FEC: Turn FEC driver into platform device driver
[linux-2.6/mini2440.git] / drivers / net / fec.c
blobea23baaf02569719931a4205b809770f121dde50
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/spinlock.h>
37 #include <linux/workqueue.h>
38 #include <linux/bitops.h>
39 #include <linux/io.h>
40 #include <linux/irq.h>
41 #include <linux/clk.h>
42 #include <linux/platform_device.h>
44 #include <asm/cacheflush.h>
46 #ifndef CONFIG_ARCH_MXC
47 #include <asm/coldfire.h>
48 #include <asm/mcfsim.h>
49 #endif
51 #include "fec.h"
53 #ifdef CONFIG_ARCH_MXC
54 #include <mach/hardware.h>
55 #define FEC_ALIGNMENT 0xf
56 #else
57 #define FEC_ALIGNMENT 0x3
58 #endif
60 #if defined CONFIG_M5272 || defined CONFIG_M527x || defined CONFIG_M523x \
61 || defined CONFIG_M528x || defined CONFIG_M532x || defined CONFIG_M520x
62 #define FEC_LEGACY
64 * Define the fixed address of the FEC hardware.
66 #if defined(CONFIG_M5272)
67 #define HAVE_mii_link_interrupt
68 #endif
70 #if defined(CONFIG_FEC2)
71 #define FEC_MAX_PORTS 2
72 #else
73 #define FEC_MAX_PORTS 1
74 #endif
76 static unsigned int fec_hw[] = {
77 #if defined(CONFIG_M5272)
78 (MCF_MBAR + 0x840),
79 #elif defined(CONFIG_M527x)
80 (MCF_MBAR + 0x1000),
81 (MCF_MBAR + 0x1800),
82 #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
83 (MCF_MBAR + 0x1000),
84 #elif defined(CONFIG_M520x)
85 (MCF_MBAR+0x30000),
86 #elif defined(CONFIG_M532x)
87 (MCF_MBAR+0xfc030000),
88 #endif
91 static unsigned char fec_mac_default[] = {
92 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
96 * Some hardware gets it MAC address out of local flash memory.
97 * if this is non-zero then assume it is the address to get MAC from.
99 #if defined(CONFIG_NETtel)
100 #define FEC_FLASHMAC 0xf0006006
101 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
102 #define FEC_FLASHMAC 0xf0006000
103 #elif defined(CONFIG_CANCam)
104 #define FEC_FLASHMAC 0xf0020000
105 #elif defined (CONFIG_M5272C3)
106 #define FEC_FLASHMAC (0xffe04000 + 4)
107 #elif defined(CONFIG_MOD5272)
108 #define FEC_FLASHMAC 0xffc0406b
109 #else
110 #define FEC_FLASHMAC 0
111 #endif
113 #endif /* FEC_LEGACY */
115 /* Forward declarations of some structures to support different PHYs
118 typedef struct {
119 uint mii_data;
120 void (*funct)(uint mii_reg, struct net_device *dev);
121 } phy_cmd_t;
123 typedef struct {
124 uint id;
125 char *name;
127 const phy_cmd_t *config;
128 const phy_cmd_t *startup;
129 const phy_cmd_t *ack_int;
130 const phy_cmd_t *shutdown;
131 } phy_info_t;
133 /* The number of Tx and Rx buffers. These are allocated from the page
134 * pool. The code may assume these are power of two, so it it best
135 * to keep them that size.
136 * We don't need to allocate pages for the transmitter. We just use
137 * the skbuffer directly.
139 #define FEC_ENET_RX_PAGES 8
140 #define FEC_ENET_RX_FRSIZE 2048
141 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
142 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
143 #define FEC_ENET_TX_FRSIZE 2048
144 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
145 #define TX_RING_SIZE 16 /* Must be power of two */
146 #define TX_RING_MOD_MASK 15 /* for this to work */
148 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
149 #error "FEC: descriptor ring size constants too large"
150 #endif
152 /* Interrupt events/masks.
154 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
155 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
156 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
157 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
158 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
159 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
160 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
161 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
162 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
163 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
165 /* The FEC stores dest/src/type, data, and checksum for receive packets.
167 #define PKT_MAXBUF_SIZE 1518
168 #define PKT_MINBUF_SIZE 64
169 #define PKT_MAXBLR_SIZE 1520
173 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
174 * size bits. Other FEC hardware does not, so we need to take that into
175 * account when setting it.
177 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
178 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
179 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
180 #else
181 #define OPT_FRAME_SIZE 0
182 #endif
184 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
185 * tx_bd_base always point to the base of the buffer descriptors. The
186 * cur_rx and cur_tx point to the currently available buffer.
187 * The dirty_tx tracks the current buffer that is being sent by the
188 * controller. The cur_tx and dirty_tx are equal under both completely
189 * empty and completely full conditions. The empty/ready indicator in
190 * the buffer descriptor determines the actual condition.
192 struct fec_enet_private {
193 /* Hardware registers of the FEC device */
194 volatile fec_t *hwp;
196 struct net_device *netdev;
198 struct clk *clk;
200 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
201 unsigned char *tx_bounce[TX_RING_SIZE];
202 struct sk_buff* tx_skbuff[TX_RING_SIZE];
203 ushort skb_cur;
204 ushort skb_dirty;
206 /* CPM dual port RAM relative addresses.
208 dma_addr_t bd_dma;
209 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
210 cbd_t *tx_bd_base;
211 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
212 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
213 uint tx_full;
214 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
215 spinlock_t hw_lock;
216 /* hold while accessing the mii_list_t() elements */
217 spinlock_t mii_lock;
219 uint phy_id;
220 uint phy_id_done;
221 uint phy_status;
222 uint phy_speed;
223 phy_info_t const *phy;
224 struct work_struct phy_task;
226 uint sequence_done;
227 uint mii_phy_task_queued;
229 uint phy_addr;
231 int index;
232 int opened;
233 int link;
234 int old_link;
235 int full_duplex;
238 static int fec_enet_open(struct net_device *dev);
239 static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
240 static void fec_enet_mii(struct net_device *dev);
241 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
242 static void fec_enet_tx(struct net_device *dev);
243 static void fec_enet_rx(struct net_device *dev);
244 static int fec_enet_close(struct net_device *dev);
245 static void set_multicast_list(struct net_device *dev);
246 static void fec_restart(struct net_device *dev, int duplex);
247 static void fec_stop(struct net_device *dev);
248 static void fec_set_mac_address(struct net_device *dev);
251 /* MII processing. We keep this as simple as possible. Requests are
252 * placed on the list (if there is room). When the request is finished
253 * by the MII, an optional function may be called.
255 typedef struct mii_list {
256 uint mii_regval;
257 void (*mii_func)(uint val, struct net_device *dev);
258 struct mii_list *mii_next;
259 } mii_list_t;
261 #define NMII 20
262 static mii_list_t mii_cmds[NMII];
263 static mii_list_t *mii_free;
264 static mii_list_t *mii_head;
265 static mii_list_t *mii_tail;
267 static int mii_queue(struct net_device *dev, int request,
268 void (*func)(uint, struct net_device *));
270 /* Make MII read/write commands for the FEC.
272 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
273 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
274 (VAL & 0xffff))
275 #define mk_mii_end 0
277 /* Transmitter timeout.
279 #define TX_TIMEOUT (2*HZ)
281 /* Register definitions for the PHY.
284 #define MII_REG_CR 0 /* Control Register */
285 #define MII_REG_SR 1 /* Status Register */
286 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
287 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
288 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
289 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
290 #define MII_REG_ANER 6 /* A-N Expansion Register */
291 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
292 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
294 /* values for phy_status */
296 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
297 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
298 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
299 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
300 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
301 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
302 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
304 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
305 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
306 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
307 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
308 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
309 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
310 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
311 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
314 static int
315 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
317 struct fec_enet_private *fep;
318 volatile fec_t *fecp;
319 volatile cbd_t *bdp;
320 unsigned short status;
321 unsigned long flags;
323 fep = netdev_priv(dev);
324 fecp = (volatile fec_t*)dev->base_addr;
326 if (!fep->link) {
327 /* Link is down or autonegotiation is in progress. */
328 return 1;
331 spin_lock_irqsave(&fep->hw_lock, flags);
332 /* Fill in a Tx ring entry */
333 bdp = fep->cur_tx;
335 status = bdp->cbd_sc;
336 #ifndef final_version
337 if (status & BD_ENET_TX_READY) {
338 /* Ooops. All transmit buffers are full. Bail out.
339 * This should not happen, since dev->tbusy should be set.
341 printk("%s: tx queue full!.\n", dev->name);
342 spin_unlock_irqrestore(&fep->hw_lock, flags);
343 return 1;
345 #endif
347 /* Clear all of the status flags.
349 status &= ~BD_ENET_TX_STATS;
351 /* Set buffer length and buffer pointer.
353 bdp->cbd_bufaddr = __pa(skb->data);
354 bdp->cbd_datlen = skb->len;
357 * On some FEC implementations data must be aligned on
358 * 4-byte boundaries. Use bounce buffers to copy data
359 * and get it aligned. Ugh.
361 if (bdp->cbd_bufaddr & FEC_ALIGNMENT) {
362 unsigned int index;
363 index = bdp - fep->tx_bd_base;
364 memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
365 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
368 /* Save skb pointer.
370 fep->tx_skbuff[fep->skb_cur] = skb;
372 dev->stats.tx_bytes += skb->len;
373 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
375 /* Push the data cache so the CPM does not get stale memory
376 * data.
378 dma_sync_single(NULL, bdp->cbd_bufaddr,
379 bdp->cbd_datlen, DMA_TO_DEVICE);
381 /* Send it on its way. Tell FEC it's ready, interrupt when done,
382 * it's the last BD of the frame, and to put the CRC on the end.
385 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
386 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
387 bdp->cbd_sc = status;
389 dev->trans_start = jiffies;
391 /* Trigger transmission start */
392 fecp->fec_x_des_active = 0;
394 /* If this was the last BD in the ring, start at the beginning again.
396 if (status & BD_ENET_TX_WRAP) {
397 bdp = fep->tx_bd_base;
398 } else {
399 bdp++;
402 if (bdp == fep->dirty_tx) {
403 fep->tx_full = 1;
404 netif_stop_queue(dev);
407 fep->cur_tx = (cbd_t *)bdp;
409 spin_unlock_irqrestore(&fep->hw_lock, flags);
411 return 0;
414 static void
415 fec_timeout(struct net_device *dev)
417 struct fec_enet_private *fep = netdev_priv(dev);
419 printk("%s: transmit timed out.\n", dev->name);
420 dev->stats.tx_errors++;
421 #ifndef final_version
423 int i;
424 cbd_t *bdp;
426 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
427 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
428 (unsigned long)fep->dirty_tx,
429 (unsigned long)fep->cur_rx);
431 bdp = fep->tx_bd_base;
432 printk(" tx: %u buffers\n", TX_RING_SIZE);
433 for (i = 0 ; i < TX_RING_SIZE; i++) {
434 printk(" %08x: %04x %04x %08x\n",
435 (uint) bdp,
436 bdp->cbd_sc,
437 bdp->cbd_datlen,
438 (int) bdp->cbd_bufaddr);
439 bdp++;
442 bdp = fep->rx_bd_base;
443 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
444 for (i = 0 ; i < RX_RING_SIZE; i++) {
445 printk(" %08x: %04x %04x %08x\n",
446 (uint) bdp,
447 bdp->cbd_sc,
448 bdp->cbd_datlen,
449 (int) bdp->cbd_bufaddr);
450 bdp++;
453 #endif
454 fec_restart(dev, fep->full_duplex);
455 netif_wake_queue(dev);
458 /* The interrupt handler.
459 * This is called from the MPC core interrupt.
461 static irqreturn_t
462 fec_enet_interrupt(int irq, void * dev_id)
464 struct net_device *dev = dev_id;
465 volatile fec_t *fecp;
466 uint int_events;
467 irqreturn_t ret = IRQ_NONE;
469 fecp = (volatile fec_t*)dev->base_addr;
471 /* Get the interrupt events that caused us to be here.
473 do {
474 int_events = fecp->fec_ievent;
475 fecp->fec_ievent = int_events;
477 /* Handle receive event in its own function.
479 if (int_events & FEC_ENET_RXF) {
480 ret = IRQ_HANDLED;
481 fec_enet_rx(dev);
484 /* Transmit OK, or non-fatal error. Update the buffer
485 descriptors. FEC handles all errors, we just discover
486 them as part of the transmit process.
488 if (int_events & FEC_ENET_TXF) {
489 ret = IRQ_HANDLED;
490 fec_enet_tx(dev);
493 if (int_events & FEC_ENET_MII) {
494 ret = IRQ_HANDLED;
495 fec_enet_mii(dev);
498 } while (int_events);
500 return ret;
504 static void
505 fec_enet_tx(struct net_device *dev)
507 struct fec_enet_private *fep;
508 volatile cbd_t *bdp;
509 unsigned short status;
510 struct sk_buff *skb;
512 fep = netdev_priv(dev);
513 spin_lock_irq(&fep->hw_lock);
514 bdp = fep->dirty_tx;
516 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
517 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
519 skb = fep->tx_skbuff[fep->skb_dirty];
520 /* Check for errors. */
521 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
522 BD_ENET_TX_RL | BD_ENET_TX_UN |
523 BD_ENET_TX_CSL)) {
524 dev->stats.tx_errors++;
525 if (status & BD_ENET_TX_HB) /* No heartbeat */
526 dev->stats.tx_heartbeat_errors++;
527 if (status & BD_ENET_TX_LC) /* Late collision */
528 dev->stats.tx_window_errors++;
529 if (status & BD_ENET_TX_RL) /* Retrans limit */
530 dev->stats.tx_aborted_errors++;
531 if (status & BD_ENET_TX_UN) /* Underrun */
532 dev->stats.tx_fifo_errors++;
533 if (status & BD_ENET_TX_CSL) /* Carrier lost */
534 dev->stats.tx_carrier_errors++;
535 } else {
536 dev->stats.tx_packets++;
539 #ifndef final_version
540 if (status & BD_ENET_TX_READY)
541 printk("HEY! Enet xmit interrupt and TX_READY.\n");
542 #endif
543 /* Deferred means some collisions occurred during transmit,
544 * but we eventually sent the packet OK.
546 if (status & BD_ENET_TX_DEF)
547 dev->stats.collisions++;
549 /* Free the sk buffer associated with this last transmit.
551 dev_kfree_skb_any(skb);
552 fep->tx_skbuff[fep->skb_dirty] = NULL;
553 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
555 /* Update pointer to next buffer descriptor to be transmitted.
557 if (status & BD_ENET_TX_WRAP)
558 bdp = fep->tx_bd_base;
559 else
560 bdp++;
562 /* Since we have freed up a buffer, the ring is no longer
563 * full.
565 if (fep->tx_full) {
566 fep->tx_full = 0;
567 if (netif_queue_stopped(dev))
568 netif_wake_queue(dev);
571 fep->dirty_tx = (cbd_t *)bdp;
572 spin_unlock_irq(&fep->hw_lock);
576 /* During a receive, the cur_rx points to the current incoming buffer.
577 * When we update through the ring, if the next incoming buffer has
578 * not been given to the system, we just set the empty indicator,
579 * effectively tossing the packet.
581 static void
582 fec_enet_rx(struct net_device *dev)
584 struct fec_enet_private *fep;
585 volatile fec_t *fecp;
586 volatile cbd_t *bdp;
587 unsigned short status;
588 struct sk_buff *skb;
589 ushort pkt_len;
590 __u8 *data;
592 #ifdef CONFIG_M532x
593 flush_cache_all();
594 #endif
596 fep = netdev_priv(dev);
597 fecp = (volatile fec_t*)dev->base_addr;
599 spin_lock_irq(&fep->hw_lock);
601 /* First, grab all of the stats for the incoming packet.
602 * These get messed up if we get called due to a busy condition.
604 bdp = fep->cur_rx;
606 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
608 #ifndef final_version
609 /* Since we have allocated space to hold a complete frame,
610 * the last indicator should be set.
612 if ((status & BD_ENET_RX_LAST) == 0)
613 printk("FEC ENET: rcv is not +last\n");
614 #endif
616 if (!fep->opened)
617 goto rx_processing_done;
619 /* Check for errors. */
620 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
621 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
622 dev->stats.rx_errors++;
623 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
624 /* Frame too long or too short. */
625 dev->stats.rx_length_errors++;
627 if (status & BD_ENET_RX_NO) /* Frame alignment */
628 dev->stats.rx_frame_errors++;
629 if (status & BD_ENET_RX_CR) /* CRC Error */
630 dev->stats.rx_crc_errors++;
631 if (status & BD_ENET_RX_OV) /* FIFO overrun */
632 dev->stats.rx_fifo_errors++;
635 /* Report late collisions as a frame error.
636 * On this error, the BD is closed, but we don't know what we
637 * have in the buffer. So, just drop this frame on the floor.
639 if (status & BD_ENET_RX_CL) {
640 dev->stats.rx_errors++;
641 dev->stats.rx_frame_errors++;
642 goto rx_processing_done;
645 /* Process the incoming frame.
647 dev->stats.rx_packets++;
648 pkt_len = bdp->cbd_datlen;
649 dev->stats.rx_bytes += pkt_len;
650 data = (__u8*)__va(bdp->cbd_bufaddr);
652 dma_sync_single(NULL, (unsigned long)__pa(data),
653 pkt_len - 4, DMA_FROM_DEVICE);
655 /* This does 16 byte alignment, exactly what we need.
656 * The packet length includes FCS, but we don't want to
657 * include that when passing upstream as it messes up
658 * bridging applications.
660 skb = dev_alloc_skb(pkt_len-4);
662 if (skb == NULL) {
663 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
664 dev->stats.rx_dropped++;
665 } else {
666 skb_put(skb,pkt_len-4); /* Make room */
667 skb_copy_to_linear_data(skb, data, pkt_len-4);
668 skb->protocol=eth_type_trans(skb,dev);
669 netif_rx(skb);
671 rx_processing_done:
673 /* Clear the status flags for this buffer.
675 status &= ~BD_ENET_RX_STATS;
677 /* Mark the buffer empty.
679 status |= BD_ENET_RX_EMPTY;
680 bdp->cbd_sc = status;
682 /* Update BD pointer to next entry.
684 if (status & BD_ENET_RX_WRAP)
685 bdp = fep->rx_bd_base;
686 else
687 bdp++;
689 #if 1
690 /* Doing this here will keep the FEC running while we process
691 * incoming frames. On a heavily loaded network, we should be
692 * able to keep up at the expense of system resources.
694 fecp->fec_r_des_active = 0;
695 #endif
696 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
697 fep->cur_rx = (cbd_t *)bdp;
699 #if 0
700 /* Doing this here will allow us to process all frames in the
701 * ring before the FEC is allowed to put more there. On a heavily
702 * loaded network, some frames may be lost. Unfortunately, this
703 * increases the interrupt overhead since we can potentially work
704 * our way back to the interrupt return only to come right back
705 * here.
707 fecp->fec_r_des_active = 0;
708 #endif
710 spin_unlock_irq(&fep->hw_lock);
714 /* called from interrupt context */
715 static void
716 fec_enet_mii(struct net_device *dev)
718 struct fec_enet_private *fep;
719 volatile fec_t *ep;
720 mii_list_t *mip;
721 uint mii_reg;
723 fep = netdev_priv(dev);
724 spin_lock_irq(&fep->mii_lock);
726 ep = fep->hwp;
727 mii_reg = ep->fec_mii_data;
729 if ((mip = mii_head) == NULL) {
730 printk("MII and no head!\n");
731 goto unlock;
734 if (mip->mii_func != NULL)
735 (*(mip->mii_func))(mii_reg, dev);
737 mii_head = mip->mii_next;
738 mip->mii_next = mii_free;
739 mii_free = mip;
741 if ((mip = mii_head) != NULL)
742 ep->fec_mii_data = mip->mii_regval;
744 unlock:
745 spin_unlock_irq(&fep->mii_lock);
748 static int
749 mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
751 struct fec_enet_private *fep;
752 unsigned long flags;
753 mii_list_t *mip;
754 int retval;
756 /* Add PHY address to register command.
758 fep = netdev_priv(dev);
759 spin_lock_irqsave(&fep->mii_lock, flags);
761 regval |= fep->phy_addr << 23;
762 retval = 0;
764 if ((mip = mii_free) != NULL) {
765 mii_free = mip->mii_next;
766 mip->mii_regval = regval;
767 mip->mii_func = func;
768 mip->mii_next = NULL;
769 if (mii_head) {
770 mii_tail->mii_next = mip;
771 mii_tail = mip;
772 } else {
773 mii_head = mii_tail = mip;
774 fep->hwp->fec_mii_data = regval;
776 } else {
777 retval = 1;
780 spin_unlock_irqrestore(&fep->mii_lock, flags);
781 return retval;
784 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
786 if(!c)
787 return;
789 for (; c->mii_data != mk_mii_end; c++)
790 mii_queue(dev, c->mii_data, c->funct);
793 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
795 struct fec_enet_private *fep = netdev_priv(dev);
796 volatile uint *s = &(fep->phy_status);
797 uint status;
799 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
801 if (mii_reg & 0x0004)
802 status |= PHY_STAT_LINK;
803 if (mii_reg & 0x0010)
804 status |= PHY_STAT_FAULT;
805 if (mii_reg & 0x0020)
806 status |= PHY_STAT_ANC;
807 *s = status;
810 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
812 struct fec_enet_private *fep = netdev_priv(dev);
813 volatile uint *s = &(fep->phy_status);
814 uint status;
816 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
818 if (mii_reg & 0x1000)
819 status |= PHY_CONF_ANE;
820 if (mii_reg & 0x4000)
821 status |= PHY_CONF_LOOP;
822 *s = status;
825 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
827 struct fec_enet_private *fep = netdev_priv(dev);
828 volatile uint *s = &(fep->phy_status);
829 uint status;
831 status = *s & ~(PHY_CONF_SPMASK);
833 if (mii_reg & 0x0020)
834 status |= PHY_CONF_10HDX;
835 if (mii_reg & 0x0040)
836 status |= PHY_CONF_10FDX;
837 if (mii_reg & 0x0080)
838 status |= PHY_CONF_100HDX;
839 if (mii_reg & 0x00100)
840 status |= PHY_CONF_100FDX;
841 *s = status;
844 /* ------------------------------------------------------------------------- */
845 /* The Level one LXT970 is used by many boards */
847 #define MII_LXT970_MIRROR 16 /* Mirror register */
848 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
849 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
850 #define MII_LXT970_CONFIG 19 /* Configuration Register */
851 #define MII_LXT970_CSR 20 /* Chip Status Register */
853 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
855 struct fec_enet_private *fep = netdev_priv(dev);
856 volatile uint *s = &(fep->phy_status);
857 uint status;
859 status = *s & ~(PHY_STAT_SPMASK);
860 if (mii_reg & 0x0800) {
861 if (mii_reg & 0x1000)
862 status |= PHY_STAT_100FDX;
863 else
864 status |= PHY_STAT_100HDX;
865 } else {
866 if (mii_reg & 0x1000)
867 status |= PHY_STAT_10FDX;
868 else
869 status |= PHY_STAT_10HDX;
871 *s = status;
874 static phy_cmd_t const phy_cmd_lxt970_config[] = {
875 { mk_mii_read(MII_REG_CR), mii_parse_cr },
876 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
877 { mk_mii_end, }
879 static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
880 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
881 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
882 { mk_mii_end, }
884 static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
885 /* read SR and ISR to acknowledge */
886 { mk_mii_read(MII_REG_SR), mii_parse_sr },
887 { mk_mii_read(MII_LXT970_ISR), NULL },
889 /* find out the current status */
890 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
891 { mk_mii_end, }
893 static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
894 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
895 { mk_mii_end, }
897 static phy_info_t const phy_info_lxt970 = {
898 .id = 0x07810000,
899 .name = "LXT970",
900 .config = phy_cmd_lxt970_config,
901 .startup = phy_cmd_lxt970_startup,
902 .ack_int = phy_cmd_lxt970_ack_int,
903 .shutdown = phy_cmd_lxt970_shutdown
906 /* ------------------------------------------------------------------------- */
907 /* The Level one LXT971 is used on some of my custom boards */
909 /* register definitions for the 971 */
911 #define MII_LXT971_PCR 16 /* Port Control Register */
912 #define MII_LXT971_SR2 17 /* Status Register 2 */
913 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
914 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
915 #define MII_LXT971_LCR 20 /* LED Control Register */
916 #define MII_LXT971_TCR 30 /* Transmit Control Register */
919 * I had some nice ideas of running the MDIO faster...
920 * The 971 should support 8MHz and I tried it, but things acted really
921 * weird, so 2.5 MHz ought to be enough for anyone...
924 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
926 struct fec_enet_private *fep = netdev_priv(dev);
927 volatile uint *s = &(fep->phy_status);
928 uint status;
930 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
932 if (mii_reg & 0x0400) {
933 fep->link = 1;
934 status |= PHY_STAT_LINK;
935 } else {
936 fep->link = 0;
938 if (mii_reg & 0x0080)
939 status |= PHY_STAT_ANC;
940 if (mii_reg & 0x4000) {
941 if (mii_reg & 0x0200)
942 status |= PHY_STAT_100FDX;
943 else
944 status |= PHY_STAT_100HDX;
945 } else {
946 if (mii_reg & 0x0200)
947 status |= PHY_STAT_10FDX;
948 else
949 status |= PHY_STAT_10HDX;
951 if (mii_reg & 0x0008)
952 status |= PHY_STAT_FAULT;
954 *s = status;
957 static phy_cmd_t const phy_cmd_lxt971_config[] = {
958 /* limit to 10MBit because my prototype board
959 * doesn't work with 100. */
960 { mk_mii_read(MII_REG_CR), mii_parse_cr },
961 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
962 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
963 { mk_mii_end, }
965 static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
966 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
967 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
968 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
969 /* Somehow does the 971 tell me that the link is down
970 * the first read after power-up.
971 * read here to get a valid value in ack_int */
972 { mk_mii_read(MII_REG_SR), mii_parse_sr },
973 { mk_mii_end, }
975 static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
976 /* acknowledge the int before reading status ! */
977 { mk_mii_read(MII_LXT971_ISR), NULL },
978 /* find out the current status */
979 { mk_mii_read(MII_REG_SR), mii_parse_sr },
980 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
981 { mk_mii_end, }
983 static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
984 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
985 { mk_mii_end, }
987 static phy_info_t const phy_info_lxt971 = {
988 .id = 0x0001378e,
989 .name = "LXT971",
990 .config = phy_cmd_lxt971_config,
991 .startup = phy_cmd_lxt971_startup,
992 .ack_int = phy_cmd_lxt971_ack_int,
993 .shutdown = phy_cmd_lxt971_shutdown
996 /* ------------------------------------------------------------------------- */
997 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
999 /* register definitions */
1001 #define MII_QS6612_MCR 17 /* Mode Control Register */
1002 #define MII_QS6612_FTR 27 /* Factory Test Register */
1003 #define MII_QS6612_MCO 28 /* Misc. Control Register */
1004 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
1005 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
1006 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
1008 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
1010 struct fec_enet_private *fep = netdev_priv(dev);
1011 volatile uint *s = &(fep->phy_status);
1012 uint status;
1014 status = *s & ~(PHY_STAT_SPMASK);
1016 switch((mii_reg >> 2) & 7) {
1017 case 1: status |= PHY_STAT_10HDX; break;
1018 case 2: status |= PHY_STAT_100HDX; break;
1019 case 5: status |= PHY_STAT_10FDX; break;
1020 case 6: status |= PHY_STAT_100FDX; break;
1023 *s = status;
1026 static phy_cmd_t const phy_cmd_qs6612_config[] = {
1027 /* The PHY powers up isolated on the RPX,
1028 * so send a command to allow operation.
1030 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1032 /* parse cr and anar to get some info */
1033 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1034 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1035 { mk_mii_end, }
1037 static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
1038 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1039 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1040 { mk_mii_end, }
1042 static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1043 /* we need to read ISR, SR and ANER to acknowledge */
1044 { mk_mii_read(MII_QS6612_ISR), NULL },
1045 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1046 { mk_mii_read(MII_REG_ANER), NULL },
1048 /* read pcr to get info */
1049 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1050 { mk_mii_end, }
1052 static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1053 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1054 { mk_mii_end, }
1056 static phy_info_t const phy_info_qs6612 = {
1057 .id = 0x00181440,
1058 .name = "QS6612",
1059 .config = phy_cmd_qs6612_config,
1060 .startup = phy_cmd_qs6612_startup,
1061 .ack_int = phy_cmd_qs6612_ack_int,
1062 .shutdown = phy_cmd_qs6612_shutdown
1065 /* ------------------------------------------------------------------------- */
1066 /* AMD AM79C874 phy */
1068 /* register definitions for the 874 */
1070 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1071 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1072 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1073 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1074 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1075 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1076 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1078 static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1080 struct fec_enet_private *fep = netdev_priv(dev);
1081 volatile uint *s = &(fep->phy_status);
1082 uint status;
1084 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1086 if (mii_reg & 0x0080)
1087 status |= PHY_STAT_ANC;
1088 if (mii_reg & 0x0400)
1089 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1090 else
1091 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1093 *s = status;
1096 static phy_cmd_t const phy_cmd_am79c874_config[] = {
1097 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1098 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1099 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1100 { mk_mii_end, }
1102 static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1103 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1104 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1105 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1106 { mk_mii_end, }
1108 static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1109 /* find out the current status */
1110 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1111 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1112 /* we only need to read ISR to acknowledge */
1113 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1114 { mk_mii_end, }
1116 static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1117 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1118 { mk_mii_end, }
1120 static phy_info_t const phy_info_am79c874 = {
1121 .id = 0x00022561,
1122 .name = "AM79C874",
1123 .config = phy_cmd_am79c874_config,
1124 .startup = phy_cmd_am79c874_startup,
1125 .ack_int = phy_cmd_am79c874_ack_int,
1126 .shutdown = phy_cmd_am79c874_shutdown
1130 /* ------------------------------------------------------------------------- */
1131 /* Kendin KS8721BL phy */
1133 /* register definitions for the 8721 */
1135 #define MII_KS8721BL_RXERCR 21
1136 #define MII_KS8721BL_ICSR 27
1137 #define MII_KS8721BL_PHYCR 31
1139 static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1140 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1141 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1142 { mk_mii_end, }
1144 static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1145 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1146 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1147 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1148 { mk_mii_end, }
1150 static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1151 /* find out the current status */
1152 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1153 /* we only need to read ISR to acknowledge */
1154 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1155 { mk_mii_end, }
1157 static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1158 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1159 { mk_mii_end, }
1161 static phy_info_t const phy_info_ks8721bl = {
1162 .id = 0x00022161,
1163 .name = "KS8721BL",
1164 .config = phy_cmd_ks8721bl_config,
1165 .startup = phy_cmd_ks8721bl_startup,
1166 .ack_int = phy_cmd_ks8721bl_ack_int,
1167 .shutdown = phy_cmd_ks8721bl_shutdown
1170 /* ------------------------------------------------------------------------- */
1171 /* register definitions for the DP83848 */
1173 #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1175 static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1177 struct fec_enet_private *fep = netdev_priv(dev);
1178 volatile uint *s = &(fep->phy_status);
1180 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1182 /* Link up */
1183 if (mii_reg & 0x0001) {
1184 fep->link = 1;
1185 *s |= PHY_STAT_LINK;
1186 } else
1187 fep->link = 0;
1188 /* Status of link */
1189 if (mii_reg & 0x0010) /* Autonegotioation complete */
1190 *s |= PHY_STAT_ANC;
1191 if (mii_reg & 0x0002) { /* 10MBps? */
1192 if (mii_reg & 0x0004) /* Full Duplex? */
1193 *s |= PHY_STAT_10FDX;
1194 else
1195 *s |= PHY_STAT_10HDX;
1196 } else { /* 100 Mbps? */
1197 if (mii_reg & 0x0004) /* Full Duplex? */
1198 *s |= PHY_STAT_100FDX;
1199 else
1200 *s |= PHY_STAT_100HDX;
1202 if (mii_reg & 0x0008)
1203 *s |= PHY_STAT_FAULT;
1206 static phy_info_t phy_info_dp83848= {
1207 0x020005c9,
1208 "DP83848",
1210 (const phy_cmd_t []) { /* config */
1211 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1212 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1213 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1214 { mk_mii_end, }
1216 (const phy_cmd_t []) { /* startup - enable interrupts */
1217 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1218 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1219 { mk_mii_end, }
1221 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1222 { mk_mii_end, }
1224 (const phy_cmd_t []) { /* shutdown */
1225 { mk_mii_end, }
1229 /* ------------------------------------------------------------------------- */
1231 static phy_info_t const * const phy_info[] = {
1232 &phy_info_lxt970,
1233 &phy_info_lxt971,
1234 &phy_info_qs6612,
1235 &phy_info_am79c874,
1236 &phy_info_ks8721bl,
1237 &phy_info_dp83848,
1238 NULL
1241 /* ------------------------------------------------------------------------- */
1242 #ifdef HAVE_mii_link_interrupt
1243 static irqreturn_t
1244 mii_link_interrupt(int irq, void * dev_id);
1245 #endif
1247 #if defined(CONFIG_M5272)
1249 * Code specific to Coldfire 5272 setup.
1251 static void __inline__ fec_request_intrs(struct net_device *dev)
1253 volatile unsigned long *icrp;
1254 static const struct idesc {
1255 char *name;
1256 unsigned short irq;
1257 irq_handler_t handler;
1258 } *idp, id[] = {
1259 { "fec(RX)", 86, fec_enet_interrupt },
1260 { "fec(TX)", 87, fec_enet_interrupt },
1261 { "fec(OTHER)", 88, fec_enet_interrupt },
1262 { "fec(MII)", 66, mii_link_interrupt },
1263 { NULL },
1266 /* Setup interrupt handlers. */
1267 for (idp = id; idp->name; idp++) {
1268 if (request_irq(idp->irq, idp->handler, IRQF_DISABLED, idp->name, dev) != 0)
1269 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1272 /* Unmask interrupt at ColdFire 5272 SIM */
1273 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1274 *icrp = 0x00000ddd;
1275 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1276 *icrp = 0x0d000000;
1279 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1281 volatile fec_t *fecp;
1283 fecp = fep->hwp;
1284 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1285 fecp->fec_x_cntrl = 0x00;
1288 * Set MII speed to 2.5 MHz
1289 * See 5272 manual section 11.5.8: MSCR
1291 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1292 fecp->fec_mii_speed = fep->phy_speed;
1294 fec_restart(dev, 0);
1297 static void __inline__ fec_get_mac(struct net_device *dev)
1299 struct fec_enet_private *fep = netdev_priv(dev);
1300 volatile fec_t *fecp;
1301 unsigned char *iap, tmpaddr[ETH_ALEN];
1303 fecp = fep->hwp;
1305 if (FEC_FLASHMAC) {
1307 * Get MAC address from FLASH.
1308 * If it is all 1's or 0's, use the default.
1310 iap = (unsigned char *)FEC_FLASHMAC;
1311 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1312 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1313 iap = fec_mac_default;
1314 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1315 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1316 iap = fec_mac_default;
1317 } else {
1318 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1319 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1320 iap = &tmpaddr[0];
1323 memcpy(dev->dev_addr, iap, ETH_ALEN);
1325 /* Adjust MAC if using default MAC address */
1326 if (iap == fec_mac_default)
1327 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1330 static void __inline__ fec_disable_phy_intr(void)
1332 volatile unsigned long *icrp;
1333 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1334 *icrp = 0x08000000;
1337 static void __inline__ fec_phy_ack_intr(void)
1339 volatile unsigned long *icrp;
1340 /* Acknowledge the interrupt */
1341 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1342 *icrp = 0x0d000000;
1345 /* ------------------------------------------------------------------------- */
1347 #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1350 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1351 * the 5270/5271/5274/5275 and 5280/5282 setups.
1353 static void __inline__ fec_request_intrs(struct net_device *dev)
1355 struct fec_enet_private *fep;
1356 int b;
1357 static const struct idesc {
1358 char *name;
1359 unsigned short irq;
1360 } *idp, id[] = {
1361 { "fec(TXF)", 23 },
1362 { "fec(RXF)", 27 },
1363 { "fec(MII)", 29 },
1364 { NULL },
1367 fep = netdev_priv(dev);
1368 b = (fep->index) ? 128 : 64;
1370 /* Setup interrupt handlers. */
1371 for (idp = id; idp->name; idp++) {
1372 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name, dev) != 0)
1373 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1376 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1378 volatile unsigned char *icrp;
1379 volatile unsigned long *imrp;
1380 int i, ilip;
1382 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1383 icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1384 MCFINTC_ICR0);
1385 for (i = 23, ilip = 0x28; (i < 36); i++)
1386 icrp[i] = ilip--;
1388 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1389 MCFINTC_IMRH);
1390 *imrp &= ~0x0000000f;
1391 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1392 MCFINTC_IMRL);
1393 *imrp &= ~0xff800001;
1396 #if defined(CONFIG_M528x)
1397 /* Set up gpio outputs for MII lines */
1399 volatile u16 *gpio_paspar;
1400 volatile u8 *gpio_pehlpar;
1402 gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
1403 gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
1404 *gpio_paspar |= 0x0f00;
1405 *gpio_pehlpar = 0xc0;
1407 #endif
1409 #if defined(CONFIG_M527x)
1410 /* Set up gpio outputs for MII lines */
1412 volatile u8 *gpio_par_fec;
1413 volatile u16 *gpio_par_feci2c;
1415 gpio_par_feci2c = (volatile u16 *)(MCF_IPSBAR + 0x100082);
1416 /* Set up gpio outputs for FEC0 MII lines */
1417 gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100078);
1419 *gpio_par_feci2c |= 0x0f00;
1420 *gpio_par_fec |= 0xc0;
1422 #if defined(CONFIG_FEC2)
1423 /* Set up gpio outputs for FEC1 MII lines */
1424 gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100079);
1426 *gpio_par_feci2c |= 0x00a0;
1427 *gpio_par_fec |= 0xc0;
1428 #endif /* CONFIG_FEC2 */
1430 #endif /* CONFIG_M527x */
1433 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1435 volatile fec_t *fecp;
1437 fecp = fep->hwp;
1438 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1439 fecp->fec_x_cntrl = 0x00;
1442 * Set MII speed to 2.5 MHz
1443 * See 5282 manual section 17.5.4.7: MSCR
1445 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1446 fecp->fec_mii_speed = fep->phy_speed;
1448 fec_restart(dev, 0);
1451 static void __inline__ fec_get_mac(struct net_device *dev)
1453 struct fec_enet_private *fep = netdev_priv(dev);
1454 volatile fec_t *fecp;
1455 unsigned char *iap, tmpaddr[ETH_ALEN];
1457 fecp = fep->hwp;
1459 if (FEC_FLASHMAC) {
1461 * Get MAC address from FLASH.
1462 * If it is all 1's or 0's, use the default.
1464 iap = FEC_FLASHMAC;
1465 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1466 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1467 iap = fec_mac_default;
1468 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1469 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1470 iap = fec_mac_default;
1471 } else {
1472 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1473 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1474 iap = &tmpaddr[0];
1477 memcpy(dev->dev_addr, iap, ETH_ALEN);
1479 /* Adjust MAC if using default MAC address */
1480 if (iap == fec_mac_default)
1481 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1484 static void __inline__ fec_disable_phy_intr(void)
1488 static void __inline__ fec_phy_ack_intr(void)
1492 /* ------------------------------------------------------------------------- */
1494 #elif defined(CONFIG_M520x)
1497 * Code specific to Coldfire 520x
1499 static void __inline__ fec_request_intrs(struct net_device *dev)
1501 struct fec_enet_private *fep;
1502 int b;
1503 static const struct idesc {
1504 char *name;
1505 unsigned short irq;
1506 } *idp, id[] = {
1507 { "fec(TXF)", 23 },
1508 { "fec(RXF)", 27 },
1509 { "fec(MII)", 29 },
1510 { NULL },
1513 fep = netdev_priv(dev);
1514 b = 64 + 13;
1516 /* Setup interrupt handlers. */
1517 for (idp = id; idp->name; idp++) {
1518 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1519 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1522 /* Unmask interrupts at ColdFire interrupt controller */
1524 volatile unsigned char *icrp;
1525 volatile unsigned long *imrp;
1527 icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
1528 MCFINTC_ICR0);
1529 for (b = 36; (b < 49); b++)
1530 icrp[b] = 0x04;
1531 imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
1532 MCFINTC_IMRH);
1533 *imrp &= ~0x0001FFF0;
1535 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
1536 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
1539 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1541 volatile fec_t *fecp;
1543 fecp = fep->hwp;
1544 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1545 fecp->fec_x_cntrl = 0x00;
1548 * Set MII speed to 2.5 MHz
1549 * See 5282 manual section 17.5.4.7: MSCR
1551 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1552 fecp->fec_mii_speed = fep->phy_speed;
1554 fec_restart(dev, 0);
1557 static void __inline__ fec_get_mac(struct net_device *dev)
1559 struct fec_enet_private *fep = netdev_priv(dev);
1560 volatile fec_t *fecp;
1561 unsigned char *iap, tmpaddr[ETH_ALEN];
1563 fecp = fep->hwp;
1565 if (FEC_FLASHMAC) {
1567 * Get MAC address from FLASH.
1568 * If it is all 1's or 0's, use the default.
1570 iap = FEC_FLASHMAC;
1571 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1572 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1573 iap = fec_mac_default;
1574 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1575 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1576 iap = fec_mac_default;
1577 } else {
1578 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1579 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1580 iap = &tmpaddr[0];
1583 memcpy(dev->dev_addr, iap, ETH_ALEN);
1585 /* Adjust MAC if using default MAC address */
1586 if (iap == fec_mac_default)
1587 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1590 static void __inline__ fec_disable_phy_intr(void)
1594 static void __inline__ fec_phy_ack_intr(void)
1598 /* ------------------------------------------------------------------------- */
1600 #elif defined(CONFIG_M532x)
1602 * Code specific for M532x
1604 static void __inline__ fec_request_intrs(struct net_device *dev)
1606 struct fec_enet_private *fep;
1607 int b;
1608 static const struct idesc {
1609 char *name;
1610 unsigned short irq;
1611 } *idp, id[] = {
1612 { "fec(TXF)", 36 },
1613 { "fec(RXF)", 40 },
1614 { "fec(MII)", 42 },
1615 { NULL },
1618 fep = netdev_priv(dev);
1619 b = (fep->index) ? 128 : 64;
1621 /* Setup interrupt handlers. */
1622 for (idp = id; idp->name; idp++) {
1623 if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1624 printk("FEC: Could not allocate %s IRQ(%d)!\n",
1625 idp->name, b+idp->irq);
1628 /* Unmask interrupts */
1629 MCF_INTC0_ICR36 = 0x2;
1630 MCF_INTC0_ICR37 = 0x2;
1631 MCF_INTC0_ICR38 = 0x2;
1632 MCF_INTC0_ICR39 = 0x2;
1633 MCF_INTC0_ICR40 = 0x2;
1634 MCF_INTC0_ICR41 = 0x2;
1635 MCF_INTC0_ICR42 = 0x2;
1636 MCF_INTC0_ICR43 = 0x2;
1637 MCF_INTC0_ICR44 = 0x2;
1638 MCF_INTC0_ICR45 = 0x2;
1639 MCF_INTC0_ICR46 = 0x2;
1640 MCF_INTC0_ICR47 = 0x2;
1641 MCF_INTC0_ICR48 = 0x2;
1643 MCF_INTC0_IMRH &= ~(
1644 MCF_INTC_IMRH_INT_MASK36 |
1645 MCF_INTC_IMRH_INT_MASK37 |
1646 MCF_INTC_IMRH_INT_MASK38 |
1647 MCF_INTC_IMRH_INT_MASK39 |
1648 MCF_INTC_IMRH_INT_MASK40 |
1649 MCF_INTC_IMRH_INT_MASK41 |
1650 MCF_INTC_IMRH_INT_MASK42 |
1651 MCF_INTC_IMRH_INT_MASK43 |
1652 MCF_INTC_IMRH_INT_MASK44 |
1653 MCF_INTC_IMRH_INT_MASK45 |
1654 MCF_INTC_IMRH_INT_MASK46 |
1655 MCF_INTC_IMRH_INT_MASK47 |
1656 MCF_INTC_IMRH_INT_MASK48 );
1658 /* Set up gpio outputs for MII lines */
1659 MCF_GPIO_PAR_FECI2C |= (0 |
1660 MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
1661 MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
1662 MCF_GPIO_PAR_FEC = (0 |
1663 MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
1664 MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
1667 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1669 volatile fec_t *fecp;
1671 fecp = fep->hwp;
1672 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1673 fecp->fec_x_cntrl = 0x00;
1676 * Set MII speed to 2.5 MHz
1678 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1679 fecp->fec_mii_speed = fep->phy_speed;
1681 fec_restart(dev, 0);
1684 static void __inline__ fec_get_mac(struct net_device *dev)
1686 struct fec_enet_private *fep = netdev_priv(dev);
1687 volatile fec_t *fecp;
1688 unsigned char *iap, tmpaddr[ETH_ALEN];
1690 fecp = fep->hwp;
1692 if (FEC_FLASHMAC) {
1694 * Get MAC address from FLASH.
1695 * If it is all 1's or 0's, use the default.
1697 iap = FEC_FLASHMAC;
1698 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1699 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1700 iap = fec_mac_default;
1701 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1702 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1703 iap = fec_mac_default;
1704 } else {
1705 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1706 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1707 iap = &tmpaddr[0];
1710 memcpy(dev->dev_addr, iap, ETH_ALEN);
1712 /* Adjust MAC if using default MAC address */
1713 if (iap == fec_mac_default)
1714 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1717 static void __inline__ fec_disable_phy_intr(void)
1721 static void __inline__ fec_phy_ack_intr(void)
1725 #endif
1727 /* ------------------------------------------------------------------------- */
1729 static void mii_display_status(struct net_device *dev)
1731 struct fec_enet_private *fep = netdev_priv(dev);
1732 volatile uint *s = &(fep->phy_status);
1734 if (!fep->link && !fep->old_link) {
1735 /* Link is still down - don't print anything */
1736 return;
1739 printk("%s: status: ", dev->name);
1741 if (!fep->link) {
1742 printk("link down");
1743 } else {
1744 printk("link up");
1746 switch(*s & PHY_STAT_SPMASK) {
1747 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1748 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1749 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1750 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1751 default:
1752 printk(", Unknown speed/duplex");
1755 if (*s & PHY_STAT_ANC)
1756 printk(", auto-negotiation complete");
1759 if (*s & PHY_STAT_FAULT)
1760 printk(", remote fault");
1762 printk(".\n");
1765 static void mii_display_config(struct work_struct *work)
1767 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1768 struct net_device *dev = fep->netdev;
1769 uint status = fep->phy_status;
1772 ** When we get here, phy_task is already removed from
1773 ** the workqueue. It is thus safe to allow to reuse it.
1775 fep->mii_phy_task_queued = 0;
1776 printk("%s: config: auto-negotiation ", dev->name);
1778 if (status & PHY_CONF_ANE)
1779 printk("on");
1780 else
1781 printk("off");
1783 if (status & PHY_CONF_100FDX)
1784 printk(", 100FDX");
1785 if (status & PHY_CONF_100HDX)
1786 printk(", 100HDX");
1787 if (status & PHY_CONF_10FDX)
1788 printk(", 10FDX");
1789 if (status & PHY_CONF_10HDX)
1790 printk(", 10HDX");
1791 if (!(status & PHY_CONF_SPMASK))
1792 printk(", No speed/duplex selected?");
1794 if (status & PHY_CONF_LOOP)
1795 printk(", loopback enabled");
1797 printk(".\n");
1799 fep->sequence_done = 1;
1802 static void mii_relink(struct work_struct *work)
1804 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1805 struct net_device *dev = fep->netdev;
1806 int duplex;
1809 ** When we get here, phy_task is already removed from
1810 ** the workqueue. It is thus safe to allow to reuse it.
1812 fep->mii_phy_task_queued = 0;
1813 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1814 mii_display_status(dev);
1815 fep->old_link = fep->link;
1817 if (fep->link) {
1818 duplex = 0;
1819 if (fep->phy_status
1820 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1821 duplex = 1;
1822 fec_restart(dev, duplex);
1823 } else
1824 fec_stop(dev);
1826 #if 0
1827 enable_irq(fep->mii_irq);
1828 #endif
1832 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
1833 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1835 struct fec_enet_private *fep = netdev_priv(dev);
1838 ** We cannot queue phy_task twice in the workqueue. It
1839 ** would cause an endless loop in the workqueue.
1840 ** Fortunately, if the last mii_relink entry has not yet been
1841 ** executed now, it will do the job for the current interrupt,
1842 ** which is just what we want.
1844 if (fep->mii_phy_task_queued)
1845 return;
1847 fep->mii_phy_task_queued = 1;
1848 INIT_WORK(&fep->phy_task, mii_relink);
1849 schedule_work(&fep->phy_task);
1852 /* mii_queue_config is called in interrupt context from fec_enet_mii */
1853 static void mii_queue_config(uint mii_reg, struct net_device *dev)
1855 struct fec_enet_private *fep = netdev_priv(dev);
1857 if (fep->mii_phy_task_queued)
1858 return;
1860 fep->mii_phy_task_queued = 1;
1861 INIT_WORK(&fep->phy_task, mii_display_config);
1862 schedule_work(&fep->phy_task);
1865 phy_cmd_t const phy_cmd_relink[] = {
1866 { mk_mii_read(MII_REG_CR), mii_queue_relink },
1867 { mk_mii_end, }
1869 phy_cmd_t const phy_cmd_config[] = {
1870 { mk_mii_read(MII_REG_CR), mii_queue_config },
1871 { mk_mii_end, }
1874 /* Read remainder of PHY ID.
1876 static void
1877 mii_discover_phy3(uint mii_reg, struct net_device *dev)
1879 struct fec_enet_private *fep;
1880 int i;
1882 fep = netdev_priv(dev);
1883 fep->phy_id |= (mii_reg & 0xffff);
1884 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
1886 for(i = 0; phy_info[i]; i++) {
1887 if(phy_info[i]->id == (fep->phy_id >> 4))
1888 break;
1891 if (phy_info[i])
1892 printk(" -- %s\n", phy_info[i]->name);
1893 else
1894 printk(" -- unknown PHY!\n");
1896 fep->phy = phy_info[i];
1897 fep->phy_id_done = 1;
1900 /* Scan all of the MII PHY addresses looking for someone to respond
1901 * with a valid ID. This usually happens quickly.
1903 static void
1904 mii_discover_phy(uint mii_reg, struct net_device *dev)
1906 struct fec_enet_private *fep;
1907 volatile fec_t *fecp;
1908 uint phytype;
1910 fep = netdev_priv(dev);
1911 fecp = fep->hwp;
1913 if (fep->phy_addr < 32) {
1914 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
1916 /* Got first part of ID, now get remainder.
1918 fep->phy_id = phytype << 16;
1919 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
1920 mii_discover_phy3);
1921 } else {
1922 fep->phy_addr++;
1923 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
1924 mii_discover_phy);
1926 } else {
1927 printk("FEC: No PHY device found.\n");
1928 /* Disable external MII interface */
1929 fecp->fec_mii_speed = fep->phy_speed = 0;
1930 #ifdef FREC_LEGACY
1931 fec_disable_phy_intr();
1932 #endif
1936 /* This interrupt occurs when the PHY detects a link change.
1938 #ifdef HAVE_mii_link_interrupt
1939 static irqreturn_t
1940 mii_link_interrupt(int irq, void * dev_id)
1942 struct net_device *dev = dev_id;
1943 struct fec_enet_private *fep = netdev_priv(dev);
1945 fec_phy_ack_intr();
1947 #if 0
1948 disable_irq(fep->mii_irq); /* disable now, enable later */
1949 #endif
1951 mii_do_cmd(dev, fep->phy->ack_int);
1952 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
1954 return IRQ_HANDLED;
1956 #endif
1958 static int
1959 fec_enet_open(struct net_device *dev)
1961 struct fec_enet_private *fep = netdev_priv(dev);
1963 /* I should reset the ring buffers here, but I don't yet know
1964 * a simple way to do that.
1966 fec_set_mac_address(dev);
1968 fep->sequence_done = 0;
1969 fep->link = 0;
1971 if (fep->phy) {
1972 mii_do_cmd(dev, fep->phy->ack_int);
1973 mii_do_cmd(dev, fep->phy->config);
1974 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
1976 /* Poll until the PHY tells us its configuration
1977 * (not link state).
1978 * Request is initiated by mii_do_cmd above, but answer
1979 * comes by interrupt.
1980 * This should take about 25 usec per register at 2.5 MHz,
1981 * and we read approximately 5 registers.
1983 while(!fep->sequence_done)
1984 schedule();
1986 mii_do_cmd(dev, fep->phy->startup);
1988 /* Set the initial link state to true. A lot of hardware
1989 * based on this device does not implement a PHY interrupt,
1990 * so we are never notified of link change.
1992 fep->link = 1;
1993 } else {
1994 fep->link = 1; /* lets just try it and see */
1995 /* no phy, go full duplex, it's most likely a hub chip */
1996 fec_restart(dev, 1);
1999 netif_start_queue(dev);
2000 fep->opened = 1;
2001 return 0; /* Success */
2004 static int
2005 fec_enet_close(struct net_device *dev)
2007 struct fec_enet_private *fep = netdev_priv(dev);
2009 /* Don't know what to do yet.
2011 fep->opened = 0;
2012 netif_stop_queue(dev);
2013 fec_stop(dev);
2015 return 0;
2018 /* Set or clear the multicast filter for this adaptor.
2019 * Skeleton taken from sunlance driver.
2020 * The CPM Ethernet implementation allows Multicast as well as individual
2021 * MAC address filtering. Some of the drivers check to make sure it is
2022 * a group multicast address, and discard those that are not. I guess I
2023 * will do the same for now, but just remove the test if you want
2024 * individual filtering as well (do the upper net layers want or support
2025 * this kind of feature?).
2028 #define HASH_BITS 6 /* #bits in hash */
2029 #define CRC32_POLY 0xEDB88320
2031 static void set_multicast_list(struct net_device *dev)
2033 struct fec_enet_private *fep;
2034 volatile fec_t *ep;
2035 struct dev_mc_list *dmi;
2036 unsigned int i, j, bit, data, crc;
2037 unsigned char hash;
2039 fep = netdev_priv(dev);
2040 ep = fep->hwp;
2042 if (dev->flags&IFF_PROMISC) {
2043 ep->fec_r_cntrl |= 0x0008;
2044 } else {
2046 ep->fec_r_cntrl &= ~0x0008;
2048 if (dev->flags & IFF_ALLMULTI) {
2049 /* Catch all multicast addresses, so set the
2050 * filter to all 1's.
2052 ep->fec_grp_hash_table_high = 0xffffffff;
2053 ep->fec_grp_hash_table_low = 0xffffffff;
2054 } else {
2055 /* Clear filter and add the addresses in hash register.
2057 ep->fec_grp_hash_table_high = 0;
2058 ep->fec_grp_hash_table_low = 0;
2060 dmi = dev->mc_list;
2062 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
2064 /* Only support group multicast for now.
2066 if (!(dmi->dmi_addr[0] & 1))
2067 continue;
2069 /* calculate crc32 value of mac address
2071 crc = 0xffffffff;
2073 for (i = 0; i < dmi->dmi_addrlen; i++)
2075 data = dmi->dmi_addr[i];
2076 for (bit = 0; bit < 8; bit++, data >>= 1)
2078 crc = (crc >> 1) ^
2079 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2083 /* only upper 6 bits (HASH_BITS) are used
2084 which point to specific bit in he hash registers
2086 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2088 if (hash > 31)
2089 ep->fec_grp_hash_table_high |= 1 << (hash - 32);
2090 else
2091 ep->fec_grp_hash_table_low |= 1 << hash;
2097 /* Set a MAC change in hardware.
2099 static void
2100 fec_set_mac_address(struct net_device *dev)
2102 volatile fec_t *fecp;
2104 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
2106 /* Set station address. */
2107 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
2108 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
2109 fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
2110 (dev->dev_addr[4] << 24);
2115 * XXX: We need to clean up on failure exits here.
2117 * index is only used in legacy code
2119 int __init fec_enet_init(struct net_device *dev, int index)
2121 struct fec_enet_private *fep = netdev_priv(dev);
2122 unsigned long mem_addr;
2123 volatile cbd_t *bdp;
2124 cbd_t *cbd_base;
2125 volatile fec_t *fecp;
2126 int i, j;
2128 /* Allocate memory for buffer descriptors.
2130 mem_addr = (unsigned long)dma_alloc_coherent(NULL, PAGE_SIZE,
2131 &fep->bd_dma, GFP_KERNEL);
2132 if (mem_addr == 0) {
2133 printk("FEC: allocate descriptor memory failed?\n");
2134 return -ENOMEM;
2137 spin_lock_init(&fep->hw_lock);
2138 spin_lock_init(&fep->mii_lock);
2140 /* Create an Ethernet device instance.
2142 fecp = (volatile fec_t *)dev->base_addr;
2144 fep->index = index;
2145 fep->hwp = fecp;
2146 fep->netdev = dev;
2148 /* Whack a reset. We should wait for this.
2150 fecp->fec_ecntrl = 1;
2151 udelay(10);
2153 /* Set the Ethernet address */
2154 #ifdef FEC_LEGACY
2155 fec_get_mac(dev);
2156 #else
2158 unsigned long l;
2159 l = fecp->fec_addr_low;
2160 dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
2161 dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
2162 dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
2163 dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
2164 l = fecp->fec_addr_high;
2165 dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
2166 dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
2168 #endif
2170 cbd_base = (cbd_t *)mem_addr;
2172 /* Set receive and transmit descriptor base.
2174 fep->rx_bd_base = cbd_base;
2175 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2177 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2178 fep->cur_rx = fep->rx_bd_base;
2180 fep->skb_cur = fep->skb_dirty = 0;
2182 /* Initialize the receive buffer descriptors.
2184 bdp = fep->rx_bd_base;
2185 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2187 /* Allocate a page.
2189 mem_addr = __get_free_page(GFP_KERNEL);
2190 /* XXX: missing check for allocation failure */
2192 /* Initialize the BD for every fragment in the page.
2194 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2195 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2196 bdp->cbd_bufaddr = __pa(mem_addr);
2197 mem_addr += FEC_ENET_RX_FRSIZE;
2198 bdp++;
2202 /* Set the last buffer to wrap.
2204 bdp--;
2205 bdp->cbd_sc |= BD_SC_WRAP;
2207 /* ...and the same for transmmit.
2209 bdp = fep->tx_bd_base;
2210 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2211 if (j >= FEC_ENET_TX_FRPPG) {
2212 mem_addr = __get_free_page(GFP_KERNEL);
2213 j = 1;
2214 } else {
2215 mem_addr += FEC_ENET_TX_FRSIZE;
2216 j++;
2218 fep->tx_bounce[i] = (unsigned char *) mem_addr;
2220 /* Initialize the BD for every fragment in the page.
2222 bdp->cbd_sc = 0;
2223 bdp->cbd_bufaddr = 0;
2224 bdp++;
2227 /* Set the last buffer to wrap.
2229 bdp--;
2230 bdp->cbd_sc |= BD_SC_WRAP;
2232 /* Set receive and transmit descriptor base.
2234 fecp->fec_r_des_start = fep->bd_dma;
2235 fecp->fec_x_des_start = (unsigned long)fep->bd_dma + sizeof(cbd_t)
2236 * RX_RING_SIZE;
2238 #ifdef FEC_LEGACY
2239 /* Install our interrupt handlers. This varies depending on
2240 * the architecture.
2242 fec_request_intrs(dev);
2243 #endif
2245 fecp->fec_grp_hash_table_high = 0;
2246 fecp->fec_grp_hash_table_low = 0;
2247 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2248 fecp->fec_ecntrl = 2;
2249 fecp->fec_r_des_active = 0;
2250 #ifndef CONFIG_M5272
2251 fecp->fec_hash_table_high = 0;
2252 fecp->fec_hash_table_low = 0;
2253 #endif
2255 /* The FEC Ethernet specific entries in the device structure. */
2256 dev->open = fec_enet_open;
2257 dev->hard_start_xmit = fec_enet_start_xmit;
2258 dev->tx_timeout = fec_timeout;
2259 dev->watchdog_timeo = TX_TIMEOUT;
2260 dev->stop = fec_enet_close;
2261 dev->set_multicast_list = set_multicast_list;
2263 for (i=0; i<NMII-1; i++)
2264 mii_cmds[i].mii_next = &mii_cmds[i+1];
2265 mii_free = mii_cmds;
2267 /* setup MII interface */
2268 #ifdef FEC_LEGACY
2269 fec_set_mii(dev, fep);
2270 #else
2271 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
2272 fecp->fec_x_cntrl = 0x00;
2275 * Set MII speed to 2.5 MHz
2277 fep->phy_speed = ((((clk_get_rate(fep->clk) / 2 + 4999999)
2278 / 2500000) / 2) & 0x3F) << 1;
2279 fecp->fec_mii_speed = fep->phy_speed;
2280 fec_restart(dev, 0);
2281 #endif
2283 /* Clear and enable interrupts */
2284 fecp->fec_ievent = 0xffc00000;
2285 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
2287 /* Queue up command to detect the PHY and initialize the
2288 * remainder of the interface.
2290 fep->phy_id_done = 0;
2291 fep->phy_addr = 0;
2292 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2294 return 0;
2297 /* This function is called to start or restart the FEC during a link
2298 * change. This only happens when switching between half and full
2299 * duplex.
2301 static void
2302 fec_restart(struct net_device *dev, int duplex)
2304 struct fec_enet_private *fep;
2305 volatile cbd_t *bdp;
2306 volatile fec_t *fecp;
2307 int i;
2309 fep = netdev_priv(dev);
2310 fecp = fep->hwp;
2312 /* Whack a reset. We should wait for this.
2314 fecp->fec_ecntrl = 1;
2315 udelay(10);
2317 /* Clear any outstanding interrupt.
2319 fecp->fec_ievent = 0xffc00000;
2321 /* Set station address.
2323 fec_set_mac_address(dev);
2325 /* Reset all multicast.
2327 fecp->fec_grp_hash_table_high = 0;
2328 fecp->fec_grp_hash_table_low = 0;
2330 /* Set maximum receive buffer size.
2332 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2334 /* Set receive and transmit descriptor base.
2336 fecp->fec_r_des_start = fep->bd_dma;
2337 fecp->fec_x_des_start = (unsigned long)fep->bd_dma + sizeof(cbd_t)
2338 * RX_RING_SIZE;
2340 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2341 fep->cur_rx = fep->rx_bd_base;
2343 /* Reset SKB transmit buffers.
2345 fep->skb_cur = fep->skb_dirty = 0;
2346 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2347 if (fep->tx_skbuff[i] != NULL) {
2348 dev_kfree_skb_any(fep->tx_skbuff[i]);
2349 fep->tx_skbuff[i] = NULL;
2353 /* Initialize the receive buffer descriptors.
2355 bdp = fep->rx_bd_base;
2356 for (i=0; i<RX_RING_SIZE; i++) {
2358 /* Initialize the BD for every fragment in the page.
2360 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2361 bdp++;
2364 /* Set the last buffer to wrap.
2366 bdp--;
2367 bdp->cbd_sc |= BD_SC_WRAP;
2369 /* ...and the same for transmmit.
2371 bdp = fep->tx_bd_base;
2372 for (i=0; i<TX_RING_SIZE; i++) {
2374 /* Initialize the BD for every fragment in the page.
2376 bdp->cbd_sc = 0;
2377 bdp->cbd_bufaddr = 0;
2378 bdp++;
2381 /* Set the last buffer to wrap.
2383 bdp--;
2384 bdp->cbd_sc |= BD_SC_WRAP;
2386 /* Enable MII mode.
2388 if (duplex) {
2389 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2390 fecp->fec_x_cntrl = 0x04; /* FD enable */
2391 } else {
2392 /* MII enable|No Rcv on Xmit */
2393 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2394 fecp->fec_x_cntrl = 0x00;
2396 fep->full_duplex = duplex;
2398 /* Set MII speed.
2400 fecp->fec_mii_speed = fep->phy_speed;
2402 /* And last, enable the transmit and receive processing.
2404 fecp->fec_ecntrl = 2;
2405 fecp->fec_r_des_active = 0;
2407 /* Enable interrupts we wish to service.
2409 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
2412 static void
2413 fec_stop(struct net_device *dev)
2415 volatile fec_t *fecp;
2416 struct fec_enet_private *fep;
2418 fep = netdev_priv(dev);
2419 fecp = fep->hwp;
2422 ** We cannot expect a graceful transmit stop without link !!!
2424 if (fep->link)
2426 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
2427 udelay(10);
2428 if (!(fecp->fec_ievent & FEC_ENET_GRA))
2429 printk("fec_stop : Graceful transmit stop did not complete !\n");
2432 /* Whack a reset. We should wait for this.
2434 fecp->fec_ecntrl = 1;
2435 udelay(10);
2437 /* Clear outstanding MII command interrupts.
2439 fecp->fec_ievent = FEC_ENET_MII;
2441 fecp->fec_imask = FEC_ENET_MII;
2442 fecp->fec_mii_speed = fep->phy_speed;
2445 #ifdef FEC_LEGACY
2446 static int __init fec_enet_module_init(void)
2448 struct net_device *dev;
2449 int i, err;
2451 printk("FEC ENET Version 0.2\n");
2453 for (i = 0; (i < FEC_MAX_PORTS); i++) {
2454 dev = alloc_etherdev(sizeof(struct fec_enet_private));
2455 if (!dev)
2456 return -ENOMEM;
2457 dev->base_addr = (unsigned long)fec_hw[i];
2458 err = fec_enet_init(dev, i);
2459 if (err) {
2460 free_netdev(dev);
2461 continue;
2463 if (register_netdev(dev) != 0) {
2464 /* XXX: missing cleanup here */
2465 free_netdev(dev);
2466 return -EIO;
2469 printk("%s: ethernet %pM\n", dev->name, dev->dev_addr);
2471 return 0;
2473 #else
2475 static int __devinit
2476 fec_probe(struct platform_device *pdev)
2478 struct fec_enet_private *fep;
2479 struct net_device *ndev;
2480 int i, irq, ret = 0;
2481 struct resource *r;
2483 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2484 if (!r)
2485 return -ENXIO;
2487 r = request_mem_region(r->start, resource_size(r), pdev->name);
2488 if (!r)
2489 return -EBUSY;
2491 /* Init network device */
2492 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2493 if (!ndev)
2494 return -ENOMEM;
2496 SET_NETDEV_DEV(ndev, &pdev->dev);
2498 /* setup board info structure */
2499 fep = netdev_priv(ndev);
2500 memset(fep, 0, sizeof(*fep));
2502 ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
2504 if (!ndev->base_addr) {
2505 ret = -ENOMEM;
2506 goto failed_ioremap;
2509 platform_set_drvdata(pdev, ndev);
2511 /* This device has up to three irqs on some platforms */
2512 for (i = 0; i < 3; i++) {
2513 irq = platform_get_irq(pdev, i);
2514 if (i && irq < 0)
2515 break;
2516 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
2517 if (ret) {
2518 while (i >= 0) {
2519 irq = platform_get_irq(pdev, i);
2520 free_irq(irq, ndev);
2521 i--;
2523 goto failed_irq;
2527 fep->clk = clk_get(&pdev->dev, "fec_clk");
2528 if (IS_ERR(fep->clk)) {
2529 ret = PTR_ERR(fep->clk);
2530 goto failed_clk;
2532 clk_enable(fep->clk);
2534 ret = fec_enet_init(ndev, 0);
2535 if (ret)
2536 goto failed_init;
2538 ret = register_netdev(ndev);
2539 if (ret)
2540 goto failed_register;
2542 return 0;
2544 failed_register:
2545 failed_init:
2546 clk_disable(fep->clk);
2547 clk_put(fep->clk);
2548 failed_clk:
2549 for (i = 0; i < 3; i++) {
2550 irq = platform_get_irq(pdev, i);
2551 if (irq > 0)
2552 free_irq(irq, ndev);
2554 failed_irq:
2555 iounmap((void __iomem *)ndev->base_addr);
2556 failed_ioremap:
2557 free_netdev(ndev);
2559 return ret;
2562 static int __devexit
2563 fec_drv_remove(struct platform_device *pdev)
2565 struct net_device *ndev = platform_get_drvdata(pdev);
2566 struct fec_enet_private *fep = netdev_priv(ndev);
2568 platform_set_drvdata(pdev, NULL);
2570 fec_stop(ndev);
2571 clk_disable(fep->clk);
2572 clk_put(fep->clk);
2573 iounmap((void __iomem *)ndev->base_addr);
2574 unregister_netdev(ndev);
2575 free_netdev(ndev);
2576 return 0;
2579 static int
2580 fec_suspend(struct platform_device *dev, pm_message_t state)
2582 struct net_device *ndev = platform_get_drvdata(dev);
2583 struct fec_enet_private *fep;
2585 if (ndev) {
2586 fep = netdev_priv(ndev);
2587 if (netif_running(ndev)) {
2588 netif_device_detach(ndev);
2589 fec_stop(ndev);
2592 return 0;
2595 static int
2596 fec_resume(struct platform_device *dev)
2598 struct net_device *ndev = platform_get_drvdata(dev);
2600 if (ndev) {
2601 if (netif_running(ndev)) {
2602 fec_enet_init(ndev, 0);
2603 netif_device_attach(ndev);
2606 return 0;
2609 static struct platform_driver fec_driver = {
2610 .driver = {
2611 .name = "fec",
2612 .owner = THIS_MODULE,
2614 .probe = fec_probe,
2615 .remove = __devexit_p(fec_drv_remove),
2616 .suspend = fec_suspend,
2617 .resume = fec_resume,
2620 static int __init
2621 fec_enet_module_init(void)
2623 printk(KERN_INFO "FEC Ethernet Driver\n");
2625 return platform_driver_register(&fec_driver);
2628 static void __exit
2629 fec_enet_cleanup(void)
2631 platform_driver_unregister(&fec_driver);
2634 module_exit(fec_enet_cleanup);
2636 #endif /* FEC_LEGACY */
2638 module_init(fec_enet_module_init);
2640 MODULE_LICENSE("GPL");