blktrace: fix off-by-one bug
[linux-2.6/mini2440.git] / mm / memory.c
blob05fab3bc5b4b2008e8e79b720c75e6c99f02d131
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/kprobes.h>
52 #include <linux/mutex.h>
53 #include <linux/init.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
63 #include <asm/tlb.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
67 #include "internal.h"
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr;
72 struct page *mem_map;
74 EXPORT_SYMBOL(max_mapnr);
75 EXPORT_SYMBOL(mem_map);
76 #endif
78 unsigned long num_physpages;
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
86 void * high_memory;
88 EXPORT_SYMBOL(num_physpages);
89 EXPORT_SYMBOL(high_memory);
92 * Randomize the address space (stacks, mmaps, brk, etc.).
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
97 int randomize_va_space __read_mostly =
98 #ifdef CONFIG_COMPAT_BRK
100 #else
102 #endif
105 * mutex protecting text section modification (dynamic code patching).
106 * some users need to sleep (allocating memory...) while they hold this lock.
108 * NOT exported to modules - patching kernel text is a really delicate matter.
110 DEFINE_MUTEX(text_mutex);
112 static int __init disable_randmaps(char *s)
114 randomize_va_space = 0;
115 return 1;
117 __setup("norandmaps", disable_randmaps);
121 * If a p?d_bad entry is found while walking page tables, report
122 * the error, before resetting entry to p?d_none. Usually (but
123 * very seldom) called out from the p?d_none_or_clear_bad macros.
126 void pgd_clear_bad(pgd_t *pgd)
128 pgd_ERROR(*pgd);
129 pgd_clear(pgd);
132 void pud_clear_bad(pud_t *pud)
134 pud_ERROR(*pud);
135 pud_clear(pud);
138 void pmd_clear_bad(pmd_t *pmd)
140 pmd_ERROR(*pmd);
141 pmd_clear(pmd);
145 * Note: this doesn't free the actual pages themselves. That
146 * has been handled earlier when unmapping all the memory regions.
148 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
150 pgtable_t token = pmd_pgtable(*pmd);
151 pmd_clear(pmd);
152 pte_free_tlb(tlb, token);
153 tlb->mm->nr_ptes--;
156 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
157 unsigned long addr, unsigned long end,
158 unsigned long floor, unsigned long ceiling)
160 pmd_t *pmd;
161 unsigned long next;
162 unsigned long start;
164 start = addr;
165 pmd = pmd_offset(pud, addr);
166 do {
167 next = pmd_addr_end(addr, end);
168 if (pmd_none_or_clear_bad(pmd))
169 continue;
170 free_pte_range(tlb, pmd);
171 } while (pmd++, addr = next, addr != end);
173 start &= PUD_MASK;
174 if (start < floor)
175 return;
176 if (ceiling) {
177 ceiling &= PUD_MASK;
178 if (!ceiling)
179 return;
181 if (end - 1 > ceiling - 1)
182 return;
184 pmd = pmd_offset(pud, start);
185 pud_clear(pud);
186 pmd_free_tlb(tlb, pmd);
189 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
190 unsigned long addr, unsigned long end,
191 unsigned long floor, unsigned long ceiling)
193 pud_t *pud;
194 unsigned long next;
195 unsigned long start;
197 start = addr;
198 pud = pud_offset(pgd, addr);
199 do {
200 next = pud_addr_end(addr, end);
201 if (pud_none_or_clear_bad(pud))
202 continue;
203 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
204 } while (pud++, addr = next, addr != end);
206 start &= PGDIR_MASK;
207 if (start < floor)
208 return;
209 if (ceiling) {
210 ceiling &= PGDIR_MASK;
211 if (!ceiling)
212 return;
214 if (end - 1 > ceiling - 1)
215 return;
217 pud = pud_offset(pgd, start);
218 pgd_clear(pgd);
219 pud_free_tlb(tlb, pud);
223 * This function frees user-level page tables of a process.
225 * Must be called with pagetable lock held.
227 void free_pgd_range(struct mmu_gather *tlb,
228 unsigned long addr, unsigned long end,
229 unsigned long floor, unsigned long ceiling)
231 pgd_t *pgd;
232 unsigned long next;
233 unsigned long start;
236 * The next few lines have given us lots of grief...
238 * Why are we testing PMD* at this top level? Because often
239 * there will be no work to do at all, and we'd prefer not to
240 * go all the way down to the bottom just to discover that.
242 * Why all these "- 1"s? Because 0 represents both the bottom
243 * of the address space and the top of it (using -1 for the
244 * top wouldn't help much: the masks would do the wrong thing).
245 * The rule is that addr 0 and floor 0 refer to the bottom of
246 * the address space, but end 0 and ceiling 0 refer to the top
247 * Comparisons need to use "end - 1" and "ceiling - 1" (though
248 * that end 0 case should be mythical).
250 * Wherever addr is brought up or ceiling brought down, we must
251 * be careful to reject "the opposite 0" before it confuses the
252 * subsequent tests. But what about where end is brought down
253 * by PMD_SIZE below? no, end can't go down to 0 there.
255 * Whereas we round start (addr) and ceiling down, by different
256 * masks at different levels, in order to test whether a table
257 * now has no other vmas using it, so can be freed, we don't
258 * bother to round floor or end up - the tests don't need that.
261 addr &= PMD_MASK;
262 if (addr < floor) {
263 addr += PMD_SIZE;
264 if (!addr)
265 return;
267 if (ceiling) {
268 ceiling &= PMD_MASK;
269 if (!ceiling)
270 return;
272 if (end - 1 > ceiling - 1)
273 end -= PMD_SIZE;
274 if (addr > end - 1)
275 return;
277 start = addr;
278 pgd = pgd_offset(tlb->mm, addr);
279 do {
280 next = pgd_addr_end(addr, end);
281 if (pgd_none_or_clear_bad(pgd))
282 continue;
283 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
284 } while (pgd++, addr = next, addr != end);
287 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
288 unsigned long floor, unsigned long ceiling)
290 while (vma) {
291 struct vm_area_struct *next = vma->vm_next;
292 unsigned long addr = vma->vm_start;
295 * Hide vma from rmap and vmtruncate before freeing pgtables
297 anon_vma_unlink(vma);
298 unlink_file_vma(vma);
300 if (is_vm_hugetlb_page(vma)) {
301 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
302 floor, next? next->vm_start: ceiling);
303 } else {
305 * Optimization: gather nearby vmas into one call down
307 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
308 && !is_vm_hugetlb_page(next)) {
309 vma = next;
310 next = vma->vm_next;
311 anon_vma_unlink(vma);
312 unlink_file_vma(vma);
314 free_pgd_range(tlb, addr, vma->vm_end,
315 floor, next? next->vm_start: ceiling);
317 vma = next;
321 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
323 pgtable_t new = pte_alloc_one(mm, address);
324 if (!new)
325 return -ENOMEM;
328 * Ensure all pte setup (eg. pte page lock and page clearing) are
329 * visible before the pte is made visible to other CPUs by being
330 * put into page tables.
332 * The other side of the story is the pointer chasing in the page
333 * table walking code (when walking the page table without locking;
334 * ie. most of the time). Fortunately, these data accesses consist
335 * of a chain of data-dependent loads, meaning most CPUs (alpha
336 * being the notable exception) will already guarantee loads are
337 * seen in-order. See the alpha page table accessors for the
338 * smp_read_barrier_depends() barriers in page table walking code.
340 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
342 spin_lock(&mm->page_table_lock);
343 if (!pmd_present(*pmd)) { /* Has another populated it ? */
344 mm->nr_ptes++;
345 pmd_populate(mm, pmd, new);
346 new = NULL;
348 spin_unlock(&mm->page_table_lock);
349 if (new)
350 pte_free(mm, new);
351 return 0;
354 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
356 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
357 if (!new)
358 return -ENOMEM;
360 smp_wmb(); /* See comment in __pte_alloc */
362 spin_lock(&init_mm.page_table_lock);
363 if (!pmd_present(*pmd)) { /* Has another populated it ? */
364 pmd_populate_kernel(&init_mm, pmd, new);
365 new = NULL;
367 spin_unlock(&init_mm.page_table_lock);
368 if (new)
369 pte_free_kernel(&init_mm, new);
370 return 0;
373 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
375 if (file_rss)
376 add_mm_counter(mm, file_rss, file_rss);
377 if (anon_rss)
378 add_mm_counter(mm, anon_rss, anon_rss);
382 * This function is called to print an error when a bad pte
383 * is found. For example, we might have a PFN-mapped pte in
384 * a region that doesn't allow it.
386 * The calling function must still handle the error.
388 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
389 pte_t pte, struct page *page)
391 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
392 pud_t *pud = pud_offset(pgd, addr);
393 pmd_t *pmd = pmd_offset(pud, addr);
394 struct address_space *mapping;
395 pgoff_t index;
396 static unsigned long resume;
397 static unsigned long nr_shown;
398 static unsigned long nr_unshown;
401 * Allow a burst of 60 reports, then keep quiet for that minute;
402 * or allow a steady drip of one report per second.
404 if (nr_shown == 60) {
405 if (time_before(jiffies, resume)) {
406 nr_unshown++;
407 return;
409 if (nr_unshown) {
410 printk(KERN_ALERT
411 "BUG: Bad page map: %lu messages suppressed\n",
412 nr_unshown);
413 nr_unshown = 0;
415 nr_shown = 0;
417 if (nr_shown++ == 0)
418 resume = jiffies + 60 * HZ;
420 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
421 index = linear_page_index(vma, addr);
423 printk(KERN_ALERT
424 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
425 current->comm,
426 (long long)pte_val(pte), (long long)pmd_val(*pmd));
427 if (page) {
428 printk(KERN_ALERT
429 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
430 page, (void *)page->flags, page_count(page),
431 page_mapcount(page), page->mapping, page->index);
433 printk(KERN_ALERT
434 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
435 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
437 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
439 if (vma->vm_ops)
440 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
441 (unsigned long)vma->vm_ops->fault);
442 if (vma->vm_file && vma->vm_file->f_op)
443 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
444 (unsigned long)vma->vm_file->f_op->mmap);
445 dump_stack();
446 add_taint(TAINT_BAD_PAGE);
449 static inline int is_cow_mapping(unsigned int flags)
451 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
455 * vm_normal_page -- This function gets the "struct page" associated with a pte.
457 * "Special" mappings do not wish to be associated with a "struct page" (either
458 * it doesn't exist, or it exists but they don't want to touch it). In this
459 * case, NULL is returned here. "Normal" mappings do have a struct page.
461 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
462 * pte bit, in which case this function is trivial. Secondly, an architecture
463 * may not have a spare pte bit, which requires a more complicated scheme,
464 * described below.
466 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
467 * special mapping (even if there are underlying and valid "struct pages").
468 * COWed pages of a VM_PFNMAP are always normal.
470 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
471 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
472 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
473 * mapping will always honor the rule
475 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
477 * And for normal mappings this is false.
479 * This restricts such mappings to be a linear translation from virtual address
480 * to pfn. To get around this restriction, we allow arbitrary mappings so long
481 * as the vma is not a COW mapping; in that case, we know that all ptes are
482 * special (because none can have been COWed).
485 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
487 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
488 * page" backing, however the difference is that _all_ pages with a struct
489 * page (that is, those where pfn_valid is true) are refcounted and considered
490 * normal pages by the VM. The disadvantage is that pages are refcounted
491 * (which can be slower and simply not an option for some PFNMAP users). The
492 * advantage is that we don't have to follow the strict linearity rule of
493 * PFNMAP mappings in order to support COWable mappings.
496 #ifdef __HAVE_ARCH_PTE_SPECIAL
497 # define HAVE_PTE_SPECIAL 1
498 #else
499 # define HAVE_PTE_SPECIAL 0
500 #endif
501 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
502 pte_t pte)
504 unsigned long pfn = pte_pfn(pte);
506 if (HAVE_PTE_SPECIAL) {
507 if (likely(!pte_special(pte)))
508 goto check_pfn;
509 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
510 print_bad_pte(vma, addr, pte, NULL);
511 return NULL;
514 /* !HAVE_PTE_SPECIAL case follows: */
516 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
517 if (vma->vm_flags & VM_MIXEDMAP) {
518 if (!pfn_valid(pfn))
519 return NULL;
520 goto out;
521 } else {
522 unsigned long off;
523 off = (addr - vma->vm_start) >> PAGE_SHIFT;
524 if (pfn == vma->vm_pgoff + off)
525 return NULL;
526 if (!is_cow_mapping(vma->vm_flags))
527 return NULL;
531 check_pfn:
532 if (unlikely(pfn > highest_memmap_pfn)) {
533 print_bad_pte(vma, addr, pte, NULL);
534 return NULL;
538 * NOTE! We still have PageReserved() pages in the page tables.
539 * eg. VDSO mappings can cause them to exist.
541 out:
542 return pfn_to_page(pfn);
546 * copy one vm_area from one task to the other. Assumes the page tables
547 * already present in the new task to be cleared in the whole range
548 * covered by this vma.
551 static inline void
552 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
553 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
554 unsigned long addr, int *rss)
556 unsigned long vm_flags = vma->vm_flags;
557 pte_t pte = *src_pte;
558 struct page *page;
560 /* pte contains position in swap or file, so copy. */
561 if (unlikely(!pte_present(pte))) {
562 if (!pte_file(pte)) {
563 swp_entry_t entry = pte_to_swp_entry(pte);
565 swap_duplicate(entry);
566 /* make sure dst_mm is on swapoff's mmlist. */
567 if (unlikely(list_empty(&dst_mm->mmlist))) {
568 spin_lock(&mmlist_lock);
569 if (list_empty(&dst_mm->mmlist))
570 list_add(&dst_mm->mmlist,
571 &src_mm->mmlist);
572 spin_unlock(&mmlist_lock);
574 if (is_write_migration_entry(entry) &&
575 is_cow_mapping(vm_flags)) {
577 * COW mappings require pages in both parent
578 * and child to be set to read.
580 make_migration_entry_read(&entry);
581 pte = swp_entry_to_pte(entry);
582 set_pte_at(src_mm, addr, src_pte, pte);
585 goto out_set_pte;
589 * If it's a COW mapping, write protect it both
590 * in the parent and the child
592 if (is_cow_mapping(vm_flags)) {
593 ptep_set_wrprotect(src_mm, addr, src_pte);
594 pte = pte_wrprotect(pte);
598 * If it's a shared mapping, mark it clean in
599 * the child
601 if (vm_flags & VM_SHARED)
602 pte = pte_mkclean(pte);
603 pte = pte_mkold(pte);
605 page = vm_normal_page(vma, addr, pte);
606 if (page) {
607 get_page(page);
608 page_dup_rmap(page, vma, addr);
609 rss[!!PageAnon(page)]++;
612 out_set_pte:
613 set_pte_at(dst_mm, addr, dst_pte, pte);
616 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
617 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
618 unsigned long addr, unsigned long end)
620 pte_t *src_pte, *dst_pte;
621 spinlock_t *src_ptl, *dst_ptl;
622 int progress = 0;
623 int rss[2];
625 again:
626 rss[1] = rss[0] = 0;
627 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
628 if (!dst_pte)
629 return -ENOMEM;
630 src_pte = pte_offset_map_nested(src_pmd, addr);
631 src_ptl = pte_lockptr(src_mm, src_pmd);
632 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
633 arch_enter_lazy_mmu_mode();
635 do {
637 * We are holding two locks at this point - either of them
638 * could generate latencies in another task on another CPU.
640 if (progress >= 32) {
641 progress = 0;
642 if (need_resched() ||
643 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
644 break;
646 if (pte_none(*src_pte)) {
647 progress++;
648 continue;
650 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
651 progress += 8;
652 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
654 arch_leave_lazy_mmu_mode();
655 spin_unlock(src_ptl);
656 pte_unmap_nested(src_pte - 1);
657 add_mm_rss(dst_mm, rss[0], rss[1]);
658 pte_unmap_unlock(dst_pte - 1, dst_ptl);
659 cond_resched();
660 if (addr != end)
661 goto again;
662 return 0;
665 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
666 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
667 unsigned long addr, unsigned long end)
669 pmd_t *src_pmd, *dst_pmd;
670 unsigned long next;
672 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
673 if (!dst_pmd)
674 return -ENOMEM;
675 src_pmd = pmd_offset(src_pud, addr);
676 do {
677 next = pmd_addr_end(addr, end);
678 if (pmd_none_or_clear_bad(src_pmd))
679 continue;
680 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
681 vma, addr, next))
682 return -ENOMEM;
683 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
684 return 0;
687 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
688 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
689 unsigned long addr, unsigned long end)
691 pud_t *src_pud, *dst_pud;
692 unsigned long next;
694 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
695 if (!dst_pud)
696 return -ENOMEM;
697 src_pud = pud_offset(src_pgd, addr);
698 do {
699 next = pud_addr_end(addr, end);
700 if (pud_none_or_clear_bad(src_pud))
701 continue;
702 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
703 vma, addr, next))
704 return -ENOMEM;
705 } while (dst_pud++, src_pud++, addr = next, addr != end);
706 return 0;
709 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
710 struct vm_area_struct *vma)
712 pgd_t *src_pgd, *dst_pgd;
713 unsigned long next;
714 unsigned long addr = vma->vm_start;
715 unsigned long end = vma->vm_end;
716 int ret;
719 * Don't copy ptes where a page fault will fill them correctly.
720 * Fork becomes much lighter when there are big shared or private
721 * readonly mappings. The tradeoff is that copy_page_range is more
722 * efficient than faulting.
724 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
725 if (!vma->anon_vma)
726 return 0;
729 if (is_vm_hugetlb_page(vma))
730 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
732 if (unlikely(is_pfn_mapping(vma))) {
734 * We do not free on error cases below as remove_vma
735 * gets called on error from higher level routine
737 ret = track_pfn_vma_copy(vma);
738 if (ret)
739 return ret;
743 * We need to invalidate the secondary MMU mappings only when
744 * there could be a permission downgrade on the ptes of the
745 * parent mm. And a permission downgrade will only happen if
746 * is_cow_mapping() returns true.
748 if (is_cow_mapping(vma->vm_flags))
749 mmu_notifier_invalidate_range_start(src_mm, addr, end);
751 ret = 0;
752 dst_pgd = pgd_offset(dst_mm, addr);
753 src_pgd = pgd_offset(src_mm, addr);
754 do {
755 next = pgd_addr_end(addr, end);
756 if (pgd_none_or_clear_bad(src_pgd))
757 continue;
758 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
759 vma, addr, next))) {
760 ret = -ENOMEM;
761 break;
763 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
765 if (is_cow_mapping(vma->vm_flags))
766 mmu_notifier_invalidate_range_end(src_mm,
767 vma->vm_start, end);
768 return ret;
771 static unsigned long zap_pte_range(struct mmu_gather *tlb,
772 struct vm_area_struct *vma, pmd_t *pmd,
773 unsigned long addr, unsigned long end,
774 long *zap_work, struct zap_details *details)
776 struct mm_struct *mm = tlb->mm;
777 pte_t *pte;
778 spinlock_t *ptl;
779 int file_rss = 0;
780 int anon_rss = 0;
782 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
783 arch_enter_lazy_mmu_mode();
784 do {
785 pte_t ptent = *pte;
786 if (pte_none(ptent)) {
787 (*zap_work)--;
788 continue;
791 (*zap_work) -= PAGE_SIZE;
793 if (pte_present(ptent)) {
794 struct page *page;
796 page = vm_normal_page(vma, addr, ptent);
797 if (unlikely(details) && page) {
799 * unmap_shared_mapping_pages() wants to
800 * invalidate cache without truncating:
801 * unmap shared but keep private pages.
803 if (details->check_mapping &&
804 details->check_mapping != page->mapping)
805 continue;
807 * Each page->index must be checked when
808 * invalidating or truncating nonlinear.
810 if (details->nonlinear_vma &&
811 (page->index < details->first_index ||
812 page->index > details->last_index))
813 continue;
815 ptent = ptep_get_and_clear_full(mm, addr, pte,
816 tlb->fullmm);
817 tlb_remove_tlb_entry(tlb, pte, addr);
818 if (unlikely(!page))
819 continue;
820 if (unlikely(details) && details->nonlinear_vma
821 && linear_page_index(details->nonlinear_vma,
822 addr) != page->index)
823 set_pte_at(mm, addr, pte,
824 pgoff_to_pte(page->index));
825 if (PageAnon(page))
826 anon_rss--;
827 else {
828 if (pte_dirty(ptent))
829 set_page_dirty(page);
830 if (pte_young(ptent) &&
831 likely(!VM_SequentialReadHint(vma)))
832 mark_page_accessed(page);
833 file_rss--;
835 page_remove_rmap(page);
836 if (unlikely(page_mapcount(page) < 0))
837 print_bad_pte(vma, addr, ptent, page);
838 tlb_remove_page(tlb, page);
839 continue;
842 * If details->check_mapping, we leave swap entries;
843 * if details->nonlinear_vma, we leave file entries.
845 if (unlikely(details))
846 continue;
847 if (pte_file(ptent)) {
848 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
849 print_bad_pte(vma, addr, ptent, NULL);
850 } else if
851 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
852 print_bad_pte(vma, addr, ptent, NULL);
853 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
854 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
856 add_mm_rss(mm, file_rss, anon_rss);
857 arch_leave_lazy_mmu_mode();
858 pte_unmap_unlock(pte - 1, ptl);
860 return addr;
863 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
864 struct vm_area_struct *vma, pud_t *pud,
865 unsigned long addr, unsigned long end,
866 long *zap_work, struct zap_details *details)
868 pmd_t *pmd;
869 unsigned long next;
871 pmd = pmd_offset(pud, addr);
872 do {
873 next = pmd_addr_end(addr, end);
874 if (pmd_none_or_clear_bad(pmd)) {
875 (*zap_work)--;
876 continue;
878 next = zap_pte_range(tlb, vma, pmd, addr, next,
879 zap_work, details);
880 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
882 return addr;
885 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
886 struct vm_area_struct *vma, pgd_t *pgd,
887 unsigned long addr, unsigned long end,
888 long *zap_work, struct zap_details *details)
890 pud_t *pud;
891 unsigned long next;
893 pud = pud_offset(pgd, addr);
894 do {
895 next = pud_addr_end(addr, end);
896 if (pud_none_or_clear_bad(pud)) {
897 (*zap_work)--;
898 continue;
900 next = zap_pmd_range(tlb, vma, pud, addr, next,
901 zap_work, details);
902 } while (pud++, addr = next, (addr != end && *zap_work > 0));
904 return addr;
907 static unsigned long unmap_page_range(struct mmu_gather *tlb,
908 struct vm_area_struct *vma,
909 unsigned long addr, unsigned long end,
910 long *zap_work, struct zap_details *details)
912 pgd_t *pgd;
913 unsigned long next;
915 if (details && !details->check_mapping && !details->nonlinear_vma)
916 details = NULL;
918 BUG_ON(addr >= end);
919 tlb_start_vma(tlb, vma);
920 pgd = pgd_offset(vma->vm_mm, addr);
921 do {
922 next = pgd_addr_end(addr, end);
923 if (pgd_none_or_clear_bad(pgd)) {
924 (*zap_work)--;
925 continue;
927 next = zap_pud_range(tlb, vma, pgd, addr, next,
928 zap_work, details);
929 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
930 tlb_end_vma(tlb, vma);
932 return addr;
935 #ifdef CONFIG_PREEMPT
936 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
937 #else
938 /* No preempt: go for improved straight-line efficiency */
939 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
940 #endif
943 * unmap_vmas - unmap a range of memory covered by a list of vma's
944 * @tlbp: address of the caller's struct mmu_gather
945 * @vma: the starting vma
946 * @start_addr: virtual address at which to start unmapping
947 * @end_addr: virtual address at which to end unmapping
948 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
949 * @details: details of nonlinear truncation or shared cache invalidation
951 * Returns the end address of the unmapping (restart addr if interrupted).
953 * Unmap all pages in the vma list.
955 * We aim to not hold locks for too long (for scheduling latency reasons).
956 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
957 * return the ending mmu_gather to the caller.
959 * Only addresses between `start' and `end' will be unmapped.
961 * The VMA list must be sorted in ascending virtual address order.
963 * unmap_vmas() assumes that the caller will flush the whole unmapped address
964 * range after unmap_vmas() returns. So the only responsibility here is to
965 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
966 * drops the lock and schedules.
968 unsigned long unmap_vmas(struct mmu_gather **tlbp,
969 struct vm_area_struct *vma, unsigned long start_addr,
970 unsigned long end_addr, unsigned long *nr_accounted,
971 struct zap_details *details)
973 long zap_work = ZAP_BLOCK_SIZE;
974 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
975 int tlb_start_valid = 0;
976 unsigned long start = start_addr;
977 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
978 int fullmm = (*tlbp)->fullmm;
979 struct mm_struct *mm = vma->vm_mm;
981 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
982 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
983 unsigned long end;
985 start = max(vma->vm_start, start_addr);
986 if (start >= vma->vm_end)
987 continue;
988 end = min(vma->vm_end, end_addr);
989 if (end <= vma->vm_start)
990 continue;
992 if (vma->vm_flags & VM_ACCOUNT)
993 *nr_accounted += (end - start) >> PAGE_SHIFT;
995 if (unlikely(is_pfn_mapping(vma)))
996 untrack_pfn_vma(vma, 0, 0);
998 while (start != end) {
999 if (!tlb_start_valid) {
1000 tlb_start = start;
1001 tlb_start_valid = 1;
1004 if (unlikely(is_vm_hugetlb_page(vma))) {
1006 * It is undesirable to test vma->vm_file as it
1007 * should be non-null for valid hugetlb area.
1008 * However, vm_file will be NULL in the error
1009 * cleanup path of do_mmap_pgoff. When
1010 * hugetlbfs ->mmap method fails,
1011 * do_mmap_pgoff() nullifies vma->vm_file
1012 * before calling this function to clean up.
1013 * Since no pte has actually been setup, it is
1014 * safe to do nothing in this case.
1016 if (vma->vm_file) {
1017 unmap_hugepage_range(vma, start, end, NULL);
1018 zap_work -= (end - start) /
1019 pages_per_huge_page(hstate_vma(vma));
1022 start = end;
1023 } else
1024 start = unmap_page_range(*tlbp, vma,
1025 start, end, &zap_work, details);
1027 if (zap_work > 0) {
1028 BUG_ON(start != end);
1029 break;
1032 tlb_finish_mmu(*tlbp, tlb_start, start);
1034 if (need_resched() ||
1035 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1036 if (i_mmap_lock) {
1037 *tlbp = NULL;
1038 goto out;
1040 cond_resched();
1043 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1044 tlb_start_valid = 0;
1045 zap_work = ZAP_BLOCK_SIZE;
1048 out:
1049 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1050 return start; /* which is now the end (or restart) address */
1054 * zap_page_range - remove user pages in a given range
1055 * @vma: vm_area_struct holding the applicable pages
1056 * @address: starting address of pages to zap
1057 * @size: number of bytes to zap
1058 * @details: details of nonlinear truncation or shared cache invalidation
1060 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1061 unsigned long size, struct zap_details *details)
1063 struct mm_struct *mm = vma->vm_mm;
1064 struct mmu_gather *tlb;
1065 unsigned long end = address + size;
1066 unsigned long nr_accounted = 0;
1068 lru_add_drain();
1069 tlb = tlb_gather_mmu(mm, 0);
1070 update_hiwater_rss(mm);
1071 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1072 if (tlb)
1073 tlb_finish_mmu(tlb, address, end);
1074 return end;
1078 * zap_vma_ptes - remove ptes mapping the vma
1079 * @vma: vm_area_struct holding ptes to be zapped
1080 * @address: starting address of pages to zap
1081 * @size: number of bytes to zap
1083 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1085 * The entire address range must be fully contained within the vma.
1087 * Returns 0 if successful.
1089 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1090 unsigned long size)
1092 if (address < vma->vm_start || address + size > vma->vm_end ||
1093 !(vma->vm_flags & VM_PFNMAP))
1094 return -1;
1095 zap_page_range(vma, address, size, NULL);
1096 return 0;
1098 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1101 * Do a quick page-table lookup for a single page.
1103 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1104 unsigned int flags)
1106 pgd_t *pgd;
1107 pud_t *pud;
1108 pmd_t *pmd;
1109 pte_t *ptep, pte;
1110 spinlock_t *ptl;
1111 struct page *page;
1112 struct mm_struct *mm = vma->vm_mm;
1114 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1115 if (!IS_ERR(page)) {
1116 BUG_ON(flags & FOLL_GET);
1117 goto out;
1120 page = NULL;
1121 pgd = pgd_offset(mm, address);
1122 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1123 goto no_page_table;
1125 pud = pud_offset(pgd, address);
1126 if (pud_none(*pud))
1127 goto no_page_table;
1128 if (pud_huge(*pud)) {
1129 BUG_ON(flags & FOLL_GET);
1130 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1131 goto out;
1133 if (unlikely(pud_bad(*pud)))
1134 goto no_page_table;
1136 pmd = pmd_offset(pud, address);
1137 if (pmd_none(*pmd))
1138 goto no_page_table;
1139 if (pmd_huge(*pmd)) {
1140 BUG_ON(flags & FOLL_GET);
1141 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1142 goto out;
1144 if (unlikely(pmd_bad(*pmd)))
1145 goto no_page_table;
1147 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1149 pte = *ptep;
1150 if (!pte_present(pte))
1151 goto no_page;
1152 if ((flags & FOLL_WRITE) && !pte_write(pte))
1153 goto unlock;
1154 page = vm_normal_page(vma, address, pte);
1155 if (unlikely(!page))
1156 goto bad_page;
1158 if (flags & FOLL_GET)
1159 get_page(page);
1160 if (flags & FOLL_TOUCH) {
1161 if ((flags & FOLL_WRITE) &&
1162 !pte_dirty(pte) && !PageDirty(page))
1163 set_page_dirty(page);
1164 mark_page_accessed(page);
1166 unlock:
1167 pte_unmap_unlock(ptep, ptl);
1168 out:
1169 return page;
1171 bad_page:
1172 pte_unmap_unlock(ptep, ptl);
1173 return ERR_PTR(-EFAULT);
1175 no_page:
1176 pte_unmap_unlock(ptep, ptl);
1177 if (!pte_none(pte))
1178 return page;
1179 /* Fall through to ZERO_PAGE handling */
1180 no_page_table:
1182 * When core dumping an enormous anonymous area that nobody
1183 * has touched so far, we don't want to allocate page tables.
1185 if (flags & FOLL_ANON) {
1186 page = ZERO_PAGE(0);
1187 if (flags & FOLL_GET)
1188 get_page(page);
1189 BUG_ON(flags & FOLL_WRITE);
1191 return page;
1194 /* Can we do the FOLL_ANON optimization? */
1195 static inline int use_zero_page(struct vm_area_struct *vma)
1198 * We don't want to optimize FOLL_ANON for make_pages_present()
1199 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1200 * we want to get the page from the page tables to make sure
1201 * that we serialize and update with any other user of that
1202 * mapping.
1204 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1205 return 0;
1207 * And if we have a fault routine, it's not an anonymous region.
1209 return !vma->vm_ops || !vma->vm_ops->fault;
1214 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1215 unsigned long start, int len, int flags,
1216 struct page **pages, struct vm_area_struct **vmas)
1218 int i;
1219 unsigned int vm_flags = 0;
1220 int write = !!(flags & GUP_FLAGS_WRITE);
1221 int force = !!(flags & GUP_FLAGS_FORCE);
1222 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1223 int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
1225 if (len <= 0)
1226 return 0;
1228 * Require read or write permissions.
1229 * If 'force' is set, we only require the "MAY" flags.
1231 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1232 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1233 i = 0;
1235 do {
1236 struct vm_area_struct *vma;
1237 unsigned int foll_flags;
1239 vma = find_extend_vma(mm, start);
1240 if (!vma && in_gate_area(tsk, start)) {
1241 unsigned long pg = start & PAGE_MASK;
1242 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1243 pgd_t *pgd;
1244 pud_t *pud;
1245 pmd_t *pmd;
1246 pte_t *pte;
1248 /* user gate pages are read-only */
1249 if (!ignore && write)
1250 return i ? : -EFAULT;
1251 if (pg > TASK_SIZE)
1252 pgd = pgd_offset_k(pg);
1253 else
1254 pgd = pgd_offset_gate(mm, pg);
1255 BUG_ON(pgd_none(*pgd));
1256 pud = pud_offset(pgd, pg);
1257 BUG_ON(pud_none(*pud));
1258 pmd = pmd_offset(pud, pg);
1259 if (pmd_none(*pmd))
1260 return i ? : -EFAULT;
1261 pte = pte_offset_map(pmd, pg);
1262 if (pte_none(*pte)) {
1263 pte_unmap(pte);
1264 return i ? : -EFAULT;
1266 if (pages) {
1267 struct page *page = vm_normal_page(gate_vma, start, *pte);
1268 pages[i] = page;
1269 if (page)
1270 get_page(page);
1272 pte_unmap(pte);
1273 if (vmas)
1274 vmas[i] = gate_vma;
1275 i++;
1276 start += PAGE_SIZE;
1277 len--;
1278 continue;
1281 if (!vma ||
1282 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1283 (!ignore && !(vm_flags & vma->vm_flags)))
1284 return i ? : -EFAULT;
1286 if (is_vm_hugetlb_page(vma)) {
1287 i = follow_hugetlb_page(mm, vma, pages, vmas,
1288 &start, &len, i, write);
1289 continue;
1292 foll_flags = FOLL_TOUCH;
1293 if (pages)
1294 foll_flags |= FOLL_GET;
1295 if (!write && use_zero_page(vma))
1296 foll_flags |= FOLL_ANON;
1298 do {
1299 struct page *page;
1302 * If we have a pending SIGKILL, don't keep faulting
1303 * pages and potentially allocating memory, unless
1304 * current is handling munlock--e.g., on exit. In
1305 * that case, we are not allocating memory. Rather,
1306 * we're only unlocking already resident/mapped pages.
1308 if (unlikely(!ignore_sigkill &&
1309 fatal_signal_pending(current)))
1310 return i ? i : -ERESTARTSYS;
1312 if (write)
1313 foll_flags |= FOLL_WRITE;
1315 cond_resched();
1316 while (!(page = follow_page(vma, start, foll_flags))) {
1317 int ret;
1318 ret = handle_mm_fault(mm, vma, start,
1319 foll_flags & FOLL_WRITE);
1320 if (ret & VM_FAULT_ERROR) {
1321 if (ret & VM_FAULT_OOM)
1322 return i ? i : -ENOMEM;
1323 else if (ret & VM_FAULT_SIGBUS)
1324 return i ? i : -EFAULT;
1325 BUG();
1327 if (ret & VM_FAULT_MAJOR)
1328 tsk->maj_flt++;
1329 else
1330 tsk->min_flt++;
1333 * The VM_FAULT_WRITE bit tells us that
1334 * do_wp_page has broken COW when necessary,
1335 * even if maybe_mkwrite decided not to set
1336 * pte_write. We can thus safely do subsequent
1337 * page lookups as if they were reads. But only
1338 * do so when looping for pte_write is futile:
1339 * in some cases userspace may also be wanting
1340 * to write to the gotten user page, which a
1341 * read fault here might prevent (a readonly
1342 * page might get reCOWed by userspace write).
1344 if ((ret & VM_FAULT_WRITE) &&
1345 !(vma->vm_flags & VM_WRITE))
1346 foll_flags &= ~FOLL_WRITE;
1348 cond_resched();
1350 if (IS_ERR(page))
1351 return i ? i : PTR_ERR(page);
1352 if (pages) {
1353 pages[i] = page;
1355 flush_anon_page(vma, page, start);
1356 flush_dcache_page(page);
1358 if (vmas)
1359 vmas[i] = vma;
1360 i++;
1361 start += PAGE_SIZE;
1362 len--;
1363 } while (len && start < vma->vm_end);
1364 } while (len);
1365 return i;
1368 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1369 unsigned long start, int len, int write, int force,
1370 struct page **pages, struct vm_area_struct **vmas)
1372 int flags = 0;
1374 if (write)
1375 flags |= GUP_FLAGS_WRITE;
1376 if (force)
1377 flags |= GUP_FLAGS_FORCE;
1379 return __get_user_pages(tsk, mm,
1380 start, len, flags,
1381 pages, vmas);
1384 EXPORT_SYMBOL(get_user_pages);
1386 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1387 spinlock_t **ptl)
1389 pgd_t * pgd = pgd_offset(mm, addr);
1390 pud_t * pud = pud_alloc(mm, pgd, addr);
1391 if (pud) {
1392 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1393 if (pmd)
1394 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1396 return NULL;
1400 * This is the old fallback for page remapping.
1402 * For historical reasons, it only allows reserved pages. Only
1403 * old drivers should use this, and they needed to mark their
1404 * pages reserved for the old functions anyway.
1406 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1407 struct page *page, pgprot_t prot)
1409 struct mm_struct *mm = vma->vm_mm;
1410 int retval;
1411 pte_t *pte;
1412 spinlock_t *ptl;
1414 retval = -EINVAL;
1415 if (PageAnon(page))
1416 goto out;
1417 retval = -ENOMEM;
1418 flush_dcache_page(page);
1419 pte = get_locked_pte(mm, addr, &ptl);
1420 if (!pte)
1421 goto out;
1422 retval = -EBUSY;
1423 if (!pte_none(*pte))
1424 goto out_unlock;
1426 /* Ok, finally just insert the thing.. */
1427 get_page(page);
1428 inc_mm_counter(mm, file_rss);
1429 page_add_file_rmap(page);
1430 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1432 retval = 0;
1433 pte_unmap_unlock(pte, ptl);
1434 return retval;
1435 out_unlock:
1436 pte_unmap_unlock(pte, ptl);
1437 out:
1438 return retval;
1442 * vm_insert_page - insert single page into user vma
1443 * @vma: user vma to map to
1444 * @addr: target user address of this page
1445 * @page: source kernel page
1447 * This allows drivers to insert individual pages they've allocated
1448 * into a user vma.
1450 * The page has to be a nice clean _individual_ kernel allocation.
1451 * If you allocate a compound page, you need to have marked it as
1452 * such (__GFP_COMP), or manually just split the page up yourself
1453 * (see split_page()).
1455 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1456 * took an arbitrary page protection parameter. This doesn't allow
1457 * that. Your vma protection will have to be set up correctly, which
1458 * means that if you want a shared writable mapping, you'd better
1459 * ask for a shared writable mapping!
1461 * The page does not need to be reserved.
1463 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1464 struct page *page)
1466 if (addr < vma->vm_start || addr >= vma->vm_end)
1467 return -EFAULT;
1468 if (!page_count(page))
1469 return -EINVAL;
1470 vma->vm_flags |= VM_INSERTPAGE;
1471 return insert_page(vma, addr, page, vma->vm_page_prot);
1473 EXPORT_SYMBOL(vm_insert_page);
1475 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1476 unsigned long pfn, pgprot_t prot)
1478 struct mm_struct *mm = vma->vm_mm;
1479 int retval;
1480 pte_t *pte, entry;
1481 spinlock_t *ptl;
1483 retval = -ENOMEM;
1484 pte = get_locked_pte(mm, addr, &ptl);
1485 if (!pte)
1486 goto out;
1487 retval = -EBUSY;
1488 if (!pte_none(*pte))
1489 goto out_unlock;
1491 /* Ok, finally just insert the thing.. */
1492 entry = pte_mkspecial(pfn_pte(pfn, prot));
1493 set_pte_at(mm, addr, pte, entry);
1494 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1496 retval = 0;
1497 out_unlock:
1498 pte_unmap_unlock(pte, ptl);
1499 out:
1500 return retval;
1504 * vm_insert_pfn - insert single pfn into user vma
1505 * @vma: user vma to map to
1506 * @addr: target user address of this page
1507 * @pfn: source kernel pfn
1509 * Similar to vm_inert_page, this allows drivers to insert individual pages
1510 * they've allocated into a user vma. Same comments apply.
1512 * This function should only be called from a vm_ops->fault handler, and
1513 * in that case the handler should return NULL.
1515 * vma cannot be a COW mapping.
1517 * As this is called only for pages that do not currently exist, we
1518 * do not need to flush old virtual caches or the TLB.
1520 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1521 unsigned long pfn)
1523 int ret;
1524 pgprot_t pgprot = vma->vm_page_prot;
1526 * Technically, architectures with pte_special can avoid all these
1527 * restrictions (same for remap_pfn_range). However we would like
1528 * consistency in testing and feature parity among all, so we should
1529 * try to keep these invariants in place for everybody.
1531 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1532 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1533 (VM_PFNMAP|VM_MIXEDMAP));
1534 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1535 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1537 if (addr < vma->vm_start || addr >= vma->vm_end)
1538 return -EFAULT;
1539 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1540 return -EINVAL;
1542 ret = insert_pfn(vma, addr, pfn, pgprot);
1544 if (ret)
1545 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1547 return ret;
1549 EXPORT_SYMBOL(vm_insert_pfn);
1551 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1552 unsigned long pfn)
1554 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1556 if (addr < vma->vm_start || addr >= vma->vm_end)
1557 return -EFAULT;
1560 * If we don't have pte special, then we have to use the pfn_valid()
1561 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1562 * refcount the page if pfn_valid is true (hence insert_page rather
1563 * than insert_pfn).
1565 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1566 struct page *page;
1568 page = pfn_to_page(pfn);
1569 return insert_page(vma, addr, page, vma->vm_page_prot);
1571 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1573 EXPORT_SYMBOL(vm_insert_mixed);
1576 * maps a range of physical memory into the requested pages. the old
1577 * mappings are removed. any references to nonexistent pages results
1578 * in null mappings (currently treated as "copy-on-access")
1580 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1581 unsigned long addr, unsigned long end,
1582 unsigned long pfn, pgprot_t prot)
1584 pte_t *pte;
1585 spinlock_t *ptl;
1587 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1588 if (!pte)
1589 return -ENOMEM;
1590 arch_enter_lazy_mmu_mode();
1591 do {
1592 BUG_ON(!pte_none(*pte));
1593 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1594 pfn++;
1595 } while (pte++, addr += PAGE_SIZE, addr != end);
1596 arch_leave_lazy_mmu_mode();
1597 pte_unmap_unlock(pte - 1, ptl);
1598 return 0;
1601 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1602 unsigned long addr, unsigned long end,
1603 unsigned long pfn, pgprot_t prot)
1605 pmd_t *pmd;
1606 unsigned long next;
1608 pfn -= addr >> PAGE_SHIFT;
1609 pmd = pmd_alloc(mm, pud, addr);
1610 if (!pmd)
1611 return -ENOMEM;
1612 do {
1613 next = pmd_addr_end(addr, end);
1614 if (remap_pte_range(mm, pmd, addr, next,
1615 pfn + (addr >> PAGE_SHIFT), prot))
1616 return -ENOMEM;
1617 } while (pmd++, addr = next, addr != end);
1618 return 0;
1621 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1622 unsigned long addr, unsigned long end,
1623 unsigned long pfn, pgprot_t prot)
1625 pud_t *pud;
1626 unsigned long next;
1628 pfn -= addr >> PAGE_SHIFT;
1629 pud = pud_alloc(mm, pgd, addr);
1630 if (!pud)
1631 return -ENOMEM;
1632 do {
1633 next = pud_addr_end(addr, end);
1634 if (remap_pmd_range(mm, pud, addr, next,
1635 pfn + (addr >> PAGE_SHIFT), prot))
1636 return -ENOMEM;
1637 } while (pud++, addr = next, addr != end);
1638 return 0;
1642 * remap_pfn_range - remap kernel memory to userspace
1643 * @vma: user vma to map to
1644 * @addr: target user address to start at
1645 * @pfn: physical address of kernel memory
1646 * @size: size of map area
1647 * @prot: page protection flags for this mapping
1649 * Note: this is only safe if the mm semaphore is held when called.
1651 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1652 unsigned long pfn, unsigned long size, pgprot_t prot)
1654 pgd_t *pgd;
1655 unsigned long next;
1656 unsigned long end = addr + PAGE_ALIGN(size);
1657 struct mm_struct *mm = vma->vm_mm;
1658 int err;
1661 * Physically remapped pages are special. Tell the
1662 * rest of the world about it:
1663 * VM_IO tells people not to look at these pages
1664 * (accesses can have side effects).
1665 * VM_RESERVED is specified all over the place, because
1666 * in 2.4 it kept swapout's vma scan off this vma; but
1667 * in 2.6 the LRU scan won't even find its pages, so this
1668 * flag means no more than count its pages in reserved_vm,
1669 * and omit it from core dump, even when VM_IO turned off.
1670 * VM_PFNMAP tells the core MM that the base pages are just
1671 * raw PFN mappings, and do not have a "struct page" associated
1672 * with them.
1674 * There's a horrible special case to handle copy-on-write
1675 * behaviour that some programs depend on. We mark the "original"
1676 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1678 if (addr == vma->vm_start && end == vma->vm_end)
1679 vma->vm_pgoff = pfn;
1680 else if (is_cow_mapping(vma->vm_flags))
1681 return -EINVAL;
1683 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1685 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1686 if (err) {
1688 * To indicate that track_pfn related cleanup is not
1689 * needed from higher level routine calling unmap_vmas
1691 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1692 return -EINVAL;
1695 BUG_ON(addr >= end);
1696 pfn -= addr >> PAGE_SHIFT;
1697 pgd = pgd_offset(mm, addr);
1698 flush_cache_range(vma, addr, end);
1699 do {
1700 next = pgd_addr_end(addr, end);
1701 err = remap_pud_range(mm, pgd, addr, next,
1702 pfn + (addr >> PAGE_SHIFT), prot);
1703 if (err)
1704 break;
1705 } while (pgd++, addr = next, addr != end);
1707 if (err)
1708 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1710 return err;
1712 EXPORT_SYMBOL(remap_pfn_range);
1714 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1715 unsigned long addr, unsigned long end,
1716 pte_fn_t fn, void *data)
1718 pte_t *pte;
1719 int err;
1720 pgtable_t token;
1721 spinlock_t *uninitialized_var(ptl);
1723 pte = (mm == &init_mm) ?
1724 pte_alloc_kernel(pmd, addr) :
1725 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1726 if (!pte)
1727 return -ENOMEM;
1729 BUG_ON(pmd_huge(*pmd));
1731 arch_enter_lazy_mmu_mode();
1733 token = pmd_pgtable(*pmd);
1735 do {
1736 err = fn(pte, token, addr, data);
1737 if (err)
1738 break;
1739 } while (pte++, addr += PAGE_SIZE, addr != end);
1741 arch_leave_lazy_mmu_mode();
1743 if (mm != &init_mm)
1744 pte_unmap_unlock(pte-1, ptl);
1745 return err;
1748 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1749 unsigned long addr, unsigned long end,
1750 pte_fn_t fn, void *data)
1752 pmd_t *pmd;
1753 unsigned long next;
1754 int err;
1756 BUG_ON(pud_huge(*pud));
1758 pmd = pmd_alloc(mm, pud, addr);
1759 if (!pmd)
1760 return -ENOMEM;
1761 do {
1762 next = pmd_addr_end(addr, end);
1763 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1764 if (err)
1765 break;
1766 } while (pmd++, addr = next, addr != end);
1767 return err;
1770 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1771 unsigned long addr, unsigned long end,
1772 pte_fn_t fn, void *data)
1774 pud_t *pud;
1775 unsigned long next;
1776 int err;
1778 pud = pud_alloc(mm, pgd, addr);
1779 if (!pud)
1780 return -ENOMEM;
1781 do {
1782 next = pud_addr_end(addr, end);
1783 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1784 if (err)
1785 break;
1786 } while (pud++, addr = next, addr != end);
1787 return err;
1791 * Scan a region of virtual memory, filling in page tables as necessary
1792 * and calling a provided function on each leaf page table.
1794 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1795 unsigned long size, pte_fn_t fn, void *data)
1797 pgd_t *pgd;
1798 unsigned long next;
1799 unsigned long start = addr, end = addr + size;
1800 int err;
1802 BUG_ON(addr >= end);
1803 mmu_notifier_invalidate_range_start(mm, start, end);
1804 pgd = pgd_offset(mm, addr);
1805 do {
1806 next = pgd_addr_end(addr, end);
1807 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1808 if (err)
1809 break;
1810 } while (pgd++, addr = next, addr != end);
1811 mmu_notifier_invalidate_range_end(mm, start, end);
1812 return err;
1814 EXPORT_SYMBOL_GPL(apply_to_page_range);
1817 * handle_pte_fault chooses page fault handler according to an entry
1818 * which was read non-atomically. Before making any commitment, on
1819 * those architectures or configurations (e.g. i386 with PAE) which
1820 * might give a mix of unmatched parts, do_swap_page and do_file_page
1821 * must check under lock before unmapping the pte and proceeding
1822 * (but do_wp_page is only called after already making such a check;
1823 * and do_anonymous_page and do_no_page can safely check later on).
1825 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1826 pte_t *page_table, pte_t orig_pte)
1828 int same = 1;
1829 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1830 if (sizeof(pte_t) > sizeof(unsigned long)) {
1831 spinlock_t *ptl = pte_lockptr(mm, pmd);
1832 spin_lock(ptl);
1833 same = pte_same(*page_table, orig_pte);
1834 spin_unlock(ptl);
1836 #endif
1837 pte_unmap(page_table);
1838 return same;
1842 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1843 * servicing faults for write access. In the normal case, do always want
1844 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1845 * that do not have writing enabled, when used by access_process_vm.
1847 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1849 if (likely(vma->vm_flags & VM_WRITE))
1850 pte = pte_mkwrite(pte);
1851 return pte;
1854 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1857 * If the source page was a PFN mapping, we don't have
1858 * a "struct page" for it. We do a best-effort copy by
1859 * just copying from the original user address. If that
1860 * fails, we just zero-fill it. Live with it.
1862 if (unlikely(!src)) {
1863 void *kaddr = kmap_atomic(dst, KM_USER0);
1864 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1867 * This really shouldn't fail, because the page is there
1868 * in the page tables. But it might just be unreadable,
1869 * in which case we just give up and fill the result with
1870 * zeroes.
1872 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1873 memset(kaddr, 0, PAGE_SIZE);
1874 kunmap_atomic(kaddr, KM_USER0);
1875 flush_dcache_page(dst);
1876 } else
1877 copy_user_highpage(dst, src, va, vma);
1881 * This routine handles present pages, when users try to write
1882 * to a shared page. It is done by copying the page to a new address
1883 * and decrementing the shared-page counter for the old page.
1885 * Note that this routine assumes that the protection checks have been
1886 * done by the caller (the low-level page fault routine in most cases).
1887 * Thus we can safely just mark it writable once we've done any necessary
1888 * COW.
1890 * We also mark the page dirty at this point even though the page will
1891 * change only once the write actually happens. This avoids a few races,
1892 * and potentially makes it more efficient.
1894 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1895 * but allow concurrent faults), with pte both mapped and locked.
1896 * We return with mmap_sem still held, but pte unmapped and unlocked.
1898 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1899 unsigned long address, pte_t *page_table, pmd_t *pmd,
1900 spinlock_t *ptl, pte_t orig_pte)
1902 struct page *old_page, *new_page;
1903 pte_t entry;
1904 int reuse = 0, ret = 0;
1905 int page_mkwrite = 0;
1906 struct page *dirty_page = NULL;
1908 old_page = vm_normal_page(vma, address, orig_pte);
1909 if (!old_page) {
1911 * VM_MIXEDMAP !pfn_valid() case
1913 * We should not cow pages in a shared writeable mapping.
1914 * Just mark the pages writable as we can't do any dirty
1915 * accounting on raw pfn maps.
1917 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1918 (VM_WRITE|VM_SHARED))
1919 goto reuse;
1920 goto gotten;
1924 * Take out anonymous pages first, anonymous shared vmas are
1925 * not dirty accountable.
1927 if (PageAnon(old_page)) {
1928 if (!trylock_page(old_page)) {
1929 page_cache_get(old_page);
1930 pte_unmap_unlock(page_table, ptl);
1931 lock_page(old_page);
1932 page_table = pte_offset_map_lock(mm, pmd, address,
1933 &ptl);
1934 if (!pte_same(*page_table, orig_pte)) {
1935 unlock_page(old_page);
1936 page_cache_release(old_page);
1937 goto unlock;
1939 page_cache_release(old_page);
1941 reuse = reuse_swap_page(old_page);
1942 unlock_page(old_page);
1943 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1944 (VM_WRITE|VM_SHARED))) {
1946 * Only catch write-faults on shared writable pages,
1947 * read-only shared pages can get COWed by
1948 * get_user_pages(.write=1, .force=1).
1950 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1952 * Notify the address space that the page is about to
1953 * become writable so that it can prohibit this or wait
1954 * for the page to get into an appropriate state.
1956 * We do this without the lock held, so that it can
1957 * sleep if it needs to.
1959 page_cache_get(old_page);
1960 pte_unmap_unlock(page_table, ptl);
1962 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1963 goto unwritable_page;
1966 * Since we dropped the lock we need to revalidate
1967 * the PTE as someone else may have changed it. If
1968 * they did, we just return, as we can count on the
1969 * MMU to tell us if they didn't also make it writable.
1971 page_table = pte_offset_map_lock(mm, pmd, address,
1972 &ptl);
1973 page_cache_release(old_page);
1974 if (!pte_same(*page_table, orig_pte))
1975 goto unlock;
1977 page_mkwrite = 1;
1979 dirty_page = old_page;
1980 get_page(dirty_page);
1981 reuse = 1;
1984 if (reuse) {
1985 reuse:
1986 flush_cache_page(vma, address, pte_pfn(orig_pte));
1987 entry = pte_mkyoung(orig_pte);
1988 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1989 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1990 update_mmu_cache(vma, address, entry);
1991 ret |= VM_FAULT_WRITE;
1992 goto unlock;
1996 * Ok, we need to copy. Oh, well..
1998 page_cache_get(old_page);
1999 gotten:
2000 pte_unmap_unlock(page_table, ptl);
2002 if (unlikely(anon_vma_prepare(vma)))
2003 goto oom;
2004 VM_BUG_ON(old_page == ZERO_PAGE(0));
2005 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2006 if (!new_page)
2007 goto oom;
2009 * Don't let another task, with possibly unlocked vma,
2010 * keep the mlocked page.
2012 if ((vma->vm_flags & VM_LOCKED) && old_page) {
2013 lock_page(old_page); /* for LRU manipulation */
2014 clear_page_mlock(old_page);
2015 unlock_page(old_page);
2017 cow_user_page(new_page, old_page, address, vma);
2018 __SetPageUptodate(new_page);
2020 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2021 goto oom_free_new;
2024 * Re-check the pte - we dropped the lock
2026 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2027 if (likely(pte_same(*page_table, orig_pte))) {
2028 if (old_page) {
2029 if (!PageAnon(old_page)) {
2030 dec_mm_counter(mm, file_rss);
2031 inc_mm_counter(mm, anon_rss);
2033 } else
2034 inc_mm_counter(mm, anon_rss);
2035 flush_cache_page(vma, address, pte_pfn(orig_pte));
2036 entry = mk_pte(new_page, vma->vm_page_prot);
2037 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2039 * Clear the pte entry and flush it first, before updating the
2040 * pte with the new entry. This will avoid a race condition
2041 * seen in the presence of one thread doing SMC and another
2042 * thread doing COW.
2044 ptep_clear_flush_notify(vma, address, page_table);
2045 page_add_new_anon_rmap(new_page, vma, address);
2046 set_pte_at(mm, address, page_table, entry);
2047 update_mmu_cache(vma, address, entry);
2048 if (old_page) {
2050 * Only after switching the pte to the new page may
2051 * we remove the mapcount here. Otherwise another
2052 * process may come and find the rmap count decremented
2053 * before the pte is switched to the new page, and
2054 * "reuse" the old page writing into it while our pte
2055 * here still points into it and can be read by other
2056 * threads.
2058 * The critical issue is to order this
2059 * page_remove_rmap with the ptp_clear_flush above.
2060 * Those stores are ordered by (if nothing else,)
2061 * the barrier present in the atomic_add_negative
2062 * in page_remove_rmap.
2064 * Then the TLB flush in ptep_clear_flush ensures that
2065 * no process can access the old page before the
2066 * decremented mapcount is visible. And the old page
2067 * cannot be reused until after the decremented
2068 * mapcount is visible. So transitively, TLBs to
2069 * old page will be flushed before it can be reused.
2071 page_remove_rmap(old_page);
2074 /* Free the old page.. */
2075 new_page = old_page;
2076 ret |= VM_FAULT_WRITE;
2077 } else
2078 mem_cgroup_uncharge_page(new_page);
2080 if (new_page)
2081 page_cache_release(new_page);
2082 if (old_page)
2083 page_cache_release(old_page);
2084 unlock:
2085 pte_unmap_unlock(page_table, ptl);
2086 if (dirty_page) {
2087 if (vma->vm_file)
2088 file_update_time(vma->vm_file);
2091 * Yes, Virginia, this is actually required to prevent a race
2092 * with clear_page_dirty_for_io() from clearing the page dirty
2093 * bit after it clear all dirty ptes, but before a racing
2094 * do_wp_page installs a dirty pte.
2096 * do_no_page is protected similarly.
2098 wait_on_page_locked(dirty_page);
2099 set_page_dirty_balance(dirty_page, page_mkwrite);
2100 put_page(dirty_page);
2102 return ret;
2103 oom_free_new:
2104 page_cache_release(new_page);
2105 oom:
2106 if (old_page)
2107 page_cache_release(old_page);
2108 return VM_FAULT_OOM;
2110 unwritable_page:
2111 page_cache_release(old_page);
2112 return VM_FAULT_SIGBUS;
2116 * Helper functions for unmap_mapping_range().
2118 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2120 * We have to restart searching the prio_tree whenever we drop the lock,
2121 * since the iterator is only valid while the lock is held, and anyway
2122 * a later vma might be split and reinserted earlier while lock dropped.
2124 * The list of nonlinear vmas could be handled more efficiently, using
2125 * a placeholder, but handle it in the same way until a need is shown.
2126 * It is important to search the prio_tree before nonlinear list: a vma
2127 * may become nonlinear and be shifted from prio_tree to nonlinear list
2128 * while the lock is dropped; but never shifted from list to prio_tree.
2130 * In order to make forward progress despite restarting the search,
2131 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2132 * quickly skip it next time around. Since the prio_tree search only
2133 * shows us those vmas affected by unmapping the range in question, we
2134 * can't efficiently keep all vmas in step with mapping->truncate_count:
2135 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2136 * mapping->truncate_count and vma->vm_truncate_count are protected by
2137 * i_mmap_lock.
2139 * In order to make forward progress despite repeatedly restarting some
2140 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2141 * and restart from that address when we reach that vma again. It might
2142 * have been split or merged, shrunk or extended, but never shifted: so
2143 * restart_addr remains valid so long as it remains in the vma's range.
2144 * unmap_mapping_range forces truncate_count to leap over page-aligned
2145 * values so we can save vma's restart_addr in its truncate_count field.
2147 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2149 static void reset_vma_truncate_counts(struct address_space *mapping)
2151 struct vm_area_struct *vma;
2152 struct prio_tree_iter iter;
2154 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2155 vma->vm_truncate_count = 0;
2156 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2157 vma->vm_truncate_count = 0;
2160 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2161 unsigned long start_addr, unsigned long end_addr,
2162 struct zap_details *details)
2164 unsigned long restart_addr;
2165 int need_break;
2168 * files that support invalidating or truncating portions of the
2169 * file from under mmaped areas must have their ->fault function
2170 * return a locked page (and set VM_FAULT_LOCKED in the return).
2171 * This provides synchronisation against concurrent unmapping here.
2174 again:
2175 restart_addr = vma->vm_truncate_count;
2176 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2177 start_addr = restart_addr;
2178 if (start_addr >= end_addr) {
2179 /* Top of vma has been split off since last time */
2180 vma->vm_truncate_count = details->truncate_count;
2181 return 0;
2185 restart_addr = zap_page_range(vma, start_addr,
2186 end_addr - start_addr, details);
2187 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2189 if (restart_addr >= end_addr) {
2190 /* We have now completed this vma: mark it so */
2191 vma->vm_truncate_count = details->truncate_count;
2192 if (!need_break)
2193 return 0;
2194 } else {
2195 /* Note restart_addr in vma's truncate_count field */
2196 vma->vm_truncate_count = restart_addr;
2197 if (!need_break)
2198 goto again;
2201 spin_unlock(details->i_mmap_lock);
2202 cond_resched();
2203 spin_lock(details->i_mmap_lock);
2204 return -EINTR;
2207 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2208 struct zap_details *details)
2210 struct vm_area_struct *vma;
2211 struct prio_tree_iter iter;
2212 pgoff_t vba, vea, zba, zea;
2214 restart:
2215 vma_prio_tree_foreach(vma, &iter, root,
2216 details->first_index, details->last_index) {
2217 /* Skip quickly over those we have already dealt with */
2218 if (vma->vm_truncate_count == details->truncate_count)
2219 continue;
2221 vba = vma->vm_pgoff;
2222 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2223 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2224 zba = details->first_index;
2225 if (zba < vba)
2226 zba = vba;
2227 zea = details->last_index;
2228 if (zea > vea)
2229 zea = vea;
2231 if (unmap_mapping_range_vma(vma,
2232 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2233 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2234 details) < 0)
2235 goto restart;
2239 static inline void unmap_mapping_range_list(struct list_head *head,
2240 struct zap_details *details)
2242 struct vm_area_struct *vma;
2245 * In nonlinear VMAs there is no correspondence between virtual address
2246 * offset and file offset. So we must perform an exhaustive search
2247 * across *all* the pages in each nonlinear VMA, not just the pages
2248 * whose virtual address lies outside the file truncation point.
2250 restart:
2251 list_for_each_entry(vma, head, shared.vm_set.list) {
2252 /* Skip quickly over those we have already dealt with */
2253 if (vma->vm_truncate_count == details->truncate_count)
2254 continue;
2255 details->nonlinear_vma = vma;
2256 if (unmap_mapping_range_vma(vma, vma->vm_start,
2257 vma->vm_end, details) < 0)
2258 goto restart;
2263 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2264 * @mapping: the address space containing mmaps to be unmapped.
2265 * @holebegin: byte in first page to unmap, relative to the start of
2266 * the underlying file. This will be rounded down to a PAGE_SIZE
2267 * boundary. Note that this is different from vmtruncate(), which
2268 * must keep the partial page. In contrast, we must get rid of
2269 * partial pages.
2270 * @holelen: size of prospective hole in bytes. This will be rounded
2271 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2272 * end of the file.
2273 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2274 * but 0 when invalidating pagecache, don't throw away private data.
2276 void unmap_mapping_range(struct address_space *mapping,
2277 loff_t const holebegin, loff_t const holelen, int even_cows)
2279 struct zap_details details;
2280 pgoff_t hba = holebegin >> PAGE_SHIFT;
2281 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2283 /* Check for overflow. */
2284 if (sizeof(holelen) > sizeof(hlen)) {
2285 long long holeend =
2286 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2287 if (holeend & ~(long long)ULONG_MAX)
2288 hlen = ULONG_MAX - hba + 1;
2291 details.check_mapping = even_cows? NULL: mapping;
2292 details.nonlinear_vma = NULL;
2293 details.first_index = hba;
2294 details.last_index = hba + hlen - 1;
2295 if (details.last_index < details.first_index)
2296 details.last_index = ULONG_MAX;
2297 details.i_mmap_lock = &mapping->i_mmap_lock;
2299 spin_lock(&mapping->i_mmap_lock);
2301 /* Protect against endless unmapping loops */
2302 mapping->truncate_count++;
2303 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2304 if (mapping->truncate_count == 0)
2305 reset_vma_truncate_counts(mapping);
2306 mapping->truncate_count++;
2308 details.truncate_count = mapping->truncate_count;
2310 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2311 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2312 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2313 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2314 spin_unlock(&mapping->i_mmap_lock);
2316 EXPORT_SYMBOL(unmap_mapping_range);
2319 * vmtruncate - unmap mappings "freed" by truncate() syscall
2320 * @inode: inode of the file used
2321 * @offset: file offset to start truncating
2323 * NOTE! We have to be ready to update the memory sharing
2324 * between the file and the memory map for a potential last
2325 * incomplete page. Ugly, but necessary.
2327 int vmtruncate(struct inode * inode, loff_t offset)
2329 if (inode->i_size < offset) {
2330 unsigned long limit;
2332 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2333 if (limit != RLIM_INFINITY && offset > limit)
2334 goto out_sig;
2335 if (offset > inode->i_sb->s_maxbytes)
2336 goto out_big;
2337 i_size_write(inode, offset);
2338 } else {
2339 struct address_space *mapping = inode->i_mapping;
2342 * truncation of in-use swapfiles is disallowed - it would
2343 * cause subsequent swapout to scribble on the now-freed
2344 * blocks.
2346 if (IS_SWAPFILE(inode))
2347 return -ETXTBSY;
2348 i_size_write(inode, offset);
2351 * unmap_mapping_range is called twice, first simply for
2352 * efficiency so that truncate_inode_pages does fewer
2353 * single-page unmaps. However after this first call, and
2354 * before truncate_inode_pages finishes, it is possible for
2355 * private pages to be COWed, which remain after
2356 * truncate_inode_pages finishes, hence the second
2357 * unmap_mapping_range call must be made for correctness.
2359 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2360 truncate_inode_pages(mapping, offset);
2361 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2364 if (inode->i_op->truncate)
2365 inode->i_op->truncate(inode);
2366 return 0;
2368 out_sig:
2369 send_sig(SIGXFSZ, current, 0);
2370 out_big:
2371 return -EFBIG;
2373 EXPORT_SYMBOL(vmtruncate);
2375 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2377 struct address_space *mapping = inode->i_mapping;
2380 * If the underlying filesystem is not going to provide
2381 * a way to truncate a range of blocks (punch a hole) -
2382 * we should return failure right now.
2384 if (!inode->i_op->truncate_range)
2385 return -ENOSYS;
2387 mutex_lock(&inode->i_mutex);
2388 down_write(&inode->i_alloc_sem);
2389 unmap_mapping_range(mapping, offset, (end - offset), 1);
2390 truncate_inode_pages_range(mapping, offset, end);
2391 unmap_mapping_range(mapping, offset, (end - offset), 1);
2392 inode->i_op->truncate_range(inode, offset, end);
2393 up_write(&inode->i_alloc_sem);
2394 mutex_unlock(&inode->i_mutex);
2396 return 0;
2400 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2401 * but allow concurrent faults), and pte mapped but not yet locked.
2402 * We return with mmap_sem still held, but pte unmapped and unlocked.
2404 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2405 unsigned long address, pte_t *page_table, pmd_t *pmd,
2406 int write_access, pte_t orig_pte)
2408 spinlock_t *ptl;
2409 struct page *page;
2410 swp_entry_t entry;
2411 pte_t pte;
2412 struct mem_cgroup *ptr = NULL;
2413 int ret = 0;
2415 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2416 goto out;
2418 entry = pte_to_swp_entry(orig_pte);
2419 if (is_migration_entry(entry)) {
2420 migration_entry_wait(mm, pmd, address);
2421 goto out;
2423 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2424 page = lookup_swap_cache(entry);
2425 if (!page) {
2426 grab_swap_token(); /* Contend for token _before_ read-in */
2427 page = swapin_readahead(entry,
2428 GFP_HIGHUSER_MOVABLE, vma, address);
2429 if (!page) {
2431 * Back out if somebody else faulted in this pte
2432 * while we released the pte lock.
2434 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2435 if (likely(pte_same(*page_table, orig_pte)))
2436 ret = VM_FAULT_OOM;
2437 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2438 goto unlock;
2441 /* Had to read the page from swap area: Major fault */
2442 ret = VM_FAULT_MAJOR;
2443 count_vm_event(PGMAJFAULT);
2446 mark_page_accessed(page);
2448 lock_page(page);
2449 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2451 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2452 ret = VM_FAULT_OOM;
2453 unlock_page(page);
2454 goto out;
2458 * Back out if somebody else already faulted in this pte.
2460 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2461 if (unlikely(!pte_same(*page_table, orig_pte)))
2462 goto out_nomap;
2464 if (unlikely(!PageUptodate(page))) {
2465 ret = VM_FAULT_SIGBUS;
2466 goto out_nomap;
2470 * The page isn't present yet, go ahead with the fault.
2472 * Be careful about the sequence of operations here.
2473 * To get its accounting right, reuse_swap_page() must be called
2474 * while the page is counted on swap but not yet in mapcount i.e.
2475 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2476 * must be called after the swap_free(), or it will never succeed.
2477 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2478 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2479 * in page->private. In this case, a record in swap_cgroup is silently
2480 * discarded at swap_free().
2483 inc_mm_counter(mm, anon_rss);
2484 pte = mk_pte(page, vma->vm_page_prot);
2485 if (write_access && reuse_swap_page(page)) {
2486 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2487 write_access = 0;
2489 flush_icache_page(vma, page);
2490 set_pte_at(mm, address, page_table, pte);
2491 page_add_anon_rmap(page, vma, address);
2492 /* It's better to call commit-charge after rmap is established */
2493 mem_cgroup_commit_charge_swapin(page, ptr);
2495 swap_free(entry);
2496 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2497 try_to_free_swap(page);
2498 unlock_page(page);
2500 if (write_access) {
2501 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2502 if (ret & VM_FAULT_ERROR)
2503 ret &= VM_FAULT_ERROR;
2504 goto out;
2507 /* No need to invalidate - it was non-present before */
2508 update_mmu_cache(vma, address, pte);
2509 unlock:
2510 pte_unmap_unlock(page_table, ptl);
2511 out:
2512 return ret;
2513 out_nomap:
2514 mem_cgroup_cancel_charge_swapin(ptr);
2515 pte_unmap_unlock(page_table, ptl);
2516 unlock_page(page);
2517 page_cache_release(page);
2518 return ret;
2522 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2523 * but allow concurrent faults), and pte mapped but not yet locked.
2524 * We return with mmap_sem still held, but pte unmapped and unlocked.
2526 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2527 unsigned long address, pte_t *page_table, pmd_t *pmd,
2528 int write_access)
2530 struct page *page;
2531 spinlock_t *ptl;
2532 pte_t entry;
2534 /* Allocate our own private page. */
2535 pte_unmap(page_table);
2537 if (unlikely(anon_vma_prepare(vma)))
2538 goto oom;
2539 page = alloc_zeroed_user_highpage_movable(vma, address);
2540 if (!page)
2541 goto oom;
2542 __SetPageUptodate(page);
2544 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2545 goto oom_free_page;
2547 entry = mk_pte(page, vma->vm_page_prot);
2548 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2550 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2551 if (!pte_none(*page_table))
2552 goto release;
2553 inc_mm_counter(mm, anon_rss);
2554 page_add_new_anon_rmap(page, vma, address);
2555 set_pte_at(mm, address, page_table, entry);
2557 /* No need to invalidate - it was non-present before */
2558 update_mmu_cache(vma, address, entry);
2559 unlock:
2560 pte_unmap_unlock(page_table, ptl);
2561 return 0;
2562 release:
2563 mem_cgroup_uncharge_page(page);
2564 page_cache_release(page);
2565 goto unlock;
2566 oom_free_page:
2567 page_cache_release(page);
2568 oom:
2569 return VM_FAULT_OOM;
2573 * __do_fault() tries to create a new page mapping. It aggressively
2574 * tries to share with existing pages, but makes a separate copy if
2575 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2576 * the next page fault.
2578 * As this is called only for pages that do not currently exist, we
2579 * do not need to flush old virtual caches or the TLB.
2581 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2582 * but allow concurrent faults), and pte neither mapped nor locked.
2583 * We return with mmap_sem still held, but pte unmapped and unlocked.
2585 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2586 unsigned long address, pmd_t *pmd,
2587 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2589 pte_t *page_table;
2590 spinlock_t *ptl;
2591 struct page *page;
2592 pte_t entry;
2593 int anon = 0;
2594 int charged = 0;
2595 struct page *dirty_page = NULL;
2596 struct vm_fault vmf;
2597 int ret;
2598 int page_mkwrite = 0;
2600 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2601 vmf.pgoff = pgoff;
2602 vmf.flags = flags;
2603 vmf.page = NULL;
2605 ret = vma->vm_ops->fault(vma, &vmf);
2606 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2607 return ret;
2610 * For consistency in subsequent calls, make the faulted page always
2611 * locked.
2613 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2614 lock_page(vmf.page);
2615 else
2616 VM_BUG_ON(!PageLocked(vmf.page));
2619 * Should we do an early C-O-W break?
2621 page = vmf.page;
2622 if (flags & FAULT_FLAG_WRITE) {
2623 if (!(vma->vm_flags & VM_SHARED)) {
2624 anon = 1;
2625 if (unlikely(anon_vma_prepare(vma))) {
2626 ret = VM_FAULT_OOM;
2627 goto out;
2629 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2630 vma, address);
2631 if (!page) {
2632 ret = VM_FAULT_OOM;
2633 goto out;
2635 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2636 ret = VM_FAULT_OOM;
2637 page_cache_release(page);
2638 goto out;
2640 charged = 1;
2642 * Don't let another task, with possibly unlocked vma,
2643 * keep the mlocked page.
2645 if (vma->vm_flags & VM_LOCKED)
2646 clear_page_mlock(vmf.page);
2647 copy_user_highpage(page, vmf.page, address, vma);
2648 __SetPageUptodate(page);
2649 } else {
2651 * If the page will be shareable, see if the backing
2652 * address space wants to know that the page is about
2653 * to become writable
2655 if (vma->vm_ops->page_mkwrite) {
2656 unlock_page(page);
2657 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2658 ret = VM_FAULT_SIGBUS;
2659 anon = 1; /* no anon but release vmf.page */
2660 goto out_unlocked;
2662 lock_page(page);
2664 * XXX: this is not quite right (racy vs
2665 * invalidate) to unlock and relock the page
2666 * like this, however a better fix requires
2667 * reworking page_mkwrite locking API, which
2668 * is better done later.
2670 if (!page->mapping) {
2671 ret = 0;
2672 anon = 1; /* no anon but release vmf.page */
2673 goto out;
2675 page_mkwrite = 1;
2681 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2684 * This silly early PAGE_DIRTY setting removes a race
2685 * due to the bad i386 page protection. But it's valid
2686 * for other architectures too.
2688 * Note that if write_access is true, we either now have
2689 * an exclusive copy of the page, or this is a shared mapping,
2690 * so we can make it writable and dirty to avoid having to
2691 * handle that later.
2693 /* Only go through if we didn't race with anybody else... */
2694 if (likely(pte_same(*page_table, orig_pte))) {
2695 flush_icache_page(vma, page);
2696 entry = mk_pte(page, vma->vm_page_prot);
2697 if (flags & FAULT_FLAG_WRITE)
2698 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2699 if (anon) {
2700 inc_mm_counter(mm, anon_rss);
2701 page_add_new_anon_rmap(page, vma, address);
2702 } else {
2703 inc_mm_counter(mm, file_rss);
2704 page_add_file_rmap(page);
2705 if (flags & FAULT_FLAG_WRITE) {
2706 dirty_page = page;
2707 get_page(dirty_page);
2710 set_pte_at(mm, address, page_table, entry);
2712 /* no need to invalidate: a not-present page won't be cached */
2713 update_mmu_cache(vma, address, entry);
2714 } else {
2715 if (charged)
2716 mem_cgroup_uncharge_page(page);
2717 if (anon)
2718 page_cache_release(page);
2719 else
2720 anon = 1; /* no anon but release faulted_page */
2723 pte_unmap_unlock(page_table, ptl);
2725 out:
2726 unlock_page(vmf.page);
2727 out_unlocked:
2728 if (anon)
2729 page_cache_release(vmf.page);
2730 else if (dirty_page) {
2731 if (vma->vm_file)
2732 file_update_time(vma->vm_file);
2734 set_page_dirty_balance(dirty_page, page_mkwrite);
2735 put_page(dirty_page);
2738 return ret;
2741 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2742 unsigned long address, pte_t *page_table, pmd_t *pmd,
2743 int write_access, pte_t orig_pte)
2745 pgoff_t pgoff = (((address & PAGE_MASK)
2746 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2747 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2749 pte_unmap(page_table);
2750 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2754 * Fault of a previously existing named mapping. Repopulate the pte
2755 * from the encoded file_pte if possible. This enables swappable
2756 * nonlinear vmas.
2758 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2759 * but allow concurrent faults), and pte mapped but not yet locked.
2760 * We return with mmap_sem still held, but pte unmapped and unlocked.
2762 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2763 unsigned long address, pte_t *page_table, pmd_t *pmd,
2764 int write_access, pte_t orig_pte)
2766 unsigned int flags = FAULT_FLAG_NONLINEAR |
2767 (write_access ? FAULT_FLAG_WRITE : 0);
2768 pgoff_t pgoff;
2770 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2771 return 0;
2773 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2775 * Page table corrupted: show pte and kill process.
2777 print_bad_pte(vma, address, orig_pte, NULL);
2778 return VM_FAULT_OOM;
2781 pgoff = pte_to_pgoff(orig_pte);
2782 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2786 * These routines also need to handle stuff like marking pages dirty
2787 * and/or accessed for architectures that don't do it in hardware (most
2788 * RISC architectures). The early dirtying is also good on the i386.
2790 * There is also a hook called "update_mmu_cache()" that architectures
2791 * with external mmu caches can use to update those (ie the Sparc or
2792 * PowerPC hashed page tables that act as extended TLBs).
2794 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2795 * but allow concurrent faults), and pte mapped but not yet locked.
2796 * We return with mmap_sem still held, but pte unmapped and unlocked.
2798 static inline int handle_pte_fault(struct mm_struct *mm,
2799 struct vm_area_struct *vma, unsigned long address,
2800 pte_t *pte, pmd_t *pmd, int write_access)
2802 pte_t entry;
2803 spinlock_t *ptl;
2805 entry = *pte;
2806 if (!pte_present(entry)) {
2807 if (pte_none(entry)) {
2808 if (vma->vm_ops) {
2809 if (likely(vma->vm_ops->fault))
2810 return do_linear_fault(mm, vma, address,
2811 pte, pmd, write_access, entry);
2813 return do_anonymous_page(mm, vma, address,
2814 pte, pmd, write_access);
2816 if (pte_file(entry))
2817 return do_nonlinear_fault(mm, vma, address,
2818 pte, pmd, write_access, entry);
2819 return do_swap_page(mm, vma, address,
2820 pte, pmd, write_access, entry);
2823 ptl = pte_lockptr(mm, pmd);
2824 spin_lock(ptl);
2825 if (unlikely(!pte_same(*pte, entry)))
2826 goto unlock;
2827 if (write_access) {
2828 if (!pte_write(entry))
2829 return do_wp_page(mm, vma, address,
2830 pte, pmd, ptl, entry);
2831 entry = pte_mkdirty(entry);
2833 entry = pte_mkyoung(entry);
2834 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2835 update_mmu_cache(vma, address, entry);
2836 } else {
2838 * This is needed only for protection faults but the arch code
2839 * is not yet telling us if this is a protection fault or not.
2840 * This still avoids useless tlb flushes for .text page faults
2841 * with threads.
2843 if (write_access)
2844 flush_tlb_page(vma, address);
2846 unlock:
2847 pte_unmap_unlock(pte, ptl);
2848 return 0;
2852 * By the time we get here, we already hold the mm semaphore
2854 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2855 unsigned long address, int write_access)
2857 pgd_t *pgd;
2858 pud_t *pud;
2859 pmd_t *pmd;
2860 pte_t *pte;
2862 __set_current_state(TASK_RUNNING);
2864 count_vm_event(PGFAULT);
2866 if (unlikely(is_vm_hugetlb_page(vma)))
2867 return hugetlb_fault(mm, vma, address, write_access);
2869 pgd = pgd_offset(mm, address);
2870 pud = pud_alloc(mm, pgd, address);
2871 if (!pud)
2872 return VM_FAULT_OOM;
2873 pmd = pmd_alloc(mm, pud, address);
2874 if (!pmd)
2875 return VM_FAULT_OOM;
2876 pte = pte_alloc_map(mm, pmd, address);
2877 if (!pte)
2878 return VM_FAULT_OOM;
2880 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2883 #ifndef __PAGETABLE_PUD_FOLDED
2885 * Allocate page upper directory.
2886 * We've already handled the fast-path in-line.
2888 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2890 pud_t *new = pud_alloc_one(mm, address);
2891 if (!new)
2892 return -ENOMEM;
2894 smp_wmb(); /* See comment in __pte_alloc */
2896 spin_lock(&mm->page_table_lock);
2897 if (pgd_present(*pgd)) /* Another has populated it */
2898 pud_free(mm, new);
2899 else
2900 pgd_populate(mm, pgd, new);
2901 spin_unlock(&mm->page_table_lock);
2902 return 0;
2904 #endif /* __PAGETABLE_PUD_FOLDED */
2906 #ifndef __PAGETABLE_PMD_FOLDED
2908 * Allocate page middle directory.
2909 * We've already handled the fast-path in-line.
2911 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2913 pmd_t *new = pmd_alloc_one(mm, address);
2914 if (!new)
2915 return -ENOMEM;
2917 smp_wmb(); /* See comment in __pte_alloc */
2919 spin_lock(&mm->page_table_lock);
2920 #ifndef __ARCH_HAS_4LEVEL_HACK
2921 if (pud_present(*pud)) /* Another has populated it */
2922 pmd_free(mm, new);
2923 else
2924 pud_populate(mm, pud, new);
2925 #else
2926 if (pgd_present(*pud)) /* Another has populated it */
2927 pmd_free(mm, new);
2928 else
2929 pgd_populate(mm, pud, new);
2930 #endif /* __ARCH_HAS_4LEVEL_HACK */
2931 spin_unlock(&mm->page_table_lock);
2932 return 0;
2934 #endif /* __PAGETABLE_PMD_FOLDED */
2936 int make_pages_present(unsigned long addr, unsigned long end)
2938 int ret, len, write;
2939 struct vm_area_struct * vma;
2941 vma = find_vma(current->mm, addr);
2942 if (!vma)
2943 return -ENOMEM;
2944 write = (vma->vm_flags & VM_WRITE) != 0;
2945 BUG_ON(addr >= end);
2946 BUG_ON(end > vma->vm_end);
2947 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2948 ret = get_user_pages(current, current->mm, addr,
2949 len, write, 0, NULL, NULL);
2950 if (ret < 0)
2951 return ret;
2952 return ret == len ? 0 : -EFAULT;
2955 #if !defined(__HAVE_ARCH_GATE_AREA)
2957 #if defined(AT_SYSINFO_EHDR)
2958 static struct vm_area_struct gate_vma;
2960 static int __init gate_vma_init(void)
2962 gate_vma.vm_mm = NULL;
2963 gate_vma.vm_start = FIXADDR_USER_START;
2964 gate_vma.vm_end = FIXADDR_USER_END;
2965 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2966 gate_vma.vm_page_prot = __P101;
2968 * Make sure the vDSO gets into every core dump.
2969 * Dumping its contents makes post-mortem fully interpretable later
2970 * without matching up the same kernel and hardware config to see
2971 * what PC values meant.
2973 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2974 return 0;
2976 __initcall(gate_vma_init);
2977 #endif
2979 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2981 #ifdef AT_SYSINFO_EHDR
2982 return &gate_vma;
2983 #else
2984 return NULL;
2985 #endif
2988 int in_gate_area_no_task(unsigned long addr)
2990 #ifdef AT_SYSINFO_EHDR
2991 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2992 return 1;
2993 #endif
2994 return 0;
2997 #endif /* __HAVE_ARCH_GATE_AREA */
2999 #ifdef CONFIG_HAVE_IOREMAP_PROT
3000 int follow_phys(struct vm_area_struct *vma,
3001 unsigned long address, unsigned int flags,
3002 unsigned long *prot, resource_size_t *phys)
3004 pgd_t *pgd;
3005 pud_t *pud;
3006 pmd_t *pmd;
3007 pte_t *ptep, pte;
3008 spinlock_t *ptl;
3009 resource_size_t phys_addr = 0;
3010 struct mm_struct *mm = vma->vm_mm;
3011 int ret = -EINVAL;
3013 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3014 goto out;
3016 pgd = pgd_offset(mm, address);
3017 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3018 goto out;
3020 pud = pud_offset(pgd, address);
3021 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3022 goto out;
3024 pmd = pmd_offset(pud, address);
3025 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3026 goto out;
3028 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3029 if (pmd_huge(*pmd))
3030 goto out;
3032 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
3033 if (!ptep)
3034 goto out;
3036 pte = *ptep;
3037 if (!pte_present(pte))
3038 goto unlock;
3039 if ((flags & FOLL_WRITE) && !pte_write(pte))
3040 goto unlock;
3041 phys_addr = pte_pfn(pte);
3042 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
3044 *prot = pgprot_val(pte_pgprot(pte));
3045 *phys = phys_addr;
3046 ret = 0;
3048 unlock:
3049 pte_unmap_unlock(ptep, ptl);
3050 out:
3051 return ret;
3054 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3055 void *buf, int len, int write)
3057 resource_size_t phys_addr;
3058 unsigned long prot = 0;
3059 void __iomem *maddr;
3060 int offset = addr & (PAGE_SIZE-1);
3062 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3063 return -EINVAL;
3065 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3066 if (write)
3067 memcpy_toio(maddr + offset, buf, len);
3068 else
3069 memcpy_fromio(buf, maddr + offset, len);
3070 iounmap(maddr);
3072 return len;
3074 #endif
3077 * Access another process' address space.
3078 * Source/target buffer must be kernel space,
3079 * Do not walk the page table directly, use get_user_pages
3081 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3083 struct mm_struct *mm;
3084 struct vm_area_struct *vma;
3085 void *old_buf = buf;
3087 mm = get_task_mm(tsk);
3088 if (!mm)
3089 return 0;
3091 down_read(&mm->mmap_sem);
3092 /* ignore errors, just check how much was successfully transferred */
3093 while (len) {
3094 int bytes, ret, offset;
3095 void *maddr;
3096 struct page *page = NULL;
3098 ret = get_user_pages(tsk, mm, addr, 1,
3099 write, 1, &page, &vma);
3100 if (ret <= 0) {
3102 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3103 * we can access using slightly different code.
3105 #ifdef CONFIG_HAVE_IOREMAP_PROT
3106 vma = find_vma(mm, addr);
3107 if (!vma)
3108 break;
3109 if (vma->vm_ops && vma->vm_ops->access)
3110 ret = vma->vm_ops->access(vma, addr, buf,
3111 len, write);
3112 if (ret <= 0)
3113 #endif
3114 break;
3115 bytes = ret;
3116 } else {
3117 bytes = len;
3118 offset = addr & (PAGE_SIZE-1);
3119 if (bytes > PAGE_SIZE-offset)
3120 bytes = PAGE_SIZE-offset;
3122 maddr = kmap(page);
3123 if (write) {
3124 copy_to_user_page(vma, page, addr,
3125 maddr + offset, buf, bytes);
3126 set_page_dirty_lock(page);
3127 } else {
3128 copy_from_user_page(vma, page, addr,
3129 buf, maddr + offset, bytes);
3131 kunmap(page);
3132 page_cache_release(page);
3134 len -= bytes;
3135 buf += bytes;
3136 addr += bytes;
3138 up_read(&mm->mmap_sem);
3139 mmput(mm);
3141 return buf - old_buf;
3145 * Print the name of a VMA.
3147 void print_vma_addr(char *prefix, unsigned long ip)
3149 struct mm_struct *mm = current->mm;
3150 struct vm_area_struct *vma;
3153 * Do not print if we are in atomic
3154 * contexts (in exception stacks, etc.):
3156 if (preempt_count())
3157 return;
3159 down_read(&mm->mmap_sem);
3160 vma = find_vma(mm, ip);
3161 if (vma && vma->vm_file) {
3162 struct file *f = vma->vm_file;
3163 char *buf = (char *)__get_free_page(GFP_KERNEL);
3164 if (buf) {
3165 char *p, *s;
3167 p = d_path(&f->f_path, buf, PAGE_SIZE);
3168 if (IS_ERR(p))
3169 p = "?";
3170 s = strrchr(p, '/');
3171 if (s)
3172 p = s+1;
3173 printk("%s%s[%lx+%lx]", prefix, p,
3174 vma->vm_start,
3175 vma->vm_end - vma->vm_start);
3176 free_page((unsigned long)buf);
3179 up_read(&current->mm->mmap_sem);
3182 #ifdef CONFIG_PROVE_LOCKING
3183 void might_fault(void)
3186 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3187 * holding the mmap_sem, this is safe because kernel memory doesn't
3188 * get paged out, therefore we'll never actually fault, and the
3189 * below annotations will generate false positives.
3191 if (segment_eq(get_fs(), KERNEL_DS))
3192 return;
3194 might_sleep();
3196 * it would be nicer only to annotate paths which are not under
3197 * pagefault_disable, however that requires a larger audit and
3198 * providing helpers like get_user_atomic.
3200 if (!in_atomic() && current->mm)
3201 might_lock_read(&current->mm->mmap_sem);
3203 EXPORT_SYMBOL(might_fault);
3204 #endif