2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/hdreg.h>
39 #include <linux/spinlock.h>
40 #include <linux/compat.h>
41 #include <asm/uaccess.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/blkdev.h>
46 #include <linux/genhd.h>
47 #include <linux/completion.h>
48 #include <scsi/scsi.h>
50 #include <scsi/scsi_ioctl.h>
51 #include <linux/cdrom.h>
52 #include <linux/scatterlist.h>
53 #include <linux/kthread.h>
55 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
56 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
57 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
59 /* Embedded module documentation macros - see modules.h */
60 MODULE_AUTHOR("Hewlett-Packard Company");
61 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
62 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
63 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
64 " Smart Array G2 Series SAS/SATA Controllers");
65 MODULE_VERSION("3.6.20");
66 MODULE_LICENSE("GPL");
68 #include "cciss_cmd.h"
70 #include <linux/cciss_ioctl.h>
72 /* define the PCI info for the cards we can control */
73 static const struct pci_device_id cciss_pci_device_id
[] = {
74 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISS
, 0x0E11, 0x4070},
75 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4080},
76 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4082},
77 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4083},
78 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x4091},
79 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409A},
80 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409B},
81 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409C},
82 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409D},
83 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSA
, 0x103C, 0x3225},
84 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3223},
85 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3234},
86 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3235},
87 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3211},
88 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3212},
89 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3213},
90 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3214},
91 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3215},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3237},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x323D},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
101 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
102 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
106 MODULE_DEVICE_TABLE(pci
, cciss_pci_device_id
);
108 /* board_id = Subsystem Device ID & Vendor ID
109 * product = Marketing Name for the board
110 * access = Address of the struct of function pointers
112 static struct board_type products
[] = {
113 {0x40700E11, "Smart Array 5300", &SA5_access
},
114 {0x40800E11, "Smart Array 5i", &SA5B_access
},
115 {0x40820E11, "Smart Array 532", &SA5B_access
},
116 {0x40830E11, "Smart Array 5312", &SA5B_access
},
117 {0x409A0E11, "Smart Array 641", &SA5_access
},
118 {0x409B0E11, "Smart Array 642", &SA5_access
},
119 {0x409C0E11, "Smart Array 6400", &SA5_access
},
120 {0x409D0E11, "Smart Array 6400 EM", &SA5_access
},
121 {0x40910E11, "Smart Array 6i", &SA5_access
},
122 {0x3225103C, "Smart Array P600", &SA5_access
},
123 {0x3223103C, "Smart Array P800", &SA5_access
},
124 {0x3234103C, "Smart Array P400", &SA5_access
},
125 {0x3235103C, "Smart Array P400i", &SA5_access
},
126 {0x3211103C, "Smart Array E200i", &SA5_access
},
127 {0x3212103C, "Smart Array E200", &SA5_access
},
128 {0x3213103C, "Smart Array E200i", &SA5_access
},
129 {0x3214103C, "Smart Array E200i", &SA5_access
},
130 {0x3215103C, "Smart Array E200i", &SA5_access
},
131 {0x3237103C, "Smart Array E500", &SA5_access
},
132 {0x323D103C, "Smart Array P700m", &SA5_access
},
133 {0x3241103C, "Smart Array P212", &SA5_access
},
134 {0x3243103C, "Smart Array P410", &SA5_access
},
135 {0x3245103C, "Smart Array P410i", &SA5_access
},
136 {0x3247103C, "Smart Array P411", &SA5_access
},
137 {0x3249103C, "Smart Array P812", &SA5_access
},
138 {0x324A103C, "Smart Array P712m", &SA5_access
},
139 {0x324B103C, "Smart Array P711m", &SA5_access
},
140 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
143 /* How long to wait (in milliseconds) for board to go into simple mode */
144 #define MAX_CONFIG_WAIT 30000
145 #define MAX_IOCTL_CONFIG_WAIT 1000
147 /*define how many times we will try a command because of bus resets */
148 #define MAX_CMD_RETRIES 3
152 /* Originally cciss driver only supports 8 major numbers */
153 #define MAX_CTLR_ORIG 8
155 static ctlr_info_t
*hba
[MAX_CTLR
];
157 static void do_cciss_request(struct request_queue
*q
);
158 static irqreturn_t
do_cciss_intr(int irq
, void *dev_id
);
159 static int cciss_open(struct block_device
*bdev
, fmode_t mode
);
160 static int cciss_release(struct gendisk
*disk
, fmode_t mode
);
161 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
162 unsigned int cmd
, unsigned long arg
);
163 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
);
165 static int cciss_revalidate(struct gendisk
*disk
);
166 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
);
167 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
170 static void cciss_read_capacity(int ctlr
, int logvol
, int withirq
,
171 sector_t
*total_size
, unsigned int *block_size
);
172 static void cciss_read_capacity_16(int ctlr
, int logvol
, int withirq
,
173 sector_t
*total_size
, unsigned int *block_size
);
174 static void cciss_geometry_inquiry(int ctlr
, int logvol
,
175 int withirq
, sector_t total_size
,
176 unsigned int block_size
, InquiryData_struct
*inq_buff
,
177 drive_info_struct
*drv
);
178 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*, struct pci_dev
*,
180 static void start_io(ctlr_info_t
*h
);
181 static int sendcmd(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
182 __u8 page_code
, unsigned char *scsi3addr
, int cmd_type
);
183 static int sendcmd_withirq(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
184 __u8 page_code
, unsigned char scsi3addr
[],
186 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
188 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
);
190 static void fail_all_cmds(unsigned long ctlr
);
191 static int scan_thread(void *data
);
192 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
);
194 #ifdef CONFIG_PROC_FS
195 static void cciss_procinit(int i
);
197 static void cciss_procinit(int i
)
200 #endif /* CONFIG_PROC_FS */
203 static int cciss_compat_ioctl(struct block_device
*, fmode_t
,
204 unsigned, unsigned long);
207 static struct block_device_operations cciss_fops
= {
208 .owner
= THIS_MODULE
,
210 .release
= cciss_release
,
211 .locked_ioctl
= cciss_ioctl
,
212 .getgeo
= cciss_getgeo
,
214 .compat_ioctl
= cciss_compat_ioctl
,
216 .revalidate_disk
= cciss_revalidate
,
220 * Enqueuing and dequeuing functions for cmdlists.
222 static inline void addQ(struct hlist_head
*list
, CommandList_struct
*c
)
224 hlist_add_head(&c
->list
, list
);
227 static inline void removeQ(CommandList_struct
*c
)
229 if (WARN_ON(hlist_unhashed(&c
->list
)))
232 hlist_del_init(&c
->list
);
235 #include "cciss_scsi.c" /* For SCSI tape support */
237 #define RAID_UNKNOWN 6
239 #ifdef CONFIG_PROC_FS
242 * Report information about this controller.
244 #define ENG_GIG 1000000000
245 #define ENG_GIG_FACTOR (ENG_GIG/512)
246 #define ENGAGE_SCSI "engage scsi"
247 static const char *raid_label
[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
251 static struct proc_dir_entry
*proc_cciss
;
253 static void cciss_seq_show_header(struct seq_file
*seq
)
255 ctlr_info_t
*h
= seq
->private;
257 seq_printf(seq
, "%s: HP %s Controller\n"
258 "Board ID: 0x%08lx\n"
259 "Firmware Version: %c%c%c%c\n"
261 "Logical drives: %d\n"
262 "Current Q depth: %d\n"
263 "Current # commands on controller: %d\n"
264 "Max Q depth since init: %d\n"
265 "Max # commands on controller since init: %d\n"
266 "Max SG entries since init: %d\n",
269 (unsigned long)h
->board_id
,
270 h
->firm_ver
[0], h
->firm_ver
[1], h
->firm_ver
[2],
271 h
->firm_ver
[3], (unsigned int)h
->intr
[SIMPLE_MODE_INT
],
273 h
->Qdepth
, h
->commands_outstanding
,
274 h
->maxQsinceinit
, h
->max_outstanding
, h
->maxSG
);
276 #ifdef CONFIG_CISS_SCSI_TAPE
277 cciss_seq_tape_report(seq
, h
->ctlr
);
278 #endif /* CONFIG_CISS_SCSI_TAPE */
281 static void *cciss_seq_start(struct seq_file
*seq
, loff_t
*pos
)
283 ctlr_info_t
*h
= seq
->private;
284 unsigned ctlr
= h
->ctlr
;
287 /* prevent displaying bogus info during configuration
288 * or deconfiguration of a logical volume
290 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
291 if (h
->busy_configuring
) {
292 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
293 return ERR_PTR(-EBUSY
);
295 h
->busy_configuring
= 1;
296 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
299 cciss_seq_show_header(seq
);
304 static int cciss_seq_show(struct seq_file
*seq
, void *v
)
306 sector_t vol_sz
, vol_sz_frac
;
307 ctlr_info_t
*h
= seq
->private;
308 unsigned ctlr
= h
->ctlr
;
310 drive_info_struct
*drv
= &h
->drv
[*pos
];
312 if (*pos
> h
->highest_lun
)
318 vol_sz
= drv
->nr_blocks
;
319 vol_sz_frac
= sector_div(vol_sz
, ENG_GIG_FACTOR
);
321 sector_div(vol_sz_frac
, ENG_GIG_FACTOR
);
323 if (drv
->raid_level
> 5)
324 drv
->raid_level
= RAID_UNKNOWN
;
325 seq_printf(seq
, "cciss/c%dd%d:"
326 "\t%4u.%02uGB\tRAID %s\n",
327 ctlr
, (int) *pos
, (int)vol_sz
, (int)vol_sz_frac
,
328 raid_label
[drv
->raid_level
]);
332 static void *cciss_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
334 ctlr_info_t
*h
= seq
->private;
336 if (*pos
> h
->highest_lun
)
343 static void cciss_seq_stop(struct seq_file
*seq
, void *v
)
345 ctlr_info_t
*h
= seq
->private;
347 /* Only reset h->busy_configuring if we succeeded in setting
348 * it during cciss_seq_start. */
349 if (v
== ERR_PTR(-EBUSY
))
352 h
->busy_configuring
= 0;
355 static struct seq_operations cciss_seq_ops
= {
356 .start
= cciss_seq_start
,
357 .show
= cciss_seq_show
,
358 .next
= cciss_seq_next
,
359 .stop
= cciss_seq_stop
,
362 static int cciss_seq_open(struct inode
*inode
, struct file
*file
)
364 int ret
= seq_open(file
, &cciss_seq_ops
);
365 struct seq_file
*seq
= file
->private_data
;
368 seq
->private = PDE(inode
)->data
;
374 cciss_proc_write(struct file
*file
, const char __user
*buf
,
375 size_t length
, loff_t
*ppos
)
380 #ifndef CONFIG_CISS_SCSI_TAPE
384 if (!buf
|| length
> PAGE_SIZE
- 1)
387 buffer
= (char *)__get_free_page(GFP_KERNEL
);
392 if (copy_from_user(buffer
, buf
, length
))
394 buffer
[length
] = '\0';
396 #ifdef CONFIG_CISS_SCSI_TAPE
397 if (strncmp(ENGAGE_SCSI
, buffer
, sizeof ENGAGE_SCSI
- 1) == 0) {
398 struct seq_file
*seq
= file
->private_data
;
399 ctlr_info_t
*h
= seq
->private;
402 rc
= cciss_engage_scsi(h
->ctlr
);
408 #endif /* CONFIG_CISS_SCSI_TAPE */
410 /* might be nice to have "disengage" too, but it's not
411 safely possible. (only 1 module use count, lock issues.) */
414 free_page((unsigned long)buffer
);
418 static struct file_operations cciss_proc_fops
= {
419 .owner
= THIS_MODULE
,
420 .open
= cciss_seq_open
,
423 .release
= seq_release
,
424 .write
= cciss_proc_write
,
427 static void __devinit
cciss_procinit(int i
)
429 struct proc_dir_entry
*pde
;
431 if (proc_cciss
== NULL
)
432 proc_cciss
= proc_mkdir("driver/cciss", NULL
);
435 pde
= proc_create_data(hba
[i
]->devname
, S_IWUSR
| S_IRUSR
| S_IRGRP
|
437 &cciss_proc_fops
, hba
[i
]);
439 #endif /* CONFIG_PROC_FS */
441 #define MAX_PRODUCT_NAME_LEN 19
443 #define to_hba(n) container_of(n, struct ctlr_info, dev)
444 #define to_drv(n) container_of(n, drive_info_struct, dev)
446 static struct device_type cciss_host_type
= {
447 .name
= "cciss_host",
450 static ssize_t
dev_show_unique_id(struct device
*dev
,
451 struct device_attribute
*attr
,
454 drive_info_struct
*drv
= to_drv(dev
);
455 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
460 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
461 if (h
->busy_configuring
)
464 memcpy(sn
, drv
->serial_no
, sizeof(sn
));
465 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
470 return snprintf(buf
, 16 * 2 + 2,
471 "%02X%02X%02X%02X%02X%02X%02X%02X"
472 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
473 sn
[0], sn
[1], sn
[2], sn
[3],
474 sn
[4], sn
[5], sn
[6], sn
[7],
475 sn
[8], sn
[9], sn
[10], sn
[11],
476 sn
[12], sn
[13], sn
[14], sn
[15]);
478 DEVICE_ATTR(unique_id
, S_IRUGO
, dev_show_unique_id
, NULL
);
480 static ssize_t
dev_show_vendor(struct device
*dev
,
481 struct device_attribute
*attr
,
484 drive_info_struct
*drv
= to_drv(dev
);
485 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
486 char vendor
[VENDOR_LEN
+ 1];
490 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
491 if (h
->busy_configuring
)
494 memcpy(vendor
, drv
->vendor
, VENDOR_LEN
+ 1);
495 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
500 return snprintf(buf
, sizeof(vendor
) + 1, "%s\n", drv
->vendor
);
502 DEVICE_ATTR(vendor
, S_IRUGO
, dev_show_vendor
, NULL
);
504 static ssize_t
dev_show_model(struct device
*dev
,
505 struct device_attribute
*attr
,
508 drive_info_struct
*drv
= to_drv(dev
);
509 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
510 char model
[MODEL_LEN
+ 1];
514 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
515 if (h
->busy_configuring
)
518 memcpy(model
, drv
->model
, MODEL_LEN
+ 1);
519 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
524 return snprintf(buf
, sizeof(model
) + 1, "%s\n", drv
->model
);
526 DEVICE_ATTR(model
, S_IRUGO
, dev_show_model
, NULL
);
528 static ssize_t
dev_show_rev(struct device
*dev
,
529 struct device_attribute
*attr
,
532 drive_info_struct
*drv
= to_drv(dev
);
533 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
534 char rev
[REV_LEN
+ 1];
538 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
539 if (h
->busy_configuring
)
542 memcpy(rev
, drv
->rev
, REV_LEN
+ 1);
543 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
548 return snprintf(buf
, sizeof(rev
) + 1, "%s\n", drv
->rev
);
550 DEVICE_ATTR(rev
, S_IRUGO
, dev_show_rev
, NULL
);
552 static struct attribute
*cciss_dev_attrs
[] = {
553 &dev_attr_unique_id
.attr
,
554 &dev_attr_model
.attr
,
555 &dev_attr_vendor
.attr
,
560 static struct attribute_group cciss_dev_attr_group
= {
561 .attrs
= cciss_dev_attrs
,
564 static struct attribute_group
*cciss_dev_attr_groups
[] = {
565 &cciss_dev_attr_group
,
569 static struct device_type cciss_dev_type
= {
570 .name
= "cciss_device",
571 .groups
= cciss_dev_attr_groups
,
574 static struct bus_type cciss_bus_type
= {
580 * Initialize sysfs entry for each controller. This sets up and registers
581 * the 'cciss#' directory for each individual controller under
582 * /sys/bus/pci/devices/<dev>/.
584 static int cciss_create_hba_sysfs_entry(struct ctlr_info
*h
)
586 device_initialize(&h
->dev
);
587 h
->dev
.type
= &cciss_host_type
;
588 h
->dev
.bus
= &cciss_bus_type
;
589 dev_set_name(&h
->dev
, "%s", h
->devname
);
590 h
->dev
.parent
= &h
->pdev
->dev
;
592 return device_add(&h
->dev
);
596 * Remove sysfs entries for an hba.
598 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info
*h
)
604 * Initialize sysfs for each logical drive. This sets up and registers
605 * the 'c#d#' directory for each individual logical drive under
606 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
607 * /sys/block/cciss!c#d# to this entry.
609 static int cciss_create_ld_sysfs_entry(struct ctlr_info
*h
,
610 drive_info_struct
*drv
,
613 device_initialize(&drv
->dev
);
614 drv
->dev
.type
= &cciss_dev_type
;
615 drv
->dev
.bus
= &cciss_bus_type
;
616 dev_set_name(&drv
->dev
, "c%dd%d", h
->ctlr
, drv_index
);
617 drv
->dev
.parent
= &h
->dev
;
618 return device_add(&drv
->dev
);
622 * Remove sysfs entries for a logical drive.
624 static void cciss_destroy_ld_sysfs_entry(drive_info_struct
*drv
)
626 device_del(&drv
->dev
);
630 * For operations that cannot sleep, a command block is allocated at init,
631 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
632 * which ones are free or in use. For operations that can wait for kmalloc
633 * to possible sleep, this routine can be called with get_from_pool set to 0.
634 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
636 static CommandList_struct
*cmd_alloc(ctlr_info_t
*h
, int get_from_pool
)
638 CommandList_struct
*c
;
641 dma_addr_t cmd_dma_handle
, err_dma_handle
;
643 if (!get_from_pool
) {
644 c
= (CommandList_struct
*) pci_alloc_consistent(h
->pdev
,
645 sizeof(CommandList_struct
), &cmd_dma_handle
);
648 memset(c
, 0, sizeof(CommandList_struct
));
652 c
->err_info
= (ErrorInfo_struct
*)
653 pci_alloc_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
656 if (c
->err_info
== NULL
) {
657 pci_free_consistent(h
->pdev
,
658 sizeof(CommandList_struct
), c
, cmd_dma_handle
);
661 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
662 } else { /* get it out of the controllers pool */
665 i
= find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
);
668 } while (test_and_set_bit
669 (i
& (BITS_PER_LONG
- 1),
670 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
)) != 0);
672 printk(KERN_DEBUG
"cciss: using command buffer %d\n", i
);
675 memset(c
, 0, sizeof(CommandList_struct
));
676 cmd_dma_handle
= h
->cmd_pool_dhandle
677 + i
* sizeof(CommandList_struct
);
678 c
->err_info
= h
->errinfo_pool
+ i
;
679 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
680 err_dma_handle
= h
->errinfo_pool_dhandle
681 + i
* sizeof(ErrorInfo_struct
);
687 INIT_HLIST_NODE(&c
->list
);
688 c
->busaddr
= (__u32
) cmd_dma_handle
;
689 temp64
.val
= (__u64
) err_dma_handle
;
690 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
691 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
692 c
->ErrDesc
.Len
= sizeof(ErrorInfo_struct
);
699 * Frees a command block that was previously allocated with cmd_alloc().
701 static void cmd_free(ctlr_info_t
*h
, CommandList_struct
*c
, int got_from_pool
)
706 if (!got_from_pool
) {
707 temp64
.val32
.lower
= c
->ErrDesc
.Addr
.lower
;
708 temp64
.val32
.upper
= c
->ErrDesc
.Addr
.upper
;
709 pci_free_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
710 c
->err_info
, (dma_addr_t
) temp64
.val
);
711 pci_free_consistent(h
->pdev
, sizeof(CommandList_struct
),
712 c
, (dma_addr_t
) c
->busaddr
);
715 clear_bit(i
& (BITS_PER_LONG
- 1),
716 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
721 static inline ctlr_info_t
*get_host(struct gendisk
*disk
)
723 return disk
->queue
->queuedata
;
726 static inline drive_info_struct
*get_drv(struct gendisk
*disk
)
728 return disk
->private_data
;
732 * Open. Make sure the device is really there.
734 static int cciss_open(struct block_device
*bdev
, fmode_t mode
)
736 ctlr_info_t
*host
= get_host(bdev
->bd_disk
);
737 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
740 printk(KERN_DEBUG
"cciss_open %s\n", bdev
->bd_disk
->disk_name
);
741 #endif /* CCISS_DEBUG */
743 if (host
->busy_initializing
|| drv
->busy_configuring
)
746 * Root is allowed to open raw volume zero even if it's not configured
747 * so array config can still work. Root is also allowed to open any
748 * volume that has a LUN ID, so it can issue IOCTL to reread the
749 * disk information. I don't think I really like this
750 * but I'm already using way to many device nodes to claim another one
751 * for "raw controller".
753 if (drv
->heads
== 0) {
754 if (MINOR(bdev
->bd_dev
) != 0) { /* not node 0? */
755 /* if not node 0 make sure it is a partition = 0 */
756 if (MINOR(bdev
->bd_dev
) & 0x0f) {
758 /* if it is, make sure we have a LUN ID */
759 } else if (drv
->LunID
== 0) {
763 if (!capable(CAP_SYS_ADMIN
))
774 static int cciss_release(struct gendisk
*disk
, fmode_t mode
)
776 ctlr_info_t
*host
= get_host(disk
);
777 drive_info_struct
*drv
= get_drv(disk
);
780 printk(KERN_DEBUG
"cciss_release %s\n", disk
->disk_name
);
781 #endif /* CCISS_DEBUG */
790 static int do_ioctl(struct block_device
*bdev
, fmode_t mode
,
791 unsigned cmd
, unsigned long arg
)
795 ret
= cciss_ioctl(bdev
, mode
, cmd
, arg
);
800 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
801 unsigned cmd
, unsigned long arg
);
802 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
803 unsigned cmd
, unsigned long arg
);
805 static int cciss_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
806 unsigned cmd
, unsigned long arg
)
809 case CCISS_GETPCIINFO
:
810 case CCISS_GETINTINFO
:
811 case CCISS_SETINTINFO
:
812 case CCISS_GETNODENAME
:
813 case CCISS_SETNODENAME
:
814 case CCISS_GETHEARTBEAT
:
815 case CCISS_GETBUSTYPES
:
816 case CCISS_GETFIRMVER
:
817 case CCISS_GETDRIVVER
:
818 case CCISS_REVALIDVOLS
:
819 case CCISS_DEREGDISK
:
820 case CCISS_REGNEWDISK
:
822 case CCISS_RESCANDISK
:
823 case CCISS_GETLUNINFO
:
824 return do_ioctl(bdev
, mode
, cmd
, arg
);
826 case CCISS_PASSTHRU32
:
827 return cciss_ioctl32_passthru(bdev
, mode
, cmd
, arg
);
828 case CCISS_BIG_PASSTHRU32
:
829 return cciss_ioctl32_big_passthru(bdev
, mode
, cmd
, arg
);
836 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
837 unsigned cmd
, unsigned long arg
)
839 IOCTL32_Command_struct __user
*arg32
=
840 (IOCTL32_Command_struct __user
*) arg
;
841 IOCTL_Command_struct arg64
;
842 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
848 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
849 sizeof(arg64
.LUN_info
));
851 copy_from_user(&arg64
.Request
, &arg32
->Request
,
852 sizeof(arg64
.Request
));
854 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
855 sizeof(arg64
.error_info
));
856 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
857 err
|= get_user(cp
, &arg32
->buf
);
858 arg64
.buf
= compat_ptr(cp
);
859 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
864 err
= do_ioctl(bdev
, mode
, CCISS_PASSTHRU
, (unsigned long)p
);
868 copy_in_user(&arg32
->error_info
, &p
->error_info
,
869 sizeof(arg32
->error_info
));
875 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
876 unsigned cmd
, unsigned long arg
)
878 BIG_IOCTL32_Command_struct __user
*arg32
=
879 (BIG_IOCTL32_Command_struct __user
*) arg
;
880 BIG_IOCTL_Command_struct arg64
;
881 BIG_IOCTL_Command_struct __user
*p
=
882 compat_alloc_user_space(sizeof(arg64
));
888 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
889 sizeof(arg64
.LUN_info
));
891 copy_from_user(&arg64
.Request
, &arg32
->Request
,
892 sizeof(arg64
.Request
));
894 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
895 sizeof(arg64
.error_info
));
896 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
897 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
898 err
|= get_user(cp
, &arg32
->buf
);
899 arg64
.buf
= compat_ptr(cp
);
900 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
905 err
= do_ioctl(bdev
, mode
, CCISS_BIG_PASSTHRU
, (unsigned long)p
);
909 copy_in_user(&arg32
->error_info
, &p
->error_info
,
910 sizeof(arg32
->error_info
));
917 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
919 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
924 geo
->heads
= drv
->heads
;
925 geo
->sectors
= drv
->sectors
;
926 geo
->cylinders
= drv
->cylinders
;
930 static void check_ioctl_unit_attention(ctlr_info_t
*host
, CommandList_struct
*c
)
932 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
933 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
934 (void)check_for_unit_attention(host
, c
);
939 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
940 unsigned int cmd
, unsigned long arg
)
942 struct gendisk
*disk
= bdev
->bd_disk
;
943 ctlr_info_t
*host
= get_host(disk
);
944 drive_info_struct
*drv
= get_drv(disk
);
945 int ctlr
= host
->ctlr
;
946 void __user
*argp
= (void __user
*)arg
;
949 printk(KERN_DEBUG
"cciss_ioctl: Called with cmd=%x %lx\n", cmd
, arg
);
950 #endif /* CCISS_DEBUG */
953 case CCISS_GETPCIINFO
:
955 cciss_pci_info_struct pciinfo
;
959 pciinfo
.domain
= pci_domain_nr(host
->pdev
->bus
);
960 pciinfo
.bus
= host
->pdev
->bus
->number
;
961 pciinfo
.dev_fn
= host
->pdev
->devfn
;
962 pciinfo
.board_id
= host
->board_id
;
964 (argp
, &pciinfo
, sizeof(cciss_pci_info_struct
)))
968 case CCISS_GETINTINFO
:
970 cciss_coalint_struct intinfo
;
974 readl(&host
->cfgtable
->HostWrite
.CoalIntDelay
);
976 readl(&host
->cfgtable
->HostWrite
.CoalIntCount
);
978 (argp
, &intinfo
, sizeof(cciss_coalint_struct
)))
982 case CCISS_SETINTINFO
:
984 cciss_coalint_struct intinfo
;
990 if (!capable(CAP_SYS_ADMIN
))
993 (&intinfo
, argp
, sizeof(cciss_coalint_struct
)))
995 if ((intinfo
.delay
== 0) && (intinfo
.count
== 0))
997 // printk("cciss_ioctl: delay and count cannot be 0\n");
1000 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1001 /* Update the field, and then ring the doorbell */
1002 writel(intinfo
.delay
,
1003 &(host
->cfgtable
->HostWrite
.CoalIntDelay
));
1004 writel(intinfo
.count
,
1005 &(host
->cfgtable
->HostWrite
.CoalIntCount
));
1006 writel(CFGTBL_ChangeReq
, host
->vaddr
+ SA5_DOORBELL
);
1008 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1009 if (!(readl(host
->vaddr
+ SA5_DOORBELL
)
1010 & CFGTBL_ChangeReq
))
1012 /* delay and try again */
1015 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1016 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1020 case CCISS_GETNODENAME
:
1022 NodeName_type NodeName
;
1027 for (i
= 0; i
< 16; i
++)
1029 readb(&host
->cfgtable
->ServerName
[i
]);
1030 if (copy_to_user(argp
, NodeName
, sizeof(NodeName_type
)))
1034 case CCISS_SETNODENAME
:
1036 NodeName_type NodeName
;
1037 unsigned long flags
;
1042 if (!capable(CAP_SYS_ADMIN
))
1046 (NodeName
, argp
, sizeof(NodeName_type
)))
1049 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1051 /* Update the field, and then ring the doorbell */
1052 for (i
= 0; i
< 16; i
++)
1054 &host
->cfgtable
->ServerName
[i
]);
1056 writel(CFGTBL_ChangeReq
, host
->vaddr
+ SA5_DOORBELL
);
1058 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1059 if (!(readl(host
->vaddr
+ SA5_DOORBELL
)
1060 & CFGTBL_ChangeReq
))
1062 /* delay and try again */
1065 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1066 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1071 case CCISS_GETHEARTBEAT
:
1073 Heartbeat_type heartbeat
;
1077 heartbeat
= readl(&host
->cfgtable
->HeartBeat
);
1079 (argp
, &heartbeat
, sizeof(Heartbeat_type
)))
1083 case CCISS_GETBUSTYPES
:
1085 BusTypes_type BusTypes
;
1089 BusTypes
= readl(&host
->cfgtable
->BusTypes
);
1091 (argp
, &BusTypes
, sizeof(BusTypes_type
)))
1095 case CCISS_GETFIRMVER
:
1097 FirmwareVer_type firmware
;
1101 memcpy(firmware
, host
->firm_ver
, 4);
1104 (argp
, firmware
, sizeof(FirmwareVer_type
)))
1108 case CCISS_GETDRIVVER
:
1110 DriverVer_type DriverVer
= DRIVER_VERSION
;
1116 (argp
, &DriverVer
, sizeof(DriverVer_type
)))
1121 case CCISS_DEREGDISK
:
1123 case CCISS_REVALIDVOLS
:
1124 return rebuild_lun_table(host
, 0);
1126 case CCISS_GETLUNINFO
:{
1127 LogvolInfo_struct luninfo
;
1129 luninfo
.LunID
= drv
->LunID
;
1130 luninfo
.num_opens
= drv
->usage_count
;
1131 luninfo
.num_parts
= 0;
1132 if (copy_to_user(argp
, &luninfo
,
1133 sizeof(LogvolInfo_struct
)))
1137 case CCISS_PASSTHRU
:
1139 IOCTL_Command_struct iocommand
;
1140 CommandList_struct
*c
;
1143 unsigned long flags
;
1144 DECLARE_COMPLETION_ONSTACK(wait
);
1149 if (!capable(CAP_SYS_RAWIO
))
1153 (&iocommand
, argp
, sizeof(IOCTL_Command_struct
)))
1155 if ((iocommand
.buf_size
< 1) &&
1156 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
1159 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1160 /* Check kmalloc limits */
1161 if (iocommand
.buf_size
> 128000)
1164 if (iocommand
.buf_size
> 0) {
1165 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
1169 if (iocommand
.Request
.Type
.Direction
== XFER_WRITE
) {
1170 /* Copy the data into the buffer we created */
1172 (buff
, iocommand
.buf
, iocommand
.buf_size
)) {
1177 memset(buff
, 0, iocommand
.buf_size
);
1179 if ((c
= cmd_alloc(host
, 0)) == NULL
) {
1183 // Fill in the command type
1184 c
->cmd_type
= CMD_IOCTL_PEND
;
1185 // Fill in Command Header
1186 c
->Header
.ReplyQueue
= 0; // unused in simple mode
1187 if (iocommand
.buf_size
> 0) // buffer to fill
1189 c
->Header
.SGList
= 1;
1190 c
->Header
.SGTotal
= 1;
1191 } else // no buffers to fill
1193 c
->Header
.SGList
= 0;
1194 c
->Header
.SGTotal
= 0;
1196 c
->Header
.LUN
= iocommand
.LUN_info
;
1197 c
->Header
.Tag
.lower
= c
->busaddr
; // use the kernel address the cmd block for tag
1199 // Fill in Request block
1200 c
->Request
= iocommand
.Request
;
1202 // Fill in the scatter gather information
1203 if (iocommand
.buf_size
> 0) {
1204 temp64
.val
= pci_map_single(host
->pdev
, buff
,
1206 PCI_DMA_BIDIRECTIONAL
);
1207 c
->SG
[0].Addr
.lower
= temp64
.val32
.lower
;
1208 c
->SG
[0].Addr
.upper
= temp64
.val32
.upper
;
1209 c
->SG
[0].Len
= iocommand
.buf_size
;
1210 c
->SG
[0].Ext
= 0; // we are not chaining
1214 /* Put the request on the tail of the request queue */
1215 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1216 addQ(&host
->reqQ
, c
);
1219 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1221 wait_for_completion(&wait
);
1223 /* unlock the buffers from DMA */
1224 temp64
.val32
.lower
= c
->SG
[0].Addr
.lower
;
1225 temp64
.val32
.upper
= c
->SG
[0].Addr
.upper
;
1226 pci_unmap_single(host
->pdev
, (dma_addr_t
) temp64
.val
,
1228 PCI_DMA_BIDIRECTIONAL
);
1230 check_ioctl_unit_attention(host
, c
);
1232 /* Copy the error information out */
1233 iocommand
.error_info
= *(c
->err_info
);
1235 (argp
, &iocommand
, sizeof(IOCTL_Command_struct
))) {
1237 cmd_free(host
, c
, 0);
1241 if (iocommand
.Request
.Type
.Direction
== XFER_READ
) {
1242 /* Copy the data out of the buffer we created */
1244 (iocommand
.buf
, buff
, iocommand
.buf_size
)) {
1246 cmd_free(host
, c
, 0);
1251 cmd_free(host
, c
, 0);
1254 case CCISS_BIG_PASSTHRU
:{
1255 BIG_IOCTL_Command_struct
*ioc
;
1256 CommandList_struct
*c
;
1257 unsigned char **buff
= NULL
;
1258 int *buff_size
= NULL
;
1260 unsigned long flags
;
1264 DECLARE_COMPLETION_ONSTACK(wait
);
1267 BYTE __user
*data_ptr
;
1271 if (!capable(CAP_SYS_RAWIO
))
1273 ioc
= (BIG_IOCTL_Command_struct
*)
1274 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
1279 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
1283 if ((ioc
->buf_size
< 1) &&
1284 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
1288 /* Check kmalloc limits using all SGs */
1289 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
1293 if (ioc
->buf_size
> ioc
->malloc_size
* MAXSGENTRIES
) {
1298 kzalloc(MAXSGENTRIES
* sizeof(char *), GFP_KERNEL
);
1303 buff_size
= kmalloc(MAXSGENTRIES
* sizeof(int),
1309 left
= ioc
->buf_size
;
1310 data_ptr
= ioc
->buf
;
1313 ioc
->malloc_size
) ? ioc
->
1315 buff_size
[sg_used
] = sz
;
1316 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
1317 if (buff
[sg_used
] == NULL
) {
1321 if (ioc
->Request
.Type
.Direction
== XFER_WRITE
) {
1323 (buff
[sg_used
], data_ptr
, sz
)) {
1328 memset(buff
[sg_used
], 0, sz
);
1334 if ((c
= cmd_alloc(host
, 0)) == NULL
) {
1338 c
->cmd_type
= CMD_IOCTL_PEND
;
1339 c
->Header
.ReplyQueue
= 0;
1341 if (ioc
->buf_size
> 0) {
1342 c
->Header
.SGList
= sg_used
;
1343 c
->Header
.SGTotal
= sg_used
;
1345 c
->Header
.SGList
= 0;
1346 c
->Header
.SGTotal
= 0;
1348 c
->Header
.LUN
= ioc
->LUN_info
;
1349 c
->Header
.Tag
.lower
= c
->busaddr
;
1351 c
->Request
= ioc
->Request
;
1352 if (ioc
->buf_size
> 0) {
1354 for (i
= 0; i
< sg_used
; i
++) {
1356 pci_map_single(host
->pdev
, buff
[i
],
1358 PCI_DMA_BIDIRECTIONAL
);
1359 c
->SG
[i
].Addr
.lower
=
1361 c
->SG
[i
].Addr
.upper
=
1363 c
->SG
[i
].Len
= buff_size
[i
];
1364 c
->SG
[i
].Ext
= 0; /* we are not chaining */
1368 /* Put the request on the tail of the request queue */
1369 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1370 addQ(&host
->reqQ
, c
);
1373 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1374 wait_for_completion(&wait
);
1375 /* unlock the buffers from DMA */
1376 for (i
= 0; i
< sg_used
; i
++) {
1377 temp64
.val32
.lower
= c
->SG
[i
].Addr
.lower
;
1378 temp64
.val32
.upper
= c
->SG
[i
].Addr
.upper
;
1379 pci_unmap_single(host
->pdev
,
1380 (dma_addr_t
) temp64
.val
, buff_size
[i
],
1381 PCI_DMA_BIDIRECTIONAL
);
1383 check_ioctl_unit_attention(host
, c
);
1384 /* Copy the error information out */
1385 ioc
->error_info
= *(c
->err_info
);
1386 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
1387 cmd_free(host
, c
, 0);
1391 if (ioc
->Request
.Type
.Direction
== XFER_READ
) {
1392 /* Copy the data out of the buffer we created */
1393 BYTE __user
*ptr
= ioc
->buf
;
1394 for (i
= 0; i
< sg_used
; i
++) {
1396 (ptr
, buff
[i
], buff_size
[i
])) {
1397 cmd_free(host
, c
, 0);
1401 ptr
+= buff_size
[i
];
1404 cmd_free(host
, c
, 0);
1408 for (i
= 0; i
< sg_used
; i
++)
1417 /* scsi_cmd_ioctl handles these, below, though some are not */
1418 /* very meaningful for cciss. SG_IO is the main one people want. */
1420 case SG_GET_VERSION_NUM
:
1421 case SG_SET_TIMEOUT
:
1422 case SG_GET_TIMEOUT
:
1423 case SG_GET_RESERVED_SIZE
:
1424 case SG_SET_RESERVED_SIZE
:
1425 case SG_EMULATED_HOST
:
1427 case SCSI_IOCTL_SEND_COMMAND
:
1428 return scsi_cmd_ioctl(disk
->queue
, disk
, mode
, cmd
, argp
);
1430 /* scsi_cmd_ioctl would normally handle these, below, but */
1431 /* they aren't a good fit for cciss, as CD-ROMs are */
1432 /* not supported, and we don't have any bus/target/lun */
1433 /* which we present to the kernel. */
1435 case CDROM_SEND_PACKET
:
1436 case CDROMCLOSETRAY
:
1438 case SCSI_IOCTL_GET_IDLUN
:
1439 case SCSI_IOCTL_GET_BUS_NUMBER
:
1445 static void cciss_check_queues(ctlr_info_t
*h
)
1447 int start_queue
= h
->next_to_run
;
1450 /* check to see if we have maxed out the number of commands that can
1451 * be placed on the queue. If so then exit. We do this check here
1452 * in case the interrupt we serviced was from an ioctl and did not
1453 * free any new commands.
1455 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
)
1458 /* We have room on the queue for more commands. Now we need to queue
1459 * them up. We will also keep track of the next queue to run so
1460 * that every queue gets a chance to be started first.
1462 for (i
= 0; i
< h
->highest_lun
+ 1; i
++) {
1463 int curr_queue
= (start_queue
+ i
) % (h
->highest_lun
+ 1);
1464 /* make sure the disk has been added and the drive is real
1465 * because this can be called from the middle of init_one.
1467 if (!(h
->drv
[curr_queue
].queue
) || !(h
->drv
[curr_queue
].heads
))
1469 blk_start_queue(h
->gendisk
[curr_queue
]->queue
);
1471 /* check to see if we have maxed out the number of commands
1472 * that can be placed on the queue.
1474 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
) {
1475 if (curr_queue
== start_queue
) {
1477 (start_queue
+ 1) % (h
->highest_lun
+ 1);
1480 h
->next_to_run
= curr_queue
;
1487 static void cciss_softirq_done(struct request
*rq
)
1489 CommandList_struct
*cmd
= rq
->completion_data
;
1490 ctlr_info_t
*h
= hba
[cmd
->ctlr
];
1491 unsigned long flags
;
1495 if (cmd
->Request
.Type
.Direction
== XFER_READ
)
1496 ddir
= PCI_DMA_FROMDEVICE
;
1498 ddir
= PCI_DMA_TODEVICE
;
1500 /* command did not need to be retried */
1501 /* unmap the DMA mapping for all the scatter gather elements */
1502 for (i
= 0; i
< cmd
->Header
.SGList
; i
++) {
1503 temp64
.val32
.lower
= cmd
->SG
[i
].Addr
.lower
;
1504 temp64
.val32
.upper
= cmd
->SG
[i
].Addr
.upper
;
1505 pci_unmap_page(h
->pdev
, temp64
.val
, cmd
->SG
[i
].Len
, ddir
);
1509 printk("Done with %p\n", rq
);
1510 #endif /* CCISS_DEBUG */
1512 /* set the residual count for pc requests */
1513 if (blk_pc_request(rq
))
1514 rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
1516 blk_end_request_all(rq
, (rq
->errors
== 0) ? 0 : -EIO
);
1518 spin_lock_irqsave(&h
->lock
, flags
);
1519 cmd_free(h
, cmd
, 1);
1520 cciss_check_queues(h
);
1521 spin_unlock_irqrestore(&h
->lock
, flags
);
1524 static void log_unit_to_scsi3addr(ctlr_info_t
*h
, unsigned char scsi3addr
[],
1527 log_unit
= h
->drv
[log_unit
].LunID
& 0x03fff;
1528 memset(&scsi3addr
[4], 0, 4);
1529 memcpy(&scsi3addr
[0], &log_unit
, 4);
1530 scsi3addr
[3] |= 0x40;
1533 /* This function gets the SCSI vendor, model, and revision of a logical drive
1534 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1535 * they cannot be read.
1537 static void cciss_get_device_descr(int ctlr
, int logvol
, int withirq
,
1538 char *vendor
, char *model
, char *rev
)
1541 InquiryData_struct
*inq_buf
;
1542 unsigned char scsi3addr
[8];
1548 inq_buf
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1552 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
1554 rc
= sendcmd_withirq(CISS_INQUIRY
, ctlr
, inq_buf
,
1555 sizeof(InquiryData_struct
), 0,
1556 scsi3addr
, TYPE_CMD
);
1558 rc
= sendcmd(CISS_INQUIRY
, ctlr
, inq_buf
,
1559 sizeof(InquiryData_struct
), 0,
1560 scsi3addr
, TYPE_CMD
);
1562 memcpy(vendor
, &inq_buf
->data_byte
[8], VENDOR_LEN
);
1563 vendor
[VENDOR_LEN
] = '\0';
1564 memcpy(model
, &inq_buf
->data_byte
[16], MODEL_LEN
);
1565 model
[MODEL_LEN
] = '\0';
1566 memcpy(rev
, &inq_buf
->data_byte
[32], REV_LEN
);
1567 rev
[REV_LEN
] = '\0';
1574 /* This function gets the serial number of a logical drive via
1575 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1576 * number cannot be had, for whatever reason, 16 bytes of 0xff
1577 * are returned instead.
1579 static void cciss_get_serial_no(int ctlr
, int logvol
, int withirq
,
1580 unsigned char *serial_no
, int buflen
)
1582 #define PAGE_83_INQ_BYTES 64
1585 unsigned char scsi3addr
[8];
1589 memset(serial_no
, 0xff, buflen
);
1590 buf
= kzalloc(PAGE_83_INQ_BYTES
, GFP_KERNEL
);
1593 memset(serial_no
, 0, buflen
);
1594 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
1596 rc
= sendcmd_withirq(CISS_INQUIRY
, ctlr
, buf
,
1597 PAGE_83_INQ_BYTES
, 0x83, scsi3addr
, TYPE_CMD
);
1599 rc
= sendcmd(CISS_INQUIRY
, ctlr
, buf
,
1600 PAGE_83_INQ_BYTES
, 0x83, scsi3addr
, TYPE_CMD
);
1602 memcpy(serial_no
, &buf
[8], buflen
);
1607 static void cciss_add_disk(ctlr_info_t
*h
, struct gendisk
*disk
,
1610 disk
->queue
= blk_init_queue(do_cciss_request
, &h
->lock
);
1611 sprintf(disk
->disk_name
, "cciss/c%dd%d", h
->ctlr
, drv_index
);
1612 disk
->major
= h
->major
;
1613 disk
->first_minor
= drv_index
<< NWD_SHIFT
;
1614 disk
->fops
= &cciss_fops
;
1615 disk
->private_data
= &h
->drv
[drv_index
];
1616 disk
->driverfs_dev
= &h
->drv
[drv_index
].dev
;
1618 /* Set up queue information */
1619 blk_queue_bounce_limit(disk
->queue
, h
->pdev
->dma_mask
);
1621 /* This is a hardware imposed limit. */
1622 blk_queue_max_hw_segments(disk
->queue
, MAXSGENTRIES
);
1624 /* This is a limit in the driver and could be eliminated. */
1625 blk_queue_max_phys_segments(disk
->queue
, MAXSGENTRIES
);
1627 blk_queue_max_sectors(disk
->queue
, h
->cciss_max_sectors
);
1629 blk_queue_softirq_done(disk
->queue
, cciss_softirq_done
);
1631 disk
->queue
->queuedata
= h
;
1633 blk_queue_logical_block_size(disk
->queue
,
1634 h
->drv
[drv_index
].block_size
);
1636 /* Make sure all queue data is written out before */
1637 /* setting h->drv[drv_index].queue, as setting this */
1638 /* allows the interrupt handler to start the queue */
1640 h
->drv
[drv_index
].queue
= disk
->queue
;
1644 /* This function will check the usage_count of the drive to be updated/added.
1645 * If the usage_count is zero and it is a heretofore unknown drive, or,
1646 * the drive's capacity, geometry, or serial number has changed,
1647 * then the drive information will be updated and the disk will be
1648 * re-registered with the kernel. If these conditions don't hold,
1649 * then it will be left alone for the next reboot. The exception to this
1650 * is disk 0 which will always be left registered with the kernel since it
1651 * is also the controller node. Any changes to disk 0 will show up on
1654 static void cciss_update_drive_info(int ctlr
, int drv_index
, int first_time
)
1656 ctlr_info_t
*h
= hba
[ctlr
];
1657 struct gendisk
*disk
;
1658 InquiryData_struct
*inq_buff
= NULL
;
1659 unsigned int block_size
;
1660 sector_t total_size
;
1661 unsigned long flags
= 0;
1663 drive_info_struct
*drvinfo
;
1664 int was_only_controller_node
;
1666 /* Get information about the disk and modify the driver structure */
1667 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1668 drvinfo
= kmalloc(sizeof(*drvinfo
), GFP_KERNEL
);
1669 if (inq_buff
== NULL
|| drvinfo
== NULL
)
1672 /* See if we're trying to update the "controller node"
1673 * this will happen the when the first logical drive gets
1676 was_only_controller_node
= (drv_index
== 0 &&
1677 h
->drv
[0].raid_level
== -1);
1679 /* testing to see if 16-byte CDBs are already being used */
1680 if (h
->cciss_read
== CCISS_READ_16
) {
1681 cciss_read_capacity_16(h
->ctlr
, drv_index
, 1,
1682 &total_size
, &block_size
);
1685 cciss_read_capacity(ctlr
, drv_index
, 1,
1686 &total_size
, &block_size
);
1688 /* if read_capacity returns all F's this volume is >2TB */
1689 /* in size so we switch to 16-byte CDB's for all */
1690 /* read/write ops */
1691 if (total_size
== 0xFFFFFFFFULL
) {
1692 cciss_read_capacity_16(ctlr
, drv_index
, 1,
1693 &total_size
, &block_size
);
1694 h
->cciss_read
= CCISS_READ_16
;
1695 h
->cciss_write
= CCISS_WRITE_16
;
1697 h
->cciss_read
= CCISS_READ_10
;
1698 h
->cciss_write
= CCISS_WRITE_10
;
1702 cciss_geometry_inquiry(ctlr
, drv_index
, 1, total_size
, block_size
,
1704 drvinfo
->block_size
= block_size
;
1705 drvinfo
->nr_blocks
= total_size
+ 1;
1707 cciss_get_device_descr(ctlr
, drv_index
, 1, drvinfo
->vendor
,
1708 drvinfo
->model
, drvinfo
->rev
);
1709 cciss_get_serial_no(ctlr
, drv_index
, 1, drvinfo
->serial_no
,
1710 sizeof(drvinfo
->serial_no
));
1712 /* Is it the same disk we already know, and nothing's changed? */
1713 if (h
->drv
[drv_index
].raid_level
!= -1 &&
1714 ((memcmp(drvinfo
->serial_no
,
1715 h
->drv
[drv_index
].serial_no
, 16) == 0) &&
1716 drvinfo
->block_size
== h
->drv
[drv_index
].block_size
&&
1717 drvinfo
->nr_blocks
== h
->drv
[drv_index
].nr_blocks
&&
1718 drvinfo
->heads
== h
->drv
[drv_index
].heads
&&
1719 drvinfo
->sectors
== h
->drv
[drv_index
].sectors
&&
1720 drvinfo
->cylinders
== h
->drv
[drv_index
].cylinders
))
1721 /* The disk is unchanged, nothing to update */
1724 /* If we get here it's not the same disk, or something's changed,
1725 * so we need to * deregister it, and re-register it, if it's not
1727 * If the disk already exists then deregister it before proceeding
1728 * (unless it's the first disk (for the controller node).
1730 if (h
->drv
[drv_index
].raid_level
!= -1 && drv_index
!= 0) {
1731 printk(KERN_WARNING
"disk %d has changed.\n", drv_index
);
1732 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
1733 h
->drv
[drv_index
].busy_configuring
= 1;
1734 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
1736 /* deregister_disk sets h->drv[drv_index].queue = NULL
1737 * which keeps the interrupt handler from starting
1740 ret
= deregister_disk(h
, drv_index
, 0);
1741 h
->drv
[drv_index
].busy_configuring
= 0;
1744 /* If the disk is in use return */
1748 /* Save the new information from cciss_geometry_inquiry
1749 * and serial number inquiry.
1751 h
->drv
[drv_index
].block_size
= drvinfo
->block_size
;
1752 h
->drv
[drv_index
].nr_blocks
= drvinfo
->nr_blocks
;
1753 h
->drv
[drv_index
].heads
= drvinfo
->heads
;
1754 h
->drv
[drv_index
].sectors
= drvinfo
->sectors
;
1755 h
->drv
[drv_index
].cylinders
= drvinfo
->cylinders
;
1756 h
->drv
[drv_index
].raid_level
= drvinfo
->raid_level
;
1757 memcpy(h
->drv
[drv_index
].serial_no
, drvinfo
->serial_no
, 16);
1758 memcpy(h
->drv
[drv_index
].vendor
, drvinfo
->vendor
, VENDOR_LEN
+ 1);
1759 memcpy(h
->drv
[drv_index
].model
, drvinfo
->model
, MODEL_LEN
+ 1);
1760 memcpy(h
->drv
[drv_index
].rev
, drvinfo
->rev
, REV_LEN
+ 1);
1763 disk
= h
->gendisk
[drv_index
];
1764 set_capacity(disk
, h
->drv
[drv_index
].nr_blocks
);
1766 /* If it's not disk 0 (drv_index != 0)
1767 * or if it was disk 0, but there was previously
1768 * no actual corresponding configured logical drive
1769 * (raid_leve == -1) then we want to update the
1770 * logical drive's information.
1772 if (drv_index
|| first_time
)
1773 cciss_add_disk(h
, disk
, drv_index
);
1780 printk(KERN_ERR
"cciss: out of memory\n");
1784 /* This function will find the first index of the controllers drive array
1785 * that has a -1 for the raid_level and will return that index. This is
1786 * where new drives will be added. If the index to be returned is greater
1787 * than the highest_lun index for the controller then highest_lun is set
1788 * to this new index. If there are no available indexes then -1 is returned.
1789 * "controller_node" is used to know if this is a real logical drive, or just
1790 * the controller node, which determines if this counts towards highest_lun.
1792 static int cciss_find_free_drive_index(int ctlr
, int controller_node
)
1796 for (i
= 0; i
< CISS_MAX_LUN
; i
++) {
1797 if (hba
[ctlr
]->drv
[i
].raid_level
== -1) {
1798 if (i
> hba
[ctlr
]->highest_lun
)
1799 if (!controller_node
)
1800 hba
[ctlr
]->highest_lun
= i
;
1807 /* cciss_add_gendisk finds a free hba[]->drv structure
1808 * and allocates a gendisk if needed, and sets the lunid
1809 * in the drvinfo structure. It returns the index into
1810 * the ->drv[] array, or -1 if none are free.
1811 * is_controller_node indicates whether highest_lun should
1812 * count this disk, or if it's only being added to provide
1813 * a means to talk to the controller in case no logical
1814 * drives have yet been configured.
1816 static int cciss_add_gendisk(ctlr_info_t
*h
, __u32 lunid
, int controller_node
)
1820 drv_index
= cciss_find_free_drive_index(h
->ctlr
, controller_node
);
1821 if (drv_index
== -1)
1823 /*Check if the gendisk needs to be allocated */
1824 if (!h
->gendisk
[drv_index
]) {
1825 h
->gendisk
[drv_index
] =
1826 alloc_disk(1 << NWD_SHIFT
);
1827 if (!h
->gendisk
[drv_index
]) {
1828 printk(KERN_ERR
"cciss%d: could not "
1829 "allocate a new disk %d\n",
1830 h
->ctlr
, drv_index
);
1834 h
->drv
[drv_index
].LunID
= lunid
;
1835 if (cciss_create_ld_sysfs_entry(h
, &h
->drv
[drv_index
], drv_index
))
1838 /* Don't need to mark this busy because nobody */
1839 /* else knows about this disk yet to contend */
1840 /* for access to it. */
1841 h
->drv
[drv_index
].busy_configuring
= 0;
1846 put_disk(h
->gendisk
[drv_index
]);
1847 h
->gendisk
[drv_index
] = NULL
;
1851 /* This is for the special case of a controller which
1852 * has no logical drives. In this case, we still need
1853 * to register a disk so the controller can be accessed
1854 * by the Array Config Utility.
1856 static void cciss_add_controller_node(ctlr_info_t
*h
)
1858 struct gendisk
*disk
;
1861 if (h
->gendisk
[0] != NULL
) /* already did this? Then bail. */
1864 drv_index
= cciss_add_gendisk(h
, 0, 1);
1865 if (drv_index
== -1) {
1866 printk(KERN_WARNING
"cciss%d: could not "
1867 "add disk 0.\n", h
->ctlr
);
1870 h
->drv
[drv_index
].block_size
= 512;
1871 h
->drv
[drv_index
].nr_blocks
= 0;
1872 h
->drv
[drv_index
].heads
= 0;
1873 h
->drv
[drv_index
].sectors
= 0;
1874 h
->drv
[drv_index
].cylinders
= 0;
1875 h
->drv
[drv_index
].raid_level
= -1;
1876 memset(h
->drv
[drv_index
].serial_no
, 0, 16);
1877 disk
= h
->gendisk
[drv_index
];
1878 cciss_add_disk(h
, disk
, drv_index
);
1881 /* This function will add and remove logical drives from the Logical
1882 * drive array of the controller and maintain persistency of ordering
1883 * so that mount points are preserved until the next reboot. This allows
1884 * for the removal of logical drives in the middle of the drive array
1885 * without a re-ordering of those drives.
1887 * h = The controller to perform the operations on
1889 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
)
1893 ReportLunData_struct
*ld_buff
= NULL
;
1900 unsigned long flags
;
1902 if (!capable(CAP_SYS_RAWIO
))
1905 /* Set busy_configuring flag for this operation */
1906 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
1907 if (h
->busy_configuring
) {
1908 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
1911 h
->busy_configuring
= 1;
1912 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
1914 ld_buff
= kzalloc(sizeof(ReportLunData_struct
), GFP_KERNEL
);
1915 if (ld_buff
== NULL
)
1918 return_code
= sendcmd_withirq(CISS_REPORT_LOG
, ctlr
, ld_buff
,
1919 sizeof(ReportLunData_struct
),
1920 0, CTLR_LUNID
, TYPE_CMD
);
1922 if (return_code
== IO_OK
)
1923 listlength
= be32_to_cpu(*(__be32
*) ld_buff
->LUNListLength
);
1924 else { /* reading number of logical volumes failed */
1925 printk(KERN_WARNING
"cciss: report logical volume"
1926 " command failed\n");
1931 num_luns
= listlength
/ 8; /* 8 bytes per entry */
1932 if (num_luns
> CISS_MAX_LUN
) {
1933 num_luns
= CISS_MAX_LUN
;
1934 printk(KERN_WARNING
"cciss: more luns configured"
1935 " on controller than can be handled by"
1940 cciss_add_controller_node(h
);
1942 /* Compare controller drive array to driver's drive array
1943 * to see if any drives are missing on the controller due
1944 * to action of Array Config Utility (user deletes drive)
1945 * and deregister logical drives which have disappeared.
1947 for (i
= 0; i
<= h
->highest_lun
; i
++) {
1951 /* skip holes in the array from already deleted drives */
1952 if (h
->drv
[i
].raid_level
== -1)
1955 for (j
= 0; j
< num_luns
; j
++) {
1956 memcpy(&lunid
, &ld_buff
->LUN
[j
][0], 4);
1957 lunid
= le32_to_cpu(lunid
);
1958 if (h
->drv
[i
].LunID
== lunid
) {
1964 /* Deregister it from the OS, it's gone. */
1965 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
1966 h
->drv
[i
].busy_configuring
= 1;
1967 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
1968 return_code
= deregister_disk(h
, i
, 1);
1969 cciss_destroy_ld_sysfs_entry(&h
->drv
[i
]);
1970 h
->drv
[i
].busy_configuring
= 0;
1974 /* Compare controller drive array to driver's drive array.
1975 * Check for updates in the drive information and any new drives
1976 * on the controller due to ACU adding logical drives, or changing
1977 * a logical drive's size, etc. Reregister any new/changed drives
1979 for (i
= 0; i
< num_luns
; i
++) {
1984 memcpy(&lunid
, &ld_buff
->LUN
[i
][0], 4);
1985 lunid
= le32_to_cpu(lunid
);
1987 /* Find if the LUN is already in the drive array
1988 * of the driver. If so then update its info
1989 * if not in use. If it does not exist then find
1990 * the first free index and add it.
1992 for (j
= 0; j
<= h
->highest_lun
; j
++) {
1993 if (h
->drv
[j
].raid_level
!= -1 &&
1994 h
->drv
[j
].LunID
== lunid
) {
2001 /* check if the drive was found already in the array */
2003 drv_index
= cciss_add_gendisk(h
, lunid
, 0);
2004 if (drv_index
== -1)
2007 cciss_update_drive_info(ctlr
, drv_index
, first_time
);
2012 h
->busy_configuring
= 0;
2013 /* We return -1 here to tell the ACU that we have registered/updated
2014 * all of the drives that we can and to keep it from calling us
2019 printk(KERN_ERR
"cciss: out of memory\n");
2020 h
->busy_configuring
= 0;
2024 /* This function will deregister the disk and it's queue from the
2025 * kernel. It must be called with the controller lock held and the
2026 * drv structures busy_configuring flag set. It's parameters are:
2028 * disk = This is the disk to be deregistered
2029 * drv = This is the drive_info_struct associated with the disk to be
2030 * deregistered. It contains information about the disk used
2032 * clear_all = This flag determines whether or not the disk information
2033 * is going to be completely cleared out and the highest_lun
2034 * reset. Sometimes we want to clear out information about
2035 * the disk in preparation for re-adding it. In this case
2036 * the highest_lun should be left unchanged and the LunID
2037 * should not be cleared.
2039 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
2043 struct gendisk
*disk
;
2044 drive_info_struct
*drv
;
2046 if (!capable(CAP_SYS_RAWIO
))
2049 drv
= &h
->drv
[drv_index
];
2050 disk
= h
->gendisk
[drv_index
];
2052 /* make sure logical volume is NOT is use */
2053 if (clear_all
|| (h
->gendisk
[0] == disk
)) {
2054 if (drv
->usage_count
> 1)
2056 } else if (drv
->usage_count
> 0)
2059 /* invalidate the devices and deregister the disk. If it is disk
2060 * zero do not deregister it but just zero out it's values. This
2061 * allows us to delete disk zero but keep the controller registered.
2063 if (h
->gendisk
[0] != disk
) {
2064 struct request_queue
*q
= disk
->queue
;
2065 if (disk
->flags
& GENHD_FL_UP
)
2068 blk_cleanup_queue(q
);
2069 /* Set drv->queue to NULL so that we do not try
2070 * to call blk_start_queue on this queue in the
2075 /* If clear_all is set then we are deleting the logical
2076 * drive, not just refreshing its info. For drives
2077 * other than disk 0 we will call put_disk. We do not
2078 * do this for disk 0 as we need it to be able to
2079 * configure the controller.
2082 /* This isn't pretty, but we need to find the
2083 * disk in our array and NULL our the pointer.
2084 * This is so that we will call alloc_disk if
2085 * this index is used again later.
2087 for (i
=0; i
< CISS_MAX_LUN
; i
++){
2088 if (h
->gendisk
[i
] == disk
) {
2089 h
->gendisk
[i
] = NULL
;
2096 set_capacity(disk
, 0);
2100 /* zero out the disk size info */
2102 drv
->block_size
= 0;
2106 drv
->raid_level
= -1; /* This can be used as a flag variable to
2107 * indicate that this element of the drive
2112 /* check to see if it was the last disk */
2113 if (drv
== h
->drv
+ h
->highest_lun
) {
2114 /* if so, find the new hightest lun */
2115 int i
, newhighest
= -1;
2116 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2117 /* if the disk has size > 0, it is available */
2118 if (h
->drv
[i
].heads
)
2121 h
->highest_lun
= newhighest
;
2129 static int fill_cmd(CommandList_struct
*c
, __u8 cmd
, int ctlr
, void *buff
,
2130 size_t size
, __u8 page_code
, unsigned char *scsi3addr
,
2133 ctlr_info_t
*h
= hba
[ctlr
];
2134 u64bit buff_dma_handle
;
2137 c
->cmd_type
= CMD_IOCTL_PEND
;
2138 c
->Header
.ReplyQueue
= 0;
2140 c
->Header
.SGList
= 1;
2141 c
->Header
.SGTotal
= 1;
2143 c
->Header
.SGList
= 0;
2144 c
->Header
.SGTotal
= 0;
2146 c
->Header
.Tag
.lower
= c
->busaddr
;
2147 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
2149 c
->Request
.Type
.Type
= cmd_type
;
2150 if (cmd_type
== TYPE_CMD
) {
2153 /* are we trying to read a vital product page */
2154 if (page_code
!= 0) {
2155 c
->Request
.CDB
[1] = 0x01;
2156 c
->Request
.CDB
[2] = page_code
;
2158 c
->Request
.CDBLen
= 6;
2159 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2160 c
->Request
.Type
.Direction
= XFER_READ
;
2161 c
->Request
.Timeout
= 0;
2162 c
->Request
.CDB
[0] = CISS_INQUIRY
;
2163 c
->Request
.CDB
[4] = size
& 0xFF;
2165 case CISS_REPORT_LOG
:
2166 case CISS_REPORT_PHYS
:
2167 /* Talking to controller so It's a physical command
2168 mode = 00 target = 0. Nothing to write.
2170 c
->Request
.CDBLen
= 12;
2171 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2172 c
->Request
.Type
.Direction
= XFER_READ
;
2173 c
->Request
.Timeout
= 0;
2174 c
->Request
.CDB
[0] = cmd
;
2175 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; //MSB
2176 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
2177 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
2178 c
->Request
.CDB
[9] = size
& 0xFF;
2181 case CCISS_READ_CAPACITY
:
2182 c
->Request
.CDBLen
= 10;
2183 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2184 c
->Request
.Type
.Direction
= XFER_READ
;
2185 c
->Request
.Timeout
= 0;
2186 c
->Request
.CDB
[0] = cmd
;
2188 case CCISS_READ_CAPACITY_16
:
2189 c
->Request
.CDBLen
= 16;
2190 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2191 c
->Request
.Type
.Direction
= XFER_READ
;
2192 c
->Request
.Timeout
= 0;
2193 c
->Request
.CDB
[0] = cmd
;
2194 c
->Request
.CDB
[1] = 0x10;
2195 c
->Request
.CDB
[10] = (size
>> 24) & 0xFF;
2196 c
->Request
.CDB
[11] = (size
>> 16) & 0xFF;
2197 c
->Request
.CDB
[12] = (size
>> 8) & 0xFF;
2198 c
->Request
.CDB
[13] = size
& 0xFF;
2199 c
->Request
.Timeout
= 0;
2200 c
->Request
.CDB
[0] = cmd
;
2202 case CCISS_CACHE_FLUSH
:
2203 c
->Request
.CDBLen
= 12;
2204 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2205 c
->Request
.Type
.Direction
= XFER_WRITE
;
2206 c
->Request
.Timeout
= 0;
2207 c
->Request
.CDB
[0] = BMIC_WRITE
;
2208 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
2210 case TEST_UNIT_READY
:
2211 c
->Request
.CDBLen
= 6;
2212 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2213 c
->Request
.Type
.Direction
= XFER_NONE
;
2214 c
->Request
.Timeout
= 0;
2218 "cciss%d: Unknown Command 0x%c\n", ctlr
, cmd
);
2221 } else if (cmd_type
== TYPE_MSG
) {
2223 case 0: /* ABORT message */
2224 c
->Request
.CDBLen
= 12;
2225 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2226 c
->Request
.Type
.Direction
= XFER_WRITE
;
2227 c
->Request
.Timeout
= 0;
2228 c
->Request
.CDB
[0] = cmd
; /* abort */
2229 c
->Request
.CDB
[1] = 0; /* abort a command */
2230 /* buff contains the tag of the command to abort */
2231 memcpy(&c
->Request
.CDB
[4], buff
, 8);
2233 case 1: /* RESET message */
2234 c
->Request
.CDBLen
= 16;
2235 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2236 c
->Request
.Type
.Direction
= XFER_NONE
;
2237 c
->Request
.Timeout
= 0;
2238 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
2239 c
->Request
.CDB
[0] = cmd
; /* reset */
2240 c
->Request
.CDB
[1] = 0x03; /* reset a target */
2242 case 3: /* No-Op message */
2243 c
->Request
.CDBLen
= 1;
2244 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2245 c
->Request
.Type
.Direction
= XFER_WRITE
;
2246 c
->Request
.Timeout
= 0;
2247 c
->Request
.CDB
[0] = cmd
;
2251 "cciss%d: unknown message type %d\n", ctlr
, cmd
);
2256 "cciss%d: unknown command type %d\n", ctlr
, cmd_type
);
2259 /* Fill in the scatter gather information */
2261 buff_dma_handle
.val
= (__u64
) pci_map_single(h
->pdev
,
2263 PCI_DMA_BIDIRECTIONAL
);
2264 c
->SG
[0].Addr
.lower
= buff_dma_handle
.val32
.lower
;
2265 c
->SG
[0].Addr
.upper
= buff_dma_handle
.val32
.upper
;
2266 c
->SG
[0].Len
= size
;
2267 c
->SG
[0].Ext
= 0; /* we are not chaining */
2272 static int check_target_status(ctlr_info_t
*h
, CommandList_struct
*c
)
2274 switch (c
->err_info
->ScsiStatus
) {
2277 case SAM_STAT_CHECK_CONDITION
:
2278 switch (0xf & c
->err_info
->SenseInfo
[2]) {
2279 case 0: return IO_OK
; /* no sense */
2280 case 1: return IO_OK
; /* recovered error */
2282 printk(KERN_WARNING
"cciss%d: cmd 0x%02x "
2283 "check condition, sense key = 0x%02x\n",
2284 h
->ctlr
, c
->Request
.CDB
[0],
2285 c
->err_info
->SenseInfo
[2]);
2289 printk(KERN_WARNING
"cciss%d: cmd 0x%02x"
2290 "scsi status = 0x%02x\n", h
->ctlr
,
2291 c
->Request
.CDB
[0], c
->err_info
->ScsiStatus
);
2297 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
)
2299 int return_status
= IO_OK
;
2301 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
2304 switch (c
->err_info
->CommandStatus
) {
2305 case CMD_TARGET_STATUS
:
2306 return_status
= check_target_status(h
, c
);
2308 case CMD_DATA_UNDERRUN
:
2309 case CMD_DATA_OVERRUN
:
2310 /* expected for inquiry and report lun commands */
2313 printk(KERN_WARNING
"cciss: cmd 0x%02x is "
2314 "reported invalid\n", c
->Request
.CDB
[0]);
2315 return_status
= IO_ERROR
;
2317 case CMD_PROTOCOL_ERR
:
2318 printk(KERN_WARNING
"cciss: cmd 0x%02x has "
2319 "protocol error \n", c
->Request
.CDB
[0]);
2320 return_status
= IO_ERROR
;
2322 case CMD_HARDWARE_ERR
:
2323 printk(KERN_WARNING
"cciss: cmd 0x%02x had "
2324 " hardware error\n", c
->Request
.CDB
[0]);
2325 return_status
= IO_ERROR
;
2327 case CMD_CONNECTION_LOST
:
2328 printk(KERN_WARNING
"cciss: cmd 0x%02x had "
2329 "connection lost\n", c
->Request
.CDB
[0]);
2330 return_status
= IO_ERROR
;
2333 printk(KERN_WARNING
"cciss: cmd 0x%02x was "
2334 "aborted\n", c
->Request
.CDB
[0]);
2335 return_status
= IO_ERROR
;
2337 case CMD_ABORT_FAILED
:
2338 printk(KERN_WARNING
"cciss: cmd 0x%02x reports "
2339 "abort failed\n", c
->Request
.CDB
[0]);
2340 return_status
= IO_ERROR
;
2342 case CMD_UNSOLICITED_ABORT
:
2344 "cciss%d: unsolicited abort 0x%02x\n", h
->ctlr
,
2346 return_status
= IO_NEEDS_RETRY
;
2349 printk(KERN_WARNING
"cciss: cmd 0x%02x returned "
2350 "unknown status %x\n", c
->Request
.CDB
[0],
2351 c
->err_info
->CommandStatus
);
2352 return_status
= IO_ERROR
;
2354 return return_status
;
2357 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
2360 DECLARE_COMPLETION_ONSTACK(wait
);
2361 u64bit buff_dma_handle
;
2362 unsigned long flags
;
2363 int return_status
= IO_OK
;
2367 /* Put the request on the tail of the queue and send it */
2368 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
2372 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2374 wait_for_completion(&wait
);
2376 if (c
->err_info
->CommandStatus
== 0 || !attempt_retry
)
2379 return_status
= process_sendcmd_error(h
, c
);
2381 if (return_status
== IO_NEEDS_RETRY
&&
2382 c
->retry_count
< MAX_CMD_RETRIES
) {
2383 printk(KERN_WARNING
"cciss%d: retrying 0x%02x\n", h
->ctlr
,
2386 /* erase the old error information */
2387 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2388 return_status
= IO_OK
;
2389 INIT_COMPLETION(wait
);
2394 /* unlock the buffers from DMA */
2395 buff_dma_handle
.val32
.lower
= c
->SG
[0].Addr
.lower
;
2396 buff_dma_handle
.val32
.upper
= c
->SG
[0].Addr
.upper
;
2397 pci_unmap_single(h
->pdev
, (dma_addr_t
) buff_dma_handle
.val
,
2398 c
->SG
[0].Len
, PCI_DMA_BIDIRECTIONAL
);
2399 return return_status
;
2402 static int sendcmd_withirq(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
2403 __u8 page_code
, unsigned char scsi3addr
[],
2406 ctlr_info_t
*h
= hba
[ctlr
];
2407 CommandList_struct
*c
;
2410 c
= cmd_alloc(h
, 0);
2413 return_status
= fill_cmd(c
, cmd
, ctlr
, buff
, size
, page_code
,
2414 scsi3addr
, cmd_type
);
2415 if (return_status
== IO_OK
)
2416 return_status
= sendcmd_withirq_core(h
, c
, 1);
2419 return return_status
;
2422 static void cciss_geometry_inquiry(int ctlr
, int logvol
,
2423 int withirq
, sector_t total_size
,
2424 unsigned int block_size
,
2425 InquiryData_struct
*inq_buff
,
2426 drive_info_struct
*drv
)
2430 unsigned char scsi3addr
[8];
2432 memset(inq_buff
, 0, sizeof(InquiryData_struct
));
2433 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2435 return_code
= sendcmd_withirq(CISS_INQUIRY
, ctlr
,
2436 inq_buff
, sizeof(*inq_buff
),
2437 0xC1, scsi3addr
, TYPE_CMD
);
2439 return_code
= sendcmd(CISS_INQUIRY
, ctlr
, inq_buff
,
2440 sizeof(*inq_buff
), 0xC1, scsi3addr
,
2442 if (return_code
== IO_OK
) {
2443 if (inq_buff
->data_byte
[8] == 0xFF) {
2445 "cciss: reading geometry failed, volume "
2446 "does not support reading geometry\n");
2448 drv
->sectors
= 32; // Sectors per track
2449 drv
->cylinders
= total_size
+ 1;
2450 drv
->raid_level
= RAID_UNKNOWN
;
2452 drv
->heads
= inq_buff
->data_byte
[6];
2453 drv
->sectors
= inq_buff
->data_byte
[7];
2454 drv
->cylinders
= (inq_buff
->data_byte
[4] & 0xff) << 8;
2455 drv
->cylinders
+= inq_buff
->data_byte
[5];
2456 drv
->raid_level
= inq_buff
->data_byte
[8];
2458 drv
->block_size
= block_size
;
2459 drv
->nr_blocks
= total_size
+ 1;
2460 t
= drv
->heads
* drv
->sectors
;
2462 sector_t real_size
= total_size
+ 1;
2463 unsigned long rem
= sector_div(real_size
, t
);
2466 drv
->cylinders
= real_size
;
2468 } else { /* Get geometry failed */
2469 printk(KERN_WARNING
"cciss: reading geometry failed\n");
2471 printk(KERN_INFO
" heads=%d, sectors=%d, cylinders=%d\n\n",
2472 drv
->heads
, drv
->sectors
, drv
->cylinders
);
2476 cciss_read_capacity(int ctlr
, int logvol
, int withirq
, sector_t
*total_size
,
2477 unsigned int *block_size
)
2479 ReadCapdata_struct
*buf
;
2481 unsigned char scsi3addr
[8];
2483 buf
= kzalloc(sizeof(ReadCapdata_struct
), GFP_KERNEL
);
2485 printk(KERN_WARNING
"cciss: out of memory\n");
2489 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2491 return_code
= sendcmd_withirq(CCISS_READ_CAPACITY
,
2492 ctlr
, buf
, sizeof(ReadCapdata_struct
),
2493 0, scsi3addr
, TYPE_CMD
);
2495 return_code
= sendcmd(CCISS_READ_CAPACITY
,
2496 ctlr
, buf
, sizeof(ReadCapdata_struct
),
2497 0, scsi3addr
, TYPE_CMD
);
2498 if (return_code
== IO_OK
) {
2499 *total_size
= be32_to_cpu(*(__be32
*) buf
->total_size
);
2500 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2501 } else { /* read capacity command failed */
2502 printk(KERN_WARNING
"cciss: read capacity failed\n");
2504 *block_size
= BLOCK_SIZE
;
2506 if (*total_size
!= 0)
2507 printk(KERN_INFO
" blocks= %llu block_size= %d\n",
2508 (unsigned long long)*total_size
+1, *block_size
);
2513 cciss_read_capacity_16(int ctlr
, int logvol
, int withirq
, sector_t
*total_size
, unsigned int *block_size
)
2515 ReadCapdata_struct_16
*buf
;
2517 unsigned char scsi3addr
[8];
2519 buf
= kzalloc(sizeof(ReadCapdata_struct_16
), GFP_KERNEL
);
2521 printk(KERN_WARNING
"cciss: out of memory\n");
2525 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2527 return_code
= sendcmd_withirq(CCISS_READ_CAPACITY_16
,
2528 ctlr
, buf
, sizeof(ReadCapdata_struct_16
),
2529 0, scsi3addr
, TYPE_CMD
);
2532 return_code
= sendcmd(CCISS_READ_CAPACITY_16
,
2533 ctlr
, buf
, sizeof(ReadCapdata_struct_16
),
2534 0, scsi3addr
, TYPE_CMD
);
2536 if (return_code
== IO_OK
) {
2537 *total_size
= be64_to_cpu(*(__be64
*) buf
->total_size
);
2538 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2539 } else { /* read capacity command failed */
2540 printk(KERN_WARNING
"cciss: read capacity failed\n");
2542 *block_size
= BLOCK_SIZE
;
2544 printk(KERN_INFO
" blocks= %llu block_size= %d\n",
2545 (unsigned long long)*total_size
+1, *block_size
);
2549 static int cciss_revalidate(struct gendisk
*disk
)
2551 ctlr_info_t
*h
= get_host(disk
);
2552 drive_info_struct
*drv
= get_drv(disk
);
2555 unsigned int block_size
;
2556 sector_t total_size
;
2557 InquiryData_struct
*inq_buff
= NULL
;
2559 for (logvol
= 0; logvol
< CISS_MAX_LUN
; logvol
++) {
2560 if (h
->drv
[logvol
].LunID
== drv
->LunID
) {
2569 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
2570 if (inq_buff
== NULL
) {
2571 printk(KERN_WARNING
"cciss: out of memory\n");
2574 if (h
->cciss_read
== CCISS_READ_10
) {
2575 cciss_read_capacity(h
->ctlr
, logvol
, 1,
2576 &total_size
, &block_size
);
2578 cciss_read_capacity_16(h
->ctlr
, logvol
, 1,
2579 &total_size
, &block_size
);
2581 cciss_geometry_inquiry(h
->ctlr
, logvol
, 1, total_size
, block_size
,
2584 blk_queue_logical_block_size(drv
->queue
, drv
->block_size
);
2585 set_capacity(disk
, drv
->nr_blocks
);
2592 * Wait polling for a command to complete.
2593 * The memory mapped FIFO is polled for the completion.
2594 * Used only at init time, interrupts from the HBA are disabled.
2596 static unsigned long pollcomplete(int ctlr
)
2601 /* Wait (up to 20 seconds) for a command to complete */
2603 for (i
= 20 * HZ
; i
> 0; i
--) {
2604 done
= hba
[ctlr
]->access
.command_completed(hba
[ctlr
]);
2605 if (done
== FIFO_EMPTY
)
2606 schedule_timeout_uninterruptible(1);
2610 /* Invalid address to tell caller we ran out of time */
2614 /* Send command c to controller h and poll for it to complete.
2615 * Turns interrupts off on the board. Used at driver init time
2616 * and during SCSI error recovery.
2618 static int sendcmd_core(ctlr_info_t
*h
, CommandList_struct
*c
)
2621 unsigned long complete
;
2622 int status
= IO_ERROR
;
2623 u64bit buff_dma_handle
;
2627 /* Disable interrupt on the board. */
2628 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
2630 /* Make sure there is room in the command FIFO */
2631 /* Actually it should be completely empty at this time */
2632 /* unless we are in here doing error handling for the scsi */
2633 /* tape side of the driver. */
2634 for (i
= 200000; i
> 0; i
--) {
2635 /* if fifo isn't full go */
2636 if (!(h
->access
.fifo_full(h
)))
2639 printk(KERN_WARNING
"cciss cciss%d: SendCmd FIFO full,"
2640 " waiting!\n", h
->ctlr
);
2642 h
->access
.submit_command(h
, c
); /* Send the cmd */
2644 complete
= pollcomplete(h
->ctlr
);
2647 printk(KERN_DEBUG
"cciss: command completed\n");
2648 #endif /* CCISS_DEBUG */
2650 if (complete
== 1) {
2652 "cciss cciss%d: SendCmd Timeout out, "
2653 "No command list address returned!\n", h
->ctlr
);
2658 /* Make sure it's the command we're expecting. */
2659 if ((complete
& ~CISS_ERROR_BIT
) != c
->busaddr
) {
2660 printk(KERN_WARNING
"cciss%d: Unexpected command "
2661 "completion.\n", h
->ctlr
);
2665 /* It is our command. If no error, we're done. */
2666 if (!(complete
& CISS_ERROR_BIT
)) {
2671 /* There is an error... */
2673 /* if data overrun or underun on Report command ignore it */
2674 if (((c
->Request
.CDB
[0] == CISS_REPORT_LOG
) ||
2675 (c
->Request
.CDB
[0] == CISS_REPORT_PHYS
) ||
2676 (c
->Request
.CDB
[0] == CISS_INQUIRY
)) &&
2677 ((c
->err_info
->CommandStatus
== CMD_DATA_OVERRUN
) ||
2678 (c
->err_info
->CommandStatus
== CMD_DATA_UNDERRUN
))) {
2679 complete
= c
->busaddr
;
2684 if (c
->err_info
->CommandStatus
== CMD_UNSOLICITED_ABORT
) {
2685 printk(KERN_WARNING
"cciss%d: unsolicited abort %p\n",
2687 if (c
->retry_count
< MAX_CMD_RETRIES
) {
2688 printk(KERN_WARNING
"cciss%d: retrying %p\n",
2691 /* erase the old error information */
2692 memset(c
->err_info
, 0, sizeof(c
->err_info
));
2695 printk(KERN_WARNING
"cciss%d: retried %p too many "
2696 "times\n", h
->ctlr
, c
);
2701 if (c
->err_info
->CommandStatus
== CMD_UNABORTABLE
) {
2702 printk(KERN_WARNING
"cciss%d: command could not be "
2703 "aborted.\n", h
->ctlr
);
2708 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
) {
2709 status
= check_target_status(h
, c
);
2713 printk(KERN_WARNING
"cciss%d: sendcmd error\n", h
->ctlr
);
2714 printk(KERN_WARNING
"cmd = 0x%02x, CommandStatus = 0x%02x\n",
2715 c
->Request
.CDB
[0], c
->err_info
->CommandStatus
);
2721 /* unlock the data buffer from DMA */
2722 buff_dma_handle
.val32
.lower
= c
->SG
[0].Addr
.lower
;
2723 buff_dma_handle
.val32
.upper
= c
->SG
[0].Addr
.upper
;
2724 pci_unmap_single(h
->pdev
, (dma_addr_t
) buff_dma_handle
.val
,
2725 c
->SG
[0].Len
, PCI_DMA_BIDIRECTIONAL
);
2730 * Send a command to the controller, and wait for it to complete.
2731 * Used at init time, and during SCSI error recovery.
2733 static int sendcmd(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
2734 __u8 page_code
, unsigned char *scsi3addr
, int cmd_type
)
2736 CommandList_struct
*c
;
2739 c
= cmd_alloc(hba
[ctlr
], 1);
2741 printk(KERN_WARNING
"cciss: unable to get memory");
2744 status
= fill_cmd(c
, cmd
, ctlr
, buff
, size
, page_code
,
2745 scsi3addr
, cmd_type
);
2746 if (status
== IO_OK
)
2747 status
= sendcmd_core(hba
[ctlr
], c
);
2748 cmd_free(hba
[ctlr
], c
, 1);
2753 * Map (physical) PCI mem into (virtual) kernel space
2755 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
2757 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
2758 ulong page_offs
= ((ulong
) base
) - page_base
;
2759 void __iomem
*page_remapped
= ioremap(page_base
, page_offs
+ size
);
2761 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
2765 * Takes jobs of the Q and sends them to the hardware, then puts it on
2766 * the Q to wait for completion.
2768 static void start_io(ctlr_info_t
*h
)
2770 CommandList_struct
*c
;
2772 while (!hlist_empty(&h
->reqQ
)) {
2773 c
= hlist_entry(h
->reqQ
.first
, CommandList_struct
, list
);
2774 /* can't do anything if fifo is full */
2775 if ((h
->access
.fifo_full(h
))) {
2776 printk(KERN_WARNING
"cciss: fifo full\n");
2780 /* Get the first entry from the Request Q */
2784 /* Tell the controller execute command */
2785 h
->access
.submit_command(h
, c
);
2787 /* Put job onto the completed Q */
2792 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2793 /* Zeros out the error record and then resends the command back */
2794 /* to the controller */
2795 static inline void resend_cciss_cmd(ctlr_info_t
*h
, CommandList_struct
*c
)
2797 /* erase the old error information */
2798 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2800 /* add it to software queue and then send it to the controller */
2803 if (h
->Qdepth
> h
->maxQsinceinit
)
2804 h
->maxQsinceinit
= h
->Qdepth
;
2809 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte
,
2810 unsigned int msg_byte
, unsigned int host_byte
,
2811 unsigned int driver_byte
)
2813 /* inverse of macros in scsi.h */
2814 return (scsi_status_byte
& 0xff) |
2815 ((msg_byte
& 0xff) << 8) |
2816 ((host_byte
& 0xff) << 16) |
2817 ((driver_byte
& 0xff) << 24);
2820 static inline int evaluate_target_status(ctlr_info_t
*h
,
2821 CommandList_struct
*cmd
, int *retry_cmd
)
2823 unsigned char sense_key
;
2824 unsigned char status_byte
, msg_byte
, host_byte
, driver_byte
;
2828 /* If we get in here, it means we got "target status", that is, scsi status */
2829 status_byte
= cmd
->err_info
->ScsiStatus
;
2830 driver_byte
= DRIVER_OK
;
2831 msg_byte
= cmd
->err_info
->CommandStatus
; /* correct? seems too device specific */
2833 if (blk_pc_request(cmd
->rq
))
2834 host_byte
= DID_PASSTHROUGH
;
2838 error_value
= make_status_bytes(status_byte
, msg_byte
,
2839 host_byte
, driver_byte
);
2841 if (cmd
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
) {
2842 if (!blk_pc_request(cmd
->rq
))
2843 printk(KERN_WARNING
"cciss: cmd %p "
2844 "has SCSI Status 0x%x\n",
2845 cmd
, cmd
->err_info
->ScsiStatus
);
2849 /* check the sense key */
2850 sense_key
= 0xf & cmd
->err_info
->SenseInfo
[2];
2851 /* no status or recovered error */
2852 if (((sense_key
== 0x0) || (sense_key
== 0x1)) && !blk_pc_request(cmd
->rq
))
2855 if (check_for_unit_attention(h
, cmd
)) {
2856 *retry_cmd
= !blk_pc_request(cmd
->rq
);
2860 if (!blk_pc_request(cmd
->rq
)) { /* Not SG_IO or similar? */
2861 if (error_value
!= 0)
2862 printk(KERN_WARNING
"cciss: cmd %p has CHECK CONDITION"
2863 " sense key = 0x%x\n", cmd
, sense_key
);
2867 /* SG_IO or similar, copy sense data back */
2868 if (cmd
->rq
->sense
) {
2869 if (cmd
->rq
->sense_len
> cmd
->err_info
->SenseLen
)
2870 cmd
->rq
->sense_len
= cmd
->err_info
->SenseLen
;
2871 memcpy(cmd
->rq
->sense
, cmd
->err_info
->SenseInfo
,
2872 cmd
->rq
->sense_len
);
2874 cmd
->rq
->sense_len
= 0;
2879 /* checks the status of the job and calls complete buffers to mark all
2880 * buffers for the completed job. Note that this function does not need
2881 * to hold the hba/queue lock.
2883 static inline void complete_command(ctlr_info_t
*h
, CommandList_struct
*cmd
,
2887 struct request
*rq
= cmd
->rq
;
2892 rq
->errors
= make_status_bytes(0, 0, 0, DRIVER_TIMEOUT
);
2894 if (cmd
->err_info
->CommandStatus
== 0) /* no error has occurred */
2895 goto after_error_processing
;
2897 switch (cmd
->err_info
->CommandStatus
) {
2898 case CMD_TARGET_STATUS
:
2899 rq
->errors
= evaluate_target_status(h
, cmd
, &retry_cmd
);
2901 case CMD_DATA_UNDERRUN
:
2902 if (blk_fs_request(cmd
->rq
)) {
2903 printk(KERN_WARNING
"cciss: cmd %p has"
2904 " completed with data underrun "
2906 cmd
->rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
2909 case CMD_DATA_OVERRUN
:
2910 if (blk_fs_request(cmd
->rq
))
2911 printk(KERN_WARNING
"cciss: cmd %p has"
2912 " completed with data overrun "
2916 printk(KERN_WARNING
"cciss: cmd %p is "
2917 "reported invalid\n", cmd
);
2918 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2919 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2920 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
2922 case CMD_PROTOCOL_ERR
:
2923 printk(KERN_WARNING
"cciss: cmd %p has "
2924 "protocol error \n", cmd
);
2925 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2926 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2927 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
2929 case CMD_HARDWARE_ERR
:
2930 printk(KERN_WARNING
"cciss: cmd %p had "
2931 " hardware error\n", cmd
);
2932 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2933 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2934 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
2936 case CMD_CONNECTION_LOST
:
2937 printk(KERN_WARNING
"cciss: cmd %p had "
2938 "connection lost\n", cmd
);
2939 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2940 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2941 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
2944 printk(KERN_WARNING
"cciss: cmd %p was "
2946 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2947 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2948 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ABORT
);
2950 case CMD_ABORT_FAILED
:
2951 printk(KERN_WARNING
"cciss: cmd %p reports "
2952 "abort failed\n", cmd
);
2953 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2954 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2955 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
2957 case CMD_UNSOLICITED_ABORT
:
2958 printk(KERN_WARNING
"cciss%d: unsolicited "
2959 "abort %p\n", h
->ctlr
, cmd
);
2960 if (cmd
->retry_count
< MAX_CMD_RETRIES
) {
2963 "cciss%d: retrying %p\n", h
->ctlr
, cmd
);
2967 "cciss%d: %p retried too "
2968 "many times\n", h
->ctlr
, cmd
);
2969 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2970 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2971 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ABORT
);
2974 printk(KERN_WARNING
"cciss: cmd %p timedout\n", cmd
);
2975 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2976 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2977 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
2980 printk(KERN_WARNING
"cciss: cmd %p returned "
2981 "unknown status %x\n", cmd
,
2982 cmd
->err_info
->CommandStatus
);
2983 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
2984 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
2985 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
2988 after_error_processing
:
2990 /* We need to return this command */
2992 resend_cciss_cmd(h
, cmd
);
2995 cmd
->rq
->completion_data
= cmd
;
2996 blk_complete_request(cmd
->rq
);
3000 * Get a request and submit it to the controller.
3002 static void do_cciss_request(struct request_queue
*q
)
3004 ctlr_info_t
*h
= q
->queuedata
;
3005 CommandList_struct
*c
;
3008 struct request
*creq
;
3010 struct scatterlist tmp_sg
[MAXSGENTRIES
];
3011 drive_info_struct
*drv
;
3014 /* We call start_io here in case there is a command waiting on the
3015 * queue that has not been sent.
3017 if (blk_queue_plugged(q
))
3021 creq
= blk_peek_request(q
);
3025 BUG_ON(creq
->nr_phys_segments
> MAXSGENTRIES
);
3027 if ((c
= cmd_alloc(h
, 1)) == NULL
)
3030 blk_start_request(creq
);
3032 spin_unlock_irq(q
->queue_lock
);
3034 c
->cmd_type
= CMD_RWREQ
;
3037 /* fill in the request */
3038 drv
= creq
->rq_disk
->private_data
;
3039 c
->Header
.ReplyQueue
= 0; // unused in simple mode
3040 /* got command from pool, so use the command block index instead */
3041 /* for direct lookups. */
3042 /* The first 2 bits are reserved for controller error reporting. */
3043 c
->Header
.Tag
.lower
= (c
->cmdindex
<< 3);
3044 c
->Header
.Tag
.lower
|= 0x04; /* flag for direct lookup. */
3045 c
->Header
.LUN
.LogDev
.VolId
= drv
->LunID
;
3046 c
->Header
.LUN
.LogDev
.Mode
= 1;
3047 c
->Request
.CDBLen
= 10; // 12 byte commands not in FW yet;
3048 c
->Request
.Type
.Type
= TYPE_CMD
; // It is a command.
3049 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3050 c
->Request
.Type
.Direction
=
3051 (rq_data_dir(creq
) == READ
) ? XFER_READ
: XFER_WRITE
;
3052 c
->Request
.Timeout
= 0; // Don't time out
3054 (rq_data_dir(creq
) == READ
) ? h
->cciss_read
: h
->cciss_write
;
3055 start_blk
= blk_rq_pos(creq
);
3057 printk(KERN_DEBUG
"ciss: sector =%d nr_sectors=%d\n",
3058 (int)blk_rq_pos(creq
), (int)blk_rq_sectors(creq
));
3059 #endif /* CCISS_DEBUG */
3061 sg_init_table(tmp_sg
, MAXSGENTRIES
);
3062 seg
= blk_rq_map_sg(q
, creq
, tmp_sg
);
3064 /* get the DMA records for the setup */
3065 if (c
->Request
.Type
.Direction
== XFER_READ
)
3066 dir
= PCI_DMA_FROMDEVICE
;
3068 dir
= PCI_DMA_TODEVICE
;
3070 for (i
= 0; i
< seg
; i
++) {
3071 c
->SG
[i
].Len
= tmp_sg
[i
].length
;
3072 temp64
.val
= (__u64
) pci_map_page(h
->pdev
, sg_page(&tmp_sg
[i
]),
3074 tmp_sg
[i
].length
, dir
);
3075 c
->SG
[i
].Addr
.lower
= temp64
.val32
.lower
;
3076 c
->SG
[i
].Addr
.upper
= temp64
.val32
.upper
;
3077 c
->SG
[i
].Ext
= 0; // we are not chaining
3079 /* track how many SG entries we are using */
3084 printk(KERN_DEBUG
"cciss: Submitting %u sectors in %d segments\n",
3085 blk_rq_sectors(creq
), seg
);
3086 #endif /* CCISS_DEBUG */
3088 c
->Header
.SGList
= c
->Header
.SGTotal
= seg
;
3089 if (likely(blk_fs_request(creq
))) {
3090 if(h
->cciss_read
== CCISS_READ_10
) {
3091 c
->Request
.CDB
[1] = 0;
3092 c
->Request
.CDB
[2] = (start_blk
>> 24) & 0xff; //MSB
3093 c
->Request
.CDB
[3] = (start_blk
>> 16) & 0xff;
3094 c
->Request
.CDB
[4] = (start_blk
>> 8) & 0xff;
3095 c
->Request
.CDB
[5] = start_blk
& 0xff;
3096 c
->Request
.CDB
[6] = 0; // (sect >> 24) & 0xff; MSB
3097 c
->Request
.CDB
[7] = (blk_rq_sectors(creq
) >> 8) & 0xff;
3098 c
->Request
.CDB
[8] = blk_rq_sectors(creq
) & 0xff;
3099 c
->Request
.CDB
[9] = c
->Request
.CDB
[11] = c
->Request
.CDB
[12] = 0;
3101 u32 upper32
= upper_32_bits(start_blk
);
3103 c
->Request
.CDBLen
= 16;
3104 c
->Request
.CDB
[1]= 0;
3105 c
->Request
.CDB
[2]= (upper32
>> 24) & 0xff; //MSB
3106 c
->Request
.CDB
[3]= (upper32
>> 16) & 0xff;
3107 c
->Request
.CDB
[4]= (upper32
>> 8) & 0xff;
3108 c
->Request
.CDB
[5]= upper32
& 0xff;
3109 c
->Request
.CDB
[6]= (start_blk
>> 24) & 0xff;
3110 c
->Request
.CDB
[7]= (start_blk
>> 16) & 0xff;
3111 c
->Request
.CDB
[8]= (start_blk
>> 8) & 0xff;
3112 c
->Request
.CDB
[9]= start_blk
& 0xff;
3113 c
->Request
.CDB
[10]= (blk_rq_sectors(creq
) >> 24) & 0xff;
3114 c
->Request
.CDB
[11]= (blk_rq_sectors(creq
) >> 16) & 0xff;
3115 c
->Request
.CDB
[12]= (blk_rq_sectors(creq
) >> 8) & 0xff;
3116 c
->Request
.CDB
[13]= blk_rq_sectors(creq
) & 0xff;
3117 c
->Request
.CDB
[14] = c
->Request
.CDB
[15] = 0;
3119 } else if (blk_pc_request(creq
)) {
3120 c
->Request
.CDBLen
= creq
->cmd_len
;
3121 memcpy(c
->Request
.CDB
, creq
->cmd
, BLK_MAX_CDB
);
3123 printk(KERN_WARNING
"cciss%d: bad request type %d\n", h
->ctlr
, creq
->cmd_type
);
3127 spin_lock_irq(q
->queue_lock
);
3131 if (h
->Qdepth
> h
->maxQsinceinit
)
3132 h
->maxQsinceinit
= h
->Qdepth
;
3138 /* We will already have the driver lock here so not need
3144 static inline unsigned long get_next_completion(ctlr_info_t
*h
)
3146 return h
->access
.command_completed(h
);
3149 static inline int interrupt_pending(ctlr_info_t
*h
)
3151 return h
->access
.intr_pending(h
);
3154 static inline long interrupt_not_for_us(ctlr_info_t
*h
)
3156 return (((h
->access
.intr_pending(h
) == 0) ||
3157 (h
->interrupts_enabled
== 0)));
3160 static irqreturn_t
do_cciss_intr(int irq
, void *dev_id
)
3162 ctlr_info_t
*h
= dev_id
;
3163 CommandList_struct
*c
;
3164 unsigned long flags
;
3167 if (interrupt_not_for_us(h
))
3170 * If there are completed commands in the completion queue,
3171 * we had better do something about it.
3173 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
3174 while (interrupt_pending(h
)) {
3175 while ((a
= get_next_completion(h
)) != FIFO_EMPTY
) {
3179 if (a2
>= h
->nr_cmds
) {
3181 "cciss: controller cciss%d failed, stopping.\n",
3183 fail_all_cmds(h
->ctlr
);
3187 c
= h
->cmd_pool
+ a2
;
3191 struct hlist_node
*tmp
;
3195 hlist_for_each_entry(c
, tmp
, &h
->cmpQ
, list
) {
3196 if (c
->busaddr
== a
)
3201 * If we've found the command, take it off the
3202 * completion Q and free it
3204 if (c
&& c
->busaddr
== a
) {
3206 if (c
->cmd_type
== CMD_RWREQ
) {
3207 complete_command(h
, c
, 0);
3208 } else if (c
->cmd_type
== CMD_IOCTL_PEND
) {
3209 complete(c
->waiting
);
3211 # ifdef CONFIG_CISS_SCSI_TAPE
3212 else if (c
->cmd_type
== CMD_SCSI
)
3213 complete_scsi_command(c
, 0, a1
);
3220 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
3224 static int scan_thread(void *data
)
3226 ctlr_info_t
*h
= data
;
3228 DECLARE_COMPLETION_ONSTACK(wait
);
3229 h
->rescan_wait
= &wait
;
3232 rc
= wait_for_completion_interruptible(&wait
);
3233 if (kthread_should_stop())
3236 rebuild_lun_table(h
, 0);
3241 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
)
3243 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
3246 switch (c
->err_info
->SenseInfo
[12]) {
3248 printk(KERN_WARNING
"cciss%d: a state change "
3249 "detected, command retried\n", h
->ctlr
);
3253 printk(KERN_WARNING
"cciss%d: LUN failure "
3254 "detected, action required\n", h
->ctlr
);
3257 case REPORT_LUNS_CHANGED
:
3258 printk(KERN_WARNING
"cciss%d: report LUN data "
3259 "changed\n", h
->ctlr
);
3261 complete(h
->rescan_wait
);
3264 case POWER_OR_RESET
:
3265 printk(KERN_WARNING
"cciss%d: a power on "
3266 "or device reset detected\n", h
->ctlr
);
3269 case UNIT_ATTENTION_CLEARED
:
3270 printk(KERN_WARNING
"cciss%d: unit attention "
3271 "cleared by another initiator\n", h
->ctlr
);
3275 printk(KERN_WARNING
"cciss%d: unknown "
3276 "unit attention detected\n", h
->ctlr
);
3282 * We cannot read the structure directly, for portability we must use
3284 * This is for debug only.
3287 static void print_cfg_table(CfgTable_struct
*tb
)
3292 printk("Controller Configuration information\n");
3293 printk("------------------------------------\n");
3294 for (i
= 0; i
< 4; i
++)
3295 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
3296 temp_name
[4] = '\0';
3297 printk(" Signature = %s\n", temp_name
);
3298 printk(" Spec Number = %d\n", readl(&(tb
->SpecValence
)));
3299 printk(" Transport methods supported = 0x%x\n",
3300 readl(&(tb
->TransportSupport
)));
3301 printk(" Transport methods active = 0x%x\n",
3302 readl(&(tb
->TransportActive
)));
3303 printk(" Requested transport Method = 0x%x\n",
3304 readl(&(tb
->HostWrite
.TransportRequest
)));
3305 printk(" Coalesce Interrupt Delay = 0x%x\n",
3306 readl(&(tb
->HostWrite
.CoalIntDelay
)));
3307 printk(" Coalesce Interrupt Count = 0x%x\n",
3308 readl(&(tb
->HostWrite
.CoalIntCount
)));
3309 printk(" Max outstanding commands = 0x%d\n",
3310 readl(&(tb
->CmdsOutMax
)));
3311 printk(" Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
3312 for (i
= 0; i
< 16; i
++)
3313 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
3314 temp_name
[16] = '\0';
3315 printk(" Server Name = %s\n", temp_name
);
3316 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb
->HeartBeat
)));
3318 #endif /* CCISS_DEBUG */
3320 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
3322 int i
, offset
, mem_type
, bar_type
;
3323 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
3326 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3327 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
3328 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
3331 mem_type
= pci_resource_flags(pdev
, i
) &
3332 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
3334 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
3335 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
3336 offset
+= 4; /* 32 bit */
3338 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
3341 default: /* reserved in PCI 2.2 */
3343 "Base address is invalid\n");
3348 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
3354 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3355 * controllers that are capable. If not, we use IO-APIC mode.
3358 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*c
,
3359 struct pci_dev
*pdev
, __u32 board_id
)
3361 #ifdef CONFIG_PCI_MSI
3363 struct msix_entry cciss_msix_entries
[4] = { {0, 0}, {0, 1},
3367 /* Some boards advertise MSI but don't really support it */
3368 if ((board_id
== 0x40700E11) ||
3369 (board_id
== 0x40800E11) ||
3370 (board_id
== 0x40820E11) || (board_id
== 0x40830E11))
3371 goto default_int_mode
;
3373 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
)) {
3374 err
= pci_enable_msix(pdev
, cciss_msix_entries
, 4);
3376 c
->intr
[0] = cciss_msix_entries
[0].vector
;
3377 c
->intr
[1] = cciss_msix_entries
[1].vector
;
3378 c
->intr
[2] = cciss_msix_entries
[2].vector
;
3379 c
->intr
[3] = cciss_msix_entries
[3].vector
;
3384 printk(KERN_WARNING
"cciss: only %d MSI-X vectors "
3385 "available\n", err
);
3386 goto default_int_mode
;
3388 printk(KERN_WARNING
"cciss: MSI-X init failed %d\n",
3390 goto default_int_mode
;
3393 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
)) {
3394 if (!pci_enable_msi(pdev
)) {
3397 printk(KERN_WARNING
"cciss: MSI init failed\n");
3401 #endif /* CONFIG_PCI_MSI */
3402 /* if we get here we're going to use the default interrupt mode */
3403 c
->intr
[SIMPLE_MODE_INT
] = pdev
->irq
;
3407 static int __devinit
cciss_pci_init(ctlr_info_t
*c
, struct pci_dev
*pdev
)
3409 ushort subsystem_vendor_id
, subsystem_device_id
, command
;
3410 __u32 board_id
, scratchpad
= 0;
3412 __u32 cfg_base_addr
;
3413 __u64 cfg_base_addr_index
;
3416 /* check to see if controller has been disabled */
3417 /* BEFORE trying to enable it */
3418 (void)pci_read_config_word(pdev
, PCI_COMMAND
, &command
);
3419 if (!(command
& 0x02)) {
3421 "cciss: controller appears to be disabled\n");
3425 err
= pci_enable_device(pdev
);
3427 printk(KERN_ERR
"cciss: Unable to Enable PCI device\n");
3431 err
= pci_request_regions(pdev
, "cciss");
3433 printk(KERN_ERR
"cciss: Cannot obtain PCI resources, "
3438 subsystem_vendor_id
= pdev
->subsystem_vendor
;
3439 subsystem_device_id
= pdev
->subsystem_device
;
3440 board_id
= (((__u32
) (subsystem_device_id
<< 16) & 0xffff0000) |
3441 subsystem_vendor_id
);
3444 printk("command = %x\n", command
);
3445 printk("irq = %x\n", pdev
->irq
);
3446 printk("board_id = %x\n", board_id
);
3447 #endif /* CCISS_DEBUG */
3449 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3450 * else we use the IO-APIC interrupt assigned to us by system ROM.
3452 cciss_interrupt_mode(c
, pdev
, board_id
);
3454 /* find the memory BAR */
3455 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3456 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
)
3459 if (i
== DEVICE_COUNT_RESOURCE
) {
3460 printk(KERN_WARNING
"cciss: No memory BAR found\n");
3462 goto err_out_free_res
;
3465 c
->paddr
= pci_resource_start(pdev
, i
); /* addressing mode bits
3470 printk("address 0 = %lx\n", c
->paddr
);
3471 #endif /* CCISS_DEBUG */
3472 c
->vaddr
= remap_pci_mem(c
->paddr
, 0x250);
3474 /* Wait for the board to become ready. (PCI hotplug needs this.)
3475 * We poll for up to 120 secs, once per 100ms. */
3476 for (i
= 0; i
< 1200; i
++) {
3477 scratchpad
= readl(c
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
3478 if (scratchpad
== CCISS_FIRMWARE_READY
)
3480 set_current_state(TASK_INTERRUPTIBLE
);
3481 schedule_timeout(HZ
/ 10); /* wait 100ms */
3483 if (scratchpad
!= CCISS_FIRMWARE_READY
) {
3484 printk(KERN_WARNING
"cciss: Board not ready. Timed out.\n");
3486 goto err_out_free_res
;
3489 /* get the address index number */
3490 cfg_base_addr
= readl(c
->vaddr
+ SA5_CTCFG_OFFSET
);
3491 cfg_base_addr
&= (__u32
) 0x0000ffff;
3493 printk("cfg base address = %x\n", cfg_base_addr
);
3494 #endif /* CCISS_DEBUG */
3495 cfg_base_addr_index
= find_PCI_BAR_index(pdev
, cfg_base_addr
);
3497 printk("cfg base address index = %llx\n",
3498 (unsigned long long)cfg_base_addr_index
);
3499 #endif /* CCISS_DEBUG */
3500 if (cfg_base_addr_index
== -1) {
3501 printk(KERN_WARNING
"cciss: Cannot find cfg_base_addr_index\n");
3503 goto err_out_free_res
;
3506 cfg_offset
= readl(c
->vaddr
+ SA5_CTMEM_OFFSET
);
3508 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset
);
3509 #endif /* CCISS_DEBUG */
3510 c
->cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
3511 cfg_base_addr_index
) +
3512 cfg_offset
, sizeof(CfgTable_struct
));
3513 c
->board_id
= board_id
;
3516 print_cfg_table(c
->cfgtable
);
3517 #endif /* CCISS_DEBUG */
3519 /* Some controllers support Zero Memory Raid (ZMR).
3520 * When configured in ZMR mode the number of supported
3521 * commands drops to 64. So instead of just setting an
3522 * arbitrary value we make the driver a little smarter.
3523 * We read the config table to tell us how many commands
3524 * are supported on the controller then subtract 4 to
3525 * leave a little room for ioctl calls.
3527 c
->max_commands
= readl(&(c
->cfgtable
->CmdsOutMax
));
3528 for (i
= 0; i
< ARRAY_SIZE(products
); i
++) {
3529 if (board_id
== products
[i
].board_id
) {
3530 c
->product_name
= products
[i
].product_name
;
3531 c
->access
= *(products
[i
].access
);
3532 c
->nr_cmds
= c
->max_commands
- 4;
3536 if ((readb(&c
->cfgtable
->Signature
[0]) != 'C') ||
3537 (readb(&c
->cfgtable
->Signature
[1]) != 'I') ||
3538 (readb(&c
->cfgtable
->Signature
[2]) != 'S') ||
3539 (readb(&c
->cfgtable
->Signature
[3]) != 'S')) {
3540 printk("Does not appear to be a valid CISS config table\n");
3542 goto err_out_free_res
;
3544 /* We didn't find the controller in our list. We know the
3545 * signature is valid. If it's an HP device let's try to
3546 * bind to the device and fire it up. Otherwise we bail.
3548 if (i
== ARRAY_SIZE(products
)) {
3549 if (subsystem_vendor_id
== PCI_VENDOR_ID_HP
) {
3550 c
->product_name
= products
[i
-1].product_name
;
3551 c
->access
= *(products
[i
-1].access
);
3552 c
->nr_cmds
= c
->max_commands
- 4;
3553 printk(KERN_WARNING
"cciss: This is an unknown "
3554 "Smart Array controller.\n"
3555 "cciss: Please update to the latest driver "
3556 "available from www.hp.com.\n");
3558 printk(KERN_WARNING
"cciss: Sorry, I don't know how"
3559 " to access the Smart Array controller %08lx\n"
3560 , (unsigned long)board_id
);
3562 goto err_out_free_res
;
3567 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3569 prefetch
= readl(&(c
->cfgtable
->SCSI_Prefetch
));
3571 writel(prefetch
, &(c
->cfgtable
->SCSI_Prefetch
));
3575 /* Disabling DMA prefetch and refetch for the P600.
3576 * An ASIC bug may result in accesses to invalid memory addresses.
3577 * We've disabled prefetch for some time now. Testing with XEN
3578 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3580 if(board_id
== 0x3225103C) {
3583 dma_prefetch
= readl(c
->vaddr
+ I2O_DMA1_CFG
);
3584 dma_prefetch
|= 0x8000;
3585 writel(dma_prefetch
, c
->vaddr
+ I2O_DMA1_CFG
);
3586 pci_read_config_dword(pdev
, PCI_COMMAND_PARITY
, &dma_refetch
);
3588 pci_write_config_dword(pdev
, PCI_COMMAND_PARITY
, dma_refetch
);
3592 printk("Trying to put board into Simple mode\n");
3593 #endif /* CCISS_DEBUG */
3594 c
->max_commands
= readl(&(c
->cfgtable
->CmdsOutMax
));
3595 /* Update the field, and then ring the doorbell */
3596 writel(CFGTBL_Trans_Simple
, &(c
->cfgtable
->HostWrite
.TransportRequest
));
3597 writel(CFGTBL_ChangeReq
, c
->vaddr
+ SA5_DOORBELL
);
3599 /* under certain very rare conditions, this can take awhile.
3600 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3601 * as we enter this code.) */
3602 for (i
= 0; i
< MAX_CONFIG_WAIT
; i
++) {
3603 if (!(readl(c
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
3605 /* delay and try again */
3606 set_current_state(TASK_INTERRUPTIBLE
);
3607 schedule_timeout(10);
3611 printk(KERN_DEBUG
"I counter got to %d %x\n", i
,
3612 readl(c
->vaddr
+ SA5_DOORBELL
));
3613 #endif /* CCISS_DEBUG */
3615 print_cfg_table(c
->cfgtable
);
3616 #endif /* CCISS_DEBUG */
3618 if (!(readl(&(c
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
)) {
3619 printk(KERN_WARNING
"cciss: unable to get board into"
3622 goto err_out_free_res
;
3628 * Deliberately omit pci_disable_device(): it does something nasty to
3629 * Smart Array controllers that pci_enable_device does not undo
3631 pci_release_regions(pdev
);
3635 /* Function to find the first free pointer into our hba[] array
3636 * Returns -1 if no free entries are left.
3638 static int alloc_cciss_hba(void)
3642 for (i
= 0; i
< MAX_CTLR
; i
++) {
3646 p
= kzalloc(sizeof(ctlr_info_t
), GFP_KERNEL
);
3653 printk(KERN_WARNING
"cciss: This driver supports a maximum"
3654 " of %d controllers.\n", MAX_CTLR
);
3657 printk(KERN_ERR
"cciss: out of memory.\n");
3661 static void free_hba(int i
)
3663 ctlr_info_t
*p
= hba
[i
];
3667 for (n
= 0; n
< CISS_MAX_LUN
; n
++)
3668 put_disk(p
->gendisk
[n
]);
3672 /* Send a message CDB to the firmware. */
3673 static __devinit
int cciss_message(struct pci_dev
*pdev
, unsigned char opcode
, unsigned char type
)
3676 CommandListHeader_struct CommandHeader
;
3677 RequestBlock_struct Request
;
3678 ErrDescriptor_struct ErrorDescriptor
;
3680 static const size_t cmd_sz
= sizeof(Command
) + sizeof(ErrorInfo_struct
);
3683 uint32_t paddr32
, tag
;
3684 void __iomem
*vaddr
;
3687 vaddr
= ioremap_nocache(pci_resource_start(pdev
, 0), pci_resource_len(pdev
, 0));
3691 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3692 CCISS commands, so they must be allocated from the lower 4GiB of
3694 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3700 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
3706 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3707 although there's no guarantee, we assume that the address is at
3708 least 4-byte aligned (most likely, it's page-aligned). */
3711 cmd
->CommandHeader
.ReplyQueue
= 0;
3712 cmd
->CommandHeader
.SGList
= 0;
3713 cmd
->CommandHeader
.SGTotal
= 0;
3714 cmd
->CommandHeader
.Tag
.lower
= paddr32
;
3715 cmd
->CommandHeader
.Tag
.upper
= 0;
3716 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
3718 cmd
->Request
.CDBLen
= 16;
3719 cmd
->Request
.Type
.Type
= TYPE_MSG
;
3720 cmd
->Request
.Type
.Attribute
= ATTR_HEADOFQUEUE
;
3721 cmd
->Request
.Type
.Direction
= XFER_NONE
;
3722 cmd
->Request
.Timeout
= 0; /* Don't time out */
3723 cmd
->Request
.CDB
[0] = opcode
;
3724 cmd
->Request
.CDB
[1] = type
;
3725 memset(&cmd
->Request
.CDB
[2], 0, 14); /* the rest of the CDB is reserved */
3727 cmd
->ErrorDescriptor
.Addr
.lower
= paddr32
+ sizeof(Command
);
3728 cmd
->ErrorDescriptor
.Addr
.upper
= 0;
3729 cmd
->ErrorDescriptor
.Len
= sizeof(ErrorInfo_struct
);
3731 writel(paddr32
, vaddr
+ SA5_REQUEST_PORT_OFFSET
);
3733 for (i
= 0; i
< 10; i
++) {
3734 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
3735 if ((tag
& ~3) == paddr32
)
3737 schedule_timeout_uninterruptible(HZ
);
3742 /* we leak the DMA buffer here ... no choice since the controller could
3743 still complete the command. */
3745 printk(KERN_ERR
"cciss: controller message %02x:%02x timed out\n",
3750 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
3753 printk(KERN_ERR
"cciss: controller message %02x:%02x failed\n",
3758 printk(KERN_INFO
"cciss: controller message %02x:%02x succeeded\n",
3763 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
3764 #define cciss_noop(p) cciss_message(p, 3, 0)
3766 static __devinit
int cciss_reset_msi(struct pci_dev
*pdev
)
3768 /* the #defines are stolen from drivers/pci/msi.h. */
3769 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
3770 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
3775 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSI
);
3777 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
3778 if (control
& PCI_MSI_FLAGS_ENABLE
) {
3779 printk(KERN_INFO
"cciss: resetting MSI\n");
3780 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSI_FLAGS_ENABLE
);
3784 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSIX
);
3786 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
3787 if (control
& PCI_MSIX_FLAGS_ENABLE
) {
3788 printk(KERN_INFO
"cciss: resetting MSI-X\n");
3789 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSIX_FLAGS_ENABLE
);
3796 /* This does a hard reset of the controller using PCI power management
3798 static __devinit
int cciss_hard_reset_controller(struct pci_dev
*pdev
)
3800 u16 pmcsr
, saved_config_space
[32];
3803 printk(KERN_INFO
"cciss: using PCI PM to reset controller\n");
3805 /* This is very nearly the same thing as
3807 pci_save_state(pci_dev);
3808 pci_set_power_state(pci_dev, PCI_D3hot);
3809 pci_set_power_state(pci_dev, PCI_D0);
3810 pci_restore_state(pci_dev);
3812 but we can't use these nice canned kernel routines on
3813 kexec, because they also check the MSI/MSI-X state in PCI
3814 configuration space and do the wrong thing when it is
3815 set/cleared. Also, the pci_save/restore_state functions
3816 violate the ordering requirements for restoring the
3817 configuration space from the CCISS document (see the
3818 comment below). So we roll our own .... */
3820 for (i
= 0; i
< 32; i
++)
3821 pci_read_config_word(pdev
, 2*i
, &saved_config_space
[i
]);
3823 pos
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
3825 printk(KERN_ERR
"cciss_reset_controller: PCI PM not supported\n");
3829 /* Quoting from the Open CISS Specification: "The Power
3830 * Management Control/Status Register (CSR) controls the power
3831 * state of the device. The normal operating state is D0,
3832 * CSR=00h. The software off state is D3, CSR=03h. To reset
3833 * the controller, place the interface device in D3 then to
3834 * D0, this causes a secondary PCI reset which will reset the
3837 /* enter the D3hot power management state */
3838 pci_read_config_word(pdev
, pos
+ PCI_PM_CTRL
, &pmcsr
);
3839 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3841 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
3843 schedule_timeout_uninterruptible(HZ
>> 1);
3845 /* enter the D0 power management state */
3846 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3848 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
3850 schedule_timeout_uninterruptible(HZ
>> 1);
3852 /* Restore the PCI configuration space. The Open CISS
3853 * Specification says, "Restore the PCI Configuration
3854 * Registers, offsets 00h through 60h. It is important to
3855 * restore the command register, 16-bits at offset 04h,
3856 * last. Do not restore the configuration status register,
3857 * 16-bits at offset 06h." Note that the offset is 2*i. */
3858 for (i
= 0; i
< 32; i
++) {
3859 if (i
== 2 || i
== 3)
3861 pci_write_config_word(pdev
, 2*i
, saved_config_space
[i
]);
3864 pci_write_config_word(pdev
, 4, saved_config_space
[2]);
3870 * This is it. Find all the controllers and register them. I really hate
3871 * stealing all these major device numbers.
3872 * returns the number of block devices registered.
3874 static int __devinit
cciss_init_one(struct pci_dev
*pdev
,
3875 const struct pci_device_id
*ent
)
3880 int dac
, return_code
;
3881 InquiryData_struct
*inq_buff
= NULL
;
3883 if (reset_devices
) {
3884 /* Reset the controller with a PCI power-cycle */
3885 if (cciss_hard_reset_controller(pdev
) || cciss_reset_msi(pdev
))
3888 /* Now try to get the controller to respond to a no-op. Some
3889 devices (notably the HP Smart Array 5i Controller) need
3890 up to 30 seconds to respond. */
3891 for (i
=0; i
<30; i
++) {
3892 if (cciss_noop(pdev
) == 0)
3895 schedule_timeout_uninterruptible(HZ
);
3898 printk(KERN_ERR
"cciss: controller seems dead\n");
3903 i
= alloc_cciss_hba();
3907 hba
[i
]->busy_initializing
= 1;
3908 INIT_HLIST_HEAD(&hba
[i
]->cmpQ
);
3909 INIT_HLIST_HEAD(&hba
[i
]->reqQ
);
3911 if (cciss_pci_init(hba
[i
], pdev
) != 0)
3914 sprintf(hba
[i
]->devname
, "cciss%d", i
);
3916 hba
[i
]->pdev
= pdev
;
3918 if (cciss_create_hba_sysfs_entry(hba
[i
]))
3921 /* configure PCI DMA stuff */
3922 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)))
3924 else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))
3927 printk(KERN_ERR
"cciss: no suitable DMA available\n");
3932 * register with the major number, or get a dynamic major number
3933 * by passing 0 as argument. This is done for greater than
3934 * 8 controller support.
3936 if (i
< MAX_CTLR_ORIG
)
3937 hba
[i
]->major
= COMPAQ_CISS_MAJOR
+ i
;
3938 rc
= register_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
3939 if (rc
== -EBUSY
|| rc
== -EINVAL
) {
3941 "cciss: Unable to get major number %d for %s "
3942 "on hba %d\n", hba
[i
]->major
, hba
[i
]->devname
, i
);
3945 if (i
>= MAX_CTLR_ORIG
)
3949 /* make sure the board interrupts are off */
3950 hba
[i
]->access
.set_intr_mask(hba
[i
], CCISS_INTR_OFF
);
3951 if (request_irq(hba
[i
]->intr
[SIMPLE_MODE_INT
], do_cciss_intr
,
3952 IRQF_DISABLED
| IRQF_SHARED
, hba
[i
]->devname
, hba
[i
])) {
3953 printk(KERN_ERR
"cciss: Unable to get irq %d for %s\n",
3954 hba
[i
]->intr
[SIMPLE_MODE_INT
], hba
[i
]->devname
);
3958 printk(KERN_INFO
"%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3959 hba
[i
]->devname
, pdev
->device
, pci_name(pdev
),
3960 hba
[i
]->intr
[SIMPLE_MODE_INT
], dac
? "" : " not");
3962 hba
[i
]->cmd_pool_bits
=
3963 kmalloc(DIV_ROUND_UP(hba
[i
]->nr_cmds
, BITS_PER_LONG
)
3964 * sizeof(unsigned long), GFP_KERNEL
);
3965 hba
[i
]->cmd_pool
= (CommandList_struct
*)
3966 pci_alloc_consistent(hba
[i
]->pdev
,
3967 hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
3968 &(hba
[i
]->cmd_pool_dhandle
));
3969 hba
[i
]->errinfo_pool
= (ErrorInfo_struct
*)
3970 pci_alloc_consistent(hba
[i
]->pdev
,
3971 hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
3972 &(hba
[i
]->errinfo_pool_dhandle
));
3973 if ((hba
[i
]->cmd_pool_bits
== NULL
)
3974 || (hba
[i
]->cmd_pool
== NULL
)
3975 || (hba
[i
]->errinfo_pool
== NULL
)) {
3976 printk(KERN_ERR
"cciss: out of memory");
3979 spin_lock_init(&hba
[i
]->lock
);
3981 /* Initialize the pdev driver private data.
3982 have it point to hba[i]. */
3983 pci_set_drvdata(pdev
, hba
[i
]);
3984 /* command and error info recs zeroed out before
3986 memset(hba
[i
]->cmd_pool_bits
, 0,
3987 DIV_ROUND_UP(hba
[i
]->nr_cmds
, BITS_PER_LONG
)
3988 * sizeof(unsigned long));
3990 hba
[i
]->num_luns
= 0;
3991 hba
[i
]->highest_lun
= -1;
3992 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
3993 hba
[i
]->drv
[j
].raid_level
= -1;
3994 hba
[i
]->drv
[j
].queue
= NULL
;
3995 hba
[i
]->gendisk
[j
] = NULL
;
3998 cciss_scsi_setup(i
);
4000 /* Turn the interrupts on so we can service requests */
4001 hba
[i
]->access
.set_intr_mask(hba
[i
], CCISS_INTR_ON
);
4003 /* Get the firmware version */
4004 inq_buff
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
4005 if (inq_buff
== NULL
) {
4006 printk(KERN_ERR
"cciss: out of memory\n");
4010 return_code
= sendcmd_withirq(CISS_INQUIRY
, i
, inq_buff
,
4011 sizeof(InquiryData_struct
), 0, CTLR_LUNID
, TYPE_CMD
);
4012 if (return_code
== IO_OK
) {
4013 hba
[i
]->firm_ver
[0] = inq_buff
->data_byte
[32];
4014 hba
[i
]->firm_ver
[1] = inq_buff
->data_byte
[33];
4015 hba
[i
]->firm_ver
[2] = inq_buff
->data_byte
[34];
4016 hba
[i
]->firm_ver
[3] = inq_buff
->data_byte
[35];
4017 } else { /* send command failed */
4018 printk(KERN_WARNING
"cciss: unable to determine firmware"
4019 " version of controller\n");
4024 hba
[i
]->cciss_max_sectors
= 2048;
4026 hba
[i
]->busy_initializing
= 0;
4028 rebuild_lun_table(hba
[i
], 1);
4029 hba
[i
]->cciss_scan_thread
= kthread_run(scan_thread
, hba
[i
],
4030 "cciss_scan%02d", i
);
4031 if (IS_ERR(hba
[i
]->cciss_scan_thread
))
4032 return PTR_ERR(hba
[i
]->cciss_scan_thread
);
4038 kfree(hba
[i
]->cmd_pool_bits
);
4039 if (hba
[i
]->cmd_pool
)
4040 pci_free_consistent(hba
[i
]->pdev
,
4041 hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4042 hba
[i
]->cmd_pool
, hba
[i
]->cmd_pool_dhandle
);
4043 if (hba
[i
]->errinfo_pool
)
4044 pci_free_consistent(hba
[i
]->pdev
,
4045 hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4046 hba
[i
]->errinfo_pool
,
4047 hba
[i
]->errinfo_pool_dhandle
);
4048 free_irq(hba
[i
]->intr
[SIMPLE_MODE_INT
], hba
[i
]);
4050 unregister_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4052 cciss_destroy_hba_sysfs_entry(hba
[i
]);
4054 hba
[i
]->busy_initializing
= 0;
4055 /* cleanup any queues that may have been initialized */
4056 for (j
=0; j
<= hba
[i
]->highest_lun
; j
++){
4057 drive_info_struct
*drv
= &(hba
[i
]->drv
[j
]);
4059 blk_cleanup_queue(drv
->queue
);
4062 * Deliberately omit pci_disable_device(): it does something nasty to
4063 * Smart Array controllers that pci_enable_device does not undo
4065 pci_release_regions(pdev
);
4066 pci_set_drvdata(pdev
, NULL
);
4071 static void cciss_shutdown(struct pci_dev
*pdev
)
4073 ctlr_info_t
*tmp_ptr
;
4078 tmp_ptr
= pci_get_drvdata(pdev
);
4079 if (tmp_ptr
== NULL
)
4085 /* Turn board interrupts off and send the flush cache command */
4086 /* sendcmd will turn off interrupt, and send the flush...
4087 * To write all data in the battery backed cache to disks */
4088 memset(flush_buf
, 0, 4);
4089 return_code
= sendcmd(CCISS_CACHE_FLUSH
, i
, flush_buf
, 4, 0,
4090 CTLR_LUNID
, TYPE_CMD
);
4091 if (return_code
== IO_OK
) {
4092 printk(KERN_INFO
"Completed flushing cache on controller %d\n", i
);
4094 printk(KERN_WARNING
"Error flushing cache on controller %d\n", i
);
4096 free_irq(hba
[i
]->intr
[2], hba
[i
]);
4099 static void __devexit
cciss_remove_one(struct pci_dev
*pdev
)
4101 ctlr_info_t
*tmp_ptr
;
4104 if (pci_get_drvdata(pdev
) == NULL
) {
4105 printk(KERN_ERR
"cciss: Unable to remove device \n");
4109 tmp_ptr
= pci_get_drvdata(pdev
);
4111 if (hba
[i
] == NULL
) {
4112 printk(KERN_ERR
"cciss: device appears to "
4113 "already be removed \n");
4117 kthread_stop(hba
[i
]->cciss_scan_thread
);
4119 remove_proc_entry(hba
[i
]->devname
, proc_cciss
);
4120 unregister_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4122 /* remove it from the disk list */
4123 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4124 struct gendisk
*disk
= hba
[i
]->gendisk
[j
];
4126 struct request_queue
*q
= disk
->queue
;
4128 if (disk
->flags
& GENHD_FL_UP
)
4131 blk_cleanup_queue(q
);
4135 #ifdef CONFIG_CISS_SCSI_TAPE
4136 cciss_unregister_scsi(i
); /* unhook from SCSI subsystem */
4139 cciss_shutdown(pdev
);
4141 #ifdef CONFIG_PCI_MSI
4142 if (hba
[i
]->msix_vector
)
4143 pci_disable_msix(hba
[i
]->pdev
);
4144 else if (hba
[i
]->msi_vector
)
4145 pci_disable_msi(hba
[i
]->pdev
);
4146 #endif /* CONFIG_PCI_MSI */
4148 iounmap(hba
[i
]->vaddr
);
4150 pci_free_consistent(hba
[i
]->pdev
, hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4151 hba
[i
]->cmd_pool
, hba
[i
]->cmd_pool_dhandle
);
4152 pci_free_consistent(hba
[i
]->pdev
, hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4153 hba
[i
]->errinfo_pool
, hba
[i
]->errinfo_pool_dhandle
);
4154 kfree(hba
[i
]->cmd_pool_bits
);
4156 * Deliberately omit pci_disable_device(): it does something nasty to
4157 * Smart Array controllers that pci_enable_device does not undo
4159 pci_release_regions(pdev
);
4160 pci_set_drvdata(pdev
, NULL
);
4161 cciss_destroy_hba_sysfs_entry(hba
[i
]);
4165 static struct pci_driver cciss_pci_driver
= {
4167 .probe
= cciss_init_one
,
4168 .remove
= __devexit_p(cciss_remove_one
),
4169 .id_table
= cciss_pci_device_id
, /* id_table */
4170 .shutdown
= cciss_shutdown
,
4174 * This is it. Register the PCI driver information for the cards we control
4175 * the OS will call our registered routines when it finds one of our cards.
4177 static int __init
cciss_init(void)
4182 * The hardware requires that commands are aligned on a 64-bit
4183 * boundary. Given that we use pci_alloc_consistent() to allocate an
4184 * array of them, the size must be a multiple of 8 bytes.
4186 BUILD_BUG_ON(sizeof(CommandList_struct
) % 8);
4188 printk(KERN_INFO DRIVER_NAME
"\n");
4190 err
= bus_register(&cciss_bus_type
);
4194 /* Register for our PCI devices */
4195 err
= pci_register_driver(&cciss_pci_driver
);
4197 goto err_bus_register
;
4202 bus_unregister(&cciss_bus_type
);
4206 static void __exit
cciss_cleanup(void)
4210 pci_unregister_driver(&cciss_pci_driver
);
4211 /* double check that all controller entrys have been removed */
4212 for (i
= 0; i
< MAX_CTLR
; i
++) {
4213 if (hba
[i
] != NULL
) {
4214 printk(KERN_WARNING
"cciss: had to remove"
4215 " controller %d\n", i
);
4216 cciss_remove_one(hba
[i
]->pdev
);
4219 remove_proc_entry("driver/cciss", NULL
);
4220 bus_unregister(&cciss_bus_type
);
4223 static void fail_all_cmds(unsigned long ctlr
)
4225 /* If we get here, the board is apparently dead. */
4226 ctlr_info_t
*h
= hba
[ctlr
];
4227 CommandList_struct
*c
;
4228 unsigned long flags
;
4230 printk(KERN_WARNING
"cciss%d: controller not responding.\n", h
->ctlr
);
4231 h
->alive
= 0; /* the controller apparently died... */
4233 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
4235 pci_disable_device(h
->pdev
); /* Make sure it is really dead. */
4237 /* move everything off the request queue onto the completed queue */
4238 while (!hlist_empty(&h
->reqQ
)) {
4239 c
= hlist_entry(h
->reqQ
.first
, CommandList_struct
, list
);
4245 /* Now, fail everything on the completed queue with a HW error */
4246 while (!hlist_empty(&h
->cmpQ
)) {
4247 c
= hlist_entry(h
->cmpQ
.first
, CommandList_struct
, list
);
4249 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
4250 if (c
->cmd_type
== CMD_RWREQ
) {
4251 complete_command(h
, c
, 0);
4252 } else if (c
->cmd_type
== CMD_IOCTL_PEND
)
4253 complete(c
->waiting
);
4254 #ifdef CONFIG_CISS_SCSI_TAPE
4255 else if (c
->cmd_type
== CMD_SCSI
)
4256 complete_scsi_command(c
, 0, 0);
4259 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
4263 module_init(cciss_init
);
4264 module_exit(cciss_cleanup
);