Char: cyclades, remove bottom half processing
[linux-2.6/mini2440.git] / drivers / scsi / aic7xxx / aic79xx.seq
blob58bc17591b54ce56082d67aa937f9a8f7e51a0fe
1 /*
2  * Adaptec U320 device driver firmware for Linux and FreeBSD.
3  *
4  * Copyright (c) 1994-2001, 2004 Justin T. Gibbs.
5  * Copyright (c) 2000-2002 Adaptec Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15  *    substantially similar to the "NO WARRANTY" disclaimer below
16  *    ("Disclaimer") and any redistribution must be conditioned upon
17  *    including a substantially similar Disclaimer requirement for further
18  *    binary redistribution.
19  * 3. Neither the names of the above-listed copyright holders nor the names
20  *    of any contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * Alternatively, this software may be distributed under the terms of the
24  * GNU General Public License ("GPL") version 2 as published by the Free
25  * Software Foundation.
26  *
27  * NO WARRANTY
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGES.
39  *
40  * $FreeBSD$
41  */
43 VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#120 $"
44 PATCH_ARG_LIST = "struct ahd_softc *ahd"
45 PREFIX = "ahd_"
47 #include "aic79xx.reg"
48 #include "scsi_message.h"
50 restart:
51 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
52         test    SEQINTCODE, 0xFF jz idle_loop;
53         SET_SEQINTCODE(NO_SEQINT)
56 idle_loop:
58         if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
59                 /*
60                  * Convert ERROR status into a sequencer
61                  * interrupt to handle the case of an
62                  * interrupt collision on the hardware
63                  * setting of HWERR.
64                  */
65                 test    ERROR, 0xFF jz no_error_set;
66                 SET_SEQINTCODE(SAW_HWERR)
67 no_error_set:
68         }
69         SET_MODE(M_SCSI, M_SCSI)
70         test    SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus;
71         test    SEQ_FLAGS2, SELECTOUT_QFROZEN jz check_waiting_list;
72         /*
73          * If the kernel has caught up with us, thaw the queue.
74          */
75         mov     A, KERNEL_QFREEZE_COUNT;
76         cmp     QFREEZE_COUNT, A jne check_frozen_completions;
77         mov     A, KERNEL_QFREEZE_COUNT[1];
78         cmp     QFREEZE_COUNT[1], A jne check_frozen_completions;
79         and     SEQ_FLAGS2, ~SELECTOUT_QFROZEN;
80         jmp     check_waiting_list;
81 check_frozen_completions:
82         test    SSTAT0, SELDO|SELINGO jnz idle_loop_checkbus;
83 BEGIN_CRITICAL;
84         /*
85          * If we have completions stalled waiting for the qfreeze
86          * to take effect, move them over to the complete_scb list
87          * now that no selections are pending.
88          */
89         cmp     COMPLETE_ON_QFREEZE_HEAD[1],SCB_LIST_NULL je idle_loop_checkbus;
90         /*
91          * Find the end of the qfreeze list.  The first element has
92          * to be treated specially.
93          */
94         bmov    SCBPTR, COMPLETE_ON_QFREEZE_HEAD, 2;
95         cmp     SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je join_lists;
96         /*
97          * Now the normal loop.
98          */
99         bmov    SCBPTR, SCB_NEXT_COMPLETE, 2;
100         cmp     SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . - 1;
101 join_lists:
102         bmov    SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
103         bmov    COMPLETE_SCB_HEAD, COMPLETE_ON_QFREEZE_HEAD, 2;
104         mvi     COMPLETE_ON_QFREEZE_HEAD[1], SCB_LIST_NULL;
105         jmp     idle_loop_checkbus;
106 check_waiting_list:
107         cmp     WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus;
108         /*
109          * ENSELO is cleared by a SELDO, so we must test for SELDO
110          * one last time.
111          */
112         test    SSTAT0, SELDO jnz select_out;
113         call    start_selection;
114 idle_loop_checkbus:
115         test    SSTAT0, SELDO jnz select_out;
116 END_CRITICAL;
117         test    SSTAT0, SELDI jnz select_in;
118         test    SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq;
119         test    SCSISIGO, ATNO jz idle_loop_check_nonpackreq;
120         call    unexpected_nonpkt_phase_find_ctxt;
121 idle_loop_check_nonpackreq:
122         test    SSTAT2, NONPACKREQ jz . + 2;
123         call    unexpected_nonpkt_phase_find_ctxt;
124         if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
125                 /*
126                  * On Rev A. hardware, the busy LED is only
127                  * turned on automaically during selections
128                  * and re-selections.  Make the LED status
129                  * more useful by forcing it to be on so
130                  * long as one of our data FIFOs is active.
131                  */
132                 and     A, FIFO0FREE|FIFO1FREE, DFFSTAT;
133                 cmp     A, FIFO0FREE|FIFO1FREE jne . + 3;
134                 and     SBLKCTL, ~DIAGLEDEN|DIAGLEDON;
135                 jmp     . + 2;
136                 or      SBLKCTL, DIAGLEDEN|DIAGLEDON;
137         }
138         call    idle_loop_gsfifo_in_scsi_mode;
139         call    idle_loop_service_fifos;
140         call    idle_loop_cchan;
141         jmp     idle_loop;
143 idle_loop_gsfifo:
144         SET_MODE(M_SCSI, M_SCSI)
145 BEGIN_CRITICAL;
146 idle_loop_gsfifo_in_scsi_mode:
147         test    LQISTAT2, LQIGSAVAIL jz return;
148         /*
149          * We have received good status for this transaction.  There may
150          * still be data in our FIFOs draining to the host.  Complete
151          * the SCB only if all data has transferred to the host.
152          */
153 good_status_IU_done:
154         bmov    SCBPTR, GSFIFO, 2;
155         clr     SCB_SCSI_STATUS;
156         /*
157          * If a command completed before an attempted task management
158          * function completed, notify the host after disabling any
159          * pending select-outs.
160          */
161         test    SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally;
162         test    SSTAT0, SELDO|SELINGO jnz . + 2;
163         and     SCSISEQ0, ~ENSELO;
164         SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
165 gsfifo_complete_normally:
166         or      SCB_CONTROL, STATUS_RCVD;
168         /*
169          * Since this status did not consume a FIFO, we have to
170          * be a bit more dilligent in how we check for FIFOs pertaining
171          * to this transaction.  There are two states that a FIFO still
172          * transferring data may be in.
173          *
174          * 1) Configured and draining to the host, with a FIFO handler.
175          * 2) Pending cfg4data, fifo not empty.
176          *
177          * Case 1 can be detected by noticing a non-zero FIFO active
178          * count in the SCB.  In this case, we allow the routine servicing
179          * the FIFO to complete the SCB.
180          * 
181          * Case 2 implies either a pending or yet to occur save data
182          * pointers for this same context in the other FIFO.  So, if
183          * we detect case 1, we will properly defer the post of the SCB
184          * and achieve the desired result.  The pending cfg4data will
185          * notice that status has been received and complete the SCB.
186          */
187         test    SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode;
188         call    complete;
189 END_CRITICAL;
190         jmp     idle_loop_gsfifo_in_scsi_mode;
192 idle_loop_service_fifos:
193         SET_MODE(M_DFF0, M_DFF0)
194 BEGIN_CRITICAL;
195         test    LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo;
196         call    longjmp;
197 END_CRITICAL;
198 idle_loop_next_fifo:
199         SET_MODE(M_DFF1, M_DFF1)
200 BEGIN_CRITICAL;
201         test    LONGJMP_ADDR[1], INVALID_ADDR jz longjmp;
202 END_CRITICAL;
203 return:
204         ret;
206 idle_loop_cchan:
207         SET_MODE(M_CCHAN, M_CCHAN)
208         test    QOFF_CTLSTA, HS_MAILBOX_ACT jz  hs_mailbox_empty;
209         or      QOFF_CTLSTA, HS_MAILBOX_ACT;
210         mov     LOCAL_HS_MAILBOX, HS_MAILBOX;
211 hs_mailbox_empty:
212 BEGIN_CRITICAL;
213         test    CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle;
214         test    CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog;
215         test    CCSCBCTL, CCSCBDONE jz return;
216         /* FALLTHROUGH */
217 scbdma_tohost_done:
218         test    CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone;
219         /*
220          * An SCB has been succesfully uploaded to the host.
221          * If the SCB was uploaded for some reason other than
222          * bad SCSI status (currently only for underruns), we
223          * queue the SCB for normal completion.  Otherwise, we
224          * wait until any select-out activity has halted, and
225          * then queue the completion.
226          */
227         and     CCSCBCTL, ~(CCARREN|CCSCBEN);
228         bmov    COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
229         cmp     SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . + 2;
230         mvi     COMPLETE_DMA_SCB_TAIL[1], SCB_LIST_NULL;
231         test    SCB_SCSI_STATUS, 0xff jz scbdma_queue_completion;
232         bmov    SCB_NEXT_COMPLETE, COMPLETE_ON_QFREEZE_HEAD, 2;
233         bmov    COMPLETE_ON_QFREEZE_HEAD, SCBPTR, 2 ret;
234 scbdma_queue_completion:
235         bmov    SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
236         bmov    COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
237 fill_qoutfifo_dmadone:
238         and     CCSCBCTL, ~(CCARREN|CCSCBEN);
239         call    qoutfifo_updated;
240         mvi     COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL;
241         bmov    QOUTFIFO_NEXT_ADDR, SCBHADDR, 4;
242         test    QOFF_CTLSTA, SDSCB_ROLLOVR jz return;
243         bmov    QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4;
244         xor     QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret;
245 END_CRITICAL;
247 qoutfifo_updated:
248         /*
249          * If there are more commands waiting to be dma'ed
250          * to the host, always coalesce.  Otherwise honor the
251          * host's wishes.
252          */
253         cmp     COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
254         cmp     COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count;
255         test    LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt;
257         /*
258          * If we have relatively few commands outstanding, don't
259          * bother waiting for another command to complete.
260          */
261         test    CMDS_PENDING[1], 0xFF jnz coalesce_by_count;
262         /* Add -1 so that jnc means <= not just < */
263         add     A, -1, INT_COALESCING_MINCMDS;
264         add     NONE, A, CMDS_PENDING;
265         jnc     issue_cmdcmplt;
266         
267         /*
268          * If coalescing, only coalesce up to the limit
269          * provided by the host driver.
270          */
271 coalesce_by_count:
272         mov     A, INT_COALESCING_MAXCMDS;
273         add     NONE, A, INT_COALESCING_CMDCOUNT;
274         jc      issue_cmdcmplt;
275         /*
276          * If the timer is not currently active,
277          * fire it up.
278          */
279         test    INTCTL, SWTMINTMASK jz return;
280         bmov    SWTIMER, INT_COALESCING_TIMER, 2;
281         mvi     CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
282         or      INTCTL, SWTMINTEN|SWTIMER_START;
283         and     INTCTL, ~SWTMINTMASK ret;
285 issue_cmdcmplt:
286         mvi     INTSTAT, CMDCMPLT;
287         clr     INT_COALESCING_CMDCOUNT;
288         or      INTCTL, SWTMINTMASK ret;
290 BEGIN_CRITICAL;
291 fetch_new_scb_inprog:
292         test    CCSCBCTL, ARRDONE jz return;
293 fetch_new_scb_done:
294         and     CCSCBCTL, ~(CCARREN|CCSCBEN);
295         clr     A;
296         add     CMDS_PENDING, 1;
297         adc     CMDS_PENDING[1], A;
298         if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
299                 /*
300                  * "Short Luns" are not placed into outgoing LQ
301                  * packets in the correct byte order.  Use a full
302                  * sized lun field instead and fill it with the
303                  * one byte of lun information we support.
304                  */
305                 mov     SCB_PKT_LUN[6], SCB_LUN;
306         }
307         /*
308          * The FIFO use count field is shared with the
309          * tag set by the host so that our SCB dma engine
310          * knows the correct location to store the SCB.
311          * Set it to zero before processing the SCB.
312          */
313         clr     SCB_FIFO_USE_COUNT;
314         /* Update the next SCB address to download. */
315         bmov    NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4;
316         /*
317          * NULL out the SCB links since these fields
318          * occupy the same location as SCB_NEXT_SCB_BUSADDR.
319          */
320         mvi     SCB_NEXT[1], SCB_LIST_NULL;
321         mvi     SCB_NEXT2[1], SCB_LIST_NULL;
322         /* Increment our position in the QINFIFO. */
323         mov     NONE, SNSCB_QOFF;
325         /*
326          * Save SCBID of this SCB in REG0 since
327          * SCBPTR will be clobbered during target
328          * list updates.  We also record the SCB's
329          * flags so that we can refer to them even
330          * after SCBPTR has been changed.
331          */
332         bmov    REG0, SCBPTR, 2;
333         mov     A, SCB_CONTROL;
335         /*
336          * Find the tail SCB of the execution queue
337          * for this target.
338          */
339         shr     SINDEX, 3, SCB_SCSIID;
340         and     SINDEX, ~0x1;
341         mvi     SINDEX[1], (WAITING_SCB_TAILS >> 8);
342         bmov    DINDEX, SINDEX, 2;
343         bmov    SCBPTR, SINDIR, 2;
345         /*
346          * Update the tail to point to the new SCB.
347          */
348         bmov    DINDIR, REG0, 2;
350         /*
351          * If the queue was empty, queue this SCB as
352          * the first for this target.
353          */
354         cmp     SCBPTR[1], SCB_LIST_NULL je first_new_target_scb;
356         /*
357          * SCBs that want to send messages must always be
358          * at the head of their per-target queue so that
359          * ATN can be asserted even if the current
360          * negotiation agreement is packetized.  If the
361          * target queue is empty, the SCB can be queued
362          * immediately.  If the queue is not empty, we must
363          * wait for it to empty before entering this SCB
364          * into the waiting for selection queue.  Otherwise
365          * our batching and round-robin selection scheme 
366          * could allow commands to be queued out of order.
367          * To simplify the implementation, we stop pulling
368          * new commands from the host until the MK_MESSAGE
369          * SCB can be queued to the waiting for selection
370          * list.
371          */
372         test    A, MK_MESSAGE jz batch_scb; 
374         /*
375          * If the last SCB is also a MK_MESSAGE SCB, then
376          * order is preserved even if we batch.
377          */
378         test    SCB_CONTROL, MK_MESSAGE jz batch_scb; 
380         /*
381          * Defer this SCB and stop fetching new SCBs until
382          * it can be queued.  Since the SCB_SCSIID of the
383          * tail SCB must be the same as that of the newly
384          * queued SCB, there is no need to restore the SCBID
385          * here.
386          */
387         or      SEQ_FLAGS2, PENDING_MK_MESSAGE;
388         bmov    MK_MESSAGE_SCB, REG0, 2;
389         mov     MK_MESSAGE_SCSIID, SCB_SCSIID ret;
391 batch_scb:
392         /*
393          * Otherwise just update the previous tail SCB to
394          * point to the new tail.
395          */
396         bmov    SCB_NEXT, REG0, 2 ret;
398 first_new_target_scb:
399         /*
400          * Append SCB to the tail of the waiting for
401          * selection list.
402          */
403         cmp     WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb;
404         bmov    SCBPTR, WAITING_TID_TAIL, 2;
405         bmov    SCB_NEXT2, REG0, 2;
406         bmov    WAITING_TID_TAIL, REG0, 2 ret;
407 first_new_scb:
408         /*
409          * Whole list is empty, so the head of
410          * the list must be initialized too.
411          */
412         bmov    WAITING_TID_HEAD, REG0, 2;
413         bmov    WAITING_TID_TAIL, REG0, 2 ret;
414 END_CRITICAL;
416 scbdma_idle:
417         /*
418          * Don't bother downloading new SCBs to execute
419          * if select-outs are currently frozen or we have
420          * a MK_MESSAGE SCB waiting to enter the queue.
421          */
422         test    SEQ_FLAGS2, SELECTOUT_QFROZEN|PENDING_MK_MESSAGE
423                 jnz scbdma_no_new_scbs;
424 BEGIN_CRITICAL;
425         test    QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb;
426 scbdma_no_new_scbs:
427         cmp     COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb;
428         cmp     COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return;
429         /* FALLTHROUGH */
430 fill_qoutfifo:
431         /*
432          * Keep track of the SCBs we are dmaing just
433          * in case the DMA fails or is aborted.
434          */
435         bmov    COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2;
436         mvi     CCSCBCTL, CCSCBRESET;
437         bmov    SCBHADDR, QOUTFIFO_NEXT_ADDR, 4;
438         mov     A, QOUTFIFO_NEXT_ADDR;
439         bmov    SCBPTR, COMPLETE_SCB_HEAD, 2;
440 fill_qoutfifo_loop:
441         bmov    CCSCBRAM, SCBPTR, 2;
442         mov     CCSCBRAM, SCB_SGPTR[0];
443         mov     CCSCBRAM, QOUTFIFO_ENTRY_VALID_TAG;
444         mov     NONE, SDSCB_QOFF;
445         inc     INT_COALESCING_CMDCOUNT;
446         add     CMDS_PENDING, -1;
447         adc     CMDS_PENDING[1], -1;
448         cmp     SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done;
449         cmp     CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done;
450         test    QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done;
451         /*
452          * Don't cross an ADB or Cachline boundary when DMA'ing
453          * completion entries.  In PCI mode, at least in 32/33
454          * configurations, the SCB DMA engine may lose its place
455          * in the data-stream should the target force a retry on
456          * something other than an 8byte aligned boundary. In
457          * PCI-X mode, we do this to avoid split transactions since
458          * many chipsets seem to be unable to format proper split
459          * completions to continue the data transfer.
460          */
461         add     SINDEX, A, CCSCBADDR;
462         test    SINDEX, CACHELINE_MASK jz fill_qoutfifo_done;
463         bmov    SCBPTR, SCB_NEXT_COMPLETE, 2;
464         jmp     fill_qoutfifo_loop;
465 fill_qoutfifo_done:
466         mov     SCBHCNT, CCSCBADDR;
467         mvi     CCSCBCTL, CCSCBEN|CCSCBRESET;
468         bmov    COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2;
469         mvi     SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret;
471 fetch_new_scb:
472         bmov    SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4;
473         mvi     CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb;
474 dma_complete_scb:
475         bmov    SCBPTR, COMPLETE_DMA_SCB_HEAD, 2;
476         bmov    SCBHADDR, SCB_BUSADDR, 4;
477         mvi     CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb;
480  * Either post or fetch an SCB from host memory.  The caller
481  * is responsible for polling for transfer completion.
483  * Prerequisits: Mode == M_CCHAN
484  *               SINDEX contains CCSCBCTL flags
485  *               SCBHADDR set to Host SCB address
486  *               SCBPTR set to SCB src location on "push" operations
487  */
488 SET_SRC_MODE    M_CCHAN;
489 SET_DST_MODE    M_CCHAN;
490 dma_scb:
491         mvi     SCBHCNT, SCB_TRANSFER_SIZE;
492         mov     CCSCBCTL, SINDEX ret;
494 setjmp:
495         /*
496          * At least on the A, a return in the same
497          * instruction as the bmov results in a return
498          * to the caller, not to the new address at the
499          * top of the stack.  Since we want the latter
500          * (we use setjmp to register a handler from an
501          * interrupt context but not invoke that handler
502          * until we return to our idle loop), use a
503          * separate ret instruction.
504          */
505         bmov    LONGJMP_ADDR, STACK, 2;
506         ret;
507 setjmp_inline:
508         bmov    LONGJMP_ADDR, STACK, 2;
509 longjmp:
510         bmov    STACK, LONGJMP_ADDR, 2 ret;
511 END_CRITICAL;
513 /*************************** Chip Bug Work Arounds ****************************/
515  * Must disable interrupts when setting the mode pointer
516  * register as an interrupt occurring mid update will
517  * fail to store the new mode value for restoration on
518  * an iret.
519  */
520 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
521 set_mode_work_around:
522         mvi     SEQINTCTL, INTVEC1DSL;
523         mov     MODE_PTR, SINDEX;
524         clr     SEQINTCTL ret;
528 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
529 set_seqint_work_around:
530         mov     SEQINTCODE, SINDEX;
531         mvi     SEQINTCODE, NO_SEQINT ret;
534 /************************ Packetized LongJmp Routines *************************/
535 SET_SRC_MODE    M_SCSI;
536 SET_DST_MODE    M_SCSI;
537 start_selection:
538 BEGIN_CRITICAL;
539         if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
540                 /*
541                  * Razor #494
542                  * Rev A hardware fails to update LAST/CURR/NEXTSCB
543                  * correctly after a packetized selection in several
544                  * situations:
545                  *
546                  * 1) If only one command existed in the queue, the
547                  *    LAST/CURR/NEXTSCB are unchanged.
548                  *
549                  * 2) In a non QAS, protocol allowed phase change,
550                  *    the queue is shifted 1 too far.  LASTSCB is
551                  *    the last SCB that was correctly processed.
552                  * 
553                  * 3) In the QAS case, if the full list of commands
554                  *    was successfully sent, NEXTSCB is NULL and neither
555                  *    CURRSCB nor LASTSCB can be trusted.  We must
556                  *    manually walk the list counting MAXCMDCNT elements
557                  *    to find the last SCB that was sent correctly.
558                  *
559                  * To simplify the workaround for this bug in SELDO
560                  * handling, we initialize LASTSCB prior to enabling
561                  * selection so we can rely on it even for case #1 above.
562                  */
563                 bmov    LASTSCB, WAITING_TID_HEAD, 2;
564         }
565         bmov    CURRSCB, WAITING_TID_HEAD, 2;
566         bmov    SCBPTR, WAITING_TID_HEAD, 2;
567         shr     SELOID, 4, SCB_SCSIID;
568         /*
569          * If we want to send a message to the device, ensure
570          * we are selecting with atn irregardless of our packetized
571          * agreement.  Since SPI4 only allows target reset or PPR
572          * messages if this is a packetized connection, the change
573          * to our negotiation table entry for this selection will
574          * be cleared when the message is acted on.
575          */
576         test    SCB_CONTROL, MK_MESSAGE jz . + 3;
577         mov     NEGOADDR, SELOID;
578         or      NEGCONOPTS, ENAUTOATNO;
579         or      SCSISEQ0, ENSELO ret;
580 END_CRITICAL;
583  * Allocate a FIFO for a non-packetized transaction.
584  * In RevA hardware, both FIFOs must be free before we
585  * can allocate a FIFO for a non-packetized transaction.
586  */
587 allocate_fifo_loop:
588         /*
589          * Do whatever work is required to free a FIFO.
590          */
591         call    idle_loop_service_fifos;
592         SET_MODE(M_SCSI, M_SCSI)
593 allocate_fifo:
594         if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) {
595                 and     A, FIFO0FREE|FIFO1FREE, DFFSTAT;
596                 cmp     A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop;
597         } else {
598                 test    DFFSTAT, FIFO1FREE jnz allocate_fifo1;
599                 test    DFFSTAT, FIFO0FREE jz allocate_fifo_loop;
600                 mvi     DFFSTAT, B_CURRFIFO_0;
601                 SET_MODE(M_DFF0, M_DFF0)
602                 bmov    SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
603         }
604 SET_SRC_MODE    M_SCSI;
605 SET_DST_MODE    M_SCSI;
606 allocate_fifo1:
607         mvi     DFFSTAT, CURRFIFO_1;
608         SET_MODE(M_DFF1, M_DFF1)
609         bmov    SCBPTR, ALLOCFIFO_SCBPTR, 2 ret;
612  * We have been reselected as an initiator
613  * or selected as a target.
614  */
615 SET_SRC_MODE    M_SCSI;
616 SET_DST_MODE    M_SCSI;
617 select_in:
618         if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
619                 /*
620                  * On Rev A. hardware, the busy LED is only
621                  * turned on automaically during selections
622                  * and re-selections.  Make the LED status
623                  * more useful by forcing it to be on from
624                  * the point of selection until our idle
625                  * loop determines that neither of our FIFOs
626                  * are busy.  This handles the non-packetized
627                  * case nicely as we will not return to the
628                  * idle loop until the busfree at the end of
629                  * each transaction.
630                  */
631                 or      SBLKCTL, DIAGLEDEN|DIAGLEDON;
632         }
633         if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
634                 /*
635                  * Test to ensure that the bus has not
636                  * already gone free prior to clearing
637                  * any stale busfree status.  This avoids
638                  * a window whereby a busfree just after
639                  * a selection could be missed.
640                  */
641                 test    SCSISIGI, BSYI jz . + 2;
642                 mvi     CLRSINT1,CLRBUSFREE;
643                 or      SIMODE1, ENBUSFREE;
644         }
645         or      SXFRCTL0, SPIOEN;
646         and     SAVED_SCSIID, SELID_MASK, SELID;
647         and     A, OID, IOWNID;
648         or      SAVED_SCSIID, A;
649         mvi     CLRSINT0, CLRSELDI;
650         jmp     ITloop;
653  * We have successfully selected out.
655  * Clear SELDO.
656  * Dequeue all SCBs sent from the waiting queue
657  * Requeue all SCBs *not* sent to the tail of the waiting queue
658  * Take Razor #494 into account for above.
660  * In Packetized Mode:
661  *      Return to the idle loop.  Our interrupt handler will take
662  *      care of any incoming L_Qs.
664  * In Non-Packetize Mode:
665  *      Continue to our normal state machine.
666  */
667 SET_SRC_MODE    M_SCSI;
668 SET_DST_MODE    M_SCSI;
669 select_out:
670 BEGIN_CRITICAL;
671         if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) {
672                 /*
673                  * On Rev A. hardware, the busy LED is only
674                  * turned on automaically during selections
675                  * and re-selections.  Make the LED status
676                  * more useful by forcing it to be on from
677                  * the point of re-selection until our idle
678                  * loop determines that neither of our FIFOs
679                  * are busy.  This handles the non-packetized
680                  * case nicely as we will not return to the
681                  * idle loop until the busfree at the end of
682                  * each transaction.
683                  */
684                 or      SBLKCTL, DIAGLEDEN|DIAGLEDON;
685         }
686         /* Clear out all SCBs that have been successfully sent. */
687         if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) {
688                 /*
689                  * For packetized, the LQO manager clears ENSELO on
690                  * the assertion of SELDO.  If we are non-packetized,
691                  * LASTSCB and CURRSCB are accurate.
692                  */
693                 test    SCSISEQ0, ENSELO jnz use_lastscb;
695                 /*
696                  * The update is correct for LQOSTAT1 errors.  All
697                  * but LQOBUSFREE are handled by kernel interrupts.
698                  * If we see LQOBUSFREE, return to the idle loop.
699                  * Once we are out of the select_out critical section,
700                  * the kernel will cleanup the LQOBUSFREE and we will
701                  * eventually restart the selection if appropriate.
702                  */
703                 test    LQOSTAT1, LQOBUSFREE jnz idle_loop;
705                 /*
706                  * On a phase change oustside of packet boundaries,
707                  * LASTSCB points to the currently active SCB context
708                  * on the bus.
709                  */
710                 test    LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb;
712                 /*
713                  * If the hardware has traversed the whole list, NEXTSCB
714                  * will be NULL, CURRSCB and LASTSCB cannot be trusted,
715                  * but MAXCMDCNT is accurate.  If we stop part way through
716                  * the list or only had one command to issue, NEXTSCB[1] is
717                  * not NULL and LASTSCB is the last command to go out.
718                  */
719                 cmp     NEXTSCB[1], SCB_LIST_NULL jne use_lastscb;
721                 /*
722                  * Brute force walk.
723                  */
724                 bmov    SCBPTR, WAITING_TID_HEAD, 2;
725                 mvi     SEQINTCTL, INTVEC1DSL;
726                 mvi     MODE_PTR, MK_MODE(M_CFG, M_CFG);
727                 mov     A, MAXCMDCNT;
728                 mvi     MODE_PTR, MK_MODE(M_SCSI, M_SCSI);
729                 clr     SEQINTCTL;
730 find_lastscb_loop:
731                 dec     A;
732                 test    A, 0xFF jz found_last_sent_scb;
733                 bmov    SCBPTR, SCB_NEXT, 2;
734                 jmp     find_lastscb_loop;
735 use_lastscb:
736                 bmov    SCBPTR, LASTSCB, 2;
737 found_last_sent_scb:
738                 bmov    CURRSCB, SCBPTR, 2;
739 curscb_ww_done:
740         } else {
741                 bmov    SCBPTR, CURRSCB, 2;
742         }
744         /*
745          * The whole list made it.  Clear our tail pointer to indicate
746          * that the per-target selection queue is now empty.
747          */
748         cmp     SCB_NEXT[1], SCB_LIST_NULL je select_out_clear_tail;
750         /*
751          * Requeue any SCBs not sent, to the tail of the waiting Q.
752          * We know that neither the per-TID list nor the list of
753          * TIDs is empty.  Use this knowledge to our advantage and
754          * queue the remainder to the tail of the global execution
755          * queue.
756          */
757         bmov    REG0, SCB_NEXT, 2;
758 select_out_queue_remainder:
759         bmov    SCBPTR, WAITING_TID_TAIL, 2;
760         bmov    SCB_NEXT2, REG0, 2;
761         bmov    WAITING_TID_TAIL, REG0, 2;
762         jmp     select_out_inc_tid_q;
764 select_out_clear_tail:
765         /*
766          * Queue any pending MK_MESSAGE SCB for this target now
767          * that the queue is empty.
768          */
769         test    SEQ_FLAGS2, PENDING_MK_MESSAGE jz select_out_no_mk_message_scb;
770         mov     A, MK_MESSAGE_SCSIID;
771         cmp     SCB_SCSIID, A jne select_out_no_mk_message_scb;
772         and     SEQ_FLAGS2, ~PENDING_MK_MESSAGE;
773         bmov    REG0, MK_MESSAGE_SCB, 2;
774         jmp select_out_queue_remainder;
776 select_out_no_mk_message_scb:
777         /*
778          * Clear this target's execution tail and increment the queue.
779          */
780         shr     DINDEX, 3, SCB_SCSIID;
781         or      DINDEX, 1;      /* Want only the second byte */
782         mvi     DINDEX[1], ((WAITING_SCB_TAILS) >> 8);
783         mvi     DINDIR, SCB_LIST_NULL;
784 select_out_inc_tid_q:
785         bmov    SCBPTR, WAITING_TID_HEAD, 2;
786         bmov    WAITING_TID_HEAD, SCB_NEXT2, 2;
787         cmp     WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2;
788         mvi     WAITING_TID_TAIL[1], SCB_LIST_NULL;
789         bmov    SCBPTR, CURRSCB, 2;
790         mvi     CLRSINT0, CLRSELDO;
791         test    LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_mode_cleared;
792         test    LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_mode_cleared;
794         /*
795          * If this is a packetized connection, return to our
796          * idle_loop and let our interrupt handler deal with
797          * any connection setup/teardown issues.  The only
798          * exceptions are the case of MK_MESSAGE and task management
799          * SCBs.
800          */
801         if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) {
802                 /*
803                  * In the A, the LQO manager transitions to LQOSTOP0 even if
804                  * we have selected out with ATN asserted and the target
805                  * REQs in a non-packet phase.
806                  */
807                 test    SCB_CONTROL, MK_MESSAGE jz select_out_no_message;
808                 test    SCSISIGO, ATNO jnz select_out_non_packetized;
809 select_out_no_message:
810         }
811         test    LQOSTAT2, LQOSTOP0 jz select_out_non_packetized;
812         test    SCB_TASK_MANAGEMENT, 0xFF jz idle_loop;
813         SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE)
814         jmp     idle_loop;
816 select_out_non_packetized:
817         /* Non packetized request. */
818         and     SCSISEQ0, ~ENSELO;
819         if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
820                 /*
821                  * Test to ensure that the bus has not
822                  * already gone free prior to clearing
823                  * any stale busfree status.  This avoids
824                  * a window whereby a busfree just after
825                  * a selection could be missed.
826                  */
827                 test    SCSISIGI, BSYI jz . + 2;
828                 mvi     CLRSINT1,CLRBUSFREE;
829                 or      SIMODE1, ENBUSFREE;
830         }
831         mov     SAVED_SCSIID, SCB_SCSIID;
832         mov     SAVED_LUN, SCB_LUN;
833         mvi     SEQ_FLAGS, NO_CDB_SENT;
834 END_CRITICAL;
835         or      SXFRCTL0, SPIOEN;
837         /*
838          * As soon as we get a successful selection, the target
839          * should go into the message out phase since we have ATN
840          * asserted.
841          */
842         mvi     MSG_OUT, MSG_IDENTIFYFLAG;
844         /*
845          * Main loop for information transfer phases.  Wait for the
846          * target to assert REQ before checking MSG, C/D and I/O for
847          * the bus phase.
848          */
849 mesgin_phasemis:
850 ITloop:
851         call    phase_lock;
853         mov     A, LASTPHASE;
855         test    A, ~P_DATAIN_DT jz p_data;
856         cmp     A,P_COMMAND     je p_command;
857         cmp     A,P_MESGOUT     je p_mesgout;
858         cmp     A,P_STATUS      je p_status;
859         cmp     A,P_MESGIN      je p_mesgin;
861         SET_SEQINTCODE(BAD_PHASE)
862         jmp     ITloop;                 /* Try reading the bus again. */
865  * Command phase.  Set up the DMA registers and let 'er rip.
866  */
867 p_command:
868         test    SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay;
869         SET_SEQINTCODE(PROTO_VIOLATION)
870 p_command_okay:
871         test    MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
872                 jnz p_command_allocate_fifo;
873         /*
874          * Command retry.  Free our current FIFO and
875          * re-allocate a FIFO so transfer state is
876          * reset.
877          */
878 SET_SRC_MODE    M_DFF1;
879 SET_DST_MODE    M_DFF1;
880         mvi     DFFSXFRCTL, RSTCHN|CLRSHCNT;
881         SET_MODE(M_SCSI, M_SCSI)
882 p_command_allocate_fifo:
883         bmov    ALLOCFIFO_SCBPTR, SCBPTR, 2;
884         call    allocate_fifo;
885 SET_SRC_MODE    M_DFF1;
886 SET_DST_MODE    M_DFF1;
887         add     NONE, -17, SCB_CDB_LEN;
888         jnc     p_command_embedded;
889 p_command_from_host:
890         bmov    HADDR[0], SCB_HOST_CDB_PTR, 9;
891         mvi     SG_CACHE_PRE, LAST_SEG;
892         mvi     DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
893         jmp     p_command_xfer;
894 p_command_embedded:
895         bmov    SHCNT[0], SCB_CDB_LEN,  1;
896         bmov    DFDAT, SCB_CDB_STORE, 16; 
897         mvi     DFCNTRL, SCSIEN;
898 p_command_xfer:
899         and     SEQ_FLAGS, ~NO_CDB_SENT;
900         if ((ahd->features & AHD_FAST_CDB_DELIVERY) != 0) {
901                 /*
902                  * To speed up CDB delivery in Rev B, all CDB acks
903                  * are "released" to the output sync as soon as the
904                  * command phase starts.  There is only one problem
905                  * with this approach.  If the target changes phase
906                  * before all data are sent, we have left over acks
907                  * that can go out on the bus in a data phase.  Due
908                  * to other chip contraints, this only happens if
909                  * the target goes to data-in, but if the acks go
910                  * out before we can test SDONE, we'll think that
911                  * the transfer has completed successfully.  Work
912                  * around this by taking advantage of the 400ns or
913                  * 800ns dead time between command phase and the REQ
914                  * of the new phase.  If the transfer has completed
915                  * successfully, SCSIEN should fall *long* before we
916                  * see a phase change.  We thus treat any phasemiss
917                  * that occurs before SCSIEN falls as an incomplete
918                  * transfer.
919                  */
920                 test    SSTAT1, PHASEMIS jnz p_command_xfer_failed;
921                 test    DFCNTRL, SCSIEN jnz . - 1;
922         } else {
923                 test    DFCNTRL, SCSIEN jnz .;
924         }
925         /*
926          * DMA Channel automatically disabled.
927          * Don't allow a data phase if the command
928          * was not fully transferred.
929          */
930         test    SSTAT2, SDONE jnz ITloop;
931 p_command_xfer_failed:
932         or      SEQ_FLAGS, NO_CDB_SENT;
933         jmp     ITloop;
937  * Status phase.  Wait for the data byte to appear, then read it
938  * and store it into the SCB.
939  */
940 SET_SRC_MODE    M_SCSI;
941 SET_DST_MODE    M_SCSI;
942 p_status:
943         test    SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation;
944 p_status_okay:
945         mov     SCB_SCSI_STATUS, SCSIDAT;
946         or      SCB_CONTROL, STATUS_RCVD;
947         jmp     ITloop;
950  * Message out phase.  If MSG_OUT is MSG_IDENTIFYFLAG, build a full
951  * indentify message sequence and send it to the target.  The host may
952  * override this behavior by setting the MK_MESSAGE bit in the SCB
953  * control byte.  This will cause us to interrupt the host and allow
954  * it to handle the message phase completely on its own.  If the bit
955  * associated with this target is set, we will also interrupt the host,
956  * thereby allowing it to send a message on the next selection regardless
957  * of the transaction being sent.
958  * 
959  * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message.
960  * This is done to allow the host to send messages outside of an identify
961  * sequence while protecting the seqencer from testing the MK_MESSAGE bit
962  * on an SCB that might not be for the current nexus. (For example, a
963  * BDR message in responce to a bad reselection would leave us pointed to
964  * an SCB that doesn't have anything to do with the current target).
966  * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag,
967  * bus device reset).
969  * When there are no messages to send, MSG_OUT should be set to MSG_NOOP,
970  * in case the target decides to put us in this phase for some strange
971  * reason.
972  */
973 p_mesgout_retry:
974         /* Turn on ATN for the retry */
975         mvi     SCSISIGO, ATNO;
976 p_mesgout:
977         mov     SINDEX, MSG_OUT;
978         cmp     SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host;
979         test    SCB_CONTROL,MK_MESSAGE  jnz host_message_loop;
980 p_mesgout_identify:
981         or      SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN;
982         test    SCB_CONTROL, DISCENB jnz . + 2;
983         and     SINDEX, ~DISCENB;
985  * Send a tag message if TAG_ENB is set in the SCB control block.
986  * Use SCB_NONPACKET_TAG as the tag value.
987  */
988 p_mesgout_tag:
989         test    SCB_CONTROL,TAG_ENB jz  p_mesgout_onebyte;
990         mov     SCSIDAT, SINDEX;        /* Send the identify message */
991         call    phase_lock;
992         cmp     LASTPHASE, P_MESGOUT    jne p_mesgout_done;
993         and     SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL;
994         call    phase_lock;
995         cmp     LASTPHASE, P_MESGOUT    jne p_mesgout_done;
996         mov     SCBPTR jmp p_mesgout_onebyte;
998  * Interrupt the driver, and allow it to handle this message
999  * phase and any required retries.
1000  */
1001 p_mesgout_from_host:
1002         cmp     SINDEX, HOST_MSG        jne p_mesgout_onebyte;
1003         jmp     host_message_loop;
1005 p_mesgout_onebyte:
1006         mvi     CLRSINT1, CLRATNO;
1007         mov     SCSIDAT, SINDEX;
1010  * If the next bus phase after ATN drops is message out, it means
1011  * that the target is requesting that the last message(s) be resent.
1012  */
1013         call    phase_lock;
1014         cmp     LASTPHASE, P_MESGOUT    je p_mesgout_retry;
1016 p_mesgout_done:
1017         mvi     CLRSINT1,CLRATNO;       /* Be sure to turn ATNO off */
1018         mov     LAST_MSG, MSG_OUT;
1019         mvi     MSG_OUT, MSG_NOOP;      /* No message left */
1020         jmp     ITloop;
1023  * Message in phase.  Bytes are read using Automatic PIO mode.
1024  */
1025 p_mesgin:
1026         /* read the 1st message byte */
1027         mvi     ACCUM           call inb_first;
1029         test    A,MSG_IDENTIFYFLAG      jnz mesgin_identify;
1030         cmp     A,MSG_DISCONNECT        je mesgin_disconnect;
1031         cmp     A,MSG_SAVEDATAPOINTER   je mesgin_sdptrs;
1032         cmp     ALLZEROS,A              je mesgin_complete;
1033         cmp     A,MSG_RESTOREPOINTERS   je mesgin_rdptrs;
1034         cmp     A,MSG_IGN_WIDE_RESIDUE  je mesgin_ign_wide_residue;
1035         cmp     A,MSG_NOOP              je mesgin_done;
1038  * Pushed message loop to allow the kernel to
1039  * run it's own message state engine.  To avoid an
1040  * extra nop instruction after signaling the kernel,
1041  * we perform the phase_lock before checking to see
1042  * if we should exit the loop and skip the phase_lock
1043  * in the ITloop.  Performing back to back phase_locks
1044  * shouldn't hurt, but why do it twice...
1045  */
1046 host_message_loop:
1047         call    phase_lock;     /* Benign the first time through. */
1048         SET_SEQINTCODE(HOST_MSG_LOOP)
1049         cmp     RETURN_1, EXIT_MSG_LOOP je ITloop;
1050         cmp     RETURN_1, CONT_MSG_LOOP_WRITE   jne . + 3;
1051         mov     SCSIDAT, RETURN_2;
1052         jmp     host_message_loop;
1053         /* Must be CONT_MSG_LOOP_READ */
1054         mov     NONE, SCSIDAT;  /* ACK Byte */
1055         jmp     host_message_loop;
1057 mesgin_ign_wide_residue:
1058         mov     SAVED_MODE, MODE_PTR;
1059         SET_MODE(M_SCSI, M_SCSI)
1060         shr     NEGOADDR, 4, SAVED_SCSIID;
1061         mov     A, NEGCONOPTS;
1062         RESTORE_MODE(SAVED_MODE)
1063         test    A, WIDEXFER jz mesgin_reject;
1064         /* Pull the residue byte */
1065         mvi     REG0    call inb_next;
1066         cmp     REG0, 0x01 jne mesgin_reject;
1067         test    SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2;
1068         test    SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jnz mesgin_done;
1069         SET_SEQINTCODE(IGN_WIDE_RES)
1070         jmp     mesgin_done;
1072 mesgin_proto_violation:
1073         SET_SEQINTCODE(PROTO_VIOLATION)
1074         jmp     mesgin_done;
1075 mesgin_reject:
1076         mvi     MSG_MESSAGE_REJECT      call mk_mesg;
1077 mesgin_done:
1078         mov     NONE,SCSIDAT;           /*dummy read from latch to ACK*/
1079         jmp     ITloop;
1081 #define INDEX_DISC_LIST(scsiid, lun)                                    \
1082         and     A, 0xC0, scsiid;                                        \
1083         or      SCBPTR, A, lun;                                         \
1084         clr     SCBPTR[1];                                              \
1085         and     SINDEX, 0x30, scsiid;                                   \
1086         shr     SINDEX, 3;      /* Multiply by 2 */                     \
1087         add     SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF);                \
1088         mvi     SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF)
1090 mesgin_identify:
1091         /*
1092          * Determine whether a target is using tagged or non-tagged
1093          * transactions by first looking at the transaction stored in
1094          * the per-device, disconnected array.  If there is no untagged
1095          * transaction for this target, this must be a tagged transaction.
1096          */
1097         and     SAVED_LUN, MSG_IDENTIFY_LUNMASK, A;
1098         INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
1099         bmov    DINDEX, SINDEX, 2;
1100         bmov    REG0, SINDIR, 2;
1101         cmp     REG0[1], SCB_LIST_NULL je snoop_tag;
1102         /* Untagged.  Clear the busy table entry and setup the SCB. */
1103         bmov    DINDIR, ALLONES, 2;
1104         bmov    SCBPTR, REG0, 2;
1105         jmp     setup_SCB;
1108  * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message.
1109  * If we get one, we use the tag returned to find the proper
1110  * SCB.  After receiving the tag, look for the SCB at SCB locations tag and
1111  * tag + 256.
1112  */
1113 snoop_tag:
1114         if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
1115                 or      SEQ_FLAGS, 0x80;
1116         }
1117         mov     NONE, SCSIDAT;          /* ACK Identify MSG */
1118         call    phase_lock;
1119         if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
1120                 or      SEQ_FLAGS, 0x1;
1121         }
1122         cmp     LASTPHASE, P_MESGIN     jne not_found_ITloop;
1123         if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
1124                 or      SEQ_FLAGS, 0x2;
1125         }
1126         cmp     SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found;
1127 get_tag:
1128         clr     SCBPTR[1];
1129         mvi     SCBPTR  call inb_next;  /* tag value */
1130 verify_scb:
1131         test    SCB_CONTROL,DISCONNECTED jz verify_other_scb;
1132         mov     A, SAVED_SCSIID;
1133         cmp     SCB_SCSIID, A jne verify_other_scb;
1134         mov     A, SAVED_LUN;
1135         cmp     SCB_LUN, A je setup_SCB_disconnected;
1136 verify_other_scb:
1137         xor     SCBPTR[1], 1;
1138         test    SCBPTR[1], 0xFF jnz verify_scb;
1139         jmp     not_found;
1142  * Ensure that the SCB the tag points to is for
1143  * an SCB transaction to the reconnecting target.
1144  */
1145 setup_SCB:
1146         if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) {
1147                 or      SEQ_FLAGS, 0x10;
1148         }
1149         test    SCB_CONTROL,DISCONNECTED jz not_found;
1150 setup_SCB_disconnected:
1151         and     SCB_CONTROL,~DISCONNECTED;
1152         clr     SEQ_FLAGS;      /* make note of IDENTIFY */
1153         test    SCB_SGPTR, SG_LIST_NULL jnz . + 3;
1154         bmov    ALLOCFIFO_SCBPTR, SCBPTR, 2;
1155         call    allocate_fifo;
1156         /* See if the host wants to send a message upon reconnection */
1157         test    SCB_CONTROL, MK_MESSAGE jz mesgin_done;
1158         mvi     HOST_MSG        call mk_mesg;
1159         jmp     mesgin_done;
1161 not_found:
1162         SET_SEQINTCODE(NO_MATCH)
1163         jmp     mesgin_done;
1165 not_found_ITloop:
1166         SET_SEQINTCODE(NO_MATCH)
1167         jmp     ITloop;
1170  * We received a "command complete" message.  Put the SCB on the complete
1171  * queue and trigger a completion interrupt via the idle loop.  Before doing
1172  * so, check to see if there is a residual or the status byte is something
1173  * other than STATUS_GOOD (0).  In either of these conditions, we upload the
1174  * SCB back to the host so it can process this information.
1175  */
1176 mesgin_complete:
1178         /*
1179          * If ATN is raised, we still want to give the target a message.
1180          * Perhaps there was a parity error on this last message byte.
1181          * Either way, the target should take us to message out phase
1182          * and then attempt to complete the command again.  We should use a
1183          * critical section here to guard against a timeout triggering
1184          * for this command and setting ATN while we are still processing
1185          * the completion.
1186         test    SCSISIGI, ATNI jnz mesgin_done;
1187          */
1189         /*
1190          * If we are identified and have successfully sent the CDB,
1191          * any status will do.  Optimize this fast path.
1192          */
1193         test    SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation;
1194         test    SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted;
1196         /*
1197          * If the target never sent an identify message but instead went
1198          * to mesgin to give an invalid message, let the host abort us.
1199          */
1200         test    SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation;
1202         /*
1203          * If we recevied good status but never successfully sent the
1204          * cdb, abort the command.
1205          */
1206         test    SCB_SCSI_STATUS,0xff    jnz complete_accepted;
1207         test    SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation;
1208 complete_accepted:
1210         /*
1211          * See if we attempted to deliver a message but the target ingnored us.
1212          */
1213         test    SCB_CONTROL, MK_MESSAGE jz complete_nomsg;
1214         SET_SEQINTCODE(MKMSG_FAILED)
1215 complete_nomsg:
1216         call    queue_scb_completion;
1217         jmp     await_busfree;
1219 BEGIN_CRITICAL;
1220 freeze_queue:
1221         /* Cancel any pending select-out. */
1222         test    SSTAT0, SELDO|SELINGO jnz . + 2;
1223         and     SCSISEQ0, ~ENSELO;
1224         mov     ACCUM_SAVE, A;
1225         clr     A;
1226         add     QFREEZE_COUNT, 1;
1227         adc     QFREEZE_COUNT[1], A;
1228         or      SEQ_FLAGS2, SELECTOUT_QFROZEN;
1229         mov     A, ACCUM_SAVE ret;
1230 END_CRITICAL;
1233  * Complete the current FIFO's SCB if data for this same
1234  * SCB is not transferring in the other FIFO.
1235  */
1236 SET_SRC_MODE    M_DFF1;
1237 SET_DST_MODE    M_DFF1;
1238 pkt_complete_scb_if_fifos_idle:
1239         bmov    ARG_1, SCBPTR, 2;
1240         mvi     DFFSXFRCTL, CLRCHN;
1241         SET_MODE(M_SCSI, M_SCSI)
1242         bmov    SCBPTR, ARG_1, 2;
1243         test    SCB_FIFO_USE_COUNT, 0xFF jnz return;
1244 queue_scb_completion:
1245         test    SCB_SCSI_STATUS,0xff    jnz bad_status;
1246         /*
1247          * Check for residuals
1248          */
1249         test    SCB_SGPTR, SG_LIST_NULL jnz complete;   /* No xfer */
1250         test    SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */
1251         test    SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb;
1252 complete:
1253 BEGIN_CRITICAL;
1254         bmov    SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2;
1255         bmov    COMPLETE_SCB_HEAD, SCBPTR, 2 ret;
1256 END_CRITICAL;
1257 bad_status:
1258         cmp     SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb;
1259         call    freeze_queue;
1260 upload_scb:
1261         /*
1262          * Restore SCB TAG since we reuse this field
1263          * in the sequencer.  We don't want to corrupt
1264          * it on the host.
1265          */
1266         bmov    SCB_TAG, SCBPTR, 2;
1267 BEGIN_CRITICAL;
1268         or      SCB_SGPTR, SG_STATUS_VALID;
1269         mvi     SCB_NEXT_COMPLETE[1], SCB_LIST_NULL;
1270         cmp     COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne add_dma_scb_tail;
1271         bmov    COMPLETE_DMA_SCB_HEAD, SCBPTR, 2;
1272         bmov    COMPLETE_DMA_SCB_TAIL, SCBPTR, 2 ret;
1273 add_dma_scb_tail:
1274         bmov    REG0, SCBPTR, 2;
1275         bmov    SCBPTR, COMPLETE_DMA_SCB_TAIL, 2;
1276         bmov    SCB_NEXT_COMPLETE, REG0, 2;
1277         bmov    COMPLETE_DMA_SCB_TAIL, REG0, 2 ret;
1278 END_CRITICAL;
1281  * Is it a disconnect message?  Set a flag in the SCB to remind us
1282  * and await the bus going free.  If this is an untagged transaction
1283  * store the SCB id for it in our untagged target table for lookup on
1284  * a reselction.
1285  */
1286 mesgin_disconnect:
1287         /*
1288          * If ATN is raised, we still want to give the target a message.
1289          * Perhaps there was a parity error on this last message byte
1290          * or we want to abort this command.  Either way, the target
1291          * should take us to message out phase and then attempt to
1292          * disconnect again.
1293          * XXX - Wait for more testing.
1294         test    SCSISIGI, ATNI jnz mesgin_done;
1295          */
1296         test    SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT
1297                 jnz mesgin_proto_violation;
1298         or      SCB_CONTROL,DISCONNECTED;
1299         test    SCB_CONTROL, TAG_ENB jnz await_busfree;
1300 queue_disc_scb:
1301         bmov    REG0, SCBPTR, 2;
1302         INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN);
1303         bmov    DINDEX, SINDEX, 2;
1304         bmov    DINDIR, REG0, 2;
1305         bmov    SCBPTR, REG0, 2;
1306         /* FALLTHROUGH */
1307 await_busfree:
1308         and     SIMODE1, ~ENBUSFREE;
1309         if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) {
1310                 /*
1311                  * In the BUSFREEREV_BUG case, the
1312                  * busfree status was cleared at the
1313                  * beginning of the connection.
1314                  */
1315                 mvi     CLRSINT1,CLRBUSFREE;
1316         }
1317         mov     NONE, SCSIDAT;          /* Ack the last byte */
1318         test    MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
1319                 jnz await_busfree_not_m_dff;
1320 SET_SRC_MODE    M_DFF1;
1321 SET_DST_MODE    M_DFF1;
1322 await_busfree_clrchn:
1323         mvi     DFFSXFRCTL, CLRCHN;
1324 await_busfree_not_m_dff:
1325         /* clear target specific flags */
1326         mvi     SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT;
1327         test    SSTAT1,REQINIT|BUSFREE  jz .;
1328         /*
1329          * We only set BUSFREE status once either a new
1330          * phase has been detected or we are really
1331          * BUSFREE.  This allows the driver to know
1332          * that we are active on the bus even though
1333          * no identified transaction exists should a
1334          * timeout occur while awaiting busfree.
1335          */
1336         mvi     LASTPHASE, P_BUSFREE;
1337         test    SSTAT1, BUSFREE jnz idle_loop;
1338         SET_SEQINTCODE(MISSED_BUSFREE)
1342  * Save data pointers message:
1343  * Copying RAM values back to SCB, for Save Data Pointers message, but
1344  * only if we've actually been into a data phase to change them.  This
1345  * protects against bogus data in scratch ram and the residual counts
1346  * since they are only initialized when we go into data_in or data_out.
1347  * Ack the message as soon as possible.
1348  */
1349 SET_SRC_MODE    M_DFF1;
1350 SET_DST_MODE    M_DFF1;
1351 mesgin_sdptrs:
1352         mov     NONE,SCSIDAT;           /*dummy read from latch to ACK*/
1353         test    SEQ_FLAGS, DPHASE       jz ITloop;
1354         call    save_pointers;
1355         jmp     ITloop;
1357 save_pointers:
1358         /*
1359          * If we are asked to save our position at the end of the
1360          * transfer, just mark us at the end rather than perform a
1361          * full save.
1362          */
1363         test    SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full;
1364         or      SCB_SGPTR, SG_LIST_NULL ret;
1366 save_pointers_full:
1367         /*
1368          * The SCB_DATAPTR becomes the current SHADDR.
1369          * All other information comes directly from our residual
1370          * state.
1371          */
1372         bmov    SCB_DATAPTR, SHADDR, 8;
1373         bmov    SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret;
1376  * Restore pointers message?  Data pointers are recopied from the
1377  * SCB anytime we enter a data phase for the first time, so all
1378  * we need to do is clear the DPHASE flag and let the data phase
1379  * code do the rest.  We also reset/reallocate the FIFO to make
1380  * sure we have a clean start for the next data or command phase.
1381  */
1382 mesgin_rdptrs:
1383         and     SEQ_FLAGS, ~DPHASE;
1384         test    MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo;
1385         mvi     DFFSXFRCTL, RSTCHN|CLRSHCNT;
1386         SET_MODE(M_SCSI, M_SCSI)
1387 msgin_rdptrs_get_fifo:
1388         call    allocate_fifo;
1389         jmp     mesgin_done;
1391 phase_lock:     
1392         if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) {
1393                 /*
1394                  * Don't ignore persistent REQ assertions just because
1395                  * they were asserted within the bus settle delay window.
1396                  * This allows us to tolerate devices like the GEM318
1397                  * that violate the SCSI spec.  We are careful not to
1398                  * count REQ while we are waiting for it to fall during
1399                  * an async phase due to our asserted ACK.  Each
1400                  * sequencer instruction takes ~25ns, so the REQ must
1401                  * last at least 100ns in order to be counted as a true
1402                  * REQ.
1403                  */
1404                 test    SCSIPHASE, 0xFF jnz phase_locked;
1405                 test    SCSISIGI, ACKI jnz phase_lock;
1406                 test    SCSISIGI, REQI jz phase_lock;
1407                 test    SCSIPHASE, 0xFF jnz phase_locked;
1408                 test    SCSISIGI, ACKI jnz phase_lock;
1409                 test    SCSISIGI, REQI jz phase_lock;
1410 phase_locked:
1411         } else {
1412                 test    SCSIPHASE, 0xFF jz .;
1413         }
1414         test    SSTAT1, SCSIPERR jnz phase_lock;
1415 phase_lock_latch_phase:
1416         and     LASTPHASE, PHASE_MASK, SCSISIGI ret;
1419  * Functions to read data in Automatic PIO mode.
1421  * An ACK is not sent on input from the target until SCSIDATL is read from.
1422  * So we wait until SCSIDATL is latched (the usual way), then read the data
1423  * byte directly off the bus using SCSIBUSL.  When we have pulled the ATN
1424  * line, or we just want to acknowledge the byte, then we do a dummy read
1425  * from SCISDATL.  The SCSI spec guarantees that the target will hold the
1426  * data byte on the bus until we send our ACK.
1428  * The assumption here is that these are called in a particular sequence,
1429  * and that REQ is already set when inb_first is called.  inb_{first,next}
1430  * use the same calling convention as inb.
1431  */
1432 inb_next:
1433         mov     NONE,SCSIDAT;           /*dummy read from latch to ACK*/
1434 inb_next_wait:
1435         /*
1436          * If there is a parity error, wait for the kernel to
1437          * see the interrupt and prepare our message response
1438          * before continuing.
1439          */
1440         test    SCSIPHASE, 0xFF jz .;
1441         test    SSTAT1, SCSIPERR jnz inb_next_wait;
1442 inb_next_check_phase:
1443         and     LASTPHASE, PHASE_MASK, SCSISIGI;
1444         cmp     LASTPHASE, P_MESGIN jne mesgin_phasemis;
1445 inb_first:
1446         clr     DINDEX[1];
1447         mov     DINDEX,SINDEX;
1448         mov     DINDIR,SCSIBUS  ret;            /*read byte directly from bus*/
1449 inb_last:
1450         mov     NONE,SCSIDAT ret;               /*dummy read from latch to ACK*/
1452 mk_mesg:
1453         mvi     SCSISIGO, ATNO;
1454         mov     MSG_OUT,SINDEX ret;
1456 SET_SRC_MODE    M_DFF1;
1457 SET_DST_MODE    M_DFF1;
1458 disable_ccsgen:
1459         test    SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done;
1460         clr     CCSGCTL;
1461 disable_ccsgen_fetch_done:
1462         clr     SG_STATE ret;
1464 service_fifo:
1465         /*
1466          * Do we have any prefetch left???
1467          */
1468         test    SG_STATE, SEGS_AVAIL jnz idle_sg_avail;
1470         /*
1471          * Can this FIFO have access to the S/G cache yet?
1472          */
1473         test    CCSGCTL, SG_CACHE_AVAIL jz return;
1475         /* Did we just finish fetching segs? */
1476         test    CCSGCTL, CCSGDONE jnz idle_sgfetch_complete;
1478         /* Are we actively fetching segments? */
1479         test    CCSGCTL, CCSGENACK jnz return;
1481         /*
1482          * Should the other FIFO get the S/G cache first?  If
1483          * both FIFOs have been allocated since we last checked
1484          * any FIFO, it is important that we service a FIFO
1485          * that is not actively on the bus first.  This guarantees
1486          * that a FIFO will be freed to handle snapshot requests for
1487          * any FIFO that is still on the bus.  Chips with RTI do not
1488          * perform snapshots, so don't bother with this test there.
1489          */
1490         if ((ahd->features & AHD_RTI) == 0) {
1491                 /*
1492                  * If we're not still receiving SCSI data,
1493                  * it is safe to allocate the S/G cache to
1494                  * this FIFO.
1495                  */
1496                 test    DFCNTRL, SCSIEN jz idle_sgfetch_start;
1498                 /*
1499                  * Switch to the other FIFO.  Non-RTI chips
1500                  * also have the "set mode" bug, so we must
1501                  * disable interrupts during the switch.
1502                  */
1503                 mvi     SEQINTCTL, INTVEC1DSL;
1504                 xor     MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
1506                 /*
1507                  * If the other FIFO needs loading, then it
1508                  * must not have claimed the S/G cache yet
1509                  * (SG_CACHE_AVAIL would have been cleared in
1510                  * the orginal FIFO mode and we test this above).
1511                  * Return to the idle loop so we can process the
1512                  * FIFO not currently on the bus first.
1513                  */
1514                 test    SG_STATE, LOADING_NEEDED jz idle_sgfetch_okay;
1515                 clr     SEQINTCTL ret;
1516 idle_sgfetch_okay:
1517                 xor     MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
1518                 clr     SEQINTCTL;
1519         }
1521 idle_sgfetch_start:
1522         /*
1523          * We fetch a "cacheline aligned" and sized amount of data
1524          * so we don't end up referencing a non-existant page.
1525          * Cacheline aligned is in quotes because the kernel will
1526          * set the prefetch amount to a reasonable level if the
1527          * cacheline size is unknown.
1528          */
1529         bmov    SGHADDR, SCB_RESIDUAL_SGPTR, 4;
1530         mvi     SGHCNT, SG_PREFETCH_CNT;
1531         if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) {
1532                 /*
1533                  * Need two instructions between "touches" of SGHADDR.
1534                  */
1535                 nop;
1536         }
1537         and     SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR;
1538         mvi     CCSGCTL, CCSGEN|CCSGRESET;
1539         or      SG_STATE, FETCH_INPROG ret;
1540 idle_sgfetch_complete:
1541         /*
1542          * Guard against SG_CACHE_AVAIL activating during sg fetch
1543          * request in the other FIFO.
1544          */
1545         test    SG_STATE, FETCH_INPROG jz return;
1546         clr     CCSGCTL;
1547         and     CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR;
1548         mvi     SG_STATE, SEGS_AVAIL|LOADING_NEEDED;
1549 idle_sg_avail:
1550         /* Does the hardware have space for another SG entry? */
1551         test    DFSTATUS, PRELOAD_AVAIL jz return;
1552         /*
1553          * On the A, preloading a segment before HDMAENACK
1554          * comes true can clobber the shaddow address of the
1555          * first segment in the S/G FIFO.  Wait until it is
1556          * safe to proceed.
1557          */
1558         if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) {
1559                 test    DFCNTRL, HDMAENACK jz return;
1560         }
1561         if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1562                 bmov    HADDR, CCSGRAM, 8;
1563         } else {
1564                 bmov    HADDR, CCSGRAM, 4;
1565         }
1566         bmov    HCNT, CCSGRAM, 3;
1567         bmov    SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1;
1568         if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
1569                 and     HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3];
1570         }
1571         if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1572                 /* Skip 4 bytes of pad. */
1573                 add     CCSGADDR, 4;
1574         }
1575 sg_advance:
1576         clr     A;                      /* add sizeof(struct scatter) */
1577         add     SCB_RESIDUAL_SGPTR[0],SG_SIZEOF;
1578         adc     SCB_RESIDUAL_SGPTR[1],A;
1579         adc     SCB_RESIDUAL_SGPTR[2],A;
1580         adc     SCB_RESIDUAL_SGPTR[3],A;
1581         mov     SINDEX, SCB_RESIDUAL_SGPTR[0];
1582         test    SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3;
1583         or      SINDEX, LAST_SEG;
1584         clr     SG_STATE;
1585         mov     SG_CACHE_PRE, SINDEX;
1586         if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1587                 /*
1588                  * Use SCSIENWRDIS so that SCSIEN is never
1589                  * modified by this operation.
1590                  */
1591                 or      DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS;
1592         } else {
1593                 or      DFCNTRL, PRELOADEN|HDMAEN;
1594         }
1595         /*
1596          * Do we have another segment in the cache?
1597          */
1598         add     NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR;
1599         jnc     return;
1600         and     SG_STATE, ~SEGS_AVAIL ret;
1603  * Initialize the DMA address and counter from the SCB.
1604  */
1605 load_first_seg:
1606         bmov    HADDR, SCB_DATAPTR, 11;
1607         and     REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0];
1608         test    SCB_DATACNT[3], SG_LAST_SEG jz . + 2;
1609         or      REG_ISR, LAST_SEG;
1610         mov     SG_CACHE_PRE, REG_ISR;
1611         mvi     DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
1612         /*
1613          * Since we've are entering a data phase, we will
1614          * rely on the SCB_RESID* fields.  Initialize the
1615          * residual and clear the full residual flag.
1616          */
1617         and     SCB_SGPTR[0], ~SG_FULL_RESID;
1618         bmov    SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5;
1619         /* If we need more S/G elements, tell the idle loop */
1620         test    SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2;
1621         mvi     SG_STATE, LOADING_NEEDED ret;
1622         clr     SG_STATE ret;
1624 p_data_handle_xfer:
1625         call    setjmp;
1626         test    SG_STATE, LOADING_NEEDED jnz service_fifo;
1627 p_data_clear_handler:
1628         or      LONGJMP_ADDR[1], INVALID_ADDR ret;
1630 p_data:
1631         test    SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT   jz p_data_allowed;
1632         SET_SEQINTCODE(PROTO_VIOLATION)
1633 p_data_allowed:
1635         test    SEQ_FLAGS, DPHASE       jz data_phase_initialize;
1637         /*
1638          * If we re-enter the data phase after going through another
1639          * phase, our transfer location has almost certainly been
1640          * corrupted by the interveining, non-data, transfers.  Ask
1641          * the host driver to fix us up based on the transfer residual
1642          * unless we already know that we should be bitbucketing.
1643          */
1644         test    SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
1645         SET_SEQINTCODE(PDATA_REINIT)
1646         jmp     data_phase_inbounds;
1648 p_data_bitbucket:
1649         /*
1650          * Turn on `Bit Bucket' mode, wait until the target takes
1651          * us to another phase, and then notify the host.
1652          */
1653         mov     SAVED_MODE, MODE_PTR;
1654         test    MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
1655                 jnz bitbucket_not_m_dff;
1656         /*
1657          * Ensure that any FIFO contents are cleared out and the
1658          * FIFO free'd prior to starting the BITBUCKET.  BITBUCKET
1659          * doesn't discard data already in the FIFO.
1660          */
1661         mvi     DFFSXFRCTL, RSTCHN|CLRSHCNT;
1662         SET_MODE(M_SCSI, M_SCSI)
1663 bitbucket_not_m_dff:
1664         or      SXFRCTL1,BITBUCKET;
1665         /* Wait for non-data phase. */
1666         test    SCSIPHASE, ~DATA_PHASE_MASK jz .;
1667         and     SXFRCTL1, ~BITBUCKET;
1668         RESTORE_MODE(SAVED_MODE)
1669 SET_SRC_MODE    M_DFF1;
1670 SET_DST_MODE    M_DFF1;
1671         SET_SEQINTCODE(DATA_OVERRUN)
1672         jmp     ITloop;
1674 data_phase_initialize:
1675         test    SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket;
1676         call    load_first_seg;
1677 data_phase_inbounds:
1678         /* We have seen a data phase at least once. */
1679         or      SEQ_FLAGS, DPHASE;
1680         mov     SAVED_MODE, MODE_PTR;
1681         test    SG_STATE, LOADING_NEEDED jz data_group_dma_loop;
1682         call    p_data_handle_xfer;
1683 data_group_dma_loop:
1684         /*
1685          * The transfer is complete if either the last segment
1686          * completes or the target changes phase.  Both conditions
1687          * will clear SCSIEN.
1688          */
1689         call    idle_loop_service_fifos;
1690         call    idle_loop_cchan;
1691         call    idle_loop_gsfifo;
1692         RESTORE_MODE(SAVED_MODE)
1693         test    DFCNTRL, SCSIEN jnz data_group_dma_loop;
1695 data_group_dmafinish:
1696         /*
1697          * The transfer has terminated either due to a phase
1698          * change, and/or the completion of the last segment.
1699          * We have two goals here.  Do as much other work
1700          * as possible while the data fifo drains on a read
1701          * and respond as quickly as possible to the standard
1702          * messages (save data pointers/disconnect and command
1703          * complete) that usually follow a data phase.
1704          */
1705         call    calc_residual;
1707         /*
1708          * Go ahead and shut down the DMA engine now.
1709          */
1710         test    DFCNTRL, DIRECTION jnz data_phase_finish;
1711 data_group_fifoflush:
1712         if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
1713                 or      DFCNTRL, FIFOFLUSH;
1714         }
1715         /*
1716          * We have enabled the auto-ack feature.  This means
1717          * that the controller may have already transferred
1718          * some overrun bytes into the data FIFO and acked them
1719          * on the bus.  The only way to detect this situation is
1720          * to wait for LAST_SEG_DONE to come true on a completed
1721          * transfer and then test to see if the data FIFO is
1722          * non-empty.  We know there is more data yet to transfer
1723          * if SG_LIST_NULL is not yet set, thus there cannot be
1724          * an overrun.
1725          */
1726         test    SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish;
1727         test    SG_CACHE_SHADOW, LAST_SEG_DONE jz .;
1728         test    DFSTATUS, FIFOEMP jnz data_phase_finish;
1729         /* Overrun */
1730         jmp     p_data;
1731 data_phase_finish:
1732         /*
1733          * If the target has left us in data phase, loop through
1734          * the dma code again.  We will only loop if there is a
1735          * data overrun.  
1736          */
1737         if ((ahd->flags & AHD_TARGETROLE) != 0) {
1738                 test    SSTAT0, TARGET jnz data_phase_done;
1739         }
1740         if ((ahd->flags & AHD_INITIATORROLE) != 0) {
1741                 test    SSTAT1, REQINIT jz .;
1742                 test    SCSIPHASE, DATA_PHASE_MASK jnz p_data;
1743         }
1745 data_phase_done:
1746         /* Kill off any pending prefetch */
1747         call    disable_ccsgen;
1748         or      LONGJMP_ADDR[1], INVALID_ADDR;
1750         if ((ahd->flags & AHD_TARGETROLE) != 0) {
1751                 test    SEQ_FLAGS, DPHASE_PENDING jz ITloop;
1752                 /*
1753                 and     SEQ_FLAGS, ~DPHASE_PENDING;
1754                  * For data-in phases, wait for any pending acks from the
1755                  * initiator before changing phase.  We only need to
1756                  * send Ignore Wide Residue messages for data-in phases.
1757                 test    DFCNTRL, DIRECTION jz target_ITloop;
1758                 test    SSTAT1, REQINIT jnz .;
1759                 test    SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jz target_ITloop;
1760                 SET_MODE(M_SCSI, M_SCSI)
1761                 test    NEGCONOPTS, WIDEXFER jz target_ITloop;
1762                  */
1763                 /*
1764                  * Issue an Ignore Wide Residue Message.
1765                 mvi     P_MESGIN|BSYO call change_phase;
1766                 mvi     MSG_IGN_WIDE_RESIDUE call target_outb;
1767                 mvi     1 call target_outb;
1768                 jmp     target_ITloop;
1769                  */
1770         } else {
1771                 jmp     ITloop;
1772         }
1775  * We assume that, even though data may still be
1776  * transferring to the host, that the SCSI side of
1777  * the DMA engine is now in a static state.  This
1778  * allows us to update our notion of where we are
1779  * in this transfer.
1781  * If, by chance, we stopped before being able
1782  * to fetch additional segments for this transfer,
1783  * yet the last S/G was completely exhausted,
1784  * call our idle loop until it is able to load
1785  * another segment.  This will allow us to immediately
1786  * pickup on the next segment on the next data phase.
1788  * If we happened to stop on the last segment, then
1789  * our residual information is still correct from
1790  * the idle loop and there is no need to perform
1791  * any fixups.
1792  */
1793 residual_before_last_seg:
1794         test    MDFFSTAT, SHVALID       jnz sgptr_fixup;
1795         /*
1796          * Can never happen from an interrupt as the packetized
1797          * hardware will only interrupt us once SHVALID or
1798          * LAST_SEG_DONE.
1799          */
1800         call    idle_loop_service_fifos;
1801         RESTORE_MODE(SAVED_MODE)
1802         /* FALLTHROUGH */
1803 calc_residual:
1804         test    SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg;
1805         /* Record if we've consumed all S/G entries */
1806         test    MDFFSTAT, SHVALID       jz . + 2;
1807         bmov    SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
1808         or      SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret;
1810 sgptr_fixup:
1811         /*
1812          * Fixup the residual next S/G pointer.  The S/G preload
1813          * feature of the chip allows us to load two elements
1814          * in addition to the currently active element.  We
1815          * store the bottom byte of the next S/G pointer in
1816          * the SG_CACHE_PTR register so we can restore the
1817          * correct value when the DMA completes.  If the next
1818          * sg ptr value has advanced to the point where higher
1819          * bytes in the address have been affected, fix them
1820          * too.
1821          */
1822         test    SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done;
1823         test    SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done;
1824         add     SCB_RESIDUAL_SGPTR[1], -1;
1825         adc     SCB_RESIDUAL_SGPTR[2], -1; 
1826         adc     SCB_RESIDUAL_SGPTR[3], -1;
1827 sgptr_fixup_done:
1828         and     SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW;
1829         clr     SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */
1830         bmov    SCB_RESIDUAL_DATACNT, SHCNT, 3 ret;
1832 export timer_isr:
1833         call    issue_cmdcmplt;
1834         mvi     CLRSEQINTSTAT, CLRSEQ_SWTMRTO;
1835         if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) {
1836                 /*
1837                  * In H2A4, the mode pointer is not saved
1838                  * for intvec2, but is restored on iret.
1839                  * This can lead to the restoration of a
1840                  * bogus mode ptr.  Manually clear the
1841                  * intmask bits and do a normal return
1842                  * to compensate.
1843                  */
1844                 and     SEQINTCTL, ~(INTMASK2|INTMASK1) ret;
1845         } else {
1846                 or      SEQINTCTL, IRET ret;
1847         }
1849 export seq_isr:
1850         if ((ahd->features & AHD_RTI) == 0) {
1851                 /*
1852                  * On RevA Silicon, if the target returns us to data-out
1853                  * after we have already trained for data-out, it is
1854                  * possible for us to transition the free running clock to
1855                  * data-valid before the required 100ns P1 setup time (8 P1
1856                  * assertions in fast-160 mode).  This will only happen if
1857                  * this L-Q is a continuation of a data transfer for which
1858                  * we have already prefetched data into our FIFO (LQ/Data
1859                  * followed by LQ/Data for the same write transaction).
1860                  * This can cause some target implementations to miss the
1861                  * first few data transfers on the bus.  We detect this
1862                  * situation by noticing that this is the first data transfer
1863                  * after an LQ (LQIWORKONLQ true), that the data transfer is
1864                  * a continuation of a transfer already setup in our FIFO
1865                  * (SAVEPTRS interrupt), and that the transaction is a write
1866                  * (DIRECTION set in DFCNTRL). The delay is performed by
1867                  * disabling SCSIEN until we see the first REQ from the
1868                  * target.
1869                  * 
1870                  * First instruction in an ISR cannot be a branch on
1871                  * Rev A.  Snapshot LQISTAT2 so the status is not missed
1872                  * and deffer the test by one instruction.
1873                  */
1874                 mov     REG_ISR, LQISTAT2;
1875                 test    REG_ISR, LQIWORKONLQ jz main_isr;
1876                 test    SEQINTSRC, SAVEPTRS  jz main_isr;
1877                 test    LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo;
1878                 /*
1879                  * Switch to the active FIFO after clearing the snapshot
1880                  * savepointer in the current FIFO.  We do this so that
1881                  * a pending CTXTDONE or SAVEPTR is visible in the active
1882                  * FIFO.  This status is the only way we can detect if we
1883                  * have lost the race (e.g. host paused us) and our attempts
1884                  * to disable the channel occurred after all REQs were
1885                  * already seen and acked (REQINIT never comes true).
1886                  */
1887                 mvi     DFFSXFRCTL, CLRCHN;
1888                 xor     MODE_PTR, MK_MODE(M_DFF1, M_DFF1);
1889                 test    DFCNTRL, DIRECTION jz interrupt_return;
1890                 and     DFCNTRL, ~SCSIEN;
1891 snapshot_wait_data_valid:
1892                 test    SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz interrupt_return;
1893                 test    SSTAT1, REQINIT jz snapshot_wait_data_valid;
1894 snapshot_data_valid:
1895                 or      DFCNTRL, SCSIEN;
1896                 or      SEQINTCTL, IRET ret;
1897 snapshot_saveptr:
1898                 mvi     DFFSXFRCTL, CLRCHN;
1899                 or      SEQINTCTL, IRET ret;
1900 main_isr:
1901         }
1902         test    SEQINTSRC, CFG4DATA     jnz cfg4data_intr;
1903         test    SEQINTSRC, CFG4ISTAT    jnz cfg4istat_intr;
1904         test    SEQINTSRC, SAVEPTRS     jnz saveptr_intr;
1905         test    SEQINTSRC, CFG4ICMD     jnz cfg4icmd_intr;
1906         SET_SEQINTCODE(INVALID_SEQINT)
1909  * There are two types of save pointers interrupts:
1910  * The first is a snapshot save pointers where the current FIFO is not
1911  * active and contains a snapshot of the current poniter information.
1912  * This happens between packets in a stream for a single L_Q.  Since we
1913  * are not performing a pointer save, we can safely clear the channel
1914  * so it can be used for other transactions.  On RTI capable controllers,
1915  * where snapshots can, and are, disabled, the code to handle this type
1916  * of snapshot is not active.
1918  * The second case is a save pointers on an active FIFO which occurs
1919  * if the target changes to a new L_Q or busfrees/QASes and the transfer
1920  * has a residual.  This should occur coincident with a ctxtdone.  We
1921  * disable the interrupt and allow our active routine to handle the
1922  * save.
1923  */
1924 saveptr_intr:
1925         if ((ahd->features & AHD_RTI) == 0) {
1926                 test    LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr;
1927         }
1928 saveptr_active_fifo:
1929         and     SEQIMODE, ~ENSAVEPTRS;
1930         or      SEQINTCTL, IRET ret;
1932 cfg4data_intr:
1933         test    SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count;
1934         call    load_first_seg;
1935         call    pkt_handle_xfer;
1936         inc     SCB_FIFO_USE_COUNT;
1937 interrupt_return:
1938         or      SEQINTCTL, IRET ret;
1940 cfg4istat_intr:
1941         call    freeze_queue;
1942         add     NONE, -13, SCB_CDB_LEN;
1943         jnc     cfg4istat_have_sense_addr;
1944         test    SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr;
1945         /*
1946          * Host sets up address/count and enables transfer.
1947          */
1948         SET_SEQINTCODE(CFG4ISTAT_INTR)
1949         jmp     cfg4istat_setup_handler;
1950 cfg4istat_have_sense_addr:
1951         bmov    HADDR, SCB_SENSE_BUSADDR, 4;
1952         mvi     HCNT[1], (AHD_SENSE_BUFSIZE >> 8);
1953         mvi     SG_CACHE_PRE, LAST_SEG;
1954         mvi     DFCNTRL, PRELOADEN|SCSIEN|HDMAEN;
1955 cfg4istat_setup_handler:
1956         /*
1957          * Status pkt is transferring to host.
1958          * Wait in idle loop for transfer to complete.
1959          * If a command completed before an attempted
1960          * task management function completed, notify the host.
1961          */
1962         test    SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func;
1963         SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY)
1964 cfg4istat_no_taskmgmt_func:
1965         call    pkt_handle_status;
1966         or      SEQINTCTL, IRET ret;
1968 cfg4icmd_intr:
1969         /*
1970          * In the case of DMAing a CDB from the host, the normal
1971          * CDB buffer is formatted with an 8 byte address followed
1972          * by a 1 byte count.
1973          */
1974         bmov    HADDR[0], SCB_HOST_CDB_PTR, 9;
1975         mvi     SG_CACHE_PRE, LAST_SEG;
1976         mvi     DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN);
1977         call    pkt_handle_cdb;
1978         or      SEQINTCTL, IRET ret;
1981  * See if the target has gone on in this context creating an
1982  * overrun condition.  For the write case, the hardware cannot
1983  * ack bytes until data are provided.  So, if the target begins
1984  * another  packet without changing contexts, implying we are
1985  * not sitting on a packet boundary, we are in an overrun
1986  * situation.  For the read case, the hardware will continue to
1987  * ack bytes into the FIFO, and may even ack the last overrun packet
1988  * into the FIFO.   If the FIFO should become non-empty, we are in
1989  * a read overrun case.
1990  */
1991 #define check_overrun                                                   \
1992         /* Not on a packet boundary. */                                 \
1993         test    MDFFSTAT, DLZERO jz pkt_handle_overrun;                 \
1994         test    DFSTATUS, FIFOEMP jz pkt_handle_overrun
1996 pkt_handle_xfer:
1997         test    SG_STATE, LOADING_NEEDED jz pkt_last_seg;
1998         call    setjmp;
1999         test    SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
2000         test    SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
2001         test    SCSISIGO, ATNO jnz . + 2;
2002         test    SSTAT2, NONPACKREQ jz pkt_service_fifo;
2003         /*
2004          * Defer handling of this NONPACKREQ until we
2005          * can be sure it pertains to this FIFO.  SAVEPTRS
2006          * will not be asserted if the NONPACKREQ is for us,
2007          * so we must simulate it if shaddow is valid.  If
2008          * shaddow is not valid, keep running this FIFO until we
2009          * have satisfied the transfer by loading segments and
2010          * waiting for either shaddow valid or last_seg_done.
2011          */
2012         test    MDFFSTAT, SHVALID jnz pkt_saveptrs;
2013 pkt_service_fifo:
2014         test    SG_STATE, LOADING_NEEDED jnz service_fifo;
2015 pkt_last_seg:
2016         call    setjmp;
2017         test    SEQINTSRC, SAVEPTRS jnz pkt_saveptrs;
2018         test    SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done;
2019         test    SCSIPHASE, ~DATA_PHASE_MASK jz . + 2;
2020         test    SCSISIGO, ATNO jnz . + 2;
2021         test    SSTAT2, NONPACKREQ jz return;
2022         test    MDFFSTAT, SHVALID jz return;
2023         /* FALLTHROUGH */
2026  * Either a SAVEPTRS interrupt condition is pending for this FIFO
2027  * or we have a pending NONPACKREQ for this FIFO.  We differentiate
2028  * between the two by capturing the state of the SAVEPTRS interrupt
2029  * prior to clearing this status and executing the common code for
2030  * these two cases.
2031  */
2032 pkt_saveptrs:
2033 BEGIN_CRITICAL;
2034         if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
2035                 or      DFCNTRL, FIFOFLUSH;
2036         }
2037         mov     REG0, SEQINTSRC;
2038         call    calc_residual;
2039         call    save_pointers;
2040         mvi     CLRSEQINTSRC, CLRSAVEPTRS;
2041         call    disable_ccsgen;
2042         or      SEQIMODE, ENSAVEPTRS;
2043         test    DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status;
2044         test    DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status;
2045         /*
2046          * Keep a handler around for this FIFO until it drains
2047          * to the host to guarantee that we don't complete the
2048          * command to the host before the data arrives.
2049          */
2050 pkt_saveptrs_wait_fifoemp:
2051         call    setjmp;
2052         test    DFSTATUS, FIFOEMP jz return;
2053 pkt_saveptrs_check_status:
2054         or      LONGJMP_ADDR[1], INVALID_ADDR;
2055         test    REG0, SAVEPTRS jz unexpected_nonpkt_phase;
2056         dec     SCB_FIFO_USE_COUNT;
2057         test    SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
2058         mvi     DFFSXFRCTL, CLRCHN ret;
2061  * LAST_SEG_DONE status has been seen in the current FIFO.
2062  * This indicates that all of the allowed data for this
2063  * command has transferred across the SCSI and host buses.
2064  * Check for overrun and see if we can complete this command.
2065  */
2066 pkt_last_seg_done:
2067         /*
2068          * Mark transfer as completed.
2069          */
2070         or      SCB_SGPTR, SG_LIST_NULL;
2072         /*
2073          * Wait for the current context to finish to verify that
2074          * no overrun condition has occurred.
2075          */
2076         test    SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
2077         call    setjmp;
2078 pkt_wait_ctxt_done_loop:
2079         test    SEQINTSRC, CTXTDONE jnz pkt_ctxt_done;
2080         /*
2081          * A sufficiently large overrun or a NONPACKREQ may
2082          * prevent CTXTDONE from ever asserting, so we must
2083          * poll for these statuses too.
2084          */
2085         check_overrun;
2086         test    SSTAT2, NONPACKREQ jz return;
2087         test    SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
2088         /* FALLTHROUGH */
2090 pkt_ctxt_done:
2091         check_overrun;
2092         or      LONGJMP_ADDR[1], INVALID_ADDR;
2093         /*
2094          * If status has been received, it is safe to skip
2095          * the check to see if another FIFO is active because
2096          * LAST_SEG_DONE has been observed.  However, we check
2097          * the FIFO anyway since it costs us only one extra
2098          * instruction to leverage common code to perform the
2099          * SCB completion.
2100          */
2101         dec     SCB_FIFO_USE_COUNT;
2102         test    SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
2103         mvi     DFFSXFRCTL, CLRCHN ret;
2104 END_CRITICAL;
2107  * Must wait until CDB xfer is over before issuing the
2108  * clear channel.
2109  */
2110 pkt_handle_cdb:
2111         call    setjmp;
2112         test    SG_CACHE_SHADOW, LAST_SEG_DONE jz return;
2113         or      LONGJMP_ADDR[1], INVALID_ADDR;
2114         mvi     DFFSXFRCTL, CLRCHN ret;
2117  * Watch over the status transfer.  Our host sense buffer is
2118  * large enough to take the maximum allowed status packet.
2119  * None-the-less, we must still catch and report overruns to
2120  * the host.  Additionally, properly catch unexpected non-packet
2121  * phases that are typically caused by CRC errors in status packet
2122  * transmission.
2123  */
2124 pkt_handle_status:
2125         call    setjmp;
2126         test    SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
2127         test    SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq;
2128         test    SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun;
2129 pkt_status_IU_done:
2130         if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) {
2131                 or      DFCNTRL, FIFOFLUSH;
2132         }
2133         test    DFSTATUS, FIFOEMP jz return;
2134 BEGIN_CRITICAL;
2135         or      LONGJMP_ADDR[1], INVALID_ADDR;
2136         mvi     SCB_SCSI_STATUS, STATUS_PKT_SENSE;
2137         or      SCB_CONTROL, STATUS_RCVD;
2138         jmp     pkt_complete_scb_if_fifos_idle;
2139 END_CRITICAL;
2140 pkt_status_check_overrun:
2141         /*
2142          * Status PKT overruns are uncerimoniously recovered with a
2143          * bus reset.  If we've overrun, let the host know so that
2144          * recovery can be performed.
2145          *
2146          * LAST_SEG_DONE has been observed.  If either CTXTDONE or
2147          * a NONPACKREQ phase change have occurred and the FIFO is
2148          * empty, there is no overrun.
2149          */
2150         test    DFSTATUS, FIFOEMP jz pkt_status_report_overrun;
2151         test    SEQINTSRC, CTXTDONE jz . + 2;
2152         test    DFSTATUS, FIFOEMP jnz pkt_status_IU_done;
2153         test    SCSIPHASE, ~DATA_PHASE_MASK jz return;
2154         test    DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq;
2155 pkt_status_report_overrun:
2156         SET_SEQINTCODE(STATUS_OVERRUN)
2157         /* SEQUENCER RESTARTED */
2158 pkt_status_check_nonpackreq:
2159         /*
2160          * CTXTDONE may be held off if a NONPACKREQ is associated with
2161          * the current context.  If a NONPACKREQ is observed, decide
2162          * if it is for the current context.  If it is for the current
2163          * context, we must defer NONPACKREQ processing until all data
2164          * has transferred to the host.
2165          */
2166         test    SCSIPHASE, ~DATA_PHASE_MASK jz return;
2167         test    SCSISIGO, ATNO jnz . + 2;
2168         test    SSTAT2, NONPACKREQ jz return;
2169         test    SEQINTSRC, CTXTDONE jnz pkt_status_IU_done;
2170         test    DFSTATUS, FIFOEMP jz return;
2171         /*
2172          * The unexpected nonpkt phase handler assumes that any
2173          * data channel use will have a FIFO reference count.  It
2174          * turns out that the status handler doesn't need a refernce
2175          * count since the status received flag, and thus completion
2176          * processing, cannot be set until the handler is finished.
2177          * We increment the count here to make the nonpkt handler
2178          * happy.
2179          */
2180         inc     SCB_FIFO_USE_COUNT;
2181         /* FALLTHROUGH */
2184  * Nonpackreq is a polled status.  It can come true in three situations:
2185  * we have received an L_Q, we have sent one or more L_Qs, or there is no
2186  * L_Q context associated with this REQ (REQ occurs immediately after a
2187  * (re)selection).  Routines that know that the context responsible for this
2188  * nonpackreq call directly into unexpected_nonpkt_phase.  In the case of the
2189  * top level idle loop, we exhaust all active contexts prior to determining that
2190  * we simply do not have the full I_T_L_Q for this phase.
2191  */
2192 unexpected_nonpkt_phase_find_ctxt:
2193         /*
2194          * This nonpackreq is most likely associated with one of the tags
2195          * in a FIFO or an outgoing LQ.  Only treat it as an I_T only
2196          * nonpackreq if we've cleared out the FIFOs and handled any
2197          * pending SELDO.
2198          */
2199 SET_SRC_MODE    M_SCSI;
2200 SET_DST_MODE    M_SCSI;
2201         and     A, FIFO1FREE|FIFO0FREE, DFFSTAT;
2202         cmp     A, FIFO1FREE|FIFO0FREE jne return;
2203         test    SSTAT0, SELDO jnz return;
2204         mvi     SCBPTR[1], SCB_LIST_NULL;
2205 unexpected_nonpkt_phase:
2206         test    MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1))
2207                 jnz unexpected_nonpkt_mode_cleared;
2208 SET_SRC_MODE    M_DFF0;
2209 SET_DST_MODE    M_DFF0;
2210         or      LONGJMP_ADDR[1], INVALID_ADDR;
2211         dec     SCB_FIFO_USE_COUNT;
2212         mvi     DFFSXFRCTL, CLRCHN;
2213 unexpected_nonpkt_mode_cleared:
2214         mvi     CLRSINT2, CLRNONPACKREQ;
2215         if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
2216                 /*
2217                  * Test to ensure that the bus has not
2218                  * already gone free prior to clearing
2219                  * any stale busfree status.  This avoids
2220                  * a window whereby a busfree just after
2221                  * a selection could be missed.
2222                  */
2223                 test    SCSISIGI, BSYI jz . + 2;
2224                 mvi     CLRSINT1,CLRBUSFREE;
2225                 or      SIMODE1, ENBUSFREE;
2226         }
2227         test    SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase;
2228         SET_SEQINTCODE(ENTERING_NONPACK)
2229         jmp     ITloop;
2231 illegal_phase:
2232         SET_SEQINTCODE(ILLEGAL_PHASE)
2233         jmp     ITloop;
2236  * We have entered an overrun situation.  If we have working
2237  * BITBUCKET, flip that on and let the hardware eat any overrun
2238  * data.  Otherwise use an overrun buffer in the host to simulate
2239  * BITBUCKET.
2240  */
2241 pkt_handle_overrun_inc_use_count:
2242         inc     SCB_FIFO_USE_COUNT;
2243 pkt_handle_overrun:
2244         SET_SEQINTCODE(CFG4OVERRUN)
2245         call    freeze_queue;
2246         if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) {
2247                 or      DFFSXFRCTL, DFFBITBUCKET;
2248 SET_SRC_MODE    M_DFF1;
2249 SET_DST_MODE    M_DFF1;
2250         } else {
2251                 call    load_overrun_buf;
2252                 mvi     DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN);
2253         }
2254         call    setjmp;
2255         if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
2256                 test    DFSTATUS, PRELOAD_AVAIL jz overrun_load_done;
2257                 call    load_overrun_buf;
2258                 or      DFCNTRL, PRELOADEN;
2259 overrun_load_done:
2260                 test    SEQINTSRC, CTXTDONE jnz pkt_overrun_end;
2261         } else {
2262                 test    DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end;
2263         }
2264         test    SSTAT2, NONPACKREQ jz return;
2265 pkt_overrun_end:
2266         or      SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID;
2267         test    SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase;
2268         dec     SCB_FIFO_USE_COUNT;
2269         or      LONGJMP_ADDR[1], INVALID_ADDR;
2270         test    SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle;
2271         mvi     DFFSXFRCTL, CLRCHN ret;
2273 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
2274 load_overrun_buf:
2275         /*
2276          * Load a dummy segment if preload space is available.
2277          */
2278         mov     HADDR[0], SHARED_DATA_ADDR;
2279         add     HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1];
2280         mov     ACCUM_SAVE, A;
2281         clr     A;
2282         adc     HADDR[2], A, SHARED_DATA_ADDR[2];
2283         adc     HADDR[3], A, SHARED_DATA_ADDR[3];
2284         mov     A, ACCUM_SAVE;
2285         bmov    HADDR[4], ALLZEROS, 4;
2286         /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */
2287         clr     HCNT[0];
2288         mvi     HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF);
2289         clr     HCNT[2] ret;