swapfile: rearrange scan and swap_info
[linux-2.6/mini2440.git] / security / commoncap.c
blob69fc9952650f83fbbe718a6088fe461c64fda238
1 /* Common capabilities, needed by capability.o and root_plug.o
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
8 */
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
31 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
33 NETLINK_CB(skb).eff_cap = current_cap();
34 return 0;
37 int cap_netlink_recv(struct sk_buff *skb, int cap)
39 if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
40 return -EPERM;
41 return 0;
43 EXPORT_SYMBOL(cap_netlink_recv);
45 /**
46 * cap_capable - Determine whether a task has a particular effective capability
47 * @tsk: The task to query
48 * @cap: The capability to check for
49 * @audit: Whether to write an audit message or not
51 * Determine whether the nominated task has the specified capability amongst
52 * its effective set, returning 0 if it does, -ve if it does not.
54 * NOTE WELL: cap_capable() cannot be used like the kernel's capable()
55 * function. That is, it has the reverse semantics: cap_capable() returns 0
56 * when a task has a capability, but the kernel's capable() returns 1 for this
57 * case.
59 int cap_capable(struct task_struct *tsk, int cap, int audit)
61 __u32 cap_raised;
63 /* Derived from include/linux/sched.h:capable. */
64 rcu_read_lock();
65 cap_raised = cap_raised(__task_cred(tsk)->cap_effective, cap);
66 rcu_read_unlock();
67 return cap_raised ? 0 : -EPERM;
70 /**
71 * cap_settime - Determine whether the current process may set the system clock
72 * @ts: The time to set
73 * @tz: The timezone to set
75 * Determine whether the current process may set the system clock and timezone
76 * information, returning 0 if permission granted, -ve if denied.
78 int cap_settime(struct timespec *ts, struct timezone *tz)
80 if (!capable(CAP_SYS_TIME))
81 return -EPERM;
82 return 0;
85 /**
86 * cap_ptrace_may_access - Determine whether the current process may access
87 * another
88 * @child: The process to be accessed
89 * @mode: The mode of attachment.
91 * Determine whether a process may access another, returning 0 if permission
92 * granted, -ve if denied.
94 int cap_ptrace_may_access(struct task_struct *child, unsigned int mode)
96 int ret = 0;
98 rcu_read_lock();
99 if (!cap_issubset(__task_cred(child)->cap_permitted,
100 current_cred()->cap_permitted) &&
101 !capable(CAP_SYS_PTRACE))
102 ret = -EPERM;
103 rcu_read_unlock();
104 return ret;
108 * cap_ptrace_traceme - Determine whether another process may trace the current
109 * @parent: The task proposed to be the tracer
111 * Determine whether the nominated task is permitted to trace the current
112 * process, returning 0 if permission is granted, -ve if denied.
114 int cap_ptrace_traceme(struct task_struct *parent)
116 int ret = 0;
118 rcu_read_lock();
119 if (!cap_issubset(current_cred()->cap_permitted,
120 __task_cred(parent)->cap_permitted) &&
121 !has_capability(parent, CAP_SYS_PTRACE))
122 ret = -EPERM;
123 rcu_read_unlock();
124 return ret;
128 * cap_capget - Retrieve a task's capability sets
129 * @target: The task from which to retrieve the capability sets
130 * @effective: The place to record the effective set
131 * @inheritable: The place to record the inheritable set
132 * @permitted: The place to record the permitted set
134 * This function retrieves the capabilities of the nominated task and returns
135 * them to the caller.
137 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
138 kernel_cap_t *inheritable, kernel_cap_t *permitted)
140 const struct cred *cred;
142 /* Derived from kernel/capability.c:sys_capget. */
143 rcu_read_lock();
144 cred = __task_cred(target);
145 *effective = cred->cap_effective;
146 *inheritable = cred->cap_inheritable;
147 *permitted = cred->cap_permitted;
148 rcu_read_unlock();
149 return 0;
153 * Determine whether the inheritable capabilities are limited to the old
154 * permitted set. Returns 1 if they are limited, 0 if they are not.
156 static inline int cap_inh_is_capped(void)
158 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
160 /* they are so limited unless the current task has the CAP_SETPCAP
161 * capability
163 if (cap_capable(current, CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
164 return 0;
165 #endif
166 return 1;
170 * cap_capset - Validate and apply proposed changes to current's capabilities
171 * @new: The proposed new credentials; alterations should be made here
172 * @old: The current task's current credentials
173 * @effective: A pointer to the proposed new effective capabilities set
174 * @inheritable: A pointer to the proposed new inheritable capabilities set
175 * @permitted: A pointer to the proposed new permitted capabilities set
177 * This function validates and applies a proposed mass change to the current
178 * process's capability sets. The changes are made to the proposed new
179 * credentials, and assuming no error, will be committed by the caller of LSM.
181 int cap_capset(struct cred *new,
182 const struct cred *old,
183 const kernel_cap_t *effective,
184 const kernel_cap_t *inheritable,
185 const kernel_cap_t *permitted)
187 if (cap_inh_is_capped() &&
188 !cap_issubset(*inheritable,
189 cap_combine(old->cap_inheritable,
190 old->cap_permitted)))
191 /* incapable of using this inheritable set */
192 return -EPERM;
194 if (!cap_issubset(*inheritable,
195 cap_combine(old->cap_inheritable,
196 old->cap_bset)))
197 /* no new pI capabilities outside bounding set */
198 return -EPERM;
200 /* verify restrictions on target's new Permitted set */
201 if (!cap_issubset(*permitted, old->cap_permitted))
202 return -EPERM;
204 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
205 if (!cap_issubset(*effective, *permitted))
206 return -EPERM;
208 new->cap_effective = *effective;
209 new->cap_inheritable = *inheritable;
210 new->cap_permitted = *permitted;
211 return 0;
215 * Clear proposed capability sets for execve().
217 static inline void bprm_clear_caps(struct linux_binprm *bprm)
219 cap_clear(bprm->cred->cap_permitted);
220 bprm->cap_effective = false;
223 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
226 * cap_inode_need_killpriv - Determine if inode change affects privileges
227 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
229 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
230 * affects the security markings on that inode, and if it is, should
231 * inode_killpriv() be invoked or the change rejected?
233 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
234 * -ve to deny the change.
236 int cap_inode_need_killpriv(struct dentry *dentry)
238 struct inode *inode = dentry->d_inode;
239 int error;
241 if (!inode->i_op->getxattr)
242 return 0;
244 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
245 if (error <= 0)
246 return 0;
247 return 1;
251 * cap_inode_killpriv - Erase the security markings on an inode
252 * @dentry: The inode/dentry to alter
254 * Erase the privilege-enhancing security markings on an inode.
256 * Returns 0 if successful, -ve on error.
258 int cap_inode_killpriv(struct dentry *dentry)
260 struct inode *inode = dentry->d_inode;
262 if (!inode->i_op->removexattr)
263 return 0;
265 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
269 * Calculate the new process capability sets from the capability sets attached
270 * to a file.
272 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
273 struct linux_binprm *bprm,
274 bool *effective)
276 struct cred *new = bprm->cred;
277 unsigned i;
278 int ret = 0;
280 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
281 *effective = true;
283 CAP_FOR_EACH_U32(i) {
284 __u32 permitted = caps->permitted.cap[i];
285 __u32 inheritable = caps->inheritable.cap[i];
288 * pP' = (X & fP) | (pI & fI)
290 new->cap_permitted.cap[i] =
291 (new->cap_bset.cap[i] & permitted) |
292 (new->cap_inheritable.cap[i] & inheritable);
294 if (permitted & ~new->cap_permitted.cap[i])
295 /* insufficient to execute correctly */
296 ret = -EPERM;
300 * For legacy apps, with no internal support for recognizing they
301 * do not have enough capabilities, we return an error if they are
302 * missing some "forced" (aka file-permitted) capabilities.
304 return *effective ? ret : 0;
308 * Extract the on-exec-apply capability sets for an executable file.
310 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
312 struct inode *inode = dentry->d_inode;
313 __u32 magic_etc;
314 unsigned tocopy, i;
315 int size;
316 struct vfs_cap_data caps;
318 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
320 if (!inode || !inode->i_op->getxattr)
321 return -ENODATA;
323 size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
324 XATTR_CAPS_SZ);
325 if (size == -ENODATA || size == -EOPNOTSUPP)
326 /* no data, that's ok */
327 return -ENODATA;
328 if (size < 0)
329 return size;
331 if (size < sizeof(magic_etc))
332 return -EINVAL;
334 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
336 switch (magic_etc & VFS_CAP_REVISION_MASK) {
337 case VFS_CAP_REVISION_1:
338 if (size != XATTR_CAPS_SZ_1)
339 return -EINVAL;
340 tocopy = VFS_CAP_U32_1;
341 break;
342 case VFS_CAP_REVISION_2:
343 if (size != XATTR_CAPS_SZ_2)
344 return -EINVAL;
345 tocopy = VFS_CAP_U32_2;
346 break;
347 default:
348 return -EINVAL;
351 CAP_FOR_EACH_U32(i) {
352 if (i >= tocopy)
353 break;
354 cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
355 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
358 return 0;
362 * Attempt to get the on-exec apply capability sets for an executable file from
363 * its xattrs and, if present, apply them to the proposed credentials being
364 * constructed by execve().
366 static int get_file_caps(struct linux_binprm *bprm, bool *effective)
368 struct dentry *dentry;
369 int rc = 0;
370 struct cpu_vfs_cap_data vcaps;
372 bprm_clear_caps(bprm);
374 if (!file_caps_enabled)
375 return 0;
377 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
378 return 0;
380 dentry = dget(bprm->file->f_dentry);
382 rc = get_vfs_caps_from_disk(dentry, &vcaps);
383 if (rc < 0) {
384 if (rc == -EINVAL)
385 printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
386 __func__, rc, bprm->filename);
387 else if (rc == -ENODATA)
388 rc = 0;
389 goto out;
392 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective);
393 if (rc == -EINVAL)
394 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
395 __func__, rc, bprm->filename);
397 out:
398 dput(dentry);
399 if (rc)
400 bprm_clear_caps(bprm);
402 return rc;
405 #else
406 int cap_inode_need_killpriv(struct dentry *dentry)
408 return 0;
411 int cap_inode_killpriv(struct dentry *dentry)
413 return 0;
416 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
418 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
419 return -ENODATA;
422 static inline int get_file_caps(struct linux_binprm *bprm, bool *effective)
424 bprm_clear_caps(bprm);
425 return 0;
427 #endif
430 * Determine whether a exec'ing process's new permitted capabilities should be
431 * limited to just what it already has.
433 * This prevents processes that are being ptraced from gaining access to
434 * CAP_SETPCAP, unless the process they're tracing already has it, and the
435 * binary they're executing has filecaps that elevate it.
437 * Returns 1 if they should be limited, 0 if they are not.
439 static inline int cap_limit_ptraced_target(void)
441 #ifndef CONFIG_SECURITY_FILE_CAPABILITIES
442 if (capable(CAP_SETPCAP))
443 return 0;
444 #endif
445 return 1;
449 * cap_bprm_set_creds - Set up the proposed credentials for execve().
450 * @bprm: The execution parameters, including the proposed creds
452 * Set up the proposed credentials for a new execution context being
453 * constructed by execve(). The proposed creds in @bprm->cred is altered,
454 * which won't take effect immediately. Returns 0 if successful, -ve on error.
456 int cap_bprm_set_creds(struct linux_binprm *bprm)
458 const struct cred *old = current_cred();
459 struct cred *new = bprm->cred;
460 bool effective;
461 int ret;
463 effective = false;
464 ret = get_file_caps(bprm, &effective);
465 if (ret < 0)
466 return ret;
468 if (!issecure(SECURE_NOROOT)) {
470 * To support inheritance of root-permissions and suid-root
471 * executables under compatibility mode, we override the
472 * capability sets for the file.
474 * If only the real uid is 0, we do not set the effective bit.
476 if (new->euid == 0 || new->uid == 0) {
477 /* pP' = (cap_bset & ~0) | (pI & ~0) */
478 new->cap_permitted = cap_combine(old->cap_bset,
479 old->cap_inheritable);
481 if (new->euid == 0)
482 effective = true;
485 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
486 * credentials unless they have the appropriate permit
488 if ((new->euid != old->uid ||
489 new->egid != old->gid ||
490 !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
491 bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
492 /* downgrade; they get no more than they had, and maybe less */
493 if (!capable(CAP_SETUID)) {
494 new->euid = new->uid;
495 new->egid = new->gid;
497 if (cap_limit_ptraced_target())
498 new->cap_permitted = cap_intersect(new->cap_permitted,
499 old->cap_permitted);
502 new->suid = new->fsuid = new->euid;
503 new->sgid = new->fsgid = new->egid;
505 /* For init, we want to retain the capabilities set in the initial
506 * task. Thus we skip the usual capability rules
508 if (!is_global_init(current)) {
509 if (effective)
510 new->cap_effective = new->cap_permitted;
511 else
512 cap_clear(new->cap_effective);
514 bprm->cap_effective = effective;
517 * Audit candidate if current->cap_effective is set
519 * We do not bother to audit if 3 things are true:
520 * 1) cap_effective has all caps
521 * 2) we are root
522 * 3) root is supposed to have all caps (SECURE_NOROOT)
523 * Since this is just a normal root execing a process.
525 * Number 1 above might fail if you don't have a full bset, but I think
526 * that is interesting information to audit.
528 if (!cap_isclear(new->cap_effective)) {
529 if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
530 new->euid != 0 || new->uid != 0 ||
531 issecure(SECURE_NOROOT)) {
532 ret = audit_log_bprm_fcaps(bprm, new, old);
533 if (ret < 0)
534 return ret;
538 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
539 return 0;
543 * cap_bprm_secureexec - Determine whether a secure execution is required
544 * @bprm: The execution parameters
546 * Determine whether a secure execution is required, return 1 if it is, and 0
547 * if it is not.
549 * The credentials have been committed by this point, and so are no longer
550 * available through @bprm->cred.
552 int cap_bprm_secureexec(struct linux_binprm *bprm)
554 const struct cred *cred = current_cred();
556 if (cred->uid != 0) {
557 if (bprm->cap_effective)
558 return 1;
559 if (!cap_isclear(cred->cap_permitted))
560 return 1;
563 return (cred->euid != cred->uid ||
564 cred->egid != cred->gid);
568 * cap_inode_setxattr - Determine whether an xattr may be altered
569 * @dentry: The inode/dentry being altered
570 * @name: The name of the xattr to be changed
571 * @value: The value that the xattr will be changed to
572 * @size: The size of value
573 * @flags: The replacement flag
575 * Determine whether an xattr may be altered or set on an inode, returning 0 if
576 * permission is granted, -ve if denied.
578 * This is used to make sure security xattrs don't get updated or set by those
579 * who aren't privileged to do so.
581 int cap_inode_setxattr(struct dentry *dentry, const char *name,
582 const void *value, size_t size, int flags)
584 if (!strcmp(name, XATTR_NAME_CAPS)) {
585 if (!capable(CAP_SETFCAP))
586 return -EPERM;
587 return 0;
590 if (!strncmp(name, XATTR_SECURITY_PREFIX,
591 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
592 !capable(CAP_SYS_ADMIN))
593 return -EPERM;
594 return 0;
598 * cap_inode_removexattr - Determine whether an xattr may be removed
599 * @dentry: The inode/dentry being altered
600 * @name: The name of the xattr to be changed
602 * Determine whether an xattr may be removed from an inode, returning 0 if
603 * permission is granted, -ve if denied.
605 * This is used to make sure security xattrs don't get removed by those who
606 * aren't privileged to remove them.
608 int cap_inode_removexattr(struct dentry *dentry, const char *name)
610 if (!strcmp(name, XATTR_NAME_CAPS)) {
611 if (!capable(CAP_SETFCAP))
612 return -EPERM;
613 return 0;
616 if (!strncmp(name, XATTR_SECURITY_PREFIX,
617 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
618 !capable(CAP_SYS_ADMIN))
619 return -EPERM;
620 return 0;
624 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
625 * a process after a call to setuid, setreuid, or setresuid.
627 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
628 * {r,e,s}uid != 0, the permitted and effective capabilities are
629 * cleared.
631 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
632 * capabilities of the process are cleared.
634 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
635 * capabilities are set to the permitted capabilities.
637 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
638 * never happen.
640 * -astor
642 * cevans - New behaviour, Oct '99
643 * A process may, via prctl(), elect to keep its capabilities when it
644 * calls setuid() and switches away from uid==0. Both permitted and
645 * effective sets will be retained.
646 * Without this change, it was impossible for a daemon to drop only some
647 * of its privilege. The call to setuid(!=0) would drop all privileges!
648 * Keeping uid 0 is not an option because uid 0 owns too many vital
649 * files..
650 * Thanks to Olaf Kirch and Peter Benie for spotting this.
652 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
654 if ((old->uid == 0 || old->euid == 0 || old->suid == 0) &&
655 (new->uid != 0 && new->euid != 0 && new->suid != 0) &&
656 !issecure(SECURE_KEEP_CAPS)) {
657 cap_clear(new->cap_permitted);
658 cap_clear(new->cap_effective);
660 if (old->euid == 0 && new->euid != 0)
661 cap_clear(new->cap_effective);
662 if (old->euid != 0 && new->euid == 0)
663 new->cap_effective = new->cap_permitted;
667 * cap_task_fix_setuid - Fix up the results of setuid() call
668 * @new: The proposed credentials
669 * @old: The current task's current credentials
670 * @flags: Indications of what has changed
672 * Fix up the results of setuid() call before the credential changes are
673 * actually applied, returning 0 to grant the changes, -ve to deny them.
675 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
677 switch (flags) {
678 case LSM_SETID_RE:
679 case LSM_SETID_ID:
680 case LSM_SETID_RES:
681 /* juggle the capabilities to follow [RES]UID changes unless
682 * otherwise suppressed */
683 if (!issecure(SECURE_NO_SETUID_FIXUP))
684 cap_emulate_setxuid(new, old);
685 break;
687 case LSM_SETID_FS:
688 /* juggle the capabilties to follow FSUID changes, unless
689 * otherwise suppressed
691 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
692 * if not, we might be a bit too harsh here.
694 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
695 if (old->fsuid == 0 && new->fsuid != 0)
696 new->cap_effective =
697 cap_drop_fs_set(new->cap_effective);
699 if (old->fsuid != 0 && new->fsuid == 0)
700 new->cap_effective =
701 cap_raise_fs_set(new->cap_effective,
702 new->cap_permitted);
704 break;
706 default:
707 return -EINVAL;
710 return 0;
713 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
715 * Rationale: code calling task_setscheduler, task_setioprio, and
716 * task_setnice, assumes that
717 * . if capable(cap_sys_nice), then those actions should be allowed
718 * . if not capable(cap_sys_nice), but acting on your own processes,
719 * then those actions should be allowed
720 * This is insufficient now since you can call code without suid, but
721 * yet with increased caps.
722 * So we check for increased caps on the target process.
724 static int cap_safe_nice(struct task_struct *p)
726 int is_subset;
728 rcu_read_lock();
729 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
730 current_cred()->cap_permitted);
731 rcu_read_unlock();
733 if (!is_subset && !capable(CAP_SYS_NICE))
734 return -EPERM;
735 return 0;
739 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
740 * @p: The task to affect
741 * @policy: The policy to effect
742 * @lp: The parameters to the scheduling policy
744 * Detemine if the requested scheduler policy change is permitted for the
745 * specified task, returning 0 if permission is granted, -ve if denied.
747 int cap_task_setscheduler(struct task_struct *p, int policy,
748 struct sched_param *lp)
750 return cap_safe_nice(p);
754 * cap_task_ioprio - Detemine if I/O priority change is permitted
755 * @p: The task to affect
756 * @ioprio: The I/O priority to set
758 * Detemine if the requested I/O priority change is permitted for the specified
759 * task, returning 0 if permission is granted, -ve if denied.
761 int cap_task_setioprio(struct task_struct *p, int ioprio)
763 return cap_safe_nice(p);
767 * cap_task_ioprio - Detemine if task priority change is permitted
768 * @p: The task to affect
769 * @nice: The nice value to set
771 * Detemine if the requested task priority change is permitted for the
772 * specified task, returning 0 if permission is granted, -ve if denied.
774 int cap_task_setnice(struct task_struct *p, int nice)
776 return cap_safe_nice(p);
780 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
781 * the current task's bounding set. Returns 0 on success, -ve on error.
783 static long cap_prctl_drop(struct cred *new, unsigned long cap)
785 if (!capable(CAP_SETPCAP))
786 return -EPERM;
787 if (!cap_valid(cap))
788 return -EINVAL;
790 cap_lower(new->cap_bset, cap);
791 return 0;
794 #else
795 int cap_task_setscheduler (struct task_struct *p, int policy,
796 struct sched_param *lp)
798 return 0;
800 int cap_task_setioprio (struct task_struct *p, int ioprio)
802 return 0;
804 int cap_task_setnice (struct task_struct *p, int nice)
806 return 0;
808 #endif
811 * cap_task_prctl - Implement process control functions for this security module
812 * @option: The process control function requested
813 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
815 * Allow process control functions (sys_prctl()) to alter capabilities; may
816 * also deny access to other functions not otherwise implemented here.
818 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
819 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
820 * modules will consider performing the function.
822 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
823 unsigned long arg4, unsigned long arg5)
825 struct cred *new;
826 long error = 0;
828 new = prepare_creds();
829 if (!new)
830 return -ENOMEM;
832 switch (option) {
833 case PR_CAPBSET_READ:
834 error = -EINVAL;
835 if (!cap_valid(arg2))
836 goto error;
837 error = !!cap_raised(new->cap_bset, arg2);
838 goto no_change;
840 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
841 case PR_CAPBSET_DROP:
842 error = cap_prctl_drop(new, arg2);
843 if (error < 0)
844 goto error;
845 goto changed;
848 * The next four prctl's remain to assist with transitioning a
849 * system from legacy UID=0 based privilege (when filesystem
850 * capabilities are not in use) to a system using filesystem
851 * capabilities only - as the POSIX.1e draft intended.
853 * Note:
855 * PR_SET_SECUREBITS =
856 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
857 * | issecure_mask(SECURE_NOROOT)
858 * | issecure_mask(SECURE_NOROOT_LOCKED)
859 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
860 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
862 * will ensure that the current process and all of its
863 * children will be locked into a pure
864 * capability-based-privilege environment.
866 case PR_SET_SECUREBITS:
867 error = -EPERM;
868 if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
869 & (new->securebits ^ arg2)) /*[1]*/
870 || ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
871 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
872 || (cap_capable(current, CAP_SETPCAP, SECURITY_CAP_AUDIT) != 0) /*[4]*/
874 * [1] no changing of bits that are locked
875 * [2] no unlocking of locks
876 * [3] no setting of unsupported bits
877 * [4] doing anything requires privilege (go read about
878 * the "sendmail capabilities bug")
881 /* cannot change a locked bit */
882 goto error;
883 new->securebits = arg2;
884 goto changed;
886 case PR_GET_SECUREBITS:
887 error = new->securebits;
888 goto no_change;
890 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
892 case PR_GET_KEEPCAPS:
893 if (issecure(SECURE_KEEP_CAPS))
894 error = 1;
895 goto no_change;
897 case PR_SET_KEEPCAPS:
898 error = -EINVAL;
899 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
900 goto error;
901 error = -EPERM;
902 if (issecure(SECURE_KEEP_CAPS_LOCKED))
903 goto error;
904 if (arg2)
905 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
906 else
907 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
908 goto changed;
910 default:
911 /* No functionality available - continue with default */
912 error = -ENOSYS;
913 goto error;
916 /* Functionality provided */
917 changed:
918 return commit_creds(new);
920 no_change:
921 error = 0;
922 error:
923 abort_creds(new);
924 return error;
928 * cap_syslog - Determine whether syslog function is permitted
929 * @type: Function requested
931 * Determine whether the current process is permitted to use a particular
932 * syslog function, returning 0 if permission is granted, -ve if not.
934 int cap_syslog(int type)
936 if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
937 return -EPERM;
938 return 0;
942 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
943 * @mm: The VM space in which the new mapping is to be made
944 * @pages: The size of the mapping
946 * Determine whether the allocation of a new virtual mapping by the current
947 * task is permitted, returning 0 if permission is granted, -ve if not.
949 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
951 int cap_sys_admin = 0;
953 if (cap_capable(current, CAP_SYS_ADMIN, SECURITY_CAP_NOAUDIT) == 0)
954 cap_sys_admin = 1;
955 return __vm_enough_memory(mm, pages, cap_sys_admin);