mlx4_en: Fix double pci unmapping.
[linux-2.6/mini2440.git] / drivers / pci / pci.c
blob6c93af5ced186bd9a18faaea77fb0d160d37aba8
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include <linux/device.h>
24 #include <asm/setup.h>
25 #include "pci.h"
27 const char *pci_power_names[] = {
28 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
30 EXPORT_SYMBOL_GPL(pci_power_names);
32 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
34 #ifdef CONFIG_PCI_DOMAINS
35 int pci_domains_supported = 1;
36 #endif
38 #define DEFAULT_CARDBUS_IO_SIZE (256)
39 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
40 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
41 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
42 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
44 /**
45 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
46 * @bus: pointer to PCI bus structure to search
48 * Given a PCI bus, returns the highest PCI bus number present in the set
49 * including the given PCI bus and its list of child PCI buses.
51 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
53 struct list_head *tmp;
54 unsigned char max, n;
56 max = bus->subordinate;
57 list_for_each(tmp, &bus->children) {
58 n = pci_bus_max_busnr(pci_bus_b(tmp));
59 if(n > max)
60 max = n;
62 return max;
64 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
66 #ifdef CONFIG_HAS_IOMEM
67 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
70 * Make sure the BAR is actually a memory resource, not an IO resource
72 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
73 WARN_ON(1);
74 return NULL;
76 return ioremap_nocache(pci_resource_start(pdev, bar),
77 pci_resource_len(pdev, bar));
79 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
80 #endif
82 #if 0
83 /**
84 * pci_max_busnr - returns maximum PCI bus number
86 * Returns the highest PCI bus number present in the system global list of
87 * PCI buses.
89 unsigned char __devinit
90 pci_max_busnr(void)
92 struct pci_bus *bus = NULL;
93 unsigned char max, n;
95 max = 0;
96 while ((bus = pci_find_next_bus(bus)) != NULL) {
97 n = pci_bus_max_busnr(bus);
98 if(n > max)
99 max = n;
101 return max;
104 #endif /* 0 */
106 #define PCI_FIND_CAP_TTL 48
108 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
109 u8 pos, int cap, int *ttl)
111 u8 id;
113 while ((*ttl)--) {
114 pci_bus_read_config_byte(bus, devfn, pos, &pos);
115 if (pos < 0x40)
116 break;
117 pos &= ~3;
118 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
119 &id);
120 if (id == 0xff)
121 break;
122 if (id == cap)
123 return pos;
124 pos += PCI_CAP_LIST_NEXT;
126 return 0;
129 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
130 u8 pos, int cap)
132 int ttl = PCI_FIND_CAP_TTL;
134 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
137 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
139 return __pci_find_next_cap(dev->bus, dev->devfn,
140 pos + PCI_CAP_LIST_NEXT, cap);
142 EXPORT_SYMBOL_GPL(pci_find_next_capability);
144 static int __pci_bus_find_cap_start(struct pci_bus *bus,
145 unsigned int devfn, u8 hdr_type)
147 u16 status;
149 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
150 if (!(status & PCI_STATUS_CAP_LIST))
151 return 0;
153 switch (hdr_type) {
154 case PCI_HEADER_TYPE_NORMAL:
155 case PCI_HEADER_TYPE_BRIDGE:
156 return PCI_CAPABILITY_LIST;
157 case PCI_HEADER_TYPE_CARDBUS:
158 return PCI_CB_CAPABILITY_LIST;
159 default:
160 return 0;
163 return 0;
167 * pci_find_capability - query for devices' capabilities
168 * @dev: PCI device to query
169 * @cap: capability code
171 * Tell if a device supports a given PCI capability.
172 * Returns the address of the requested capability structure within the
173 * device's PCI configuration space or 0 in case the device does not
174 * support it. Possible values for @cap:
176 * %PCI_CAP_ID_PM Power Management
177 * %PCI_CAP_ID_AGP Accelerated Graphics Port
178 * %PCI_CAP_ID_VPD Vital Product Data
179 * %PCI_CAP_ID_SLOTID Slot Identification
180 * %PCI_CAP_ID_MSI Message Signalled Interrupts
181 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
182 * %PCI_CAP_ID_PCIX PCI-X
183 * %PCI_CAP_ID_EXP PCI Express
185 int pci_find_capability(struct pci_dev *dev, int cap)
187 int pos;
189 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
190 if (pos)
191 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
193 return pos;
197 * pci_bus_find_capability - query for devices' capabilities
198 * @bus: the PCI bus to query
199 * @devfn: PCI device to query
200 * @cap: capability code
202 * Like pci_find_capability() but works for pci devices that do not have a
203 * pci_dev structure set up yet.
205 * Returns the address of the requested capability structure within the
206 * device's PCI configuration space or 0 in case the device does not
207 * support it.
209 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
211 int pos;
212 u8 hdr_type;
214 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
216 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
217 if (pos)
218 pos = __pci_find_next_cap(bus, devfn, pos, cap);
220 return pos;
224 * pci_find_ext_capability - Find an extended capability
225 * @dev: PCI device to query
226 * @cap: capability code
228 * Returns the address of the requested extended capability structure
229 * within the device's PCI configuration space or 0 if the device does
230 * not support it. Possible values for @cap:
232 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
233 * %PCI_EXT_CAP_ID_VC Virtual Channel
234 * %PCI_EXT_CAP_ID_DSN Device Serial Number
235 * %PCI_EXT_CAP_ID_PWR Power Budgeting
237 int pci_find_ext_capability(struct pci_dev *dev, int cap)
239 u32 header;
240 int ttl;
241 int pos = PCI_CFG_SPACE_SIZE;
243 /* minimum 8 bytes per capability */
244 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
246 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
247 return 0;
249 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
250 return 0;
253 * If we have no capabilities, this is indicated by cap ID,
254 * cap version and next pointer all being 0.
256 if (header == 0)
257 return 0;
259 while (ttl-- > 0) {
260 if (PCI_EXT_CAP_ID(header) == cap)
261 return pos;
263 pos = PCI_EXT_CAP_NEXT(header);
264 if (pos < PCI_CFG_SPACE_SIZE)
265 break;
267 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
268 break;
271 return 0;
273 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
275 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
277 int rc, ttl = PCI_FIND_CAP_TTL;
278 u8 cap, mask;
280 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
281 mask = HT_3BIT_CAP_MASK;
282 else
283 mask = HT_5BIT_CAP_MASK;
285 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
286 PCI_CAP_ID_HT, &ttl);
287 while (pos) {
288 rc = pci_read_config_byte(dev, pos + 3, &cap);
289 if (rc != PCIBIOS_SUCCESSFUL)
290 return 0;
292 if ((cap & mask) == ht_cap)
293 return pos;
295 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
296 pos + PCI_CAP_LIST_NEXT,
297 PCI_CAP_ID_HT, &ttl);
300 return 0;
303 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
304 * @dev: PCI device to query
305 * @pos: Position from which to continue searching
306 * @ht_cap: Hypertransport capability code
308 * To be used in conjunction with pci_find_ht_capability() to search for
309 * all capabilities matching @ht_cap. @pos should always be a value returned
310 * from pci_find_ht_capability().
312 * NB. To be 100% safe against broken PCI devices, the caller should take
313 * steps to avoid an infinite loop.
315 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
317 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
319 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
322 * pci_find_ht_capability - query a device's Hypertransport capabilities
323 * @dev: PCI device to query
324 * @ht_cap: Hypertransport capability code
326 * Tell if a device supports a given Hypertransport capability.
327 * Returns an address within the device's PCI configuration space
328 * or 0 in case the device does not support the request capability.
329 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
330 * which has a Hypertransport capability matching @ht_cap.
332 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
334 int pos;
336 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
337 if (pos)
338 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
340 return pos;
342 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
345 * pci_find_parent_resource - return resource region of parent bus of given region
346 * @dev: PCI device structure contains resources to be searched
347 * @res: child resource record for which parent is sought
349 * For given resource region of given device, return the resource
350 * region of parent bus the given region is contained in or where
351 * it should be allocated from.
353 struct resource *
354 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
356 const struct pci_bus *bus = dev->bus;
357 int i;
358 struct resource *best = NULL;
360 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
361 struct resource *r = bus->resource[i];
362 if (!r)
363 continue;
364 if (res->start && !(res->start >= r->start && res->end <= r->end))
365 continue; /* Not contained */
366 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
367 continue; /* Wrong type */
368 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
369 return r; /* Exact match */
370 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
371 best = r; /* Approximating prefetchable by non-prefetchable */
373 return best;
377 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
378 * @dev: PCI device to have its BARs restored
380 * Restore the BAR values for a given device, so as to make it
381 * accessible by its driver.
383 static void
384 pci_restore_bars(struct pci_dev *dev)
386 int i;
388 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
389 pci_update_resource(dev, i);
392 static struct pci_platform_pm_ops *pci_platform_pm;
394 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
396 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
397 || !ops->sleep_wake || !ops->can_wakeup)
398 return -EINVAL;
399 pci_platform_pm = ops;
400 return 0;
403 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
405 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
408 static inline int platform_pci_set_power_state(struct pci_dev *dev,
409 pci_power_t t)
411 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
414 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
416 return pci_platform_pm ?
417 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
420 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
422 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
425 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
427 return pci_platform_pm ?
428 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
432 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
433 * given PCI device
434 * @dev: PCI device to handle.
435 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
437 * RETURN VALUE:
438 * -EINVAL if the requested state is invalid.
439 * -EIO if device does not support PCI PM or its PM capabilities register has a
440 * wrong version, or device doesn't support the requested state.
441 * 0 if device already is in the requested state.
442 * 0 if device's power state has been successfully changed.
444 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
446 u16 pmcsr;
447 bool need_restore = false;
449 /* Check if we're already there */
450 if (dev->current_state == state)
451 return 0;
453 if (!dev->pm_cap)
454 return -EIO;
456 if (state < PCI_D0 || state > PCI_D3hot)
457 return -EINVAL;
459 /* Validate current state:
460 * Can enter D0 from any state, but if we can only go deeper
461 * to sleep if we're already in a low power state
463 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
464 && dev->current_state > state) {
465 dev_err(&dev->dev, "invalid power transition "
466 "(from state %d to %d)\n", dev->current_state, state);
467 return -EINVAL;
470 /* check if this device supports the desired state */
471 if ((state == PCI_D1 && !dev->d1_support)
472 || (state == PCI_D2 && !dev->d2_support))
473 return -EIO;
475 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
477 /* If we're (effectively) in D3, force entire word to 0.
478 * This doesn't affect PME_Status, disables PME_En, and
479 * sets PowerState to 0.
481 switch (dev->current_state) {
482 case PCI_D0:
483 case PCI_D1:
484 case PCI_D2:
485 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
486 pmcsr |= state;
487 break;
488 case PCI_D3hot:
489 case PCI_D3cold:
490 case PCI_UNKNOWN: /* Boot-up */
491 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
492 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
493 need_restore = true;
494 /* Fall-through: force to D0 */
495 default:
496 pmcsr = 0;
497 break;
500 /* enter specified state */
501 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
503 /* Mandatory power management transition delays */
504 /* see PCI PM 1.1 5.6.1 table 18 */
505 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
506 msleep(pci_pm_d3_delay);
507 else if (state == PCI_D2 || dev->current_state == PCI_D2)
508 udelay(PCI_PM_D2_DELAY);
510 dev->current_state = state;
512 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
513 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
514 * from D3hot to D0 _may_ perform an internal reset, thereby
515 * going to "D0 Uninitialized" rather than "D0 Initialized".
516 * For example, at least some versions of the 3c905B and the
517 * 3c556B exhibit this behaviour.
519 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
520 * devices in a D3hot state at boot. Consequently, we need to
521 * restore at least the BARs so that the device will be
522 * accessible to its driver.
524 if (need_restore)
525 pci_restore_bars(dev);
527 if (dev->bus->self)
528 pcie_aspm_pm_state_change(dev->bus->self);
530 return 0;
534 * pci_update_current_state - Read PCI power state of given device from its
535 * PCI PM registers and cache it
536 * @dev: PCI device to handle.
537 * @state: State to cache in case the device doesn't have the PM capability
539 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
541 if (dev->pm_cap) {
542 u16 pmcsr;
544 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
545 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
546 } else {
547 dev->current_state = state;
552 * pci_platform_power_transition - Use platform to change device power state
553 * @dev: PCI device to handle.
554 * @state: State to put the device into.
556 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
558 int error;
560 if (platform_pci_power_manageable(dev)) {
561 error = platform_pci_set_power_state(dev, state);
562 if (!error)
563 pci_update_current_state(dev, state);
564 } else {
565 error = -ENODEV;
566 /* Fall back to PCI_D0 if native PM is not supported */
567 if (!dev->pm_cap)
568 dev->current_state = PCI_D0;
571 return error;
575 * __pci_start_power_transition - Start power transition of a PCI device
576 * @dev: PCI device to handle.
577 * @state: State to put the device into.
579 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
581 if (state == PCI_D0)
582 pci_platform_power_transition(dev, PCI_D0);
586 * __pci_complete_power_transition - Complete power transition of a PCI device
587 * @dev: PCI device to handle.
588 * @state: State to put the device into.
590 * This function should not be called directly by device drivers.
592 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
594 return state > PCI_D0 ?
595 pci_platform_power_transition(dev, state) : -EINVAL;
597 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
600 * pci_set_power_state - Set the power state of a PCI device
601 * @dev: PCI device to handle.
602 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
604 * Transition a device to a new power state, using the platform firmware and/or
605 * the device's PCI PM registers.
607 * RETURN VALUE:
608 * -EINVAL if the requested state is invalid.
609 * -EIO if device does not support PCI PM or its PM capabilities register has a
610 * wrong version, or device doesn't support the requested state.
611 * 0 if device already is in the requested state.
612 * 0 if device's power state has been successfully changed.
614 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
616 int error;
618 /* bound the state we're entering */
619 if (state > PCI_D3hot)
620 state = PCI_D3hot;
621 else if (state < PCI_D0)
622 state = PCI_D0;
623 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
625 * If the device or the parent bridge do not support PCI PM,
626 * ignore the request if we're doing anything other than putting
627 * it into D0 (which would only happen on boot).
629 return 0;
631 /* Check if we're already there */
632 if (dev->current_state == state)
633 return 0;
635 __pci_start_power_transition(dev, state);
637 /* This device is quirked not to be put into D3, so
638 don't put it in D3 */
639 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
640 return 0;
642 error = pci_raw_set_power_state(dev, state);
644 if (!__pci_complete_power_transition(dev, state))
645 error = 0;
647 return error;
651 * pci_choose_state - Choose the power state of a PCI device
652 * @dev: PCI device to be suspended
653 * @state: target sleep state for the whole system. This is the value
654 * that is passed to suspend() function.
656 * Returns PCI power state suitable for given device and given system
657 * message.
660 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
662 pci_power_t ret;
664 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
665 return PCI_D0;
667 ret = platform_pci_choose_state(dev);
668 if (ret != PCI_POWER_ERROR)
669 return ret;
671 switch (state.event) {
672 case PM_EVENT_ON:
673 return PCI_D0;
674 case PM_EVENT_FREEZE:
675 case PM_EVENT_PRETHAW:
676 /* REVISIT both freeze and pre-thaw "should" use D0 */
677 case PM_EVENT_SUSPEND:
678 case PM_EVENT_HIBERNATE:
679 return PCI_D3hot;
680 default:
681 dev_info(&dev->dev, "unrecognized suspend event %d\n",
682 state.event);
683 BUG();
685 return PCI_D0;
688 EXPORT_SYMBOL(pci_choose_state);
690 #define PCI_EXP_SAVE_REGS 7
692 #define pcie_cap_has_devctl(type, flags) 1
693 #define pcie_cap_has_lnkctl(type, flags) \
694 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
695 (type == PCI_EXP_TYPE_ROOT_PORT || \
696 type == PCI_EXP_TYPE_ENDPOINT || \
697 type == PCI_EXP_TYPE_LEG_END))
698 #define pcie_cap_has_sltctl(type, flags) \
699 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
700 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
701 (type == PCI_EXP_TYPE_DOWNSTREAM && \
702 (flags & PCI_EXP_FLAGS_SLOT))))
703 #define pcie_cap_has_rtctl(type, flags) \
704 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
705 (type == PCI_EXP_TYPE_ROOT_PORT || \
706 type == PCI_EXP_TYPE_RC_EC))
707 #define pcie_cap_has_devctl2(type, flags) \
708 ((flags & PCI_EXP_FLAGS_VERS) > 1)
709 #define pcie_cap_has_lnkctl2(type, flags) \
710 ((flags & PCI_EXP_FLAGS_VERS) > 1)
711 #define pcie_cap_has_sltctl2(type, flags) \
712 ((flags & PCI_EXP_FLAGS_VERS) > 1)
714 static int pci_save_pcie_state(struct pci_dev *dev)
716 int pos, i = 0;
717 struct pci_cap_saved_state *save_state;
718 u16 *cap;
719 u16 flags;
721 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
722 if (pos <= 0)
723 return 0;
725 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
726 if (!save_state) {
727 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
728 return -ENOMEM;
730 cap = (u16 *)&save_state->data[0];
732 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
734 if (pcie_cap_has_devctl(dev->pcie_type, flags))
735 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
736 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
737 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
738 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
739 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
740 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
741 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
742 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
743 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
744 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
745 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
746 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
747 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
749 return 0;
752 static void pci_restore_pcie_state(struct pci_dev *dev)
754 int i = 0, pos;
755 struct pci_cap_saved_state *save_state;
756 u16 *cap;
757 u16 flags;
759 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
760 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
761 if (!save_state || pos <= 0)
762 return;
763 cap = (u16 *)&save_state->data[0];
765 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
767 if (pcie_cap_has_devctl(dev->pcie_type, flags))
768 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
769 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
770 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
771 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
772 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
773 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
774 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
775 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
776 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
777 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
778 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
779 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
780 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
784 static int pci_save_pcix_state(struct pci_dev *dev)
786 int pos;
787 struct pci_cap_saved_state *save_state;
789 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
790 if (pos <= 0)
791 return 0;
793 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
794 if (!save_state) {
795 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
796 return -ENOMEM;
799 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
801 return 0;
804 static void pci_restore_pcix_state(struct pci_dev *dev)
806 int i = 0, pos;
807 struct pci_cap_saved_state *save_state;
808 u16 *cap;
810 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
811 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
812 if (!save_state || pos <= 0)
813 return;
814 cap = (u16 *)&save_state->data[0];
816 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
821 * pci_save_state - save the PCI configuration space of a device before suspending
822 * @dev: - PCI device that we're dealing with
825 pci_save_state(struct pci_dev *dev)
827 int i;
828 /* XXX: 100% dword access ok here? */
829 for (i = 0; i < 16; i++)
830 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
831 dev->state_saved = true;
832 if ((i = pci_save_pcie_state(dev)) != 0)
833 return i;
834 if ((i = pci_save_pcix_state(dev)) != 0)
835 return i;
836 return 0;
839 /**
840 * pci_restore_state - Restore the saved state of a PCI device
841 * @dev: - PCI device that we're dealing with
843 int
844 pci_restore_state(struct pci_dev *dev)
846 int i;
847 u32 val;
849 /* PCI Express register must be restored first */
850 pci_restore_pcie_state(dev);
853 * The Base Address register should be programmed before the command
854 * register(s)
856 for (i = 15; i >= 0; i--) {
857 pci_read_config_dword(dev, i * 4, &val);
858 if (val != dev->saved_config_space[i]) {
859 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
860 "space at offset %#x (was %#x, writing %#x)\n",
861 i, val, (int)dev->saved_config_space[i]);
862 pci_write_config_dword(dev,i * 4,
863 dev->saved_config_space[i]);
866 pci_restore_pcix_state(dev);
867 pci_restore_msi_state(dev);
868 pci_restore_iov_state(dev);
870 return 0;
873 static int do_pci_enable_device(struct pci_dev *dev, int bars)
875 int err;
877 err = pci_set_power_state(dev, PCI_D0);
878 if (err < 0 && err != -EIO)
879 return err;
880 err = pcibios_enable_device(dev, bars);
881 if (err < 0)
882 return err;
883 pci_fixup_device(pci_fixup_enable, dev);
885 return 0;
889 * pci_reenable_device - Resume abandoned device
890 * @dev: PCI device to be resumed
892 * Note this function is a backend of pci_default_resume and is not supposed
893 * to be called by normal code, write proper resume handler and use it instead.
895 int pci_reenable_device(struct pci_dev *dev)
897 if (pci_is_enabled(dev))
898 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
899 return 0;
902 static int __pci_enable_device_flags(struct pci_dev *dev,
903 resource_size_t flags)
905 int err;
906 int i, bars = 0;
908 if (atomic_add_return(1, &dev->enable_cnt) > 1)
909 return 0; /* already enabled */
911 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
912 if (dev->resource[i].flags & flags)
913 bars |= (1 << i);
915 err = do_pci_enable_device(dev, bars);
916 if (err < 0)
917 atomic_dec(&dev->enable_cnt);
918 return err;
922 * pci_enable_device_io - Initialize a device for use with IO space
923 * @dev: PCI device to be initialized
925 * Initialize device before it's used by a driver. Ask low-level code
926 * to enable I/O resources. Wake up the device if it was suspended.
927 * Beware, this function can fail.
929 int pci_enable_device_io(struct pci_dev *dev)
931 return __pci_enable_device_flags(dev, IORESOURCE_IO);
935 * pci_enable_device_mem - Initialize a device for use with Memory space
936 * @dev: PCI device to be initialized
938 * Initialize device before it's used by a driver. Ask low-level code
939 * to enable Memory resources. Wake up the device if it was suspended.
940 * Beware, this function can fail.
942 int pci_enable_device_mem(struct pci_dev *dev)
944 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
948 * pci_enable_device - Initialize device before it's used by a driver.
949 * @dev: PCI device to be initialized
951 * Initialize device before it's used by a driver. Ask low-level code
952 * to enable I/O and memory. Wake up the device if it was suspended.
953 * Beware, this function can fail.
955 * Note we don't actually enable the device many times if we call
956 * this function repeatedly (we just increment the count).
958 int pci_enable_device(struct pci_dev *dev)
960 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
964 * Managed PCI resources. This manages device on/off, intx/msi/msix
965 * on/off and BAR regions. pci_dev itself records msi/msix status, so
966 * there's no need to track it separately. pci_devres is initialized
967 * when a device is enabled using managed PCI device enable interface.
969 struct pci_devres {
970 unsigned int enabled:1;
971 unsigned int pinned:1;
972 unsigned int orig_intx:1;
973 unsigned int restore_intx:1;
974 u32 region_mask;
977 static void pcim_release(struct device *gendev, void *res)
979 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
980 struct pci_devres *this = res;
981 int i;
983 if (dev->msi_enabled)
984 pci_disable_msi(dev);
985 if (dev->msix_enabled)
986 pci_disable_msix(dev);
988 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
989 if (this->region_mask & (1 << i))
990 pci_release_region(dev, i);
992 if (this->restore_intx)
993 pci_intx(dev, this->orig_intx);
995 if (this->enabled && !this->pinned)
996 pci_disable_device(dev);
999 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1001 struct pci_devres *dr, *new_dr;
1003 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1004 if (dr)
1005 return dr;
1007 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1008 if (!new_dr)
1009 return NULL;
1010 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1013 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1015 if (pci_is_managed(pdev))
1016 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1017 return NULL;
1021 * pcim_enable_device - Managed pci_enable_device()
1022 * @pdev: PCI device to be initialized
1024 * Managed pci_enable_device().
1026 int pcim_enable_device(struct pci_dev *pdev)
1028 struct pci_devres *dr;
1029 int rc;
1031 dr = get_pci_dr(pdev);
1032 if (unlikely(!dr))
1033 return -ENOMEM;
1034 if (dr->enabled)
1035 return 0;
1037 rc = pci_enable_device(pdev);
1038 if (!rc) {
1039 pdev->is_managed = 1;
1040 dr->enabled = 1;
1042 return rc;
1046 * pcim_pin_device - Pin managed PCI device
1047 * @pdev: PCI device to pin
1049 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1050 * driver detach. @pdev must have been enabled with
1051 * pcim_enable_device().
1053 void pcim_pin_device(struct pci_dev *pdev)
1055 struct pci_devres *dr;
1057 dr = find_pci_dr(pdev);
1058 WARN_ON(!dr || !dr->enabled);
1059 if (dr)
1060 dr->pinned = 1;
1064 * pcibios_disable_device - disable arch specific PCI resources for device dev
1065 * @dev: the PCI device to disable
1067 * Disables architecture specific PCI resources for the device. This
1068 * is the default implementation. Architecture implementations can
1069 * override this.
1071 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1073 static void do_pci_disable_device(struct pci_dev *dev)
1075 u16 pci_command;
1077 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1078 if (pci_command & PCI_COMMAND_MASTER) {
1079 pci_command &= ~PCI_COMMAND_MASTER;
1080 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1083 pcibios_disable_device(dev);
1087 * pci_disable_enabled_device - Disable device without updating enable_cnt
1088 * @dev: PCI device to disable
1090 * NOTE: This function is a backend of PCI power management routines and is
1091 * not supposed to be called drivers.
1093 void pci_disable_enabled_device(struct pci_dev *dev)
1095 if (pci_is_enabled(dev))
1096 do_pci_disable_device(dev);
1100 * pci_disable_device - Disable PCI device after use
1101 * @dev: PCI device to be disabled
1103 * Signal to the system that the PCI device is not in use by the system
1104 * anymore. This only involves disabling PCI bus-mastering, if active.
1106 * Note we don't actually disable the device until all callers of
1107 * pci_device_enable() have called pci_device_disable().
1109 void
1110 pci_disable_device(struct pci_dev *dev)
1112 struct pci_devres *dr;
1114 dr = find_pci_dr(dev);
1115 if (dr)
1116 dr->enabled = 0;
1118 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1119 return;
1121 do_pci_disable_device(dev);
1123 dev->is_busmaster = 0;
1127 * pcibios_set_pcie_reset_state - set reset state for device dev
1128 * @dev: the PCI-E device reset
1129 * @state: Reset state to enter into
1132 * Sets the PCI-E reset state for the device. This is the default
1133 * implementation. Architecture implementations can override this.
1135 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1136 enum pcie_reset_state state)
1138 return -EINVAL;
1142 * pci_set_pcie_reset_state - set reset state for device dev
1143 * @dev: the PCI-E device reset
1144 * @state: Reset state to enter into
1147 * Sets the PCI reset state for the device.
1149 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1151 return pcibios_set_pcie_reset_state(dev, state);
1155 * pci_pme_capable - check the capability of PCI device to generate PME#
1156 * @dev: PCI device to handle.
1157 * @state: PCI state from which device will issue PME#.
1159 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1161 if (!dev->pm_cap)
1162 return false;
1164 return !!(dev->pme_support & (1 << state));
1168 * pci_pme_active - enable or disable PCI device's PME# function
1169 * @dev: PCI device to handle.
1170 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1172 * The caller must verify that the device is capable of generating PME# before
1173 * calling this function with @enable equal to 'true'.
1175 void pci_pme_active(struct pci_dev *dev, bool enable)
1177 u16 pmcsr;
1179 if (!dev->pm_cap)
1180 return;
1182 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1183 /* Clear PME_Status by writing 1 to it and enable PME# */
1184 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1185 if (!enable)
1186 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1188 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1190 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1191 enable ? "enabled" : "disabled");
1195 * pci_enable_wake - enable PCI device as wakeup event source
1196 * @dev: PCI device affected
1197 * @state: PCI state from which device will issue wakeup events
1198 * @enable: True to enable event generation; false to disable
1200 * This enables the device as a wakeup event source, or disables it.
1201 * When such events involves platform-specific hooks, those hooks are
1202 * called automatically by this routine.
1204 * Devices with legacy power management (no standard PCI PM capabilities)
1205 * always require such platform hooks.
1207 * RETURN VALUE:
1208 * 0 is returned on success
1209 * -EINVAL is returned if device is not supposed to wake up the system
1210 * Error code depending on the platform is returned if both the platform and
1211 * the native mechanism fail to enable the generation of wake-up events
1213 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1215 int error = 0;
1216 bool pme_done = false;
1218 if (enable && !device_may_wakeup(&dev->dev))
1219 return -EINVAL;
1222 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1223 * Anderson we should be doing PME# wake enable followed by ACPI wake
1224 * enable. To disable wake-up we call the platform first, for symmetry.
1227 if (!enable && platform_pci_can_wakeup(dev))
1228 error = platform_pci_sleep_wake(dev, false);
1230 if (!enable || pci_pme_capable(dev, state)) {
1231 pci_pme_active(dev, enable);
1232 pme_done = true;
1235 if (enable && platform_pci_can_wakeup(dev))
1236 error = platform_pci_sleep_wake(dev, true);
1238 return pme_done ? 0 : error;
1242 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1243 * @dev: PCI device to prepare
1244 * @enable: True to enable wake-up event generation; false to disable
1246 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1247 * and this function allows them to set that up cleanly - pci_enable_wake()
1248 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1249 * ordering constraints.
1251 * This function only returns error code if the device is not capable of
1252 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1253 * enable wake-up power for it.
1255 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1257 return pci_pme_capable(dev, PCI_D3cold) ?
1258 pci_enable_wake(dev, PCI_D3cold, enable) :
1259 pci_enable_wake(dev, PCI_D3hot, enable);
1263 * pci_target_state - find an appropriate low power state for a given PCI dev
1264 * @dev: PCI device
1266 * Use underlying platform code to find a supported low power state for @dev.
1267 * If the platform can't manage @dev, return the deepest state from which it
1268 * can generate wake events, based on any available PME info.
1270 pci_power_t pci_target_state(struct pci_dev *dev)
1272 pci_power_t target_state = PCI_D3hot;
1274 if (platform_pci_power_manageable(dev)) {
1276 * Call the platform to choose the target state of the device
1277 * and enable wake-up from this state if supported.
1279 pci_power_t state = platform_pci_choose_state(dev);
1281 switch (state) {
1282 case PCI_POWER_ERROR:
1283 case PCI_UNKNOWN:
1284 break;
1285 case PCI_D1:
1286 case PCI_D2:
1287 if (pci_no_d1d2(dev))
1288 break;
1289 default:
1290 target_state = state;
1292 } else if (!dev->pm_cap) {
1293 target_state = PCI_D0;
1294 } else if (device_may_wakeup(&dev->dev)) {
1296 * Find the deepest state from which the device can generate
1297 * wake-up events, make it the target state and enable device
1298 * to generate PME#.
1300 if (dev->pme_support) {
1301 while (target_state
1302 && !(dev->pme_support & (1 << target_state)))
1303 target_state--;
1307 return target_state;
1311 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1312 * @dev: Device to handle.
1314 * Choose the power state appropriate for the device depending on whether
1315 * it can wake up the system and/or is power manageable by the platform
1316 * (PCI_D3hot is the default) and put the device into that state.
1318 int pci_prepare_to_sleep(struct pci_dev *dev)
1320 pci_power_t target_state = pci_target_state(dev);
1321 int error;
1323 if (target_state == PCI_POWER_ERROR)
1324 return -EIO;
1326 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1328 error = pci_set_power_state(dev, target_state);
1330 if (error)
1331 pci_enable_wake(dev, target_state, false);
1333 return error;
1337 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1338 * @dev: Device to handle.
1340 * Disable device's sytem wake-up capability and put it into D0.
1342 int pci_back_from_sleep(struct pci_dev *dev)
1344 pci_enable_wake(dev, PCI_D0, false);
1345 return pci_set_power_state(dev, PCI_D0);
1349 * pci_pm_init - Initialize PM functions of given PCI device
1350 * @dev: PCI device to handle.
1352 void pci_pm_init(struct pci_dev *dev)
1354 int pm;
1355 u16 pmc;
1357 dev->pm_cap = 0;
1359 /* find PCI PM capability in list */
1360 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1361 if (!pm)
1362 return;
1363 /* Check device's ability to generate PME# */
1364 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1366 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1367 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1368 pmc & PCI_PM_CAP_VER_MASK);
1369 return;
1372 dev->pm_cap = pm;
1374 dev->d1_support = false;
1375 dev->d2_support = false;
1376 if (!pci_no_d1d2(dev)) {
1377 if (pmc & PCI_PM_CAP_D1)
1378 dev->d1_support = true;
1379 if (pmc & PCI_PM_CAP_D2)
1380 dev->d2_support = true;
1382 if (dev->d1_support || dev->d2_support)
1383 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1384 dev->d1_support ? " D1" : "",
1385 dev->d2_support ? " D2" : "");
1388 pmc &= PCI_PM_CAP_PME_MASK;
1389 if (pmc) {
1390 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1391 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1392 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1393 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1394 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1395 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1396 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1398 * Make device's PM flags reflect the wake-up capability, but
1399 * let the user space enable it to wake up the system as needed.
1401 device_set_wakeup_capable(&dev->dev, true);
1402 device_set_wakeup_enable(&dev->dev, false);
1403 /* Disable the PME# generation functionality */
1404 pci_pme_active(dev, false);
1405 } else {
1406 dev->pme_support = 0;
1411 * platform_pci_wakeup_init - init platform wakeup if present
1412 * @dev: PCI device
1414 * Some devices don't have PCI PM caps but can still generate wakeup
1415 * events through platform methods (like ACPI events). If @dev supports
1416 * platform wakeup events, set the device flag to indicate as much. This
1417 * may be redundant if the device also supports PCI PM caps, but double
1418 * initialization should be safe in that case.
1420 void platform_pci_wakeup_init(struct pci_dev *dev)
1422 if (!platform_pci_can_wakeup(dev))
1423 return;
1425 device_set_wakeup_capable(&dev->dev, true);
1426 device_set_wakeup_enable(&dev->dev, false);
1427 platform_pci_sleep_wake(dev, false);
1431 * pci_add_save_buffer - allocate buffer for saving given capability registers
1432 * @dev: the PCI device
1433 * @cap: the capability to allocate the buffer for
1434 * @size: requested size of the buffer
1436 static int pci_add_cap_save_buffer(
1437 struct pci_dev *dev, char cap, unsigned int size)
1439 int pos;
1440 struct pci_cap_saved_state *save_state;
1442 pos = pci_find_capability(dev, cap);
1443 if (pos <= 0)
1444 return 0;
1446 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1447 if (!save_state)
1448 return -ENOMEM;
1450 save_state->cap_nr = cap;
1451 pci_add_saved_cap(dev, save_state);
1453 return 0;
1457 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1458 * @dev: the PCI device
1460 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1462 int error;
1464 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1465 PCI_EXP_SAVE_REGS * sizeof(u16));
1466 if (error)
1467 dev_err(&dev->dev,
1468 "unable to preallocate PCI Express save buffer\n");
1470 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1471 if (error)
1472 dev_err(&dev->dev,
1473 "unable to preallocate PCI-X save buffer\n");
1477 * pci_enable_ari - enable ARI forwarding if hardware support it
1478 * @dev: the PCI device
1480 void pci_enable_ari(struct pci_dev *dev)
1482 int pos;
1483 u32 cap;
1484 u16 ctrl;
1485 struct pci_dev *bridge;
1487 if (!dev->is_pcie || dev->devfn)
1488 return;
1490 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1491 if (!pos)
1492 return;
1494 bridge = dev->bus->self;
1495 if (!bridge || !bridge->is_pcie)
1496 return;
1498 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1499 if (!pos)
1500 return;
1502 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1503 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1504 return;
1506 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1507 ctrl |= PCI_EXP_DEVCTL2_ARI;
1508 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1510 bridge->ari_enabled = 1;
1514 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1515 * @dev: the PCI device
1516 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1518 * Perform INTx swizzling for a device behind one level of bridge. This is
1519 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1520 * behind bridges on add-in cards.
1522 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1524 return (((pin - 1) + PCI_SLOT(dev->devfn)) % 4) + 1;
1528 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1530 u8 pin;
1532 pin = dev->pin;
1533 if (!pin)
1534 return -1;
1536 while (!pci_is_root_bus(dev->bus)) {
1537 pin = pci_swizzle_interrupt_pin(dev, pin);
1538 dev = dev->bus->self;
1540 *bridge = dev;
1541 return pin;
1545 * pci_common_swizzle - swizzle INTx all the way to root bridge
1546 * @dev: the PCI device
1547 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1549 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1550 * bridges all the way up to a PCI root bus.
1552 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1554 u8 pin = *pinp;
1556 while (!pci_is_root_bus(dev->bus)) {
1557 pin = pci_swizzle_interrupt_pin(dev, pin);
1558 dev = dev->bus->self;
1560 *pinp = pin;
1561 return PCI_SLOT(dev->devfn);
1565 * pci_release_region - Release a PCI bar
1566 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1567 * @bar: BAR to release
1569 * Releases the PCI I/O and memory resources previously reserved by a
1570 * successful call to pci_request_region. Call this function only
1571 * after all use of the PCI regions has ceased.
1573 void pci_release_region(struct pci_dev *pdev, int bar)
1575 struct pci_devres *dr;
1577 if (pci_resource_len(pdev, bar) == 0)
1578 return;
1579 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1580 release_region(pci_resource_start(pdev, bar),
1581 pci_resource_len(pdev, bar));
1582 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1583 release_mem_region(pci_resource_start(pdev, bar),
1584 pci_resource_len(pdev, bar));
1586 dr = find_pci_dr(pdev);
1587 if (dr)
1588 dr->region_mask &= ~(1 << bar);
1592 * __pci_request_region - Reserved PCI I/O and memory resource
1593 * @pdev: PCI device whose resources are to be reserved
1594 * @bar: BAR to be reserved
1595 * @res_name: Name to be associated with resource.
1596 * @exclusive: whether the region access is exclusive or not
1598 * Mark the PCI region associated with PCI device @pdev BR @bar as
1599 * being reserved by owner @res_name. Do not access any
1600 * address inside the PCI regions unless this call returns
1601 * successfully.
1603 * If @exclusive is set, then the region is marked so that userspace
1604 * is explicitly not allowed to map the resource via /dev/mem or
1605 * sysfs MMIO access.
1607 * Returns 0 on success, or %EBUSY on error. A warning
1608 * message is also printed on failure.
1610 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1611 int exclusive)
1613 struct pci_devres *dr;
1615 if (pci_resource_len(pdev, bar) == 0)
1616 return 0;
1618 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1619 if (!request_region(pci_resource_start(pdev, bar),
1620 pci_resource_len(pdev, bar), res_name))
1621 goto err_out;
1623 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1624 if (!__request_mem_region(pci_resource_start(pdev, bar),
1625 pci_resource_len(pdev, bar), res_name,
1626 exclusive))
1627 goto err_out;
1630 dr = find_pci_dr(pdev);
1631 if (dr)
1632 dr->region_mask |= 1 << bar;
1634 return 0;
1636 err_out:
1637 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1638 bar,
1639 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1640 &pdev->resource[bar]);
1641 return -EBUSY;
1645 * pci_request_region - Reserve PCI I/O and memory resource
1646 * @pdev: PCI device whose resources are to be reserved
1647 * @bar: BAR to be reserved
1648 * @res_name: Name to be associated with resource
1650 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1651 * being reserved by owner @res_name. Do not access any
1652 * address inside the PCI regions unless this call returns
1653 * successfully.
1655 * Returns 0 on success, or %EBUSY on error. A warning
1656 * message is also printed on failure.
1658 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1660 return __pci_request_region(pdev, bar, res_name, 0);
1664 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1665 * @pdev: PCI device whose resources are to be reserved
1666 * @bar: BAR to be reserved
1667 * @res_name: Name to be associated with resource.
1669 * Mark the PCI region associated with PCI device @pdev BR @bar as
1670 * being reserved by owner @res_name. Do not access any
1671 * address inside the PCI regions unless this call returns
1672 * successfully.
1674 * Returns 0 on success, or %EBUSY on error. A warning
1675 * message is also printed on failure.
1677 * The key difference that _exclusive makes it that userspace is
1678 * explicitly not allowed to map the resource via /dev/mem or
1679 * sysfs.
1681 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1683 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1686 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1687 * @pdev: PCI device whose resources were previously reserved
1688 * @bars: Bitmask of BARs to be released
1690 * Release selected PCI I/O and memory resources previously reserved.
1691 * Call this function only after all use of the PCI regions has ceased.
1693 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1695 int i;
1697 for (i = 0; i < 6; i++)
1698 if (bars & (1 << i))
1699 pci_release_region(pdev, i);
1702 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1703 const char *res_name, int excl)
1705 int i;
1707 for (i = 0; i < 6; i++)
1708 if (bars & (1 << i))
1709 if (__pci_request_region(pdev, i, res_name, excl))
1710 goto err_out;
1711 return 0;
1713 err_out:
1714 while(--i >= 0)
1715 if (bars & (1 << i))
1716 pci_release_region(pdev, i);
1718 return -EBUSY;
1723 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1724 * @pdev: PCI device whose resources are to be reserved
1725 * @bars: Bitmask of BARs to be requested
1726 * @res_name: Name to be associated with resource
1728 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1729 const char *res_name)
1731 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1734 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1735 int bars, const char *res_name)
1737 return __pci_request_selected_regions(pdev, bars, res_name,
1738 IORESOURCE_EXCLUSIVE);
1742 * pci_release_regions - Release reserved PCI I/O and memory resources
1743 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1745 * Releases all PCI I/O and memory resources previously reserved by a
1746 * successful call to pci_request_regions. Call this function only
1747 * after all use of the PCI regions has ceased.
1750 void pci_release_regions(struct pci_dev *pdev)
1752 pci_release_selected_regions(pdev, (1 << 6) - 1);
1756 * pci_request_regions - Reserved PCI I/O and memory resources
1757 * @pdev: PCI device whose resources are to be reserved
1758 * @res_name: Name to be associated with resource.
1760 * Mark all PCI regions associated with PCI device @pdev as
1761 * being reserved by owner @res_name. Do not access any
1762 * address inside the PCI regions unless this call returns
1763 * successfully.
1765 * Returns 0 on success, or %EBUSY on error. A warning
1766 * message is also printed on failure.
1768 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1770 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1774 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1775 * @pdev: PCI device whose resources are to be reserved
1776 * @res_name: Name to be associated with resource.
1778 * Mark all PCI regions associated with PCI device @pdev as
1779 * being reserved by owner @res_name. Do not access any
1780 * address inside the PCI regions unless this call returns
1781 * successfully.
1783 * pci_request_regions_exclusive() will mark the region so that
1784 * /dev/mem and the sysfs MMIO access will not be allowed.
1786 * Returns 0 on success, or %EBUSY on error. A warning
1787 * message is also printed on failure.
1789 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1791 return pci_request_selected_regions_exclusive(pdev,
1792 ((1 << 6) - 1), res_name);
1795 static void __pci_set_master(struct pci_dev *dev, bool enable)
1797 u16 old_cmd, cmd;
1799 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1800 if (enable)
1801 cmd = old_cmd | PCI_COMMAND_MASTER;
1802 else
1803 cmd = old_cmd & ~PCI_COMMAND_MASTER;
1804 if (cmd != old_cmd) {
1805 dev_dbg(&dev->dev, "%s bus mastering\n",
1806 enable ? "enabling" : "disabling");
1807 pci_write_config_word(dev, PCI_COMMAND, cmd);
1809 dev->is_busmaster = enable;
1813 * pci_set_master - enables bus-mastering for device dev
1814 * @dev: the PCI device to enable
1816 * Enables bus-mastering on the device and calls pcibios_set_master()
1817 * to do the needed arch specific settings.
1819 void pci_set_master(struct pci_dev *dev)
1821 __pci_set_master(dev, true);
1822 pcibios_set_master(dev);
1826 * pci_clear_master - disables bus-mastering for device dev
1827 * @dev: the PCI device to disable
1829 void pci_clear_master(struct pci_dev *dev)
1831 __pci_set_master(dev, false);
1834 #ifdef PCI_DISABLE_MWI
1835 int pci_set_mwi(struct pci_dev *dev)
1837 return 0;
1840 int pci_try_set_mwi(struct pci_dev *dev)
1842 return 0;
1845 void pci_clear_mwi(struct pci_dev *dev)
1849 #else
1851 #ifndef PCI_CACHE_LINE_BYTES
1852 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1853 #endif
1855 /* This can be overridden by arch code. */
1856 /* Don't forget this is measured in 32-bit words, not bytes */
1857 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1860 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1861 * @dev: the PCI device for which MWI is to be enabled
1863 * Helper function for pci_set_mwi.
1864 * Originally copied from drivers/net/acenic.c.
1865 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1867 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1869 static int
1870 pci_set_cacheline_size(struct pci_dev *dev)
1872 u8 cacheline_size;
1874 if (!pci_cache_line_size)
1875 return -EINVAL; /* The system doesn't support MWI. */
1877 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1878 equal to or multiple of the right value. */
1879 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1880 if (cacheline_size >= pci_cache_line_size &&
1881 (cacheline_size % pci_cache_line_size) == 0)
1882 return 0;
1884 /* Write the correct value. */
1885 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1886 /* Read it back. */
1887 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1888 if (cacheline_size == pci_cache_line_size)
1889 return 0;
1891 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1892 "supported\n", pci_cache_line_size << 2);
1894 return -EINVAL;
1898 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1899 * @dev: the PCI device for which MWI is enabled
1901 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1903 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1906 pci_set_mwi(struct pci_dev *dev)
1908 int rc;
1909 u16 cmd;
1911 rc = pci_set_cacheline_size(dev);
1912 if (rc)
1913 return rc;
1915 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1916 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1917 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1918 cmd |= PCI_COMMAND_INVALIDATE;
1919 pci_write_config_word(dev, PCI_COMMAND, cmd);
1922 return 0;
1926 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1927 * @dev: the PCI device for which MWI is enabled
1929 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1930 * Callers are not required to check the return value.
1932 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1934 int pci_try_set_mwi(struct pci_dev *dev)
1936 int rc = pci_set_mwi(dev);
1937 return rc;
1941 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1942 * @dev: the PCI device to disable
1944 * Disables PCI Memory-Write-Invalidate transaction on the device
1946 void
1947 pci_clear_mwi(struct pci_dev *dev)
1949 u16 cmd;
1951 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1952 if (cmd & PCI_COMMAND_INVALIDATE) {
1953 cmd &= ~PCI_COMMAND_INVALIDATE;
1954 pci_write_config_word(dev, PCI_COMMAND, cmd);
1957 #endif /* ! PCI_DISABLE_MWI */
1960 * pci_intx - enables/disables PCI INTx for device dev
1961 * @pdev: the PCI device to operate on
1962 * @enable: boolean: whether to enable or disable PCI INTx
1964 * Enables/disables PCI INTx for device dev
1966 void
1967 pci_intx(struct pci_dev *pdev, int enable)
1969 u16 pci_command, new;
1971 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1973 if (enable) {
1974 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1975 } else {
1976 new = pci_command | PCI_COMMAND_INTX_DISABLE;
1979 if (new != pci_command) {
1980 struct pci_devres *dr;
1982 pci_write_config_word(pdev, PCI_COMMAND, new);
1984 dr = find_pci_dr(pdev);
1985 if (dr && !dr->restore_intx) {
1986 dr->restore_intx = 1;
1987 dr->orig_intx = !enable;
1993 * pci_msi_off - disables any msi or msix capabilities
1994 * @dev: the PCI device to operate on
1996 * If you want to use msi see pci_enable_msi and friends.
1997 * This is a lower level primitive that allows us to disable
1998 * msi operation at the device level.
2000 void pci_msi_off(struct pci_dev *dev)
2002 int pos;
2003 u16 control;
2005 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2006 if (pos) {
2007 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2008 control &= ~PCI_MSI_FLAGS_ENABLE;
2009 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2011 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2012 if (pos) {
2013 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2014 control &= ~PCI_MSIX_FLAGS_ENABLE;
2015 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2019 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2021 * These can be overridden by arch-specific implementations
2024 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2026 if (!pci_dma_supported(dev, mask))
2027 return -EIO;
2029 dev->dma_mask = mask;
2031 return 0;
2035 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2037 if (!pci_dma_supported(dev, mask))
2038 return -EIO;
2040 dev->dev.coherent_dma_mask = mask;
2042 return 0;
2044 #endif
2046 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2047 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2049 return dma_set_max_seg_size(&dev->dev, size);
2051 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2052 #endif
2054 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2055 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2057 return dma_set_seg_boundary(&dev->dev, mask);
2059 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2060 #endif
2062 static int pcie_flr(struct pci_dev *dev, int probe)
2064 int i;
2065 int pos;
2066 u32 cap;
2067 u16 status;
2069 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2070 if (!pos)
2071 return -ENOTTY;
2073 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2074 if (!(cap & PCI_EXP_DEVCAP_FLR))
2075 return -ENOTTY;
2077 if (probe)
2078 return 0;
2080 /* Wait for Transaction Pending bit clean */
2081 for (i = 0; i < 4; i++) {
2082 if (i)
2083 msleep((1 << (i - 1)) * 100);
2085 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2086 if (!(status & PCI_EXP_DEVSTA_TRPND))
2087 goto clear;
2090 dev_err(&dev->dev, "transaction is not cleared; "
2091 "proceeding with reset anyway\n");
2093 clear:
2094 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL,
2095 PCI_EXP_DEVCTL_BCR_FLR);
2096 msleep(100);
2098 return 0;
2101 static int pci_af_flr(struct pci_dev *dev, int probe)
2103 int i;
2104 int pos;
2105 u8 cap;
2106 u8 status;
2108 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2109 if (!pos)
2110 return -ENOTTY;
2112 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2113 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2114 return -ENOTTY;
2116 if (probe)
2117 return 0;
2119 /* Wait for Transaction Pending bit clean */
2120 for (i = 0; i < 4; i++) {
2121 if (i)
2122 msleep((1 << (i - 1)) * 100);
2124 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2125 if (!(status & PCI_AF_STATUS_TP))
2126 goto clear;
2129 dev_err(&dev->dev, "transaction is not cleared; "
2130 "proceeding with reset anyway\n");
2132 clear:
2133 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2134 msleep(100);
2136 return 0;
2139 static int pci_pm_reset(struct pci_dev *dev, int probe)
2141 u16 csr;
2143 if (!dev->pm_cap)
2144 return -ENOTTY;
2146 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2147 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2148 return -ENOTTY;
2150 if (probe)
2151 return 0;
2153 if (dev->current_state != PCI_D0)
2154 return -EINVAL;
2156 csr &= ~PCI_PM_CTRL_STATE_MASK;
2157 csr |= PCI_D3hot;
2158 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2159 msleep(pci_pm_d3_delay);
2161 csr &= ~PCI_PM_CTRL_STATE_MASK;
2162 csr |= PCI_D0;
2163 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2164 msleep(pci_pm_d3_delay);
2166 return 0;
2169 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2171 u16 ctrl;
2172 struct pci_dev *pdev;
2174 if (dev->subordinate)
2175 return -ENOTTY;
2177 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2178 if (pdev != dev)
2179 return -ENOTTY;
2181 if (probe)
2182 return 0;
2184 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2185 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2186 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2187 msleep(100);
2189 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2190 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2191 msleep(100);
2193 return 0;
2196 static int pci_dev_reset(struct pci_dev *dev, int probe)
2198 int rc;
2200 might_sleep();
2202 if (!probe) {
2203 pci_block_user_cfg_access(dev);
2204 /* block PM suspend, driver probe, etc. */
2205 down(&dev->dev.sem);
2208 rc = pcie_flr(dev, probe);
2209 if (rc != -ENOTTY)
2210 goto done;
2212 rc = pci_af_flr(dev, probe);
2213 if (rc != -ENOTTY)
2214 goto done;
2216 rc = pci_pm_reset(dev, probe);
2217 if (rc != -ENOTTY)
2218 goto done;
2220 rc = pci_parent_bus_reset(dev, probe);
2221 done:
2222 if (!probe) {
2223 up(&dev->dev.sem);
2224 pci_unblock_user_cfg_access(dev);
2227 return rc;
2231 * __pci_reset_function - reset a PCI device function
2232 * @dev: PCI device to reset
2234 * Some devices allow an individual function to be reset without affecting
2235 * other functions in the same device. The PCI device must be responsive
2236 * to PCI config space in order to use this function.
2238 * The device function is presumed to be unused when this function is called.
2239 * Resetting the device will make the contents of PCI configuration space
2240 * random, so any caller of this must be prepared to reinitialise the
2241 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2242 * etc.
2244 * Returns 0 if the device function was successfully reset or negative if the
2245 * device doesn't support resetting a single function.
2247 int __pci_reset_function(struct pci_dev *dev)
2249 return pci_dev_reset(dev, 0);
2251 EXPORT_SYMBOL_GPL(__pci_reset_function);
2254 * pci_reset_function - quiesce and reset a PCI device function
2255 * @dev: PCI device to reset
2257 * Some devices allow an individual function to be reset without affecting
2258 * other functions in the same device. The PCI device must be responsive
2259 * to PCI config space in order to use this function.
2261 * This function does not just reset the PCI portion of a device, but
2262 * clears all the state associated with the device. This function differs
2263 * from __pci_reset_function in that it saves and restores device state
2264 * over the reset.
2266 * Returns 0 if the device function was successfully reset or negative if the
2267 * device doesn't support resetting a single function.
2269 int pci_reset_function(struct pci_dev *dev)
2271 int rc;
2273 rc = pci_dev_reset(dev, 1);
2274 if (rc)
2275 return rc;
2277 pci_save_state(dev);
2280 * both INTx and MSI are disabled after the Interrupt Disable bit
2281 * is set and the Bus Master bit is cleared.
2283 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2285 rc = pci_dev_reset(dev, 0);
2287 pci_restore_state(dev);
2289 return rc;
2291 EXPORT_SYMBOL_GPL(pci_reset_function);
2294 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2295 * @dev: PCI device to query
2297 * Returns mmrbc: maximum designed memory read count in bytes
2298 * or appropriate error value.
2300 int pcix_get_max_mmrbc(struct pci_dev *dev)
2302 int err, cap;
2303 u32 stat;
2305 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2306 if (!cap)
2307 return -EINVAL;
2309 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2310 if (err)
2311 return -EINVAL;
2313 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2315 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2318 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2319 * @dev: PCI device to query
2321 * Returns mmrbc: maximum memory read count in bytes
2322 * or appropriate error value.
2324 int pcix_get_mmrbc(struct pci_dev *dev)
2326 int ret, cap;
2327 u32 cmd;
2329 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2330 if (!cap)
2331 return -EINVAL;
2333 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2334 if (!ret)
2335 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2337 return ret;
2339 EXPORT_SYMBOL(pcix_get_mmrbc);
2342 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2343 * @dev: PCI device to query
2344 * @mmrbc: maximum memory read count in bytes
2345 * valid values are 512, 1024, 2048, 4096
2347 * If possible sets maximum memory read byte count, some bridges have erratas
2348 * that prevent this.
2350 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2352 int cap, err = -EINVAL;
2353 u32 stat, cmd, v, o;
2355 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2356 goto out;
2358 v = ffs(mmrbc) - 10;
2360 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2361 if (!cap)
2362 goto out;
2364 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2365 if (err)
2366 goto out;
2368 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2369 return -E2BIG;
2371 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2372 if (err)
2373 goto out;
2375 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2376 if (o != v) {
2377 if (v > o && dev->bus &&
2378 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2379 return -EIO;
2381 cmd &= ~PCI_X_CMD_MAX_READ;
2382 cmd |= v << 2;
2383 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2385 out:
2386 return err;
2388 EXPORT_SYMBOL(pcix_set_mmrbc);
2391 * pcie_get_readrq - get PCI Express read request size
2392 * @dev: PCI device to query
2394 * Returns maximum memory read request in bytes
2395 * or appropriate error value.
2397 int pcie_get_readrq(struct pci_dev *dev)
2399 int ret, cap;
2400 u16 ctl;
2402 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2403 if (!cap)
2404 return -EINVAL;
2406 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2407 if (!ret)
2408 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2410 return ret;
2412 EXPORT_SYMBOL(pcie_get_readrq);
2415 * pcie_set_readrq - set PCI Express maximum memory read request
2416 * @dev: PCI device to query
2417 * @rq: maximum memory read count in bytes
2418 * valid values are 128, 256, 512, 1024, 2048, 4096
2420 * If possible sets maximum read byte count
2422 int pcie_set_readrq(struct pci_dev *dev, int rq)
2424 int cap, err = -EINVAL;
2425 u16 ctl, v;
2427 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2428 goto out;
2430 v = (ffs(rq) - 8) << 12;
2432 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2433 if (!cap)
2434 goto out;
2436 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2437 if (err)
2438 goto out;
2440 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2441 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2442 ctl |= v;
2443 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2446 out:
2447 return err;
2449 EXPORT_SYMBOL(pcie_set_readrq);
2452 * pci_select_bars - Make BAR mask from the type of resource
2453 * @dev: the PCI device for which BAR mask is made
2454 * @flags: resource type mask to be selected
2456 * This helper routine makes bar mask from the type of resource.
2458 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2460 int i, bars = 0;
2461 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2462 if (pci_resource_flags(dev, i) & flags)
2463 bars |= (1 << i);
2464 return bars;
2468 * pci_resource_bar - get position of the BAR associated with a resource
2469 * @dev: the PCI device
2470 * @resno: the resource number
2471 * @type: the BAR type to be filled in
2473 * Returns BAR position in config space, or 0 if the BAR is invalid.
2475 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2477 int reg;
2479 if (resno < PCI_ROM_RESOURCE) {
2480 *type = pci_bar_unknown;
2481 return PCI_BASE_ADDRESS_0 + 4 * resno;
2482 } else if (resno == PCI_ROM_RESOURCE) {
2483 *type = pci_bar_mem32;
2484 return dev->rom_base_reg;
2485 } else if (resno < PCI_BRIDGE_RESOURCES) {
2486 /* device specific resource */
2487 reg = pci_iov_resource_bar(dev, resno, type);
2488 if (reg)
2489 return reg;
2492 dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2493 return 0;
2496 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2497 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2498 spinlock_t resource_alignment_lock = SPIN_LOCK_UNLOCKED;
2501 * pci_specified_resource_alignment - get resource alignment specified by user.
2502 * @dev: the PCI device to get
2504 * RETURNS: Resource alignment if it is specified.
2505 * Zero if it is not specified.
2507 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2509 int seg, bus, slot, func, align_order, count;
2510 resource_size_t align = 0;
2511 char *p;
2513 spin_lock(&resource_alignment_lock);
2514 p = resource_alignment_param;
2515 while (*p) {
2516 count = 0;
2517 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2518 p[count] == '@') {
2519 p += count + 1;
2520 } else {
2521 align_order = -1;
2523 if (sscanf(p, "%x:%x:%x.%x%n",
2524 &seg, &bus, &slot, &func, &count) != 4) {
2525 seg = 0;
2526 if (sscanf(p, "%x:%x.%x%n",
2527 &bus, &slot, &func, &count) != 3) {
2528 /* Invalid format */
2529 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2531 break;
2534 p += count;
2535 if (seg == pci_domain_nr(dev->bus) &&
2536 bus == dev->bus->number &&
2537 slot == PCI_SLOT(dev->devfn) &&
2538 func == PCI_FUNC(dev->devfn)) {
2539 if (align_order == -1) {
2540 align = PAGE_SIZE;
2541 } else {
2542 align = 1 << align_order;
2544 /* Found */
2545 break;
2547 if (*p != ';' && *p != ',') {
2548 /* End of param or invalid format */
2549 break;
2551 p++;
2553 spin_unlock(&resource_alignment_lock);
2554 return align;
2558 * pci_is_reassigndev - check if specified PCI is target device to reassign
2559 * @dev: the PCI device to check
2561 * RETURNS: non-zero for PCI device is a target device to reassign,
2562 * or zero is not.
2564 int pci_is_reassigndev(struct pci_dev *dev)
2566 return (pci_specified_resource_alignment(dev) != 0);
2569 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2571 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2572 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2573 spin_lock(&resource_alignment_lock);
2574 strncpy(resource_alignment_param, buf, count);
2575 resource_alignment_param[count] = '\0';
2576 spin_unlock(&resource_alignment_lock);
2577 return count;
2580 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2582 size_t count;
2583 spin_lock(&resource_alignment_lock);
2584 count = snprintf(buf, size, "%s", resource_alignment_param);
2585 spin_unlock(&resource_alignment_lock);
2586 return count;
2589 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2591 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2594 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2595 const char *buf, size_t count)
2597 return pci_set_resource_alignment_param(buf, count);
2600 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2601 pci_resource_alignment_store);
2603 static int __init pci_resource_alignment_sysfs_init(void)
2605 return bus_create_file(&pci_bus_type,
2606 &bus_attr_resource_alignment);
2609 late_initcall(pci_resource_alignment_sysfs_init);
2611 static void __devinit pci_no_domains(void)
2613 #ifdef CONFIG_PCI_DOMAINS
2614 pci_domains_supported = 0;
2615 #endif
2619 * pci_ext_cfg_enabled - can we access extended PCI config space?
2620 * @dev: The PCI device of the root bridge.
2622 * Returns 1 if we can access PCI extended config space (offsets
2623 * greater than 0xff). This is the default implementation. Architecture
2624 * implementations can override this.
2626 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2628 return 1;
2631 static int __devinit pci_init(void)
2633 struct pci_dev *dev = NULL;
2635 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2636 pci_fixup_device(pci_fixup_final, dev);
2639 return 0;
2642 static int __init pci_setup(char *str)
2644 while (str) {
2645 char *k = strchr(str, ',');
2646 if (k)
2647 *k++ = 0;
2648 if (*str && (str = pcibios_setup(str)) && *str) {
2649 if (!strcmp(str, "nomsi")) {
2650 pci_no_msi();
2651 } else if (!strcmp(str, "noaer")) {
2652 pci_no_aer();
2653 } else if (!strcmp(str, "nodomains")) {
2654 pci_no_domains();
2655 } else if (!strncmp(str, "cbiosize=", 9)) {
2656 pci_cardbus_io_size = memparse(str + 9, &str);
2657 } else if (!strncmp(str, "cbmemsize=", 10)) {
2658 pci_cardbus_mem_size = memparse(str + 10, &str);
2659 } else if (!strncmp(str, "resource_alignment=", 19)) {
2660 pci_set_resource_alignment_param(str + 19,
2661 strlen(str + 19));
2662 } else if (!strncmp(str, "ecrc=", 5)) {
2663 pcie_ecrc_get_policy(str + 5);
2664 } else {
2665 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2666 str);
2669 str = k;
2671 return 0;
2673 early_param("pci", pci_setup);
2675 device_initcall(pci_init);
2677 EXPORT_SYMBOL(pci_reenable_device);
2678 EXPORT_SYMBOL(pci_enable_device_io);
2679 EXPORT_SYMBOL(pci_enable_device_mem);
2680 EXPORT_SYMBOL(pci_enable_device);
2681 EXPORT_SYMBOL(pcim_enable_device);
2682 EXPORT_SYMBOL(pcim_pin_device);
2683 EXPORT_SYMBOL(pci_disable_device);
2684 EXPORT_SYMBOL(pci_find_capability);
2685 EXPORT_SYMBOL(pci_bus_find_capability);
2686 EXPORT_SYMBOL(pci_release_regions);
2687 EXPORT_SYMBOL(pci_request_regions);
2688 EXPORT_SYMBOL(pci_request_regions_exclusive);
2689 EXPORT_SYMBOL(pci_release_region);
2690 EXPORT_SYMBOL(pci_request_region);
2691 EXPORT_SYMBOL(pci_request_region_exclusive);
2692 EXPORT_SYMBOL(pci_release_selected_regions);
2693 EXPORT_SYMBOL(pci_request_selected_regions);
2694 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2695 EXPORT_SYMBOL(pci_set_master);
2696 EXPORT_SYMBOL(pci_clear_master);
2697 EXPORT_SYMBOL(pci_set_mwi);
2698 EXPORT_SYMBOL(pci_try_set_mwi);
2699 EXPORT_SYMBOL(pci_clear_mwi);
2700 EXPORT_SYMBOL_GPL(pci_intx);
2701 EXPORT_SYMBOL(pci_set_dma_mask);
2702 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2703 EXPORT_SYMBOL(pci_assign_resource);
2704 EXPORT_SYMBOL(pci_find_parent_resource);
2705 EXPORT_SYMBOL(pci_select_bars);
2707 EXPORT_SYMBOL(pci_set_power_state);
2708 EXPORT_SYMBOL(pci_save_state);
2709 EXPORT_SYMBOL(pci_restore_state);
2710 EXPORT_SYMBOL(pci_pme_capable);
2711 EXPORT_SYMBOL(pci_pme_active);
2712 EXPORT_SYMBOL(pci_enable_wake);
2713 EXPORT_SYMBOL(pci_wake_from_d3);
2714 EXPORT_SYMBOL(pci_target_state);
2715 EXPORT_SYMBOL(pci_prepare_to_sleep);
2716 EXPORT_SYMBOL(pci_back_from_sleep);
2717 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);