[SCSI] sg: Only print SCSI data direction warning once for a command
[linux-2.6/mini2440.git] / kernel / timer.c
blobd4527dcef1af8b325115ad37adb1b034a199d7b3
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 #include <asm/div64.h>
44 #include <asm/timex.h>
45 #include <asm/io.h>
47 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
49 EXPORT_SYMBOL(jiffies_64);
52 * per-CPU timer vector definitions:
54 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
55 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
56 #define TVN_SIZE (1 << TVN_BITS)
57 #define TVR_SIZE (1 << TVR_BITS)
58 #define TVN_MASK (TVN_SIZE - 1)
59 #define TVR_MASK (TVR_SIZE - 1)
61 typedef struct tvec_s {
62 struct list_head vec[TVN_SIZE];
63 } tvec_t;
65 typedef struct tvec_root_s {
66 struct list_head vec[TVR_SIZE];
67 } tvec_root_t;
69 struct tvec_t_base_s {
70 spinlock_t lock;
71 struct timer_list *running_timer;
72 unsigned long timer_jiffies;
73 tvec_root_t tv1;
74 tvec_t tv2;
75 tvec_t tv3;
76 tvec_t tv4;
77 tvec_t tv5;
78 } ____cacheline_aligned;
80 typedef struct tvec_t_base_s tvec_base_t;
82 tvec_base_t boot_tvec_bases;
83 EXPORT_SYMBOL(boot_tvec_bases);
84 static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
87 * Note that all tvec_bases is 2 byte aligned and lower bit of
88 * base in timer_list is guaranteed to be zero. Use the LSB for
89 * the new flag to indicate whether the timer is deferrable
91 #define TBASE_DEFERRABLE_FLAG (0x1)
93 /* Functions below help us manage 'deferrable' flag */
94 static inline unsigned int tbase_get_deferrable(tvec_base_t *base)
96 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
99 static inline tvec_base_t *tbase_get_base(tvec_base_t *base)
101 return ((tvec_base_t *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
104 static inline void timer_set_deferrable(struct timer_list *timer)
106 timer->base = ((tvec_base_t *)((unsigned long)(timer->base) |
107 TBASE_DEFERRABLE_FLAG));
110 static inline void
111 timer_set_base(struct timer_list *timer, tvec_base_t *new_base)
113 timer->base = (tvec_base_t *)((unsigned long)(new_base) |
114 tbase_get_deferrable(timer->base));
118 * __round_jiffies - function to round jiffies to a full second
119 * @j: the time in (absolute) jiffies that should be rounded
120 * @cpu: the processor number on which the timeout will happen
122 * __round_jiffies() rounds an absolute time in the future (in jiffies)
123 * up or down to (approximately) full seconds. This is useful for timers
124 * for which the exact time they fire does not matter too much, as long as
125 * they fire approximately every X seconds.
127 * By rounding these timers to whole seconds, all such timers will fire
128 * at the same time, rather than at various times spread out. The goal
129 * of this is to have the CPU wake up less, which saves power.
131 * The exact rounding is skewed for each processor to avoid all
132 * processors firing at the exact same time, which could lead
133 * to lock contention or spurious cache line bouncing.
135 * The return value is the rounded version of the @j parameter.
137 unsigned long __round_jiffies(unsigned long j, int cpu)
139 int rem;
140 unsigned long original = j;
143 * We don't want all cpus firing their timers at once hitting the
144 * same lock or cachelines, so we skew each extra cpu with an extra
145 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
146 * already did this.
147 * The skew is done by adding 3*cpunr, then round, then subtract this
148 * extra offset again.
150 j += cpu * 3;
152 rem = j % HZ;
155 * If the target jiffie is just after a whole second (which can happen
156 * due to delays of the timer irq, long irq off times etc etc) then
157 * we should round down to the whole second, not up. Use 1/4th second
158 * as cutoff for this rounding as an extreme upper bound for this.
160 if (rem < HZ/4) /* round down */
161 j = j - rem;
162 else /* round up */
163 j = j - rem + HZ;
165 /* now that we have rounded, subtract the extra skew again */
166 j -= cpu * 3;
168 if (j <= jiffies) /* rounding ate our timeout entirely; */
169 return original;
170 return j;
172 EXPORT_SYMBOL_GPL(__round_jiffies);
175 * __round_jiffies_relative - function to round jiffies to a full second
176 * @j: the time in (relative) jiffies that should be rounded
177 * @cpu: the processor number on which the timeout will happen
179 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
180 * up or down to (approximately) full seconds. This is useful for timers
181 * for which the exact time they fire does not matter too much, as long as
182 * they fire approximately every X seconds.
184 * By rounding these timers to whole seconds, all such timers will fire
185 * at the same time, rather than at various times spread out. The goal
186 * of this is to have the CPU wake up less, which saves power.
188 * The exact rounding is skewed for each processor to avoid all
189 * processors firing at the exact same time, which could lead
190 * to lock contention or spurious cache line bouncing.
192 * The return value is the rounded version of the @j parameter.
194 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
197 * In theory the following code can skip a jiffy in case jiffies
198 * increments right between the addition and the later subtraction.
199 * However since the entire point of this function is to use approximate
200 * timeouts, it's entirely ok to not handle that.
202 return __round_jiffies(j + jiffies, cpu) - jiffies;
204 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
207 * round_jiffies - function to round jiffies to a full second
208 * @j: the time in (absolute) jiffies that should be rounded
210 * round_jiffies() rounds an absolute time in the future (in jiffies)
211 * up or down to (approximately) full seconds. This is useful for timers
212 * for which the exact time they fire does not matter too much, as long as
213 * they fire approximately every X seconds.
215 * By rounding these timers to whole seconds, all such timers will fire
216 * at the same time, rather than at various times spread out. The goal
217 * of this is to have the CPU wake up less, which saves power.
219 * The return value is the rounded version of the @j parameter.
221 unsigned long round_jiffies(unsigned long j)
223 return __round_jiffies(j, raw_smp_processor_id());
225 EXPORT_SYMBOL_GPL(round_jiffies);
228 * round_jiffies_relative - function to round jiffies to a full second
229 * @j: the time in (relative) jiffies that should be rounded
231 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
232 * up or down to (approximately) full seconds. This is useful for timers
233 * for which the exact time they fire does not matter too much, as long as
234 * they fire approximately every X seconds.
236 * By rounding these timers to whole seconds, all such timers will fire
237 * at the same time, rather than at various times spread out. The goal
238 * of this is to have the CPU wake up less, which saves power.
240 * The return value is the rounded version of the @j parameter.
242 unsigned long round_jiffies_relative(unsigned long j)
244 return __round_jiffies_relative(j, raw_smp_processor_id());
246 EXPORT_SYMBOL_GPL(round_jiffies_relative);
249 static inline void set_running_timer(tvec_base_t *base,
250 struct timer_list *timer)
252 #ifdef CONFIG_SMP
253 base->running_timer = timer;
254 #endif
257 static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
259 unsigned long expires = timer->expires;
260 unsigned long idx = expires - base->timer_jiffies;
261 struct list_head *vec;
263 if (idx < TVR_SIZE) {
264 int i = expires & TVR_MASK;
265 vec = base->tv1.vec + i;
266 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
267 int i = (expires >> TVR_BITS) & TVN_MASK;
268 vec = base->tv2.vec + i;
269 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
270 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
271 vec = base->tv3.vec + i;
272 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
273 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
274 vec = base->tv4.vec + i;
275 } else if ((signed long) idx < 0) {
277 * Can happen if you add a timer with expires == jiffies,
278 * or you set a timer to go off in the past
280 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
281 } else {
282 int i;
283 /* If the timeout is larger than 0xffffffff on 64-bit
284 * architectures then we use the maximum timeout:
286 if (idx > 0xffffffffUL) {
287 idx = 0xffffffffUL;
288 expires = idx + base->timer_jiffies;
290 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
291 vec = base->tv5.vec + i;
294 * Timers are FIFO:
296 list_add_tail(&timer->entry, vec);
299 #ifdef CONFIG_TIMER_STATS
300 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
302 if (timer->start_site)
303 return;
305 timer->start_site = addr;
306 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
307 timer->start_pid = current->pid;
310 static void timer_stats_account_timer(struct timer_list *timer)
312 unsigned int flag = 0;
314 if (unlikely(tbase_get_deferrable(timer->base)))
315 flag |= TIMER_STATS_FLAG_DEFERRABLE;
317 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
318 timer->function, timer->start_comm, flag);
321 #else
322 static void timer_stats_account_timer(struct timer_list *timer) {}
323 #endif
326 * init_timer - initialize a timer.
327 * @timer: the timer to be initialized
329 * init_timer() must be done to a timer prior calling *any* of the
330 * other timer functions.
332 void fastcall init_timer(struct timer_list *timer)
334 timer->entry.next = NULL;
335 timer->base = __raw_get_cpu_var(tvec_bases);
336 #ifdef CONFIG_TIMER_STATS
337 timer->start_site = NULL;
338 timer->start_pid = -1;
339 memset(timer->start_comm, 0, TASK_COMM_LEN);
340 #endif
342 EXPORT_SYMBOL(init_timer);
344 void fastcall init_timer_deferrable(struct timer_list *timer)
346 init_timer(timer);
347 timer_set_deferrable(timer);
349 EXPORT_SYMBOL(init_timer_deferrable);
351 static inline void detach_timer(struct timer_list *timer,
352 int clear_pending)
354 struct list_head *entry = &timer->entry;
356 __list_del(entry->prev, entry->next);
357 if (clear_pending)
358 entry->next = NULL;
359 entry->prev = LIST_POISON2;
363 * We are using hashed locking: holding per_cpu(tvec_bases).lock
364 * means that all timers which are tied to this base via timer->base are
365 * locked, and the base itself is locked too.
367 * So __run_timers/migrate_timers can safely modify all timers which could
368 * be found on ->tvX lists.
370 * When the timer's base is locked, and the timer removed from list, it is
371 * possible to set timer->base = NULL and drop the lock: the timer remains
372 * locked.
374 static tvec_base_t *lock_timer_base(struct timer_list *timer,
375 unsigned long *flags)
376 __acquires(timer->base->lock)
378 tvec_base_t *base;
380 for (;;) {
381 tvec_base_t *prelock_base = timer->base;
382 base = tbase_get_base(prelock_base);
383 if (likely(base != NULL)) {
384 spin_lock_irqsave(&base->lock, *flags);
385 if (likely(prelock_base == timer->base))
386 return base;
387 /* The timer has migrated to another CPU */
388 spin_unlock_irqrestore(&base->lock, *flags);
390 cpu_relax();
394 int __mod_timer(struct timer_list *timer, unsigned long expires)
396 tvec_base_t *base, *new_base;
397 unsigned long flags;
398 int ret = 0;
400 timer_stats_timer_set_start_info(timer);
401 BUG_ON(!timer->function);
403 base = lock_timer_base(timer, &flags);
405 if (timer_pending(timer)) {
406 detach_timer(timer, 0);
407 ret = 1;
410 new_base = __get_cpu_var(tvec_bases);
412 if (base != new_base) {
414 * We are trying to schedule the timer on the local CPU.
415 * However we can't change timer's base while it is running,
416 * otherwise del_timer_sync() can't detect that the timer's
417 * handler yet has not finished. This also guarantees that
418 * the timer is serialized wrt itself.
420 if (likely(base->running_timer != timer)) {
421 /* See the comment in lock_timer_base() */
422 timer_set_base(timer, NULL);
423 spin_unlock(&base->lock);
424 base = new_base;
425 spin_lock(&base->lock);
426 timer_set_base(timer, base);
430 timer->expires = expires;
431 internal_add_timer(base, timer);
432 spin_unlock_irqrestore(&base->lock, flags);
434 return ret;
437 EXPORT_SYMBOL(__mod_timer);
440 * add_timer_on - start a timer on a particular CPU
441 * @timer: the timer to be added
442 * @cpu: the CPU to start it on
444 * This is not very scalable on SMP. Double adds are not possible.
446 void add_timer_on(struct timer_list *timer, int cpu)
448 tvec_base_t *base = per_cpu(tvec_bases, cpu);
449 unsigned long flags;
451 timer_stats_timer_set_start_info(timer);
452 BUG_ON(timer_pending(timer) || !timer->function);
453 spin_lock_irqsave(&base->lock, flags);
454 timer_set_base(timer, base);
455 internal_add_timer(base, timer);
456 spin_unlock_irqrestore(&base->lock, flags);
461 * mod_timer - modify a timer's timeout
462 * @timer: the timer to be modified
463 * @expires: new timeout in jiffies
465 * mod_timer() is a more efficient way to update the expire field of an
466 * active timer (if the timer is inactive it will be activated)
468 * mod_timer(timer, expires) is equivalent to:
470 * del_timer(timer); timer->expires = expires; add_timer(timer);
472 * Note that if there are multiple unserialized concurrent users of the
473 * same timer, then mod_timer() is the only safe way to modify the timeout,
474 * since add_timer() cannot modify an already running timer.
476 * The function returns whether it has modified a pending timer or not.
477 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
478 * active timer returns 1.)
480 int mod_timer(struct timer_list *timer, unsigned long expires)
482 BUG_ON(!timer->function);
484 timer_stats_timer_set_start_info(timer);
486 * This is a common optimization triggered by the
487 * networking code - if the timer is re-modified
488 * to be the same thing then just return:
490 if (timer->expires == expires && timer_pending(timer))
491 return 1;
493 return __mod_timer(timer, expires);
496 EXPORT_SYMBOL(mod_timer);
499 * del_timer - deactive a timer.
500 * @timer: the timer to be deactivated
502 * del_timer() deactivates a timer - this works on both active and inactive
503 * timers.
505 * The function returns whether it has deactivated a pending timer or not.
506 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
507 * active timer returns 1.)
509 int del_timer(struct timer_list *timer)
511 tvec_base_t *base;
512 unsigned long flags;
513 int ret = 0;
515 timer_stats_timer_clear_start_info(timer);
516 if (timer_pending(timer)) {
517 base = lock_timer_base(timer, &flags);
518 if (timer_pending(timer)) {
519 detach_timer(timer, 1);
520 ret = 1;
522 spin_unlock_irqrestore(&base->lock, flags);
525 return ret;
528 EXPORT_SYMBOL(del_timer);
530 #ifdef CONFIG_SMP
532 * try_to_del_timer_sync - Try to deactivate a timer
533 * @timer: timer do del
535 * This function tries to deactivate a timer. Upon successful (ret >= 0)
536 * exit the timer is not queued and the handler is not running on any CPU.
538 * It must not be called from interrupt contexts.
540 int try_to_del_timer_sync(struct timer_list *timer)
542 tvec_base_t *base;
543 unsigned long flags;
544 int ret = -1;
546 base = lock_timer_base(timer, &flags);
548 if (base->running_timer == timer)
549 goto out;
551 ret = 0;
552 if (timer_pending(timer)) {
553 detach_timer(timer, 1);
554 ret = 1;
556 out:
557 spin_unlock_irqrestore(&base->lock, flags);
559 return ret;
562 EXPORT_SYMBOL(try_to_del_timer_sync);
565 * del_timer_sync - deactivate a timer and wait for the handler to finish.
566 * @timer: the timer to be deactivated
568 * This function only differs from del_timer() on SMP: besides deactivating
569 * the timer it also makes sure the handler has finished executing on other
570 * CPUs.
572 * Synchronization rules: Callers must prevent restarting of the timer,
573 * otherwise this function is meaningless. It must not be called from
574 * interrupt contexts. The caller must not hold locks which would prevent
575 * completion of the timer's handler. The timer's handler must not call
576 * add_timer_on(). Upon exit the timer is not queued and the handler is
577 * not running on any CPU.
579 * The function returns whether it has deactivated a pending timer or not.
581 int del_timer_sync(struct timer_list *timer)
583 for (;;) {
584 int ret = try_to_del_timer_sync(timer);
585 if (ret >= 0)
586 return ret;
587 cpu_relax();
591 EXPORT_SYMBOL(del_timer_sync);
592 #endif
594 static int cascade(tvec_base_t *base, tvec_t *tv, int index)
596 /* cascade all the timers from tv up one level */
597 struct timer_list *timer, *tmp;
598 struct list_head tv_list;
600 list_replace_init(tv->vec + index, &tv_list);
603 * We are removing _all_ timers from the list, so we
604 * don't have to detach them individually.
606 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
607 BUG_ON(tbase_get_base(timer->base) != base);
608 internal_add_timer(base, timer);
611 return index;
614 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
617 * __run_timers - run all expired timers (if any) on this CPU.
618 * @base: the timer vector to be processed.
620 * This function cascades all vectors and executes all expired timer
621 * vectors.
623 static inline void __run_timers(tvec_base_t *base)
625 struct timer_list *timer;
627 spin_lock_irq(&base->lock);
628 while (time_after_eq(jiffies, base->timer_jiffies)) {
629 struct list_head work_list;
630 struct list_head *head = &work_list;
631 int index = base->timer_jiffies & TVR_MASK;
634 * Cascade timers:
636 if (!index &&
637 (!cascade(base, &base->tv2, INDEX(0))) &&
638 (!cascade(base, &base->tv3, INDEX(1))) &&
639 !cascade(base, &base->tv4, INDEX(2)))
640 cascade(base, &base->tv5, INDEX(3));
641 ++base->timer_jiffies;
642 list_replace_init(base->tv1.vec + index, &work_list);
643 while (!list_empty(head)) {
644 void (*fn)(unsigned long);
645 unsigned long data;
647 timer = list_first_entry(head, struct timer_list,entry);
648 fn = timer->function;
649 data = timer->data;
651 timer_stats_account_timer(timer);
653 set_running_timer(base, timer);
654 detach_timer(timer, 1);
655 spin_unlock_irq(&base->lock);
657 int preempt_count = preempt_count();
658 fn(data);
659 if (preempt_count != preempt_count()) {
660 printk(KERN_WARNING "huh, entered %p "
661 "with preempt_count %08x, exited"
662 " with %08x?\n",
663 fn, preempt_count,
664 preempt_count());
665 BUG();
668 spin_lock_irq(&base->lock);
671 set_running_timer(base, NULL);
672 spin_unlock_irq(&base->lock);
675 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
677 * Find out when the next timer event is due to happen. This
678 * is used on S/390 to stop all activity when a cpus is idle.
679 * This functions needs to be called disabled.
681 static unsigned long __next_timer_interrupt(tvec_base_t *base)
683 unsigned long timer_jiffies = base->timer_jiffies;
684 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
685 int index, slot, array, found = 0;
686 struct timer_list *nte;
687 tvec_t *varray[4];
689 /* Look for timer events in tv1. */
690 index = slot = timer_jiffies & TVR_MASK;
691 do {
692 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
693 if (tbase_get_deferrable(nte->base))
694 continue;
696 found = 1;
697 expires = nte->expires;
698 /* Look at the cascade bucket(s)? */
699 if (!index || slot < index)
700 goto cascade;
701 return expires;
703 slot = (slot + 1) & TVR_MASK;
704 } while (slot != index);
706 cascade:
707 /* Calculate the next cascade event */
708 if (index)
709 timer_jiffies += TVR_SIZE - index;
710 timer_jiffies >>= TVR_BITS;
712 /* Check tv2-tv5. */
713 varray[0] = &base->tv2;
714 varray[1] = &base->tv3;
715 varray[2] = &base->tv4;
716 varray[3] = &base->tv5;
718 for (array = 0; array < 4; array++) {
719 tvec_t *varp = varray[array];
721 index = slot = timer_jiffies & TVN_MASK;
722 do {
723 list_for_each_entry(nte, varp->vec + slot, entry) {
724 found = 1;
725 if (time_before(nte->expires, expires))
726 expires = nte->expires;
729 * Do we still search for the first timer or are
730 * we looking up the cascade buckets ?
732 if (found) {
733 /* Look at the cascade bucket(s)? */
734 if (!index || slot < index)
735 break;
736 return expires;
738 slot = (slot + 1) & TVN_MASK;
739 } while (slot != index);
741 if (index)
742 timer_jiffies += TVN_SIZE - index;
743 timer_jiffies >>= TVN_BITS;
745 return expires;
749 * Check, if the next hrtimer event is before the next timer wheel
750 * event:
752 static unsigned long cmp_next_hrtimer_event(unsigned long now,
753 unsigned long expires)
755 ktime_t hr_delta = hrtimer_get_next_event();
756 struct timespec tsdelta;
757 unsigned long delta;
759 if (hr_delta.tv64 == KTIME_MAX)
760 return expires;
763 * Expired timer available, let it expire in the next tick
765 if (hr_delta.tv64 <= 0)
766 return now + 1;
768 tsdelta = ktime_to_timespec(hr_delta);
769 delta = timespec_to_jiffies(&tsdelta);
772 * Limit the delta to the max value, which is checked in
773 * tick_nohz_stop_sched_tick():
775 if (delta > NEXT_TIMER_MAX_DELTA)
776 delta = NEXT_TIMER_MAX_DELTA;
779 * Take rounding errors in to account and make sure, that it
780 * expires in the next tick. Otherwise we go into an endless
781 * ping pong due to tick_nohz_stop_sched_tick() retriggering
782 * the timer softirq
784 if (delta < 1)
785 delta = 1;
786 now += delta;
787 if (time_before(now, expires))
788 return now;
789 return expires;
793 * get_next_timer_interrupt - return the jiffy of the next pending timer
794 * @now: current time (in jiffies)
796 unsigned long get_next_timer_interrupt(unsigned long now)
798 tvec_base_t *base = __get_cpu_var(tvec_bases);
799 unsigned long expires;
801 spin_lock(&base->lock);
802 expires = __next_timer_interrupt(base);
803 spin_unlock(&base->lock);
805 if (time_before_eq(expires, now))
806 return now;
808 return cmp_next_hrtimer_event(now, expires);
811 #ifdef CONFIG_NO_IDLE_HZ
812 unsigned long next_timer_interrupt(void)
814 return get_next_timer_interrupt(jiffies);
816 #endif
818 #endif
820 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
821 void account_process_tick(struct task_struct *p, int user_tick)
823 if (user_tick) {
824 account_user_time(p, jiffies_to_cputime(1));
825 account_user_time_scaled(p, jiffies_to_cputime(1));
826 } else {
827 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
828 account_system_time_scaled(p, jiffies_to_cputime(1));
831 #endif
834 * Called from the timer interrupt handler to charge one tick to the current
835 * process. user_tick is 1 if the tick is user time, 0 for system.
837 void update_process_times(int user_tick)
839 struct task_struct *p = current;
840 int cpu = smp_processor_id();
842 /* Note: this timer irq context must be accounted for as well. */
843 account_process_tick(p, user_tick);
844 run_local_timers();
845 if (rcu_pending(cpu))
846 rcu_check_callbacks(cpu, user_tick);
847 scheduler_tick();
848 run_posix_cpu_timers(p);
852 * Nr of active tasks - counted in fixed-point numbers
854 static unsigned long count_active_tasks(void)
856 return nr_active() * FIXED_1;
860 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
861 * imply that avenrun[] is the standard name for this kind of thing.
862 * Nothing else seems to be standardized: the fractional size etc
863 * all seem to differ on different machines.
865 * Requires xtime_lock to access.
867 unsigned long avenrun[3];
869 EXPORT_SYMBOL(avenrun);
872 * calc_load - given tick count, update the avenrun load estimates.
873 * This is called while holding a write_lock on xtime_lock.
875 static inline void calc_load(unsigned long ticks)
877 unsigned long active_tasks; /* fixed-point */
878 static int count = LOAD_FREQ;
880 count -= ticks;
881 if (unlikely(count < 0)) {
882 active_tasks = count_active_tasks();
883 do {
884 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
885 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
886 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
887 count += LOAD_FREQ;
888 } while (count < 0);
893 * This function runs timers and the timer-tq in bottom half context.
895 static void run_timer_softirq(struct softirq_action *h)
897 tvec_base_t *base = __get_cpu_var(tvec_bases);
899 hrtimer_run_queues();
901 if (time_after_eq(jiffies, base->timer_jiffies))
902 __run_timers(base);
906 * Called by the local, per-CPU timer interrupt on SMP.
908 void run_local_timers(void)
910 raise_softirq(TIMER_SOFTIRQ);
911 softlockup_tick();
915 * Called by the timer interrupt. xtime_lock must already be taken
916 * by the timer IRQ!
918 static inline void update_times(unsigned long ticks)
920 update_wall_time();
921 calc_load(ticks);
925 * The 64-bit jiffies value is not atomic - you MUST NOT read it
926 * without sampling the sequence number in xtime_lock.
927 * jiffies is defined in the linker script...
930 void do_timer(unsigned long ticks)
932 jiffies_64 += ticks;
933 update_times(ticks);
936 #ifdef __ARCH_WANT_SYS_ALARM
939 * For backwards compatibility? This can be done in libc so Alpha
940 * and all newer ports shouldn't need it.
942 asmlinkage unsigned long sys_alarm(unsigned int seconds)
944 return alarm_setitimer(seconds);
947 #endif
949 #ifndef __alpha__
952 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
953 * should be moved into arch/i386 instead?
957 * sys_getpid - return the thread group id of the current process
959 * Note, despite the name, this returns the tgid not the pid. The tgid and
960 * the pid are identical unless CLONE_THREAD was specified on clone() in
961 * which case the tgid is the same in all threads of the same group.
963 * This is SMP safe as current->tgid does not change.
965 asmlinkage long sys_getpid(void)
967 return task_tgid_vnr(current);
971 * Accessing ->real_parent is not SMP-safe, it could
972 * change from under us. However, we can use a stale
973 * value of ->real_parent under rcu_read_lock(), see
974 * release_task()->call_rcu(delayed_put_task_struct).
976 asmlinkage long sys_getppid(void)
978 int pid;
980 rcu_read_lock();
981 pid = task_ppid_nr_ns(current, current->nsproxy->pid_ns);
982 rcu_read_unlock();
984 return pid;
987 asmlinkage long sys_getuid(void)
989 /* Only we change this so SMP safe */
990 return current->uid;
993 asmlinkage long sys_geteuid(void)
995 /* Only we change this so SMP safe */
996 return current->euid;
999 asmlinkage long sys_getgid(void)
1001 /* Only we change this so SMP safe */
1002 return current->gid;
1005 asmlinkage long sys_getegid(void)
1007 /* Only we change this so SMP safe */
1008 return current->egid;
1011 #endif
1013 static void process_timeout(unsigned long __data)
1015 wake_up_process((struct task_struct *)__data);
1019 * schedule_timeout - sleep until timeout
1020 * @timeout: timeout value in jiffies
1022 * Make the current task sleep until @timeout jiffies have
1023 * elapsed. The routine will return immediately unless
1024 * the current task state has been set (see set_current_state()).
1026 * You can set the task state as follows -
1028 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1029 * pass before the routine returns. The routine will return 0
1031 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1032 * delivered to the current task. In this case the remaining time
1033 * in jiffies will be returned, or 0 if the timer expired in time
1035 * The current task state is guaranteed to be TASK_RUNNING when this
1036 * routine returns.
1038 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1039 * the CPU away without a bound on the timeout. In this case the return
1040 * value will be %MAX_SCHEDULE_TIMEOUT.
1042 * In all cases the return value is guaranteed to be non-negative.
1044 fastcall signed long __sched schedule_timeout(signed long timeout)
1046 struct timer_list timer;
1047 unsigned long expire;
1049 switch (timeout)
1051 case MAX_SCHEDULE_TIMEOUT:
1053 * These two special cases are useful to be comfortable
1054 * in the caller. Nothing more. We could take
1055 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1056 * but I' d like to return a valid offset (>=0) to allow
1057 * the caller to do everything it want with the retval.
1059 schedule();
1060 goto out;
1061 default:
1063 * Another bit of PARANOID. Note that the retval will be
1064 * 0 since no piece of kernel is supposed to do a check
1065 * for a negative retval of schedule_timeout() (since it
1066 * should never happens anyway). You just have the printk()
1067 * that will tell you if something is gone wrong and where.
1069 if (timeout < 0) {
1070 printk(KERN_ERR "schedule_timeout: wrong timeout "
1071 "value %lx\n", timeout);
1072 dump_stack();
1073 current->state = TASK_RUNNING;
1074 goto out;
1078 expire = timeout + jiffies;
1080 setup_timer(&timer, process_timeout, (unsigned long)current);
1081 __mod_timer(&timer, expire);
1082 schedule();
1083 del_singleshot_timer_sync(&timer);
1085 timeout = expire - jiffies;
1087 out:
1088 return timeout < 0 ? 0 : timeout;
1090 EXPORT_SYMBOL(schedule_timeout);
1093 * We can use __set_current_state() here because schedule_timeout() calls
1094 * schedule() unconditionally.
1096 signed long __sched schedule_timeout_interruptible(signed long timeout)
1098 __set_current_state(TASK_INTERRUPTIBLE);
1099 return schedule_timeout(timeout);
1101 EXPORT_SYMBOL(schedule_timeout_interruptible);
1103 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1105 __set_current_state(TASK_UNINTERRUPTIBLE);
1106 return schedule_timeout(timeout);
1108 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1110 /* Thread ID - the internal kernel "pid" */
1111 asmlinkage long sys_gettid(void)
1113 return task_pid_vnr(current);
1117 * do_sysinfo - fill in sysinfo struct
1118 * @info: pointer to buffer to fill
1120 int do_sysinfo(struct sysinfo *info)
1122 unsigned long mem_total, sav_total;
1123 unsigned int mem_unit, bitcount;
1124 unsigned long seq;
1126 memset(info, 0, sizeof(struct sysinfo));
1128 do {
1129 struct timespec tp;
1130 seq = read_seqbegin(&xtime_lock);
1133 * This is annoying. The below is the same thing
1134 * posix_get_clock_monotonic() does, but it wants to
1135 * take the lock which we want to cover the loads stuff
1136 * too.
1139 getnstimeofday(&tp);
1140 tp.tv_sec += wall_to_monotonic.tv_sec;
1141 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1142 monotonic_to_bootbased(&tp);
1143 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1144 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1145 tp.tv_sec++;
1147 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1149 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1150 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1151 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1153 info->procs = nr_threads;
1154 } while (read_seqretry(&xtime_lock, seq));
1156 si_meminfo(info);
1157 si_swapinfo(info);
1160 * If the sum of all the available memory (i.e. ram + swap)
1161 * is less than can be stored in a 32 bit unsigned long then
1162 * we can be binary compatible with 2.2.x kernels. If not,
1163 * well, in that case 2.2.x was broken anyways...
1165 * -Erik Andersen <andersee@debian.org>
1168 mem_total = info->totalram + info->totalswap;
1169 if (mem_total < info->totalram || mem_total < info->totalswap)
1170 goto out;
1171 bitcount = 0;
1172 mem_unit = info->mem_unit;
1173 while (mem_unit > 1) {
1174 bitcount++;
1175 mem_unit >>= 1;
1176 sav_total = mem_total;
1177 mem_total <<= 1;
1178 if (mem_total < sav_total)
1179 goto out;
1183 * If mem_total did not overflow, multiply all memory values by
1184 * info->mem_unit and set it to 1. This leaves things compatible
1185 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1186 * kernels...
1189 info->mem_unit = 1;
1190 info->totalram <<= bitcount;
1191 info->freeram <<= bitcount;
1192 info->sharedram <<= bitcount;
1193 info->bufferram <<= bitcount;
1194 info->totalswap <<= bitcount;
1195 info->freeswap <<= bitcount;
1196 info->totalhigh <<= bitcount;
1197 info->freehigh <<= bitcount;
1199 out:
1200 return 0;
1203 asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1205 struct sysinfo val;
1207 do_sysinfo(&val);
1209 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1210 return -EFAULT;
1212 return 0;
1216 * lockdep: we want to track each per-CPU base as a separate lock-class,
1217 * but timer-bases are kmalloc()-ed, so we need to attach separate
1218 * keys to them:
1220 static struct lock_class_key base_lock_keys[NR_CPUS];
1222 static int __cpuinit init_timers_cpu(int cpu)
1224 int j;
1225 tvec_base_t *base;
1226 static char __cpuinitdata tvec_base_done[NR_CPUS];
1228 if (!tvec_base_done[cpu]) {
1229 static char boot_done;
1231 if (boot_done) {
1233 * The APs use this path later in boot
1235 base = kmalloc_node(sizeof(*base),
1236 GFP_KERNEL | __GFP_ZERO,
1237 cpu_to_node(cpu));
1238 if (!base)
1239 return -ENOMEM;
1241 /* Make sure that tvec_base is 2 byte aligned */
1242 if (tbase_get_deferrable(base)) {
1243 WARN_ON(1);
1244 kfree(base);
1245 return -ENOMEM;
1247 per_cpu(tvec_bases, cpu) = base;
1248 } else {
1250 * This is for the boot CPU - we use compile-time
1251 * static initialisation because per-cpu memory isn't
1252 * ready yet and because the memory allocators are not
1253 * initialised either.
1255 boot_done = 1;
1256 base = &boot_tvec_bases;
1258 tvec_base_done[cpu] = 1;
1259 } else {
1260 base = per_cpu(tvec_bases, cpu);
1263 spin_lock_init(&base->lock);
1264 lockdep_set_class(&base->lock, base_lock_keys + cpu);
1266 for (j = 0; j < TVN_SIZE; j++) {
1267 INIT_LIST_HEAD(base->tv5.vec + j);
1268 INIT_LIST_HEAD(base->tv4.vec + j);
1269 INIT_LIST_HEAD(base->tv3.vec + j);
1270 INIT_LIST_HEAD(base->tv2.vec + j);
1272 for (j = 0; j < TVR_SIZE; j++)
1273 INIT_LIST_HEAD(base->tv1.vec + j);
1275 base->timer_jiffies = jiffies;
1276 return 0;
1279 #ifdef CONFIG_HOTPLUG_CPU
1280 static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1282 struct timer_list *timer;
1284 while (!list_empty(head)) {
1285 timer = list_first_entry(head, struct timer_list, entry);
1286 detach_timer(timer, 0);
1287 timer_set_base(timer, new_base);
1288 internal_add_timer(new_base, timer);
1292 static void __devinit migrate_timers(int cpu)
1294 tvec_base_t *old_base;
1295 tvec_base_t *new_base;
1296 int i;
1298 BUG_ON(cpu_online(cpu));
1299 old_base = per_cpu(tvec_bases, cpu);
1300 new_base = get_cpu_var(tvec_bases);
1302 local_irq_disable();
1303 double_spin_lock(&new_base->lock, &old_base->lock,
1304 smp_processor_id() < cpu);
1306 BUG_ON(old_base->running_timer);
1308 for (i = 0; i < TVR_SIZE; i++)
1309 migrate_timer_list(new_base, old_base->tv1.vec + i);
1310 for (i = 0; i < TVN_SIZE; i++) {
1311 migrate_timer_list(new_base, old_base->tv2.vec + i);
1312 migrate_timer_list(new_base, old_base->tv3.vec + i);
1313 migrate_timer_list(new_base, old_base->tv4.vec + i);
1314 migrate_timer_list(new_base, old_base->tv5.vec + i);
1317 double_spin_unlock(&new_base->lock, &old_base->lock,
1318 smp_processor_id() < cpu);
1319 local_irq_enable();
1320 put_cpu_var(tvec_bases);
1322 #endif /* CONFIG_HOTPLUG_CPU */
1324 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1325 unsigned long action, void *hcpu)
1327 long cpu = (long)hcpu;
1328 switch(action) {
1329 case CPU_UP_PREPARE:
1330 case CPU_UP_PREPARE_FROZEN:
1331 if (init_timers_cpu(cpu) < 0)
1332 return NOTIFY_BAD;
1333 break;
1334 #ifdef CONFIG_HOTPLUG_CPU
1335 case CPU_DEAD:
1336 case CPU_DEAD_FROZEN:
1337 migrate_timers(cpu);
1338 break;
1339 #endif
1340 default:
1341 break;
1343 return NOTIFY_OK;
1346 static struct notifier_block __cpuinitdata timers_nb = {
1347 .notifier_call = timer_cpu_notify,
1351 void __init init_timers(void)
1353 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1354 (void *)(long)smp_processor_id());
1356 init_timer_stats();
1358 BUG_ON(err == NOTIFY_BAD);
1359 register_cpu_notifier(&timers_nb);
1360 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1364 * msleep - sleep safely even with waitqueue interruptions
1365 * @msecs: Time in milliseconds to sleep for
1367 void msleep(unsigned int msecs)
1369 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1371 while (timeout)
1372 timeout = schedule_timeout_uninterruptible(timeout);
1375 EXPORT_SYMBOL(msleep);
1378 * msleep_interruptible - sleep waiting for signals
1379 * @msecs: Time in milliseconds to sleep for
1381 unsigned long msleep_interruptible(unsigned int msecs)
1383 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1385 while (timeout && !signal_pending(current))
1386 timeout = schedule_timeout_interruptible(timeout);
1387 return jiffies_to_msecs(timeout);
1390 EXPORT_SYMBOL(msleep_interruptible);