages(void)
955 on_each_cpu(drain_local_pages, NULL, 1);
958 #ifdef CONFIG_HIBERNATION
960 void mark_free_pages(struct zone *zone)
962 unsigned long pfn, max_zone_pfn;
963 unsigned long flags;
964 int order, t;
965 struct list_head *curr;
967 if (!zone->spanned_pages)
968 return;
970 spin_lock_irqsave(&zone->lock, flags);
972 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
973 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
974 if (pfn_valid(pfn)) {
975 struct page *page = pfn_to_page(pfn);
977 if (!swsusp_page_is_forbidden(page))
978 swsusp_unset_page_free(page);
981 for_each_migratetype_order(order, t) {
982 list_for_each(curr, &zone->free_area[order].free_list[t]) {
983 unsigned long i;
985 pfn = page_to_pfn(list_entry(curr, struct page, lru));
986 for (i = 0; i < (1UL << order); i++)
987 swsusp_set_page_free(pfn_to_page(pfn + i));
990 spin_unlock_irqrestore(&zone->lock, flags);
992 #endif /* CONFIG_PM */
995 * Free a 0-order page
997 static void free_hot_cold_page(struct page *page, int cold)
999 struct zone *zone = page_zone(page);
1000 struct per_cpu_pages *pcp;
1001 unsigned long flags;
1003 if (PageAnon(page))
1004 page->mapping = NULL;
1005 if (free_pages_check(page))
1006 return;
1008 if (!PageHighMem(page)) {
1009 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1010 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1012 arch_free_page(page, 0);
1013 kernel_map_pages(page, 1, 0);
1015 pcp = &zone_pcp(zone, get_cpu())->pcp;
1016 local_irq_save(flags);
1017 __count_vm_event(PGFREE);
1018 if (cold)
1019 list_add_tail(&page->lru, &pcp->list);
1020 else
1021 list_add(&page->lru, &pcp->list);
1022 set_page_private(page, get_pageblock_migratetype(page));
1023 pcp->count++;
1024 if (pcp->count >= pcp->high) {
1025 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1026 pcp->count -= pcp->batch;
1028 local_irq_restore(flags);
1029 put_cpu();
1032 void free_hot_page(struct page *page)
1034 free_hot_cold_page(page, 0);
1037 void free_cold_page(struct page *page)
1039 free_hot_cold_page(page, 1);
1043 * split_page takes a non-compound higher-order page, and splits it into
1044 * n (1<<order) sub-pages: page[0..n]
1045 * Each sub-page must be freed individually.
1047 * Note: this is probably too low level an operation for use in drivers.
1048 * Please consult with lkml before using this in your driver.
1050 void split_page(struct page *page, unsigned int order)
1052 int i;
1054 VM_BUG_ON(PageCompound(page));
1055 VM_BUG_ON(!page_count(page));
1056 for (i = 1; i < (1 << order); i++)
1057 set_page_refcounted(page + i);
1061 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1062 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1063 * or two.
1065 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1066 struct zone *zone, int order, gfp_t gfp_flags)
1068 unsigned long flags;
1069 struct page *page;
1070 int cold = !!(gfp_flags & __GFP_COLD);
1071 int cpu;
1072 int migratetype = allocflags_to_migratetype(gfp_flags);
1074 again:
1075 cpu = get_cpu();
1076 if (likely(order == 0)) {
1077 struct per_cpu_pages *pcp;
1079 pcp = &zone_pcp(zone, cpu)->pcp;
1080 local_irq_save(flags);
1081 if (!pcp->count) {
1082 pcp->count = rmqueue_bulk(zone, 0,
1083 pcp->batch, &pcp->list,
1084 migratetype, cold);
1085 if (unlikely(!pcp->count))
1086 goto failed;
1089 /* Find a page of the appropriate migrate type */
1090 if (cold) {
1091 list_for_each_entry_reverse(page, &pcp->list, lru)
1092 if (page_private(page) == migratetype)
1093 break;
1094 } else {
1095 list_for_each_entry(page, &pcp->list, lru)
1096 if (page_private(page) == migratetype)
1097 break;
1100 /* Allocate more to the pcp list if necessary */
1101 if (unlikely(&page->lru == &pcp->list)) {
1102 pcp->count += rmqueue_bulk(zone, 0,
1103 pcp->batch, &pcp->list,
1104 migratetype, cold);
1105 page = list_entry(pcp->list.next, struct page, lru);
1108 list_del(&page->lru);
1109 pcp->count--;
1110 } else {
1111 spin_lock_irqsave(&zone->lock, flags);
1112 page = __rmqueue(zone, order, migratetype);
1113 spin_unlock(&zone->lock);
1114 if (!page)
1115 goto failed;
1118 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1119 zone_statistics(preferred_zone, zone);
1120 local_irq_restore(flags);
1121 put_cpu();
1123 VM_BUG_ON(bad_range(zone, page));
1124 if (prep_new_page(page, order, gfp_flags))
1125 goto again;
1126 return page;
1128 failed:
1129 local_irq_restore(flags);
1130 put_cpu();
1131 return NULL;
1134 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1135 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1136 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1137 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1138 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1139 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1140 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1142 #ifdef CONFIG_FAIL_PAGE_ALLOC
1144 static struct fail_page_alloc_attr {
1145 struct fault_attr attr;
1147 u32 ignore_gfp_highmem;
1148 u32 ignore_gfp_wait;
1149 u32 min_order;
1151 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1153 struct dentry *ignore_gfp_highmem_file;
1154 struct dentry *ignore_gfp_wait_file;
1155 struct dentry *min_order_file;
1157 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1159 } fail_page_alloc = {
1160 .attr = FAULT_ATTR_INITIALIZER,
1161 .ignore_gfp_wait = 1,
1162 .ignore_gfp_highmem = 1,
1163 .min_order = 1,
1166 static int __init setup_fail_page_alloc(char *str)
1168 return setup_fault_attr(&fail_page_alloc.attr, str);
1170 __setup("fail_page_alloc=", setup_fail_page_alloc);
1172 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1174 if (order < fail_page_alloc.min_order)
1175 return 0;
1176 if (gfp_mask & __GFP_NOFAIL)
1177 return 0;
1178 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1179 return 0;
1180 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1181 return 0;
1183 return should_fail(&fail_page_alloc.attr, 1 << order);
1186 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1188 static int __init fail_page_alloc_debugfs(void)
1190 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1191 struct dentry *dir;
1192 int err;
1194 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1195 "fail_page_alloc");
1196 if (err)
1197 return err;
1198 dir = fail_page_alloc.attr.dentries.dir;
1200 fail_page_alloc.ignore_gfp_wait_file =
1201 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1202 &fail_page_alloc.ignore_gfp_wait);
1204 fail_page_alloc.ignore_gfp_highmem_file =
1205 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1206 &fail_page_alloc.ignore_gfp_highmem);
1207 fail_page_alloc.min_order_file =
1208 debugfs_create_u32("min-order", mode, dir,
1209 &fail_page_alloc.min_order);
1211 if (!fail_page_alloc.ignore_gfp_wait_file ||
1212 !fail_page_alloc.ignore_gfp_highmem_file ||
1213 !fail_page_alloc.min_order_file) {
1214 err = -ENOMEM;
1215 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1216 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1217 debugfs_remove(fail_page_alloc.min_order_file);
1218 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1221 return err;
1224 late_initcall(fail_page_alloc_debugfs);
1226 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1228 #else /* CONFIG_FAIL_PAGE_ALLOC */
1230 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1232 return 0;
1235 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1238 * Return 1 if free pages are above 'mark'. This takes into account the order
1239 * of the allocation.
1241 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1242 int classzone_idx, int alloc_flags)
1244 /* free_pages my go negative - that's OK */
1245 long min = mark;
1246 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1247 int o;
1249 if (alloc_flags & ALLOC_HIGH)
1250 min -= min / 2;
1251 if (alloc_flags & ALLOC_HARDER)
1252 min -= min / 4;
1254 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1255 return 0;
1256 for (o = 0; o < order; o++) {
1257 /* At the next order, this order's pages become unavailable */
1258 free_pages -= z->free_area[o].nr_free << o;
1260 /* Require fewer higher order pages to be free */
1261 min >>= 1;
1263 if (free_pages <= min)
1264 return 0;
1266 return 1;
1269 #ifdef CONFIG_NUMA
1271 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1272 * skip over zones that are not allowed by the cpuset, or that have
1273 * been recently (in last second) found to be nearly full. See further
1274 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1275 * that have to skip over a lot of full or unallowed zones.
1277 * If the zonelist cache is present in the passed in zonelist, then
1278 * returns a pointer to the allowed node mask (either the current
1279 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1281 * If the zonelist cache is not available for this zonelist, does
1282 * nothing and returns NULL.
1284 * If the fullzones BITMAP in the zonelist cache is stale (more than
1285 * a second since last zap'd) then we zap it out (clear its bits.)
1287 * We hold off even calling zlc_setup, until after we've checked the
1288 * first zone in the zonelist, on the theory that most allocations will
1289 * be satisfied from that first zone, so best to examine that zone as
1290 * quickly as we can.
1292 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1294 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1295 nodemask_t *allowednodes; /* zonelist_cache approximation */
1297 zlc = zonelist->zlcache_ptr;
1298 if (!zlc)
1299 return NULL;
1301 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1302 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1303 zlc->last_full_zap = jiffies;
1306 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1307 &cpuset_current_mems_allowed :
1308 &node_states[N_HIGH_MEMORY];
1309 return allowednodes;
1313 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1314 * if it is worth looking at further for free memory:
1315 * 1) Check that the zone isn't thought to be full (doesn't have its
1316 * bit set in the zonelist_cache fullzones BITMAP).
1317 * 2) Check that the zones node (obtained from the zonelist_cache
1318 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1319 * Return true (non-zero) if zone is worth looking at further, or
1320 * else return false (zero) if it is not.
1322 * This check -ignores- the distinction between various watermarks,
1323 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1324 * found to be full for any variation of these watermarks, it will
1325 * be considered full for up to one second by all requests, unless
1326 * we are so low on memory on all allowed nodes that we are forced
1327 * into the second scan of the zonelist.
1329 * In the second scan we ignore this zonelist cache and exactly
1330 * apply the watermarks to all zones, even it is slower to do so.
1331 * We are low on memory in the second scan, and should leave no stone
1332 * unturned looking for a free page.
1334 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1335 nodemask_t *allowednodes)
1337 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1338 int i; /* index of *z in zonelist zones */
1339 int n; /* node that zone *z is on */
1341 zlc = zonelist->zlcache_ptr;
1342 if (!zlc)
1343 return 1;
1345 i = z - zonelist->_zonerefs;
1346 n = zlc->z_to_n[i];
1348 /* This zone is worth trying if it is allowed but not full */
1349 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1353 * Given 'z' scanning a zonelist, set the corresponding bit in
1354 * zlc->fullzones, so that subsequent attempts to allocate a page
1355 * from that zone don't waste time re-examining it.
1357 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1359 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1360 int i; /* index of *z in zonelist zones */
1362 zlc = zonelist->zlcache_ptr;
1363 if (!zlc)
1364 return;
1366 i = z - zonelist->_zonerefs;
1368 set_bit(i, zlc->fullzones);
1371 #else /* CONFIG_NUMA */
1373 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1375 return NULL;
1378 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1379 nodemask_t *allowednodes)
1381 return 1;
1384 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1387 #endif /* CONFIG_NUMA */
1390 * get_page_from_freelist goes through the zonelist trying to allocate
1391 * a page.
1393 static struct page *
1394 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1395 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1397 struct zoneref *z;
1398 struct page *page = NULL;
1399 int classzone_idx;
1400 struct zone *zone, *preferred_zone;
1401 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1402 int zlc_active = 0; /* set if using zonelist_cache */
1403 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1405 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1406 &preferred_zone);
1407 if (!preferred_zone)
1408 return NULL;
1410 classzone_idx = zone_idx(preferred_zone);
1412 zonelist_scan:
1414 * Scan zonelist, looking for a zone with enough free.
1415 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1417 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1418 high_zoneidx, nodemask) {
1419 if (NUMA_BUILD && zlc_active &&
1420 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1421 continue;
1422 if ((alloc_flags & ALLOC_CPUSET) &&
1423 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1424 goto try_next_zone;
1426 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1427 unsigned long mark;
1428 int ret;
1429 if (alloc_flags & ALLOC_WMARK_MIN)
1430 mark = zone->pages_min;
1431 else if (alloc_flags & ALLOC_WMARK_LOW)
1432 mark = zone->pages_low;
1433 else
1434 mark = zone->pages_high;
1436 if (zone_watermark_ok(zone, order, mark,
1437 classzone_idx, alloc_flags))
1438 goto try_this_zone;
1440 if (zone_reclaim_mode == 0)
1441 goto this_zone_full;
1443 ret = zone_reclaim(zone, gfp_mask, order);
1444 switch (ret) {
1445 case ZONE_RECLAIM_NOSCAN:
1446 /* did not scan */
1447 goto try_next_zone;
1448 case ZONE_RECLAIM_FULL:
1449 /* scanned but unreclaimable */
1450 goto this_zone_full;
1451 default:
1452 /* did we reclaim enough */
1453 if (!zone_watermark_ok(zone, order, mark,
1454 classzone_idx, alloc_flags))
1455 goto this_zone_full;
1459 try_this_zone:
1460 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1461 if (page)
1462 break;
1463 this_zone_full:
1464 if (NUMA_BUILD)
1465 zlc_mark_zone_full(zonelist, z);
1466 try_next_zone:
1467 if (NUMA_BUILD && !did_zlc_setup) {
1468 /* we do zlc_setup after the first zone is tried */
1469 allowednodes = zlc_setup(zonelist, alloc_flags);
1470 zlc_active = 1;
1471 did_zlc_setup = 1;
1475 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1476 /* Disable zlc cache for second zonelist scan */
1477 zlc_active = 0;
1478 goto zonelist_scan;
1480 return page;
1484 * This is the 'heart' of the zoned buddy allocator.
1486 struct page *
1487 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1488 struct zonelist *zonelist, nodemask_t *nodemask)
1490 const gfp_t wait = gfp_mask & __GFP_WAIT;
1491 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1492 struct zoneref *z;
1493 struct zone *zone;
1494 struct page *page;
1495 struct reclaim_state reclaim_state;
1496 struct task_struct *p = current;
1497 int do_retry;
1498 int alloc_flags;
1499 unsigned long did_some_progress;
1500 unsigned long pages_reclaimed = 0;
1502 lockdep_trace_alloc(gfp_mask);
1504 might_sleep_if(wait);
1506 if (should_fail_alloc_page(gfp_mask, order))
1507 return NULL;
1509 restart:
1510 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1512 if (unlikely(!z->zone)) {
1514 * Happens if we have an empty zonelist as a result of
1515 * GFP_THISNODE being used on a memoryless node
1517 return NULL;
1520 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1521 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1522 if (page)
1523 goto got_pg;
1526 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1527 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1528 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1529 * using a larger set of nodes after it has established that the
1530 * allowed per node queues are empty and that nodes are
1531 * over allocated.
1533 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1534 goto nopage;
1536 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1537 wakeup_kswapd(zone, order);
1540 * OK, we're below the kswapd watermark and have kicked background
1541 * reclaim. Now things get more complex, so set up alloc_flags according
1542 * to how we want to proceed.
1544 * The caller may dip into page reserves a bit more if the caller
1545 * cannot run direct reclaim, or if the caller has realtime scheduling
1546 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1547 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1549 alloc_flags = ALLOC_WMARK_MIN;
1550 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1551 alloc_flags |= ALLOC_HARDER;
1552 if (gfp_mask & __GFP_HIGH)
1553 alloc_flags |= ALLOC_HIGH;
1554 if (wait)
1555 alloc_flags |= ALLOC_CPUSET;
1558 * Go through the zonelist again. Let __GFP_HIGH and allocations
1559 * coming from realtime tasks go deeper into reserves.
1561 * This is the last chance, in general, before the goto nopage.
1562 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1563 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1565 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1566 high_zoneidx, alloc_flags);
1567 if (page)
1568 goto got_pg;
1570 /* This allocation should allow future memory freeing. */
1572 rebalance:
1573 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1574 && !in_interrupt()) {
1575 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1576 nofail_alloc:
1577 /* go through the zonelist yet again, ignoring mins */
1578 page = get_page_from_freelist(gfp_mask, nodemask, order,
1579 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1580 if (page)
1581 goto got_pg;
1582 if (gfp_mask & __GFP_NOFAIL) {
1583 congestion_wait(WRITE, HZ/50);
1584 goto nofail_alloc;
1587 goto nopage;
1590 /* Atomic allocations - we can't balance anything */
1591 if (!wait)
1592 goto nopage;
1594 cond_resched();
1596 /* We now go into synchronous reclaim */
1597 cpuset_memory_pressure_bump();
1599 * The task's cpuset might have expanded its set of allowable nodes
1601 cpuset_update_task_memory_state();
1602 p->flags |= PF_MEMALLOC;
1604 lockdep_set_current_reclaim_state(gfp_mask);
1605 reclaim_state.reclaimed_slab = 0;
1606 p->reclaim_state = &reclaim_state;
1608 did_some_progress = try_to_free_pages(zonelist, order,
1609 gfp_mask, nodemask);
1611 p->reclaim_state = NULL;
1612 lockdep_clear_current_reclaim_state();
1613 p->flags &= ~PF_MEMALLOC;
1615 cond_resched();
1617 if (order != 0)
1618 drain_all_pages();
1620 if (likely(did_some_progress)) {
1621 page = get_page_from_freelist(gfp_mask, nodemask, order,
1622 zonelist, high_zoneidx, alloc_flags);
1623 if (page)
1624 goto got_pg;
1625 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1626 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1627 schedule_timeout_uninterruptible(1);
1628 goto restart;
1632 * Go through the zonelist yet one more time, keep
1633 * very high watermark here, this is only to catch
1634 * a parallel oom killing, we must fail if we're still
1635 * under heavy pressure.
1637 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1638 order, zonelist, high_zoneidx,
1639 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1640 if (page) {
1641 clear_zonelist_oom(zonelist, gfp_mask);
1642 goto got_pg;
1645 /* The OOM killer will not help higher order allocs so fail */
1646 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1647 clear_zonelist_oom(zonelist, gfp_mask);
1648 goto nopage;
1651 out_of_memory(zonelist, gfp_mask, order);
1652 clear_zonelist_oom(zonelist, gfp_mask);
1653 goto restart;
1657 * Don't let big-order allocations loop unless the caller explicitly
1658 * requests that. Wait for some write requests to complete then retry.
1660 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1661 * means __GFP_NOFAIL, but that may not be true in other
1662 * implementations.
1664 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1665 * specified, then we retry until we no longer reclaim any pages
1666 * (above), or we've reclaimed an order of pages at least as
1667 * large as the allocation's order. In both cases, if the
1668 * allocation still fails, we stop retrying.
1670 pages_reclaimed += did_some_progress;
1671 do_retry = 0;
1672 if (!(gfp_mask & __GFP_NORETRY)) {
1673 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1674 do_retry = 1;
1675 } else {
1676 if (gfp_mask & __GFP_REPEAT &&
1677 pages_reclaimed < (1 << order))
1678 do_retry = 1;
1680 if (gfp_mask & __GFP_NOFAIL)
1681 do_retry = 1;
1683 if (do_retry) {
1684 congestion_wait(WRITE, HZ/50);
1685 goto rebalance;
1688 nopage:
1689 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1690 printk(KERN_WARNING "%s: page allocation failure."
1691 " order:%d, mode:0x%x\n",
1692 p->comm, order, gfp_mask);
1693 dump_stack();
1694 show_mem();
1696 got_pg:
1697 return page;
1699 EXPORT_SYMBOL(__alloc_pages_internal);
1702 * Common helper functions.
1704 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1706 struct page * page;
1707 page = alloc_pages(gfp_mask, order);
1708 if (!page)
1709 return 0;
1710 return (unsigned long) page_address(page);
1713 EXPORT_SYMBOL(__get_free_pages);
1715 unsigned long get_zeroed_page(gfp_t gfp_mask)
1717 struct page * page;
1720 * get_zeroed_page() returns a 32-bit address, which cannot represent
1721 * a highmem page
1723 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1725 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1726 if (page)
1727 return (unsigned long) page_address(page);
1728 return 0;
1731 EXPORT_SYMBOL(get_zeroed_page);
1733 void __pagevec_free(struct pagevec *pvec)
1735 int i = pagevec_count(pvec);
1737 while (--i >= 0)
1738 free_hot_cold_page(pvec->pages[i], pvec->cold);
1741 void __free_pages(struct page *page, unsigned int order)
1743 if (put_page_testzero(page)) {
1744 if (order == 0)
1745 free_hot_page(page);
1746 else
1747 __free_pages_ok(page, order);
1751 EXPORT_SYMBOL(__free_pages);
1753 void free_pages(unsigned long addr, unsigned int order)
1755 if (addr != 0) {
1756 VM_BUG_ON(!virt_addr_valid((void *)addr));
1757 __free_pages(virt_to_page((void *)addr), order);
1761 EXPORT_SYMBOL(free_pages);
1764 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1765 * @size: the number of bytes to allocate
1766 * @gfp_mask: GFP flags for the allocation
1768 * This function is similar to alloc_pages(), except that it allocates the
1769 * minimum number of pages to satisfy the request. alloc_pages() can only
1770 * allocate memory in power-of-two pages.
1772 * This function is also limited by MAX_ORDER.
1774 * Memory allocated by this function must be released by free_pages_exact().
1776 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1778 unsigned int order = get_order(size);
1779 unsigned long addr;
1781 addr = __get_free_pages(gfp_mask, order);
1782 if (addr) {
1783 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1784 unsigned long used = addr + PAGE_ALIGN(size);
1786 split_page(virt_to_page(addr), order);
1787 while (used < alloc_end) {
1788 free_page(used);
1789 used += PAGE_SIZE;
1793 return (void *)addr;
1795 EXPORT_SYMBOL(alloc_pages_exact);
1798 * free_pages_exact - release memory allocated via alloc_pages_exact()
1799 * @virt: the value returned by alloc_pages_exact.
1800 * @size: size of allocation, same value as passed to alloc_pages_exact().
1802 * Release the memory allocated by a previous call to alloc_pages_exact.
1804 void free_pages_exact(void *virt, size_t size)
1806 unsigned long addr = (unsigned long)virt;
1807 unsigned long end = addr + PAGE_ALIGN(size);
1809 while (addr < end) {
1810 free_page(addr);
1811 addr += PAGE_SIZE;
1814 EXPORT_SYMBOL(free_pages_exact);
1816 static unsigned int nr_free_zone_pages(int offset)
1818 struct zoneref *z;
1819 struct zone *zone;
1821 /* Just pick one node, since fallback list is circular */
1822 unsigned int sum = 0;
1824 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1826 for_each_zone_zonelist(zone, z, zonelist, offset) {
1827 unsigned long size = zone->present_pages;
1828 unsigned long high = zone->pages_high;
1829 if (size > high)
1830 sum += size - high;
1833 return sum;
1837 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1839 unsigned int nr_free_buffer_pages(void)
1841 return nr_free_zone_pages(gfp_zone(GFP_USER));
1843 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1846 * Amount of free RAM allocatable within all zones
1848 unsigned int nr_free_pagecache_pages(void)
1850 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1853 static inline void show_node(struct zone *zone)
1855 if (NUMA_BUILD)
1856 printk("Node %d ", zone_to_nid(zone));
1859 void si_meminfo(struct sysinfo *val)
1861 val->totalram = totalram_pages;
1862 val->sharedram = 0;
1863 val->freeram = global_page_state(NR_FREE_PAGES);
1864 val->bufferram = nr_blockdev_pages();
1865 val->totalhigh = totalhigh_pages;
1866 val->freehigh = nr_free_highpages();
1867 val->mem_unit = PAGE_SIZE;
1870 EXPORT_SYMBOL(si_meminfo);
1872 #ifdef CONFIG_NUMA
1873 void si_meminfo_node(struct sysinfo *val, int nid)
1875 pg_data_t *pgdat = NODE_DATA(nid);
1877 val->totalram = pgdat->node_present_pages;
1878 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1879 #ifdef CONFIG_HIGHMEM
1880 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1881 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1882 NR_FREE_PAGES);
1883 #else
1884 val->totalhigh = 0;
1885 val->freehigh = 0;
1886 #endif
1887 val->mem_unit = PAGE_SIZE;
1889 #endif
1891 #define K(x) ((x) << (PAGE_SHIFT-10))
1894 * Show free area list (used inside shift_scroll-lock stuff)
1895 * We also calculate the percentage fragmentation. We do this by counting the
1896 * memory on each free list with the exception of the first item on the list.
1898 void show_free_areas(void)
1900 int cpu;
1901 struct zone *zone;
1903 for_each_populated_zone(zone) {
1904 show_node(zone);
1905 printk("%s per-cpu:\n", zone->name);
1907 for_each_online_cpu(cpu) {
1908 struct per_cpu_pageset *pageset;
1910 pageset = zone_pcp(zone, cpu);
1912 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1913 cpu, pageset->pcp.high,
1914 pageset->pcp.batch, pageset->pcp.count);
1918 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1919 " inactive_file:%lu"
1920 //TODO: check/adjust line lengths
1921 #ifdef CONFIG_UNEVICTABLE_LRU
1922 " unevictable:%lu"
1923 #endif
1924 " dirty:%lu writeback:%lu unstable:%lu\n"
1925 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1926 global_page_state(NR_ACTIVE_ANON),
1927 global_page_state(NR_ACTIVE_FILE),
1928 global_page_state(NR_INACTIVE_ANON),
1929 global_page_state(NR_INACTIVE_FILE),
1930 #ifdef CONFIG_UNEVICTABLE_LRU
1931 global_page_state(NR_UNEVICTABLE),
1932 #endif
1933 global_page_state(NR_FILE_DIRTY),
1934 global_page_state(NR_WRITEBACK),
1935 global_page_state(NR_UNSTABLE_NFS),
1936 global_page_state(NR_FREE_PAGES),
1937 global_page_state(NR_SLAB_RECLAIMABLE) +
1938 global_page_state(NR_SLAB_UNRECLAIMABLE),
1939 global_page_state(NR_FILE_MAPPED),
1940 global_page_state(NR_PAGETABLE),
1941 global_page_state(NR_BOUNCE));
1943 for_each_populated_zone(zone) {
1944 int i;
1946 show_node(zone);
1947 printk("%s"
1948 " free:%lukB"
1949 " min:%lukB"
1950 " low:%lukB"
1951 " high:%lukB"
1952 " active_anon:%lukB"
1953 " inactive_anon:%lukB"
1954 " active_file:%lukB"
1955 " inactive_file:%lukB"
1956 #ifdef CONFIG_UNEVICTABLE_LRU
1957 " unevictable:%lukB"
1958 #endif
1959 " present:%lukB"
1960 " pages_scanned:%lu"
1961 " all_unreclaimable? %s"
1962 "\n",
1963 zone->name,
1964 K(zone_page_state(zone, NR_FREE_PAGES)),
1965 K(zone->pages_min),
1966 K(zone->pages_low),
1967 K(zone->pages_high),
1968 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1969 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1970 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1971 K(zone_page_state(zone, NR_INACTIVE_FILE)),
1972 #ifdef CONFIG_UNEVICTABLE_LRU
1973 K(zone_page_state(zone, NR_UNEVICTABLE)),
1974 #endif
1975 K(zone->present_pages),
1976 zone->pages_scanned,
1977 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1979 printk("lowmem_reserve[]:");
1980 for (i = 0; i < MAX_NR_ZONES; i++)
1981 printk(" %lu", zone->lowmem_reserve[i]);
1982 printk("\n");
1985 for_each_populated_zone(zone) {
1986 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1988 show_node(zone);
1989 printk("%s: ", zone->name);
1991 spin_lock_irqsave(&zone->lock, flags);
1992 for (order = 0; order < MAX_ORDER; order++) {
1993 nr[order] = zone->free_area[order].nr_free;
1994 total += nr[order] << order;
1996 spin_unlock_irqrestore(&zone->lock, flags);
1997 for (order = 0; order < MAX_ORDER; order++)
1998 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1999 printk("= %lukB\n", K(total));
2002 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2004 show_swap_cache_info();
2007 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2009 zoneref->zone = zone;
2010 zoneref->zone_idx = zone_idx(zone);
2014 * Builds allocation fallback zone lists.
2016 * Add all populated zones of a node to the zonelist.
2018 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2019 int nr_zones, enum zone_type zone_type)
2021 struct zone *zone;
2023 BUG_ON(zone_type >= MAX_NR_ZONES);
2024 zone_type++;
2026 do {
2027 zone_type--;
2028 zone = pgdat->node_zones + zone_type;
2029 if (populated_zone(zone)) {
2030 zoneref_set_zone(zone,
2031 &zonelist->_zonerefs[nr_zones++]);
2032 check_highest_zone(zone_type);
2035 } while (zone_type);
2036 return nr_zones;
2041 * zonelist_order:
2042 * 0 = automatic detection of better ordering.
2043 * 1 = order by ([node] distance, -zonetype)
2044 * 2 = order by (-zonetype, [node] distance)
2046 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2047 * the same zonelist. So only NUMA can configure this param.
2049 #define ZONELIST_ORDER_DEFAULT 0
2050 #define ZONELIST_ORDER_NODE 1
2051 #define ZONELIST_ORDER_ZONE 2
2053 /* zonelist order in the kernel.
2054 * set_zonelist_order() will set this to NODE or ZONE.
2056 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2057 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2060 #ifdef CONFIG_NUMA
2061 /* The value user specified ....changed by config */
2062 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2063 /* string for sysctl */
2064 #define NUMA_ZONELIST_ORDER_LEN 16
2065 char numa_zonelist_order[16] = "default";
2068 * interface for configure zonelist ordering.
2069 * command line option "numa_zonelist_order"
2070 * = "[dD]efault - default, automatic configuration.
2071 * = "[nN]ode - order by node locality, then by zone within node
2072 * = "[zZ]one - order by zone, then by locality within zone
2075 static int __parse_numa_zonelist_order(char *s)
2077 if (*s == 'd' || *s == 'D') {
2078 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2079 } else if (*s == 'n' || *s == 'N') {
2080 user_zonelist_order = ZONELIST_ORDER_NODE;
2081 } else if (*s == 'z' || *s == 'Z') {
2082 user_zonelist_order = ZONELIST_ORDER_ZONE;
2083 } else {
2084 printk(KERN_WARNING
2085 "Ignoring invalid numa_zonelist_order value: "
2086 "%s\n", s);
2087 return -EINVAL;
2089 return 0;
2092 static __init int setup_numa_zonelist_order(char *s)
2094 if (s)
2095 return __parse_numa_zonelist_order(s);
2096 return 0;
2098 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2101 * sysctl handler for numa_zonelist_order
2103 int numa_zonelist_order_handler(ctl_table *table, int write,
2104 struct file *file, void __user *buffer, size_t *length,
2105 loff_t *ppos)
2107 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2108 int ret;
2110 if (write)
2111 strncpy(saved_string, (char*)table->data,
2112 NUMA_ZONELIST_ORDER_LEN);
2113 ret = proc_dostring(table, write, file, buffer, length, ppos);
2114 if (ret)
2115 return ret;
2116 if (write) {
2117 int oldval = user_zonelist_order;
2118 if (__parse_numa_zonelist_order((char*)table->data)) {
2120 * bogus value. restore saved string
2122 strncpy((char*)table->data, saved_string,
2123 NUMA_ZONELIST_ORDER_LEN);
2124 user_zonelist_order = oldval;
2125 } else if (oldval != user_zonelist_order)
2126 build_all_zonelists();
2128 return 0;
2132 #define MAX_NODE_LOAD (num_online_nodes())
2133 static int node_load[MAX_NUMNODES];
2136 * find_next_best_node - find the next node that should appear in a given node's fallback list
2137 * @node: node whose fallback list we're appending
2138 * @used_node_mask: nodemask_t of already used nodes
2140 * We use a number of factors to determine which is the next node that should
2141 * appear on a given node's fallback list. The node should not have appeared
2142 * already in @node's fallback list, and it should be the next closest node
2143 * according to the distance array (which contains arbitrary distance values
2144 * from each node to each node in the system), and should also prefer nodes
2145 * with no CPUs, since presumably they'll have very little allocation pressure
2146 * on them otherwise.
2147 * It returns -1 if no node is found.
2149 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2151 int n, val;
2152 int min_val = INT_MAX;
2153 int best_node = -1;
2154 const struct cpumask *tmp = cpumask_of_node(0);
2156 /* Use the local node if we haven't already */
2157 if (!node_isset(node, *used_node_mask)) {
2158 node_set(node, *used_node_mask);
2159 return node;
2162 for_each_node_state(n, N_HIGH_MEMORY) {
2164 /* Don't want a node to appear more than once */
2165 if (node_isset(n, *used_node_mask))
2166 continue;
2168 /* Use the distance array to find the distance */
2169 val = node_distance(node, n);
2171 /* Penalize nodes under us ("prefer the next node") */
2172 val += (n < node);
2174 /* Give preference to headless and unused nodes */
2175 tmp = cpumask_of_node(n);
2176 if (!cpumask_empty(tmp))
2177 val += PENALTY_FOR_NODE_WITH_CPUS;
2179 /* Slight preference for less loaded node */
2180 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2181 val += node_load[n];
2183 if (val < min_val) {
2184 min_val = val;
2185 best_node = n;
2189 if (best_node >= 0)
2190 node_set(best_node, *used_node_mask);
2192 return best_node;
2197 * Build zonelists ordered by node and zones within node.
2198 * This results in maximum locality--normal zone overflows into local
2199 * DMA zone, if any--but risks exhausting DMA zone.
2201 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2203 int j;
2204 struct zonelist *zonelist;
2206 zonelist = &pgdat->node_zonelists[0];
2207 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2209 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2210 MAX_NR_ZONES - 1);
2211 zonelist->_zonerefs[j].zone = NULL;
2212 zonelist->_zonerefs[j].zone_idx = 0;
2216 * Build gfp_thisnode zonelists
2218 static void build_thisnode_zonelists(pg_data_t *pgdat)
2220 int j;
2221 struct zonelist *zonelist;
2223 zonelist = &pgdat->node_zonelists[1];
2224 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2225 zonelist->_zonerefs[j].zone = NULL;
2226 zonelist->_zonerefs[j].zone_idx = 0;
2230 * Build zonelists ordered by zone and nodes within zones.
2231 * This results in conserving DMA zone[s] until all Normal memory is
2232 * exhausted, but results in overflowing to remote node while memory
2233 * may still exist in local DMA zone.
2235 static int node_order[MAX_NUMNODES];
2237 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2239 int pos, j, node;
2240 int zone_type; /* needs to be signed */
2241 struct zone *z;
2242 struct zonelist *zonelist;
2244 zonelist = &pgdat->node_zonelists[0];
2245 pos = 0;
2246 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2247 for (j = 0; j < nr_nodes; j++) {
2248 node = node_order[j];
2249 z = &NODE_DATA(node)->node_zones[zone_type];
2250 if (populated_zone(z)) {
2251 zoneref_set_zone(z,
2252 &zonelist->_zonerefs[pos++]);
2253 check_highest_zone(zone_type);
2257 zonelist->_zonerefs[pos].zone = NULL;
2258 zonelist->_zonerefs[pos].zone_idx = 0;
2261 static int default_zonelist_order(void)
2263 int nid, zone_type;
2264 unsigned long low_kmem_size,total_size;
2265 struct zone *z;
2266 int average_size;
2268 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2269 * If they are really small and used heavily, the system can fall
2270 * into OOM very easily.
2271 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2273 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2274 low_kmem_size = 0;
2275 total_size = 0;
2276 for_each_online_node(nid) {
2277 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2278 z = &NODE_DATA(nid)->node_zones[zone_type];
2279 if (populated_zone(z)) {
2280 if (zone_type < ZONE_NORMAL)
2281 low_kmem_size += z->present_pages;
2282 total_size += z->present_pages;
2286 if (!low_kmem_size || /* there are no DMA area. */
2287 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2288 return ZONELIST_ORDER_NODE;
2290 * look into each node's config.
2291 * If there is a node whose DMA/DMA32 memory is very big area on
2292 * local memory, NODE_ORDER may be suitable.
2294 average_size = total_size /
2295 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2296 for_each_online_node(nid) {
2297 low_kmem_size = 0;
2298 total_size = 0;
2299 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2300 z = &NODE_DATA(nid)->node_zones[zone_type];
2301 if (populated_zone(z)) {
2302 if (zone_type < ZONE_NORMAL)
2303 low_kmem_size += z->present_pages;
2304 total_size += z->present_pages;
2307 if (low_kmem_size &&
2308 total_size > average_size && /* ignore small node */
2309 low_kmem_size > total_size * 70/100)
2310 return ZONELIST_ORDER_NODE;
2312 return ZONELIST_ORDER_ZONE;
2315 static void set_zonelist_order(void)
2317 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2318 current_zonelist_order = default_zonelist_order();
2319 else
2320 current_zonelist_order = user_zonelist_order;
2323 static void build_zonelists(pg_data_t *pgdat)
2325 int j, node, load;
2326 enum zone_type i;
2327 nodemask_t used_mask;
2328 int local_node, prev_node;
2329 struct zonelist *zonelist;
2330 int order = current_zonelist_order;
2332 /* initialize zonelists */
2333 for (i = 0; i < MAX_ZONELISTS; i++) {
2334 zonelist = pgdat->node_zonelists + i;
2335 zonelist->_zonerefs[0].zone = NULL;
2336 zonelist->_zonerefs[0].zone_idx = 0;
2339 /* NUMA-aware ordering of nodes */
2340 local_node = pgdat->node_id;
2341 load = num_online_nodes();
2342 prev_node = local_node;
2343 nodes_clear(used_mask);
2345 memset(node_order, 0, sizeof(node_order));
2346 j = 0;
2348 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2349 int distance = node_distance(local_node, node);
2352 * If another node is sufficiently far away then it is better
2353 * to reclaim pages in a zone before going off node.
2355 if (distance > RECLAIM_DISTANCE)
2356 zone_reclaim_mode = 1;
2359 * We don't want to pressure a particular node.
2360 * So adding penalty to the first node in same
2361 * distance group to make it round-robin.
2363 if (distance != node_distance(local_node, prev_node))
2364 node_load[node] = load;
2366 prev_node = node;
2367 load--;
2368 if (order == ZONELIST_ORDER_NODE)
2369 build_zonelists_in_node_order(pgdat, node);
2370 else
2371 node_order[j++] = node; /* remember order */
2374 if (order == ZONELIST_ORDER_ZONE) {
2375 /* calculate node order -- i.e., DMA last! */
2376 build_zonelists_in_zone_order(pgdat, j);
2379 build_thisnode_zonelists(pgdat);
2382 /* Construct the zonelist performance cache - see further mmzone.h */
2383 static void build_zonelist_cache(pg_data_t *pgdat)
2385 struct zonelist *zonelist;
2386 struct zonelist_cache *zlc;
2387 struct zoneref *z;
2389 zonelist = &pgdat->node_zonelists[0];
2390 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2391 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2392 for (z = zonelist->_zonerefs; z->zone; z++)
2393 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2397 #else /* CONFIG_NUMA */
2399 static void set_zonelist_order(void)
2401 current_zonelist_order = ZONELIST_ORDER_ZONE;
2404 static void build_zonelists(pg_data_t *pgdat)
2406 int node, local_node;
2407 enum zone_type j;
2408 struct zonelist *zonelist;
2410 local_node = pgdat->node_id;
2412 zonelist = &pgdat->node_zonelists[0];
2413 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2416 * Now we build the zonelist so that it contains the zones
2417 * of all the other nodes.
2418 * We don't want to pressure a particular node, so when
2419 * building the zones for node N, we make sure that the
2420 * zones coming right after the local ones are those from
2421 * node N+1 (modulo N)
2423 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2424 if (!node_online(node))
2425 continue;
2426 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2427 MAX_NR_ZONES - 1);
2429 for (node = 0; node < local_node; node++) {
2430 if (!node_online(node))
2431 continue;
2432 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2433 MAX_NR_ZONES - 1);
2436 zonelist->_zonerefs[j].zone = NULL;
2437 zonelist->_zonerefs[j].zone_idx = 0;
2440 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2441 static void build_zonelist_cache(pg_data_t *pgdat)
2443 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2446 #endif /* CONFIG_NUMA */
2448 /* return values int ....just for stop_machine() */
2449 static int __build_all_zonelists(void *dummy)
2451 int nid;
2453 #ifdef CONFIG_NUMA
2454 memset(node_load, 0, sizeof(node_load));
2455 #endif
2456 for_each_online_node(nid) {
2457 pg_data_t *pgdat = NODE_DATA(nid);
2459 build_zonelists(pgdat);
2460 build_zonelist_cache(pgdat);
2462 return 0;
2465 void build_all_zonelists(void)
2467 set_zonelist_order();
2469 if (system_state == SYSTEM_BOOTING) {
2470 __build_all_zonelists(NULL);
2471 mminit_verify_zonelist();
2472 cpuset_init_current_mems_allowed();
2473 } else {
2474 /* we have to stop all cpus to guarantee there is no user
2475 of zonelist */
2476 stop_machine(__build_all_zonelists, NULL, NULL);
2477 /* cpuset refresh routine should be here */
2479 vm_total_pages = nr_free_pagecache_pages();
2481 * Disable grouping by mobility if the number of pages in the
2482 * system is too low to allow the mechanism to work. It would be
2483 * more accurate, but expensive to check per-zone. This check is
2484 * made on memory-hotadd so a system can start with mobility
2485 * disabled and enable it later
2487 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2488 page_group_by_mobility_disabled = 1;
2489 else
2490 page_group_by_mobility_disabled = 0;
2492 printk("Built %i zonelists in %s order, mobility grouping %s. "
2493 "Total pages: %ld\n",
2494 num_online_nodes(),
2495 zonelist_order_name[current_zonelist_order],
2496 page_group_by_mobility_disabled ? "off" : "on",
2497 vm_total_pages);
2498 #ifdef CONFIG_NUMA
2499 printk("Policy zone: %s\n", zone_names[policy_zone]);
2500 #endif
2504 * Helper functions to size the waitqueue hash table.
2505 * Essentially these want to choose hash table sizes sufficiently
2506 * large so that collisions trying to wait on pages are rare.
2507 * But in fact, the number of active page waitqueues on typical
2508 * systems is ridiculously low, less than 200. So this is even
2509 * conservative, even though it seems large.
2511 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2512 * waitqueues, i.e. the size of the waitq table given the number of pages.
2514 #define PAGES_PER_WAITQUEUE 256
2516 #ifndef CONFIG_MEMORY_HOTPLUG
2517 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2519 unsigned long size = 1;
2521 pages /= PAGES_PER_WAITQUEUE;
2523 while (size < pages)
2524 size <<= 1;
2527 * Once we have dozens or even hundreds of threads sleeping
2528 * on IO we've got bigger problems than wait queue collision.
2529 * Limit the size of the wait table to a reasonable size.
2531 size = min(size, 4096UL);
2533 return max(size, 4UL);
2535 #else
2537 * A zone's size might be changed by hot-add, so it is not possible to determine
2538 * a suitable size for its wait_table. So we use the maximum size now.
2540 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2542 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2543 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2544 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2546 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2547 * or more by the traditional way. (See above). It equals:
2549 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2550 * ia64(16K page size) : = ( 8G + 4M)byte.
2551 * powerpc (64K page size) : = (32G +16M)byte.
2553 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2555 return 4096UL;
2557 #endif
2560 * This is an integer logarithm so that shifts can be used later
2561 * to extract the more random high bits from the multiplicative
2562 * hash function before the remainder is taken.
2564 static inline unsigned long wait_table_bits(unsigned long size)
2566 return ffz(~size);
2569 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2572 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2573 * of blocks reserved is based on zone->pages_min. The memory within the
2574 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2575 * higher will lead to a bigger reserve which will get freed as contiguous
2576 * blocks as reclaim kicks in
2578 static void setup_zone_migrate_reserve(struct zone *zone)
2580 unsigned long start_pfn, pfn, end_pfn;
2581 struct page *page;
2582 unsigned long reserve, block_migratetype;
2584 /* Get the start pfn, end pfn and the number of blocks to reserve */
2585 start_pfn = zone->zone_start_pfn;
2586 end_pfn = start_pfn + zone->spanned_pages;
2587 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2588 pageblock_order;
2590 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2591 if (!pfn_valid(pfn))
2592 continue;
2593 page = pfn_to_page(pfn);
2595 /* Watch out for overlapping nodes */
2596 if (page_to_nid(page) != zone_to_nid(zone))
2597 continue;
2599 /* Blocks with reserved pages will never free, skip them. */
2600 if (PageReserved(page))
2601 continue;
2603 block_migratetype = get_pageblock_migratetype(page);
2605 /* If this block is reserved, account for it */
2606 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2607 reserve--;
2608 continue;
2611 /* Suitable for reserving if this block is movable */
2612 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2613 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2614 move_freepages_block(zone, page, MIGRATE_RESERVE);
2615 reserve--;
2616 continue;
2620 * If the reserve is met and this is a previous reserved block,
2621 * take it back
2623 if (block_migratetype == MIGRATE_RESERVE) {
2624 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2625 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2631 * Initially all pages are reserved - free ones are freed
2632 * up by free_all_bootmem() once the early boot process is
2633 * done. Non-atomic initialization, single-pass.
2635 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2636 unsigned long start_pfn, enum memmap_context context)
2638 struct page *page;
2639 unsigned long end_pfn = start_pfn + size;
2640 unsigned long pfn;
2641 struct zone *z;
2643 if (highest_memmap_pfn < end_pfn - 1)
2644 highest_memmap_pfn = end_pfn - 1;
2646 z = &NODE_DATA(nid)->node_zones[zone];
2647 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2649 * There can be holes in boot-time mem_map[]s
2650 * handed to this function. They do not
2651 * exist on hotplugged memory.
2653 if (context == MEMMAP_EARLY) {
2654 if (!early_pfn_valid(pfn))
2655 continue;
2656 if (!early_pfn_in_nid(pfn, nid))
2657 continue;
2659 page = pfn_to_page(pfn);
2660 set_page_links(page, zone, nid, pfn);
2661 mminit_verify_page_links(page, zone, nid, pfn);
2662 init_page_count(page);
2663 reset_page_mapcount(page);
2664 SetPageReserved(page);
2666 * Mark the block movable so that blocks are reserved for
2667 * movable at startup. This will force kernel allocations
2668 * to reserve their blocks rather than leaking throughout
2669 * the address space during boot when many long-lived
2670 * kernel allocations are made. Later some blocks near
2671 * the start are marked MIGRATE_RESERVE by
2672 * setup_zone_migrate_reserve()
2674 * bitmap is created for zone's valid pfn range. but memmap
2675 * can be created for invalid pages (for alignment)
2676 * check here not to call set_pageblock_migratetype() against
2677 * pfn out of zone.
2679 if ((z->zone_start_pfn <= pfn)
2680 && (pfn < z->zone_start_pfn + z->spanned_pages)
2681 && !(pfn & (pageblock_nr_pages - 1)))
2682 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2684 INIT_LIST_HEAD(&page->lru);
2685 #ifdef WANT_PAGE_VIRTUAL
2686 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2687 if (!is_highmem_idx(zone))
2688 set_page_address(page, __va(pfn << PAGE_SHIFT));
2689 #endif
2693 static void __meminit zone_init_free_lists(struct zone *zone)
2695 int order, t;
2696 for_each_migratetype_order(order, t) {
2697 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2698 zone->free_area[order].nr_free = 0;
2702 #ifndef __HAVE_ARCH_MEMMAP_INIT
2703 #define memmap_init(size, nid, zone, start_pfn) \
2704 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2705 #endif
2707 static int zone_batchsize(struct zone *zone)
2709 #ifdef CONFIG_MMU
2710 int batch;
2713 * The per-cpu-pages pools are set to around 1000th of the
2714 * size of the zone. But no more than 1/2 of a meg.
2716 * OK, so we don't know how big the cache is. So guess.
2718 batch = zone->present_pages / 1024;
2719 if (batch * PAGE_SIZE > 512 * 1024)
2720 batch = (512 * 1024) / PAGE_SIZE;
2721 batch /= 4; /* We effectively *= 4 below */
2722 if (batch < 1)
2723 batch = 1;
2726 * Clamp the batch to a 2^n - 1 value. Having a power
2727 * of 2 value was found to be more likely to have
2728 * suboptimal cache aliasing properties in some cases.
2730 * For example if 2 tasks are alternately allocating
2731 * batches of pages, one task can end up with a lot
2732 * of pages of one half of the possible page colors
2733 * and the other with pages of the other colors.
2735 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2737 return batch;
2739 #else
2740 /* The deferral and batching of frees should be suppressed under NOMMU
2741 * conditions.
2743 * The problem is that NOMMU needs to be able to allocate large chunks
2744 * of contiguous memory as there's no hardware page translation to
2745 * assemble apparent contiguous memory from discontiguous pages.
2747 * Queueing large contiguous runs of pages for batching, however,
2748 * causes the pages to actually be freed in smaller chunks. As there
2749 * can be a significant delay between the individual batches being
2750 * recycled, this leads to the once large chunks of space being
2751 * fragmented and becoming unavailable for high-order allocations.
2753 return 0;
2754 #endif
2757 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2759 struct per_cpu_pages *pcp;
2761 memset(p, 0, sizeof(*p));
2763 pcp = &p->pcp;
2764 pcp->count = 0;
2765 pcp->high = 6 * batch;
2766 pcp->batch = max(1UL, 1 * batch);
2767 INIT_LIST_HEAD(&pcp->list);
2771 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2772 * to the value high for the pageset p.
2775 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2776 unsigned long high)
2778 struct per_cpu_pages *pcp;
2780 pcp = &p->pcp;
2781 pcp->high = high;
2782 pcp->batch = max(1UL, high/4);
2783 if ((high/4) > (PAGE_SHIFT * 8))
2784 pcp->batch = PAGE_SHIFT * 8;
2788 #ifdef CONFIG_NUMA
2790 * Boot pageset table. One per cpu which is going to be used for all
2791 * zones and all nodes. The parameters will be set in such a way
2792 * that an item put on a list will immediately be handed over to
2793 * the buddy list. This is safe since pageset manipulation is done
2794 * with interrupts disabled.
2796 * Some NUMA counter updates may also be caught by the boot pagesets.
2798 * The boot_pagesets must be kept even after bootup is complete for
2799 * unused processors and/or zones. They do play a role for bootstrapping
2800 * hotplugged processors.
2802 * zoneinfo_show() and maybe other functions do
2803 * not check if the processor is online before following the pageset pointer.
2804 * Other parts of the kernel may not check if the zone is available.
2806 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2809 * Dynamically allocate memory for the
2810 * per cpu pageset array in struct zone.
2812 static int __cpuinit process_zones(int cpu)
2814 struct zone *zone, *dzone;
2815 int node = cpu_to_node(cpu);
2817 node_set_state(node, N_CPU); /* this node has a cpu */
2819 for_each_populated_zone(zone) {
2820 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2821 GFP_KERNEL, node);
2822 if (!zone_pcp(zone, cpu))
2823 goto bad;
2825 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2827 if (percpu_pagelist_fraction)
2828 setup_pagelist_highmark(zone_pcp(zone, cpu),
2829 (zone->present_pages / percpu_pagelist_fraction));
2832 return 0;
2833 bad:
2834 for_each_zone(dzone) {
2835 if (!populated_zone(dzone))
2836 continue;
2837 if (dzone == zone)
2838 break;
2839 kfree(zone_pcp(dzone, cpu));
2840 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
2842 return -ENOMEM;
2845 static inline void free_zone_pagesets(int cpu)
2847 struct zone *zone;
2849 for_each_zone(zone) {
2850 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2852 /* Free per_cpu_pageset if it is slab allocated */
2853 if (pset != &boot_pageset[cpu])
2854 kfree(pset);
2855 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2859 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2860 unsigned long action,
2861 void *hcpu)
2863 int cpu = (long)hcpu;
2864 int ret = NOTIFY_OK;
2866 switch (action) {
2867 case CPU_UP_PREPARE:
2868 case CPU_UP_PREPARE_FROZEN:
2869 if (process_zones(cpu))
2870 ret = NOTIFY_BAD;
2871 break;
2872 case CPU_UP_CANCELED:
2873 case CPU_UP_CANCELED_FROZEN:
2874 case CPU_DEAD:
2875 case CPU_DEAD_FROZEN:
2876 free_zone_pagesets(cpu);
2877 break;
2878 default:
2879 break;
2881 return ret;
2884 static struct notifier_block __cpuinitdata pageset_notifier =
2885 { &pageset_cpuup_callback, NULL, 0 };
2887 void __init setup_per_cpu_pageset(void)
2889 int err;
2891 /* Initialize per_cpu_pageset for cpu 0.
2892 * A cpuup callback will do this for every cpu
2893 * as it comes online
2895 err = process_zones(smp_processor_id());
2896 BUG_ON(err);
2897 register_cpu_notifier(&pageset_notifier);
2900 #endif
2902 static noinline __init_refok
2903 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2905 int i;
2906 struct pglist_data *pgdat = zone->zone_pgdat;
2907 size_t alloc_size;
2910 * The per-page waitqueue mechanism uses hashed waitqueues
2911 * per zone.
2913 zone->wait_table_hash_nr_entries =
2914 wait_table_hash_nr_entries(zone_size_pages);
2915 zone->wait_table_bits =
2916 wait_table_bits(zone->wait_table_hash_nr_entries);
2917 alloc_size = zone->wait_table_hash_nr_entries
2918 * sizeof(wait_queue_head_t);
2920 if (!slab_is_available()) {
2921 zone->wait_table = (wait_queue_head_t *)
2922 alloc_bootmem_node(pgdat, alloc_size);
2923 } else {
2925 * This case means that a zone whose size was 0 gets new memory
2926 * via memory hot-add.
2927 * But it may be the case that a new node was hot-added. In
2928 * this case vmalloc() will not be able to use this new node's
2929 * memory - this wait_table must be initialized to use this new
2930 * node itself as well.
2931 * To use this new node's memory, further consideration will be
2932 * necessary.
2934 zone->wait_table = vmalloc(alloc_size);
2936 if (!zone->wait_table)
2937 return -ENOMEM;
2939 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2940 init_waitqueue_head(zone->wait_table + i);
2942 return 0;
2945 static __meminit void zone_pcp_init(struct zone *zone)
2947 int cpu;
2948 unsigned long batch = zone_batchsize(zone);
2950 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2951 #ifdef CONFIG_NUMA
2952 /* Early boot. Slab allocator not functional yet */
2953 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2954 setup_pageset(&boot_pageset[cpu],0);
2955 #else
2956 setup_pageset(zone_pcp(zone,cpu), batch);
2957 #endif
2959 if (zone->present_pages)
2960 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2961 zone->name, zone->present_pages, batch);
2964 __meminit int init_currently_empty_zone(struct zone *zone,
2965 unsigned long zone_start_pfn,
2966 unsigned long size,
2967 enum memmap_context context)
2969 struct pglist_data *pgdat = zone->zone_pgdat;
2970 int ret;
2971 ret = zone_wait_table_init(zone, size);
2972 if (ret)
2973 return ret;
2974 pgdat->nr_zones = zone_idx(zone) + 1;
2976 zone->zone_start_pfn = zone_start_pfn;
2978 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2979 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2980 pgdat->node_id,
2981 (unsigned long)zone_idx(zone),
2982 zone_start_pfn, (zone_start_pfn + size));
2984 zone_init_free_lists(zone);
2986 return 0;
2989 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2991 * Basic iterator support. Return the first range of PFNs for a node
2992 * Note: nid == MAX_NUMNODES returns first region regardless of node
2994 static int __meminit first_active_region_index_in_nid(int nid)
2996 int i;
2998 for (i = 0; i < nr_nodemap_entries; i++)
2999 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3000 return i;
3002 return -1;
3006 * Basic iterator support. Return the next active range of PFNs for a node
3007 * Note: nid == MAX_NUMNODES returns next region regardless of node
3009 static int __meminit next_active_region_index_in_nid(int index, int nid)
3011 for (index = index + 1; index < nr_nodemap_entries; index++)
3012 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3013 return index;
3015 return -1;
3018 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3020 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3021 * Architectures may implement their own version but if add_active_range()
3022 * was used and there are no special requirements, this is a convenient
3023 * alternative
3025 int __meminit __early_pfn_to_nid(unsigned long pfn)
3027 int i;
3029 for (i = 0; i < nr_nodemap_entries; i++) {
3030 unsigned long start_pfn = early_node_map[i].start_pfn;
3031 unsigned long end_pfn = early_node_map[i].end_pfn;
3033 if (start_pfn <= pfn && pfn < end_pfn)
3034 return early_node_map[i].nid;
3036 /* This is a memory hole */
3037 return -1;
3039 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3041 int __meminit early_pfn_to_nid(unsigned long pfn)
3043 int nid;
3045 nid = __early_pfn_to_nid(pfn);
3046 if (nid >= 0)
3047 return nid;
3048 /* just returns 0 */
3049 return 0;
3052 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3053 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3055 int nid;
3057 nid = __early_pfn_to_nid(pfn);
3058 if (nid >= 0 && nid != node)
3059 return false;
3060 return true;
3062 #endif
3064 /* Basic iterator support to walk early_node_map[] */
3065 #define for_each_active_range_index_in_nid(i, nid) \
3066 for (i = first_active_region_index_in_nid(nid); i != -1; \
3067 i = next_active_region_index_in_nid(i, nid))
3070 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3071 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3072 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3074 * If an architecture guarantees that all ranges registered with
3075 * add_active_ranges() contain no holes and may be freed, this
3076 * this function may be used instead of calling free_bootmem() manually.
3078 void __init free_bootmem_with_active_regions(int nid,
3079 unsigned long max_low_pfn)
3081 int i;
3083 for_each_active_range_index_in_nid(i, nid) {
3084 unsigned long size_pages = 0;
3085 unsigned long end_pfn = early_node_map[i].end_pfn;
3087 if (early_node_map[i].start_pfn >= max_low_pfn)
3088 continue;
3090 if (end_pfn > max_low_pfn)
3091 end_pfn = max_low_pfn;
3093 size_pages = end_pfn - early_node_map[i].start_pfn;
3094 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3095 PFN_PHYS(early_node_map[i].start_pfn),
3096 size_pages << PAGE_SHIFT);
3100 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3102 int i;
3103 int ret;
3105 for_each_active_range_index_in_nid(i, nid) {
3106 ret = work_fn(early_node_map[i].start_pfn,
3107 early_node_map[i].end_pfn, data);
3108 if (ret)
3109 break;
3113 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3114 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3116 * If an architecture guarantees that all ranges registered with
3117 * add_active_ranges() contain no holes and may be freed, this
3118 * function may be used instead of calling memory_present() manually.
3120 void __init sparse_memory_present_with_active_regions(int nid)
3122 int i;
3124 for_each_active_range_index_in_nid(i, nid)
3125 memory_present(early_node_map[i].nid,
3126 early_node_map[i].start_pfn,
3127 early_node_map[i].end_pfn);
3131 * push_node_boundaries - Push node boundaries to at least the requested boundary
3132 * @nid: The nid of the node to push the boundary for
3133 * @start_pfn: The start pfn of the node
3134 * @end_pfn: The end pfn of the node
3136 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3137 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3138 * be hotplugged even though no physical memory exists. This function allows
3139 * an arch to push out the node boundaries so mem_map is allocated that can
3140 * be used later.
3142 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3143 void __init push_node_boundaries(unsigned int nid,
3144 unsigned long start_pfn, unsigned long end_pfn)
3146 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3147 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3148 nid, start_pfn, end_pfn);
3150 /* Initialise the boundary for this node if necessary */
3151 if (node_boundary_end_pfn[nid] == 0)
3152 node_boundary_start_pfn[nid] = -1UL;
3154 /* Update the boundaries */
3155 if (node_boundary_start_pfn[nid] > start_pfn)
3156 node_boundary_start_pfn[nid] = start_pfn;
3157 if (node_boundary_end_pfn[nid] < end_pfn)
3158 node_boundary_end_pfn[nid] = end_pfn;
3161 /* If necessary, push the node boundary out for reserve hotadd */
3162 static void __meminit account_node_boundary(unsigned int nid,
3163 unsigned long *start_pfn, unsigned long *end_pfn)
3165 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3166 "Entering account_node_boundary(%u, %lu, %lu)\n",
3167 nid, *start_pfn, *end_pfn);
3169 /* Return if boundary information has not been provided */
3170 if (node_boundary_end_pfn[nid] == 0)
3171 return;
3173 /* Check the boundaries and update if necessary */
3174 if (node_boundary_start_pfn[nid] < *start_pfn)
3175 *start_pfn = node_boundary_start_pfn[nid];
3176 if (node_boundary_end_pfn[nid] > *end_pfn)
3177 *end_pfn = node_boundary_end_pfn[nid];
3179 #else
3180 void __init push_node_boundaries(unsigned int nid,
3181 unsigned long start_pfn, unsigned long end_pfn) {}
3183 static void __meminit account_node_boundary(unsigned int nid,
3184 unsigned long *start_pfn, unsigned long *end_pfn) {}
3185 #endif
3189 * get_pfn_range_for_nid - Return the start and end page frames for a node
3190 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3191 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3192 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3194 * It returns the start and end page frame of a node based on information
3195 * provided by an arch calling add_active_range(). If called for a node
3196 * with no available memory, a warning is printed and the start and end
3197 * PFNs will be 0.
3199 void __meminit get_pfn_range_for_nid(unsigned int nid,
3200 unsigned long *start_pfn, unsigned long *end_pfn)
3202 int i;
3203 *start_pfn = -1UL;
3204 *end_pfn = 0;
3206 for_each_active_range_index_in_nid(i, nid) {
3207 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3208 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3211 if (*start_pfn == -1UL)
3212 *start_pfn = 0;
3214 /* Push the node boundaries out if requested */
3215 account_node_boundary(nid, start_pfn, end_pfn);
3219 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3220 * assumption is made that zones within a node are ordered in monotonic
3221 * increasing memory addresses so that the "highest" populated zone is used
3223 static void __init find_usable_zone_for_movable(void)
3225 int zone_index;
3226 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3227 if (zone_index == ZONE_MOVABLE)
3228 continue;
3230 if (arch_zone_highest_possible_pfn[zone_index] >
3231 arch_zone_lowest_possible_pfn[zone_index])
3232 break;
3235 VM_BUG_ON(zone_index == -1);
3236 movable_zone = zone_index;
3240 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3241 * because it is sized independant of architecture. Unlike the other zones,
3242 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3243 * in each node depending on the size of each node and how evenly kernelcore
3244 * is distributed. This helper function adjusts the zone ranges
3245 * provided by the architecture for a given node by using the end of the
3246 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3247 * zones within a node are in order of monotonic increases memory addresses
3249 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3250 unsigned long zone_type,
3251 unsigned long node_start_pfn,
3252 unsigned long node_end_pfn,
3253 unsigned long *zone_start_pfn,
3254 unsigned long *zone_end_pfn)
3256 /* Only adjust if ZONE_MOVABLE is on this node */
3257 if (zone_movable_pfn[nid]) {
3258 /* Size ZONE_MOVABLE */
3259 if (zone_type == ZONE_MOVABLE) {
3260 *zone_start_pfn = zone_movable_pfn[nid];
3261 *zone_end_pfn = min(node_end_pfn,
3262 arch_zone_highest_possible_pfn[movable_zone]);
3264 /* Adjust for ZONE_MOVABLE starting within this range */
3265 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3266 *zone_end_pfn > zone_movable_pfn[nid]) {
3267 *zone_end_pfn = zone_movable_pfn[nid];
3269 /* Check if this whole range is within ZONE_MOVABLE */
3270 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3271 *zone_start_pfn = *zone_end_pfn;
3276 * Return the number of pages a zone spans in a node, including holes
3277 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3279 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3280 unsigned long zone_type,
3281 unsigned long *ignored)
3283 unsigned long node_start_pfn, node_end_pfn;
3284 unsigned long zone_start_pfn, zone_end_pfn;
3286 /* Get the start and end of the node and zone */
3287 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3288 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3289 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3290 adjust_zone_range_for_zone_movable(nid, zone_type,
3291 node_start_pfn, node_end_pfn,
3292 &zone_start_pfn, &zone_end_pfn);
3294 /* Check that this node has pages within the zone's required range */
3295 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3296 return 0;
3298 /* Move the zone boundaries inside the node if necessary */
3299 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3300 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3302 /* Return the spanned pages */
3303 return zone_end_pfn - zone_start_pfn;
3307 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3308 * then all holes in the requested range will be accounted for.
3310 static unsigned long __meminit __absent_pages_in_range(int nid,
3311 unsigned long range_start_pfn,
3312 unsigned long range_end_pfn)
3314 int i = 0;
3315 unsigned long prev_end_pfn = 0, hole_pages = 0;
3316 unsigned long start_pfn;
3318 /* Find the end_pfn of the first active range of pfns in the node */
3319 i = first_active_region_index_in_nid(nid);
3320 if (i == -1)
3321 return 0;
3323 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3325 /* Account for ranges before physical memory on this node */
3326 if (early_node_map[i].start_pfn > range_start_pfn)
3327 hole_pages = prev_end_pfn - range_start_pfn;
3329 /* Find all holes for the zone within the node */
3330 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3332 /* No need to continue if prev_end_pfn is outside the zone */
3333 if (prev_end_pfn >= range_end_pfn)
3334 break;
3336 /* Make sure the end of the zone is not within the hole */
3337 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3338 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3340 /* Update the hole size cound and move on */
3341 if (start_pfn > range_start_pfn) {
3342 BUG_ON(prev_end_pfn > start_pfn);
3343 hole_pages += start_pfn - prev_end_pfn;
3345 prev_end_pfn = early_node_map[i].end_pfn;
3348 /* Account for ranges past physical memory on this node */
3349 if (range_end_pfn > prev_end_pfn)
3350 hole_pages += range_end_pfn -
3351 max(range_start_pfn, prev_end_pfn);
3353 return hole_pages;
3357 * absent_pages_in_range - Return number of page frames in holes within a range
3358 * @start_pfn: The start PFN to start searching for holes
3359 * @end_pfn: The end PFN to stop searching for holes
3361 * It returns the number of pages frames in memory holes within a range.
3363 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3364 unsigned long end_pfn)
3366 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3369 /* Return the number of page frames in holes in a zone on a node */
3370 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3371 unsigned long zone_type,
3372 unsigned long *ignored)
3374 unsigned long node_start_pfn, node_end_pfn;
3375 unsigned long zone_start_pfn, zone_end_pfn;
3377 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3378 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3379 node_start_pfn);
3380 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3381 node_end_pfn);
3383 adjust_zone_range_for_zone_movable(nid, zone_type,
3384 node_start_pfn, node_end_pfn,
3385 &zone_start_pfn, &zone_end_pfn);
3386 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3389 #else
3390 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3391 unsigned long zone_type,
3392 unsigned long *zones_size)
3394 return zones_size[zone_type];
3397 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3398 unsigned long zone_type,
3399 unsigned long *zholes_size)
3401 if (!zholes_size)
3402 return 0;
3404 return zholes_size[zone_type];
3407 #endif
3409 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3410 unsigned long *zones_size, unsigned long *zholes_size)
3412 unsigned long realtotalpages, totalpages = 0;
3413 enum zone_type i;
3415 for (i = 0; i < MAX_NR_ZONES; i++)
3416 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3417 zones_size);
3418 pgdat->node_spanned_pages = totalpages;
3420 realtotalpages = totalpages;
3421 for (i = 0; i < MAX_NR_ZONES; i++)
3422 realtotalpages -=
3423 zone_absent_pages_in_node(pgdat->node_id, i,
3424 zholes_size);
3425 pgdat->node_present_pages = realtotalpages;
3426 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3427 realtotalpages);
3430 #ifndef CONFIG_SPARSEMEM
3432 * Calculate the size of the zone->blockflags rounded to an unsigned long
3433 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3434 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3435 * round what is now in bits to nearest long in bits, then return it in
3436 * bytes.
3438 static unsigned long __init usemap_size(unsigned long zonesize)
3440 unsigned long usemapsize;
3442 usemapsize = roundup(zonesize, pageblock_nr_pages);
3443 usemapsize = usemapsize >> pageblock_order;
3444 usemapsize *= NR_PAGEBLOCK_BITS;
3445 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3447 return usemapsize / 8;
3450 static void __init setup_usemap(struct pglist_data *pgdat,
3451 struct zone *zone, unsigned long zonesize)
3453 unsigned long usemapsize = usemap_size(zonesize);
3454 zone->pageblock_flags = NULL;
3455 if (usemapsize)
3456 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3458 #else
3459 static void inline setup_usemap(struct pglist_data *pgdat,
3460 struct zone *zone, unsigned long zonesize) {}
3461 #endif /* CONFIG_SPARSEMEM */
3463 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3465 /* Return a sensible default order for the pageblock size. */
3466 static inline int pageblock_default_order(void)
3468 if (HPAGE_SHIFT > PAGE_SHIFT)
3469 return HUGETLB_PAGE_ORDER;
3471 return MAX_ORDER-1;
3474 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3475 static inline void __init set_pageblock_order(unsigned int order)
3477 /* Check that pageblock_nr_pages has not already been setup */
3478 if (pageblock_order)
3479 return;
3482 * Assume the largest contiguous order of interest is a huge page.
3483 * This value may be variable depending on boot parameters on IA64
3485 pageblock_order = order;
3487 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3490 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3491 * and pageblock_default_order() are unused as pageblock_order is set
3492 * at compile-time. See include/linux/pageblock-flags.h for the values of
3493 * pageblock_order based on the kernel config
3495 static inline int pageblock_default_order(unsigned int order)
3497 return MAX_ORDER-1;
3499 #define set_pageblock_order(x) do {} while (0)
3501 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3504 * Set up the zone data structures:
3505 * - mark all pages reserved
3506 * - mark all memory queues empty
3507 * - clear the memory bitmaps
3509 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3510 unsigned long *zones_size, unsigned long *zholes_size)
3512 enum zone_type j;
3513 int nid = pgdat->node_id;
3514 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3515 int ret;
3517 pgdat_resize_init(pgdat);
3518 pgdat->nr_zones = 0;
3519 init_waitqueue_head(&pgdat->kswapd_wait);
3520 pgdat->kswapd_max_order = 0;
3521 pgdat_page_cgroup_init(pgdat);
3523 for (j = 0; j < MAX_NR_ZONES; j++) {
3524 struct zone *zone = pgdat->node_zones + j;
3525 unsigned long size, realsize, memmap_pages;
3526 enum lru_list l;
3528 size = zone_spanned_pages_in_node(nid, j, zones_size);
3529 realsize = size - zone_absent_pages_in_node(nid, j,
3530 zholes_size);
3533 * Adjust realsize so that it accounts for how much memory
3534 * is used by this zone for memmap. This affects the watermark
3535 * and per-cpu initialisations
3537 memmap_pages =
3538 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3539 if (realsize >= memmap_pages) {
3540 realsize -= memmap_pages;
3541 if (memmap_pages)
3542 printk(KERN_DEBUG
3543 " %s zone: %lu pages used for memmap\n",
3544 zone_names[j], memmap_pages);
3545 } else
3546 printk(KERN_WARNING
3547 " %s zone: %lu pages exceeds realsize %lu\n",
3548 zone_names[j], memmap_pages, realsize);
3550 /* Account for reserved pages */
3551 if (j == 0 && realsize > dma_reserve) {
3552 realsize -= dma_reserve;
3553 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3554 zone_names[0], dma_reserve);
3557 if (!is_highmem_idx(j))
3558 nr_kernel_pages += realsize;
3559 nr_all_pages += realsize;
3561 zone->spanned_pages = size;
3562 zone->present_pages = realsize;
3563 #ifdef CONFIG_NUMA
3564 zone->node = nid;
3565 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3566 / 100;
3567 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3568 #endif
3569 zone->name = zone_names[j];
3570 spin_lock_init(&zone->lock);
3571 spin_lock_init(&zone->lru_lock);
3572 zone_seqlock_init(zone);
3573 zone->zone_pgdat = pgdat;
3575 zone->prev_priority = DEF_PRIORITY;
3577 zone_pcp_init(zone);
3578 for_each_lru(l) {
3579 INIT_LIST_HEAD(&zone->lru[l].list);
3580 zone->lru[l].nr_scan = 0;
3582 zone->reclaim_stat.recent_rotated[0] = 0;
3583 zone->reclaim_stat.recent_rotated[1] = 0;
3584 zone->reclaim_stat.recent_scanned[0] = 0;
3585 zone->reclaim_stat.recent_scanned[1] = 0;
3586 zap_zone_vm_stats(zone);
3587 zone->flags = 0;
3588 if (!size)
3589 continue;
3591 set_pageblock_order(pageblock_default_order());
3592 setup_usemap(pgdat, zone, size);
3593 ret = init_currently_empty_zone(zone, zone_start_pfn,
3594 size, MEMMAP_EARLY);
3595 BUG_ON(ret);
3596 memmap_init(size, nid, j, zone_start_pfn);
3597 zone_start_pfn += size;
3601 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3603 /* Skip empty nodes */
3604 if (!pgdat->node_spanned_pages)
3605 return;
3607 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3608 /* ia64 gets its own node_mem_map, before this, without bootmem */
3609 if (!pgdat->node_mem_map) {
3610 unsigned long size, start, end;
3611 struct page *map;
3614 * The zone's endpoints aren't required to be MAX_ORDER
3615 * aligned but the node_mem_map endpoints must be in order
3616 * for the buddy allocator to function correctly.
3618 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3619 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3620 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3621 size = (end - start) * sizeof(struct page);
3622 map = alloc_remap(pgdat->node_id, size);
3623 if (!map)
3624 map = alloc_bootmem_node(pgdat, size);
3625 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3627 #ifndef CONFIG_NEED_MULTIPLE_NODES
3629 * With no DISCONTIG, the global mem_map is just set as node 0's
3631 if (pgdat == NODE_DATA(0)) {
3632 mem_map = NODE_DATA(0)->node_mem_map;
3633 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3634 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3635 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3636 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3638 #endif
3639 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3642 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3643 unsigned long node_start_pfn, unsigned long *zholes_size)
3645 pg_data_t *pgdat = NODE_DATA(nid);
3647 pgdat->node_id = nid;
3648 pgdat->node_start_pfn = node_start_pfn;
3649 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3651 alloc_node_mem_map(pgdat);
3652 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3653 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3654 nid, (unsigned long)pgdat,
3655 (unsigned long)pgdat->node_mem_map);
3656 #endif
3658 free_area_init_core(pgdat, zones_size, zholes_size);
3661 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3663 #if MAX_NUMNODES > 1
3665 * Figure out the number of possible node ids.
3667 static void __init setup_nr_node_ids(void)
3669 unsigned int node;
3670 unsigned int highest = 0;
3672 for_each_node_mask(node, node_possible_map)
3673 highest = node;
3674 nr_node_ids = highest + 1;
3676 #else
3677 static inline void setup_nr_node_ids(void)
3680 #endif
3683 * add_active_range - Register a range of PFNs backed by physical memory
3684 * @nid: The node ID the range resides on
3685 * @start_pfn: The start PFN of the available physical memory
3686 * @end_pfn: The end PFN of the available physical memory
3688 * These ranges are stored in an early_node_map[] and later used by
3689 * free_area_init_nodes() to calculate zone sizes and holes. If the
3690 * range spans a memory hole, it is up to the architecture to ensure
3691 * the memory is not freed by the bootmem allocator. If possible
3692 * the range being registered will be merged with existing ranges.
3694 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3695 unsigned long end_pfn)
3697 int i;
3699 mminit_dprintk(MMINIT_TRACE, "memory_register",
3700 "Entering add_active_range(%d, %#lx, %#lx) "
3701 "%d entries of %d used\n",
3702 nid, start_pfn, end_pfn,
3703 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3705 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3707 /* Merge with existing active regions if possible */
3708 for (i = 0; i < nr_nodemap_entries; i++) {
3709 if (early_node_map[i].nid != nid)
3710 continue;
3712 /* Skip if an existing region covers this new one */
3713 if (start_pfn >= early_node_map[i].start_pfn &&
3714 end_pfn <= early_node_map[i].end_pfn)
3715 return;
3717 /* Merge forward if suitable */
3718 if (start_pfn <= early_node_map[i].end_pfn &&
3719 end_pfn > early_node_map[i].end_pfn) {
3720 early_node_map[i].end_pfn = end_pfn;
3721 return;
3724 /* Merge backward if suitable */
3725 if (start_pfn < early_node_map[i].end_pfn &&
3726 end_pfn >= early_node_map[i].start_pfn) {
3727 early_node_map[i].start_pfn = start_pfn;
3728 return;
3732 /* Check that early_node_map is large enough */
3733 if (i >= MAX_ACTIVE_REGIONS) {
3734 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3735 MAX_ACTIVE_REGIONS);
3736 return;
3739 early_node_map[i].nid = nid;
3740 early_node_map[i].start_pfn = start_pfn;
3741 early_node_map[i].end_pfn = end_pfn;
3742 nr_nodemap_entries = i + 1;
3746 * remove_active_range - Shrink an existing registered range of PFNs
3747 * @nid: The node id the range is on that should be shrunk
3748 * @start_pfn: The new PFN of the range
3749 * @end_pfn: The new PFN of the range
3751 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3752 * The map is kept near the end physical page range that has already been
3753 * registered. This function allows an arch to shrink an existing registered
3754 * range.
3756 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3757 unsigned long end_pfn)
3759 int i, j;
3760 int removed = 0;
3762 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3763 nid, start_pfn, end_pfn);
3765 /* Find the old active region end and shrink */
3766 for_each_active_range_index_in_nid(i, nid) {
3767 if (early_node_map[i].start_pfn >= start_pfn &&
3768 early_node_map[i].end_pfn <= end_pfn) {
3769 /* clear it */
3770 early_node_map[i].start_pfn = 0;
3771 early_node_map[i].end_pfn = 0;
3772 removed = 1;
3773 continue;
3775 if (early_node_map[i].start_pfn < start_pfn &&
3776 early_node_map[i].end_pfn > start_pfn) {
3777 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3778 early_node_map[i].end_pfn = start_pfn;
3779 if (temp_end_pfn > end_pfn)
3780 add_active_range(nid, end_pfn, temp_end_pfn);
3781 continue;
3783 if (early_node_map[i].start_pfn >= start_pfn &&
3784 early_node_map[i].end_pfn > end_pfn &&
3785 early_node_map[i].start_pfn < end_pfn) {
3786 early_node_map[i].start_pfn = end_pfn;
3787 continue;
3791 if (!removed)
3792 return;
3794 /* remove the blank ones */
3795 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3796 if (early_node_map[i].nid != nid)
3797 continue;
3798 if (early_node_map[i].end_pfn)
3799 continue;
3800 /* we found it, get rid of it */
3801 for (j = i; j < nr_nodemap_entries - 1; j++)
3802 memcpy(&early_node_map[j], &early_node_map[j+1],
3803 sizeof(early_node_map[j]));
3804 j = nr_nodemap_entries - 1;
3805 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3806 nr_nodemap_entries--;
3811 * remove_all_active_ranges - Remove all currently registered regions
3813 * During discovery, it may be found that a table like SRAT is invalid
3814 * and an alternative discovery method must be used. This function removes
3815 * all currently registered regions.
3817 void __init remove_all_active_ranges(void)
3819 memset(early_node_map, 0, sizeof(early_node_map));
3820 nr_nodemap_entries = 0;
3821 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3822 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3823 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3824 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3827 /* Compare two active node_active_regions */
3828 static int __init cmp_node_active_region(const void *a, const void *b)
3830 struct node_active_region *arange = (struct node_active_region *)a;
3831 struct node_active_region *brange = (struct node_active_region *)b;
3833 /* Done this way to avoid overflows */
3834 if (arange->start_pfn > brange->start_pfn)
3835 return 1;
3836 if (arange->start_pfn < brange->start_pfn)
3837 return -1;
3839 return 0;
3842 /* sort the node_map by start_pfn */
3843 static void __init sort_node_map(void)
3845 sort(early_node_map, (size_t)nr_nodemap_entries,
3846 sizeof(struct node_active_region),
3847 cmp_node_active_region, NULL);
3850 /* Find the lowest pfn for a node */
3851 static unsigned long __init find_min_pfn_for_node(int nid)
3853 int i;
3854 unsigned long min_pfn = ULONG_MAX;
3856 /* Assuming a sorted map, the first range found has the starting pfn */
3857 for_each_active_range_index_in_nid(i, nid)
3858 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3860 if (min_pfn == ULONG_MAX) {
3861 printk(KERN_WARNING
3862 "Could not find start_pfn for node %d\n", nid);
3863 return 0;
3866 return min_pfn;
3870 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3872 * It returns the minimum PFN based on information provided via
3873 * add_active_range().
3875 unsigned long __init find_min_pfn_with_active_regions(void)
3877 return find_min_pfn_for_node(MAX_NUMNODES);
3881 * early_calculate_totalpages()
3882 * Sum pages in active regions for movable zone.
3883 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3885 static unsigned long __init early_calculate_totalpages(void)
3887 int i;
3888 unsigned long totalpages = 0;
3890 for (i = 0; i < nr_nodemap_entries; i++) {
3891 unsigned long pages = early_node_map[i].end_pfn -
3892 early_node_map[i].start_pfn;
3893 totalpages += pages;
3894 if (pages)
3895 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3897 return totalpages;
3901 * Find the PFN the Movable zone begins in each node. Kernel memory
3902 * is spread evenly between nodes as long as the nodes have enough
3903 * memory. When they don't, some nodes will have more kernelcore than
3904 * others
3906 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3908 int i, nid;
3909 unsigned long usable_startpfn;
3910 unsigned long kernelcore_node, kernelcore_remaining;
3911 unsigned long totalpages = early_calculate_totalpages();
3912 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3915 * If movablecore was specified, calculate what size of
3916 * kernelcore that corresponds so that memory usable for
3917 * any allocation type is evenly spread. If both kernelcore
3918 * and movablecore are specified, then the value of kernelcore
3919 * will be used for required_kernelcore if it's greater than
3920 * what movablecore would have allowed.
3922 if (required_movablecore) {
3923 unsigned long corepages;
3926 * Round-up so that ZONE_MOVABLE is at least as large as what
3927 * was requested by the user
3929 required_movablecore =
3930 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3931 corepages = totalpages - required_movablecore;
3933 required_kernelcore = max(required_kernelcore, corepages);
3936 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3937 if (!required_kernelcore)
3938 return;
3940 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3941 find_usable_zone_for_movable();
3942 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3944 restart:
3945 /* Spread kernelcore memory as evenly as possible throughout nodes */
3946 kernelcore_node = required_kernelcore / usable_nodes;
3947 for_each_node_state(nid, N_HIGH_MEMORY) {
3949 * Recalculate kernelcore_node if the division per node
3950 * now exceeds what is necessary to satisfy the requested
3951 * amount of memory for the kernel
3953 if (required_kernelcore < kernelcore_node)
3954 kernelcore_node = required_kernelcore / usable_nodes;
3957 * As the map is walked, we track how much memory is usable
3958 * by the kernel using kernelcore_remaining. When it is
3959 * 0, the rest of the node is usable by ZONE_MOVABLE
3961 kernelcore_remaining = kernelcore_node;
3963 /* Go through each range of PFNs within this node */
3964 for_each_active_range_index_in_nid(i, nid) {
3965 unsigned long start_pfn, end_pfn;
3966 unsigned long size_pages;
3968 start_pfn = max(early_node_map[i].start_pfn,
3969 zone_movable_pfn[nid]);
3970 end_pfn = early_node_map[i].end_pfn;
3971 if (start_pfn >= end_pfn)
3972 continue;
3974 /* Account for what is only usable for kernelcore */
3975 if (start_pfn < usable_startpfn) {
3976 unsigned long kernel_pages;
3977 kernel_pages = min(end_pfn, usable_startpfn)
3978 - start_pfn;
3980 kernelcore_remaining -= min(kernel_pages,
3981 kernelcore_remaining);
3982 required_kernelcore -= min(kernel_pages,
3983 required_kernelcore);
3985 /* Continue if range is now fully accounted */
3986 if (end_pfn <= usable_startpfn) {
3989 * Push zone_movable_pfn to the end so
3990 * that if we have to rebalance
3991 * kernelcore across nodes, we will
3992 * not double account here
3994 zone_movable_pfn[nid] = end_pfn;
3995 continue;
3997 start_pfn = usable_startpfn;
4001 * The usable PFN range for ZONE_MOVABLE is from
4002 * start_pfn->end_pfn. Calculate size_pages as the
4003 * number of pages used as kernelcore
4005 size_pages = end_pfn - start_pfn;
4006 if (size_pages > kernelcore_remaining)
4007 size_pages = kernelcore_remaining;
4008 zone_movable_pfn[nid] = start_pfn + size_pages;
4011 * Some kernelcore has been met, update counts and
4012 * break if the kernelcore for this node has been
4013 * satisified
4015 required_kernelcore -= min(required_kernelcore,
4016 size_pages);
4017 kernelcore_remaining -= size_pages;
4018 if (!kernelcore_remaining)
4019 break;
4024 * If there is still required_kernelcore, we do another pass with one
4025 * less node in the count. This will push zone_movable_pfn[nid] further
4026 * along on the nodes that still have memory until kernelcore is
4027 * satisified
4029 usable_nodes--;
4030 if (usable_nodes && required_kernelcore > usable_nodes)
4031 goto restart;
4033 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4034 for (nid = 0; nid < MAX_NUMNODES; nid++)
4035 zone_movable_pfn[nid] =
4036 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4039 /* Any regular memory on that node ? */
4040 static void check_for_regular_memory(pg_data_t *pgdat)
4042 #ifdef CONFIG_HIGHMEM
4043 enum zone_type zone_type;
4045 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4046 struct zone *zone = &pgdat->node_zones[zone_type];
4047 if (zone->present_pages)
4048 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4050 #endif
4054 * free_area_init_nodes - Initialise all pg_data_t and zone data
4055 * @max_zone_pfn: an array of max PFNs for each zone
4057 * This will call free_area_init_node() for each active node in the system.
4058 * Using the page ranges provided by add_active_range(), the size of each
4059 * zone in each node and their holes is calculated. If the maximum PFN
4060 * between two adjacent zones match, it is assumed that the zone is empty.
4061 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4062 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4063 * starts where the previous one ended. For example, ZONE_DMA32 starts
4064 * at arch_max_dma_pfn.
4066 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4068 unsigned long nid;
4069 int i;
4071 /* Sort early_node_map as initialisation assumes it is sorted */
4072 sort_node_map();
4074 /* Record where the zone boundaries are */
4075 memset(arch_zone_lowest_possible_pfn, 0,
4076 sizeof(arch_zone_lowest_possible_pfn));
4077 memset(arch_zone_highest_possible_pfn, 0,
4078 sizeof(arch_zone_highest_possible_pfn));
4079 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4080 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4081 for (i = 1; i < MAX_NR_ZONES; i++) {
4082 if (i == ZONE_MOVABLE)
4083 continue;
4084 arch_zone_lowest_possible_pfn[i] =
4085 arch_zone_highest_possible_pfn[i-1];
4086 arch_zone_highest_possible_pfn[i] =
4087 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4089 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4090 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4092 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4093 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4094 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4096 /* Print out the zone ranges */
4097 printk("Zone PFN ranges:\n");
4098 for (i = 0; i < MAX_NR_ZONES; i++) {
4099 if (i == ZONE_MOVABLE)
4100 continue;
4101 printk(" %-8s %0#10lx -> %0#10lx\n",
4102 zone_names[i],
4103 arch_zone_lowest_possible_pfn[i],
4104 arch_zone_highest_possible_pfn[i]);
4107 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4108 printk("Movable zone start PFN for each node\n");
4109 for (i = 0; i < MAX_NUMNODES; i++) {
4110 if (zone_movable_pfn[i])
4111 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4114 /* Print out the early_node_map[] */
4115 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4116 for (i = 0; i < nr_nodemap_entries; i++)
4117 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4118 early_node_map[i].start_pfn,
4119 early_node_map[i].end_pfn);
4121 /* Initialise every node */
4122 mminit_verify_pageflags_layout();
4123 setup_nr_node_ids();
4124 for_each_online_node(nid) {
4125 pg_data_t *pgdat = NODE_DATA(nid);
4126 free_area_init_node(nid, NULL,
4127 find_min_pfn_for_node(nid), NULL);
4129 /* Any memory on that node */
4130 if (pgdat->node_present_pages)
4131 node_set_state(nid, N_HIGH_MEMORY);
4132 check_for_regular_memory(pgdat);
4136 static int __init cmdline_parse_core(char *p, unsigned long *core)
4138 unsigned long long coremem;
4139 if (!p)
4140 return -EINVAL;
4142 coremem = memparse(p, &p);
4143 *core = coremem >> PAGE_SHIFT;
4145 /* Paranoid check that UL is enough for the coremem value */
4146 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4148 return 0;
4152 * kernelcore=size sets the amount of memory for use for allocations that
4153 * cannot be reclaimed or migrated.
4155 static int __init cmdline_parse_kernelcore(char *p)
4157 return cmdline_parse_core(p, &required_kernelcore);
4161 * movablecore=size sets the amount of memory for use for allocations that
4162 * can be reclaimed or migrated.
4164 static int __init cmdline_parse_movablecore(char *p)
4166 return cmdline_parse_core(p, &required_movablecore);
4169 early_param("kernelcore", cmdline_parse_kernelcore);
4170 early_param("movablecore", cmdline_parse_movablecore);
4172 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4175 * set_dma_reserve - set the specified number of pages reserved in the first zone
4176 * @new_dma_reserve: The number of pages to mark reserved
4178 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4179 * In the DMA zone, a significant percentage may be consumed by kernel image
4180 * and other unfreeable allocations which can skew the watermarks badly. This
4181 * function may optionally be used to account for unfreeable pages in the
4182 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4183 * smaller per-cpu batchsize.
4185 void __init set_dma_reserve(unsigned long new_dma_reserve)
4187 dma_reserve = new_dma_reserve;
4190 #ifndef CONFIG_NEED_MULTIPLE_NODES
4191 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4192 EXPORT_SYMBOL(contig_page_data);
4193 #endif
4195 void __init free_area_init(unsigned long *zones_size)
4197 free_area_init_node(0, zones_size,
4198 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4201 static int page_alloc_cpu_notify(struct notifier_block *self,
4202 unsigned long action, void *hcpu)
4204 int cpu = (unsigned long)hcpu;
4206 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4207 drain_pages(cpu);
4210 * Spill the event counters of the dead processor
4211 * into the current processors event counters.
4212 * This artificially elevates the count of the current
4213 * processor.
4215 vm_events_fold_cpu(cpu);
4218 * Zero the differential counters of the dead processor
4219 * so that the vm statistics are consistent.
4221 * This is only okay since the processor is dead and cannot
4222 * race with what we are doing.
4224 refresh_cpu_vm_stats(cpu);
4226 return NOTIFY_OK;
4229 void __init page_alloc_init(void)
4231 hotcpu_notifier(page_alloc_cpu_notify, 0);
4235 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4236 * or min_free_kbytes changes.
4238 static void calculate_totalreserve_pages(void)
4240 struct pglist_data *pgdat;
4241 unsigned long reserve_pages = 0;
4242 enum zone_type i, j;
4244 for_each_online_pgdat(pgdat) {
4245 for (i = 0; i < MAX_NR_ZONES; i++) {
4246 struct zone *zone = pgdat->node_zones + i;
4247 unsigned long max = 0;
4249 /* Find valid and maximum lowmem_reserve in the zone */
4250 for (j = i; j < MAX_NR_ZONES; j++) {
4251 if (zone->lowmem_reserve[j] > max)
4252 max = zone->lowmem_reserve[j];
4255 /* we treat pages_high as reserved pages. */
4256 max += zone->pages_high;
4258 if (max > zone->present_pages)
4259 max = zone->present_pages;
4260 reserve_pages += max;
4263 totalreserve_pages = reserve_pages;
4267 * setup_per_zone_lowmem_reserve - called whenever
4268 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4269 * has a correct pages reserved value, so an adequate number of
4270 * pages are left in the zone after a successful __alloc_pages().
4272 static void setup_per_zone_lowmem_reserve(void)
4274 struct pglist_data *pgdat;
4275 enum zone_type j, idx;
4277 for_each_online_pgdat(pgdat) {
4278 for (j = 0; j < MAX_NR_ZONES; j++) {
4279 struct zone *zone = pgdat->node_zones + j;
4280 unsigned long present_pages = zone->present_pages;
4282 zone->lowmem_reserve[j] = 0;
4284 idx = j;
4285 while (idx) {
4286 struct zone *lower_zone;
4288 idx--;
4290 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4291 sysctl_lowmem_reserve_ratio[idx] = 1;
4293 lower_zone = pgdat->node_zones + idx;
4294 lower_zone->lowmem_reserve[j] = present_pages /
4295 sysctl_lowmem_reserve_ratio[idx];
4296 present_pages += lower_zone->present_pages;
4301 /* update totalreserve_pages */
4302 calculate_totalreserve_pages();
4306 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4308 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4309 * with respect to min_free_kbytes.
4311 void setup_per_zone_pages_min(void)
4313 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4314 unsigned long lowmem_pages = 0;
4315 struct zone *zone;
4316 unsigned long flags;
4318 /* Calculate total number of !ZONE_HIGHMEM pages */
4319 for_each_zone(zone) {
4320 if (!is_highmem(zone))
4321 lowmem_pages += zone->present_pages;
4324 for_each_zone(zone) {
4325 u64 tmp;
4327 spin_lock_irqsave(&zone->lock, flags);
4328 tmp = (u64)pages_min * zone->present_pages;
4329 do_div(tmp, lowmem_pages);
4330 if (is_highmem(zone)) {
4332 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4333 * need highmem pages, so cap pages_min to a small
4334 * value here.
4336 * The (pages_high-pages_low) and (pages_low-pages_min)
4337 * deltas controls asynch page reclaim, and so should
4338 * not be capped for highmem.
4340 int min_pages;
4342 min_pages = zone->present_pages / 1024;
4343 if (min_pages < SWAP_CLUSTER_MAX)
4344 min_pages = SWAP_CLUSTER_MAX;
4345 if (min_pages > 128)
4346 min_pages = 128;
4347 zone->pages_min = min_pages;
4348 } else {
4350 * If it's a lowmem zone, reserve a number of pages
4351 * proportionate to the zone's size.
4353 zone->pages_min = tmp;
4356 zone->pages_low = zone->pages_min + (tmp >> 2);
4357 zone->pages_high = zone->pages_min + (tmp >> 1);
4358 setup_zone_migrate_reserve(zone);
4359 spin_unlock_irqrestore(&zone->lock, flags);
4362 /* update totalreserve_pages */
4363 calculate_totalreserve_pages();
4367 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4369 * The inactive anon list should be small enough that the VM never has to
4370 * do too much work, but large enough that each inactive page has a chance
4371 * to be referenced again before it is swapped out.
4373 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4374 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4375 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4376 * the anonymous pages are kept on the inactive list.
4378 * total target max
4379 * memory ratio inactive anon
4380 * -------------------------------------
4381 * 10MB 1 5MB
4382 * 100MB 1 50MB
4383 * 1GB 3 250MB
4384 * 10GB 10 0.9GB
4385 * 100GB 31 3GB
4386 * 1TB 101 10GB
4387 * 10TB 320 32GB
4389 static void setup_per_zone_inactive_ratio(void)
4391 struct zone *zone;
4393 for_each_zone(zone) {
4394 unsigned int gb, ratio;
4396 /* Zone size in gigabytes */
4397 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4398 ratio = int_sqrt(10 * gb);
4399 if (!ratio)
4400 ratio = 1;
4402 zone->inactive_ratio = ratio;
4407 * Initialise min_free_kbytes.
4409 * For small machines we want it small (128k min). For large machines
4410 * we want it large (64MB max). But it is not linear, because network
4411 * bandwidth does not increase linearly with machine size. We use
4413 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4414 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4416 * which yields
4418 * 16MB: 512k
4419 * 32MB: 724k
4420 * 64MB: 1024k
4421 * 128MB: 1448k
4422 * 256MB: 2048k
4423 * 512MB: 2896k
4424 * 1024MB: 4096k
4425 * 2048MB: 5792k
4426 * 4096MB: 8192k
4427 * 8192MB: 11584k
4428 * 16384MB: 16384k
4430 static int __init init_per_zone_pages_min(void)
4432 unsigned long lowmem_kbytes;
4434 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4436 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4437 if (min_free_kbytes < 128)
4438 min_free_kbytes = 128;
4439 if (min_free_kbytes > 65536)
4440 min_free_kbytes = 65536;
4441 setup_per_zone_pages_min();
4442 setup_per_zone_lowmem_reserve();
4443 setup_per_zone_inactive_ratio();
4444 return 0;
4446 module_init(init_per_zone_pages_min)
4449 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4450 * that we can call two helper functions whenever min_free_kbytes
4451 * changes.
4453 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4454 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4456 proc_dointvec(table, write, file, buffer, length, ppos);
4457 if (write)
4458 setup_per_zone_pages_min();
4459 return 0;
4462 #ifdef CONFIG_NUMA
4463 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4464 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4466 struct zone *zone;
4467 int rc;
4469 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4470 if (rc)
4471 return rc;
4473 for_each_zone(zone)
4474 zone->min_unmapped_pages = (zone->present_pages *
4475 sysctl_min_unmapped_ratio) / 100;
4476 return 0;
4479 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4480 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4482 struct zone *zone;
4483 int rc;
4485 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4486 if (rc)
4487 return rc;
4489 for_each_zone(zone)
4490 zone->min_slab_pages = (zone->present_pages *
4491 sysctl_min_slab_ratio) / 100;
4492 return 0;
4494 #endif
4497 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4498 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4499 * whenever sysctl_lowmem_reserve_ratio changes.
4501 * The reserve ratio obviously has absolutely no relation with the
4502 * pages_min watermarks. The lowmem reserve ratio can only make sense
4503 * if in function of the boot time zone sizes.
4505 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4506 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4508 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4509 setup_per_zone_lowmem_reserve();
4510 return 0;
4514 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4515 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4516 * can have before it gets flushed back to buddy allocator.
4519 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4520 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4522 struct zone *zone;
4523 unsigned int cpu;
4524 int ret;
4526 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4527 if (!write || (ret == -EINVAL))
4528 return ret;
4529 for_each_populated_zone(zone) {
4530 for_each_online_cpu(cpu) {
4531 unsigned long high;
4532 high = zone->present_pages / percpu_pagelist_fraction;
4533 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4536 return 0;
4539 int hashdist = HASHDIST_DEFAULT;
4541 #ifdef CONFIG_NUMA
4542 static int __init set_hashdist(char *str)
4544 if (!str)
4545 return 0;
4546 hashdist = simple_strtoul(str, &str, 0);
4547 return 1;
4549 __setup("hashdist=", set_hashdist);
4550 #endif
4553 * allocate a large system hash table from bootmem
4554 * - it is assumed that the hash table must contain an exact power-of-2
4555 * quantity of entries
4556 * - limit is the number of hash buckets, not the total allocation size
4558 void *__init alloc_large_system_hash(const char *tablename,
4559 unsigned long bucketsize,
4560 unsigned long numentries,
4561 int scale,
4562 int flags,
4563 unsigned int *_hash_shift,
4564 unsigned int *_hash_mask,
4565 unsigned long limit)
4567 unsigned long long max = limit;
4568 unsigned long log2qty, size;
4569 void *table = NULL;
4571 /* allow the kernel cmdline to have a say */
4572 if (!numentries) {
4573 /* round applicable memory size up to nearest megabyte */
4574 numentries = nr_kernel_pages;
4575 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4576 numentries >>= 20 - PAGE_SHIFT;
4577 numentries <<= 20 - PAGE_SHIFT;
4579 /* limit to 1 bucket per 2^scale bytes of low memory */
4580 if (scale > PAGE_SHIFT)
4581 numentries >>= (scale - PAGE_SHIFT);
4582 else
4583 numentries <<= (PAGE_SHIFT - scale);
4585 /* Make sure we've got at least a 0-order allocation.. */
4586 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4587 numentries = PAGE_SIZE / bucketsize;
4589 numentries = roundup_pow_of_two(numentries);
4591 /* limit allocation size to 1/16 total memory by default */
4592 if (max == 0) {
4593 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4594 do_div(max, bucketsize);
4597 if (numentries > max)
4598 numentries = max;
4600 log2qty = ilog2(numentries);
4602 do {
4603 size = bucketsize << log2qty;
4604 if (flags & HASH_EARLY)
4605 table = alloc_bootmem_nopanic(size);
4606 else if (hashdist)
4607 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4608 else {
4609 unsigned long order = get_order(size);
4610 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4612 * If bucketsize is not a power-of-two, we may free
4613 * some pages at the end of hash table.
4615 if (table) {
4616 unsigned long alloc_end = (unsigned long)table +
4617 (PAGE_SIZE << order);
4618 unsigned long used = (unsigned long)table +
4619 PAGE_ALIGN(size);
4620 split_page(virt_to_page(table), order);
4621 while (used < alloc_end) {
4622 free_page(used);
4623 used += PAGE_SIZE;
4627 } while (!table && size > PAGE_SIZE && --log2qty);
4629 if (!table)
4630 panic("Failed to allocate %s hash table\n", tablename);
4632 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4633 tablename,
4634 (1U << log2qty),
4635 ilog2(size) - PAGE_SHIFT,
4636 size);
4638 if (_hash_shift)
4639 *_hash_shift = log2qty;
4640 if (_hash_mask)
4641 *_hash_mask = (1 << log2qty) - 1;
4643 return table;
4646 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4647 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4648 unsigned long pfn)
4650 #ifdef CONFIG_SPARSEMEM
4651 return __pfn_to_section(pfn)->pageblock_flags;
4652 #else
4653 return zone->pageblock_flags;
4654 #endif /* CONFIG_SPARSEMEM */
4657 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4659 #ifdef CONFIG_SPARSEMEM
4660 pfn &= (PAGES_PER_SECTION-1);
4661 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4662 #else
4663 pfn = pfn - zone->zone_start_pfn;
4664 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4665 #endif /* CONFIG_SPARSEMEM */
4669 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4670 * @page: The page within the block of interest
4671 * @start_bitidx: The first bit of interest to retrieve
4672 * @end_bitidx: The last bit of interest
4673 * returns pageblock_bits flags
4675 unsigned long get_pageblock_flags_group(struct page *page,
4676 int start_bitidx, int end_bitidx)
4678 struct zone *zone;
4679 unsigned long *bitmap;
4680 unsigned long pfn, bitidx;
4681 unsigned long flags = 0;
4682 unsigned long value = 1;
4684 zone = page_zone(page);
4685 pfn = page_to_pfn(page);
4686 bitmap = get_pageblock_bitmap(zone, pfn);
4687 bitidx = pfn_to_bitidx(zone, pfn);
4689 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4690 if (test_bit(bitidx + start_bitidx, bitmap))
4691 flags |= value;
4693 return flags;
4697 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4698 * @page: The page within the block of interest
4699 * @start_bitidx: The first bit of interest
4700 * @end_bitidx: The last bit of interest
4701 * @flags: The flags to set
4703 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4704 int start_bitidx, int end_bitidx)
4706 struct zone *zone;
4707 unsigned long *bitmap;
4708 unsigned long pfn, bitidx;
4709 unsigned long value = 1;
4711 zone = page_zone(page);
4712 pfn = page_to_pfn(page);
4713 bitmap = get_pageblock_bitmap(zone, pfn);
4714 bitidx = pfn_to_bitidx(zone, pfn);
4715 VM_BUG_ON(pfn < zone->zone_start_pfn);
4716 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4718 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4719 if (flags & value)
4720 __set_bit(bitidx + start_bitidx, bitmap);
4721 else
4722 __clear_bit(bitidx + start_bitidx, bitmap);
4726 * This is designed as sub function...plz see page_isolation.c also.
4727 * set/clear page block's type to be ISOLATE.
4728 * page allocater never alloc memory from ISOLATE block.
4731 int set_migratetype_isolate(struct page *page)
4733 struct zone *zone;
4734 unsigned long flags;
4735 int ret = -EBUSY;
4737 zone = page_zone(page);
4738 spin_lock_irqsave(&zone->lock, flags);
4740 * In future, more migrate types will be able to be isolation target.
4742 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4743 goto out;
4744 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4745 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4746 ret = 0;
4747 out:
4748 spin_unlock_irqrestore(&zone->lock, flags);
4749 if (!ret)
4750 drain_all_pages();
4751 return ret;
4754 void unset_migratetype_isolate(struct page *page)
4756 struct zone *zone;
4757 unsigned long flags;
4758 zone = page_zone(page);
4759 spin_lock_irqsave(&zone->lock, flags);
4760 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4761 goto out;
4762 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4763 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4764 out:
4765 spin_unlock_irqrestore(&zone->lock, flags);
4768 #ifdef CONFIG_MEMORY_HOTREMOVE
4770 * All pages in the range must be isolated before calling this.
4772 void
4773 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4775 struct page *page;
4776 struct zone *zone;
4777 int order, i;
4778 unsigned long pfn;
4779 unsigned long flags;
4780 /* find the first valid pfn */
4781 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4782 if (pfn_valid(pfn))
4783 break;
4784 if (pfn == end_pfn)
4785 return;
4786 zone = page_zone(pfn_to_page(pfn));
4787 spin_lock_irqsave(&zone->lock, flags);
4788 pfn = start_pfn;
4789 while (pfn < end_pfn) {
4790 if (!pfn_valid(pfn)) {
4791 pfn++;
4792 continue;
4794 page = pfn_to_page(pfn);
4795 BUG_ON(page_count(page));
4796 BUG_ON(!PageBuddy(page));
4797 order = page_order(page);
4798 #ifdef CONFIG_DEBUG_VM
4799 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4800 pfn, 1 << order, end_pfn);
4801 #endif
4802 list_del(&page->lru);
4803 rmv_page_order(page);
4804 zone->free_area[order].nr_free--;
4805 __mod_zone_page_state(zone, NR_FREE_PAGES,
4806 - (1UL << order));
4807 for (i = 0; i < (1 << order); i++)
4808 SetPageReserved((page+i));
4809 pfn += (1 << order);
4811 spin_unlock_irqrestore(&zone->lock, flags);
4813 #endif