1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
47 #include <linux/dca.h>
51 #define DRV_VERSION "1.2.45-k2"
52 char igb_driver_name
[] = "igb";
53 char igb_driver_version
[] = DRV_VERSION
;
54 static const char igb_driver_string
[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright
[] = "Copyright (c) 2008 Intel Corporation.";
58 static const struct e1000_info
*igb_info_tbl
[] = {
59 [board_82575
] = &e1000_82575_info
,
62 static struct pci_device_id igb_pci_tbl
[] = {
63 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576
), board_82575
},
64 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_FIBER
), board_82575
},
65 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_SERDES
), board_82575
},
66 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_COPPER
), board_82575
},
67 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_FIBER_SERDES
), board_82575
},
68 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575GB_QUAD_COPPER
), board_82575
},
69 /* required last entry */
73 MODULE_DEVICE_TABLE(pci
, igb_pci_tbl
);
75 void igb_reset(struct igb_adapter
*);
76 static int igb_setup_all_tx_resources(struct igb_adapter
*);
77 static int igb_setup_all_rx_resources(struct igb_adapter
*);
78 static void igb_free_all_tx_resources(struct igb_adapter
*);
79 static void igb_free_all_rx_resources(struct igb_adapter
*);
80 void igb_update_stats(struct igb_adapter
*);
81 static int igb_probe(struct pci_dev
*, const struct pci_device_id
*);
82 static void __devexit
igb_remove(struct pci_dev
*pdev
);
83 static int igb_sw_init(struct igb_adapter
*);
84 static int igb_open(struct net_device
*);
85 static int igb_close(struct net_device
*);
86 static void igb_configure_tx(struct igb_adapter
*);
87 static void igb_configure_rx(struct igb_adapter
*);
88 static void igb_setup_rctl(struct igb_adapter
*);
89 static void igb_clean_all_tx_rings(struct igb_adapter
*);
90 static void igb_clean_all_rx_rings(struct igb_adapter
*);
91 static void igb_clean_tx_ring(struct igb_ring
*);
92 static void igb_clean_rx_ring(struct igb_ring
*);
93 static void igb_set_multi(struct net_device
*);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct
*);
97 static int igb_xmit_frame_ring_adv(struct sk_buff
*, struct net_device
*,
99 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*);
100 static struct net_device_stats
*igb_get_stats(struct net_device
*);
101 static int igb_change_mtu(struct net_device
*, int);
102 static int igb_set_mac(struct net_device
*, void *);
103 static irqreturn_t
igb_intr(int irq
, void *);
104 static irqreturn_t
igb_intr_msi(int irq
, void *);
105 static irqreturn_t
igb_msix_other(int irq
, void *);
106 static irqreturn_t
igb_msix_rx(int irq
, void *);
107 static irqreturn_t
igb_msix_tx(int irq
, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct
*, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring
*);
111 static void igb_update_tx_dca(struct igb_ring
*);
112 static void igb_setup_dca(struct igb_adapter
*);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring
*);
115 static int igb_poll(struct napi_struct
*, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring
*, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring
*, int);
118 #ifdef CONFIG_IGB_LRO
119 static int igb_get_skb_hdr(struct sk_buff
*skb
, void **, void **, u64
*, void *);
121 static int igb_ioctl(struct net_device
*, struct ifreq
*, int cmd
);
122 static void igb_tx_timeout(struct net_device
*);
123 static void igb_reset_task(struct work_struct
*);
124 static void igb_vlan_rx_register(struct net_device
*, struct vlan_group
*);
125 static void igb_vlan_rx_add_vid(struct net_device
*, u16
);
126 static void igb_vlan_rx_kill_vid(struct net_device
*, u16
);
127 static void igb_restore_vlan(struct igb_adapter
*);
129 static int igb_suspend(struct pci_dev
*, pm_message_t
);
131 static int igb_resume(struct pci_dev
*);
133 static void igb_shutdown(struct pci_dev
*);
134 #ifdef CONFIG_IGB_DCA
135 static int igb_notify_dca(struct notifier_block
*, unsigned long, void *);
136 static struct notifier_block dca_notifier
= {
137 .notifier_call
= igb_notify_dca
,
143 #ifdef CONFIG_NET_POLL_CONTROLLER
144 /* for netdump / net console */
145 static void igb_netpoll(struct net_device
*);
148 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*,
149 pci_channel_state_t
);
150 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*);
151 static void igb_io_resume(struct pci_dev
*);
153 static struct pci_error_handlers igb_err_handler
= {
154 .error_detected
= igb_io_error_detected
,
155 .slot_reset
= igb_io_slot_reset
,
156 .resume
= igb_io_resume
,
160 static struct pci_driver igb_driver
= {
161 .name
= igb_driver_name
,
162 .id_table
= igb_pci_tbl
,
164 .remove
= __devexit_p(igb_remove
),
166 /* Power Managment Hooks */
167 .suspend
= igb_suspend
,
168 .resume
= igb_resume
,
170 .shutdown
= igb_shutdown
,
171 .err_handler
= &igb_err_handler
174 static int global_quad_port_a
; /* global quad port a indication */
176 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
177 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
178 MODULE_LICENSE("GPL");
179 MODULE_VERSION(DRV_VERSION
);
183 * igb_get_hw_dev_name - return device name string
184 * used by hardware layer to print debugging information
186 char *igb_get_hw_dev_name(struct e1000_hw
*hw
)
188 struct igb_adapter
*adapter
= hw
->back
;
189 return adapter
->netdev
->name
;
194 * igb_init_module - Driver Registration Routine
196 * igb_init_module is the first routine called when the driver is
197 * loaded. All it does is register with the PCI subsystem.
199 static int __init
igb_init_module(void)
202 printk(KERN_INFO
"%s - version %s\n",
203 igb_driver_string
, igb_driver_version
);
205 printk(KERN_INFO
"%s\n", igb_copyright
);
207 global_quad_port_a
= 0;
209 ret
= pci_register_driver(&igb_driver
);
210 #ifdef CONFIG_IGB_DCA
211 dca_register_notify(&dca_notifier
);
216 module_init(igb_init_module
);
219 * igb_exit_module - Driver Exit Cleanup Routine
221 * igb_exit_module is called just before the driver is removed
224 static void __exit
igb_exit_module(void)
226 #ifdef CONFIG_IGB_DCA
227 dca_unregister_notify(&dca_notifier
);
229 pci_unregister_driver(&igb_driver
);
232 module_exit(igb_exit_module
);
235 * igb_alloc_queues - Allocate memory for all rings
236 * @adapter: board private structure to initialize
238 * We allocate one ring per queue at run-time since we don't know the
239 * number of queues at compile-time.
241 static int igb_alloc_queues(struct igb_adapter
*adapter
)
245 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
246 sizeof(struct igb_ring
), GFP_KERNEL
);
247 if (!adapter
->tx_ring
)
250 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
251 sizeof(struct igb_ring
), GFP_KERNEL
);
252 if (!adapter
->rx_ring
) {
253 kfree(adapter
->tx_ring
);
257 adapter
->rx_ring
->buddy
= adapter
->tx_ring
;
259 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
260 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
261 ring
->count
= adapter
->tx_ring_count
;
262 ring
->adapter
= adapter
;
263 ring
->queue_index
= i
;
265 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
266 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
267 ring
->count
= adapter
->rx_ring_count
;
268 ring
->adapter
= adapter
;
269 ring
->queue_index
= i
;
270 ring
->itr_register
= E1000_ITR
;
272 /* set a default napi handler for each rx_ring */
273 netif_napi_add(adapter
->netdev
, &ring
->napi
, igb_poll
, 64);
278 static void igb_free_queues(struct igb_adapter
*adapter
)
282 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
283 netif_napi_del(&adapter
->rx_ring
[i
].napi
);
285 kfree(adapter
->tx_ring
);
286 kfree(adapter
->rx_ring
);
289 #define IGB_N0_QUEUE -1
290 static void igb_assign_vector(struct igb_adapter
*adapter
, int rx_queue
,
291 int tx_queue
, int msix_vector
)
294 struct e1000_hw
*hw
= &adapter
->hw
;
297 switch (hw
->mac
.type
) {
299 /* The 82575 assigns vectors using a bitmask, which matches the
300 bitmask for the EICR/EIMS/EIMC registers. To assign one
301 or more queues to a vector, we write the appropriate bits
302 into the MSIXBM register for that vector. */
303 if (rx_queue
> IGB_N0_QUEUE
) {
304 msixbm
= E1000_EICR_RX_QUEUE0
<< rx_queue
;
305 adapter
->rx_ring
[rx_queue
].eims_value
= msixbm
;
307 if (tx_queue
> IGB_N0_QUEUE
) {
308 msixbm
|= E1000_EICR_TX_QUEUE0
<< tx_queue
;
309 adapter
->tx_ring
[tx_queue
].eims_value
=
310 E1000_EICR_TX_QUEUE0
<< tx_queue
;
312 array_wr32(E1000_MSIXBM(0), msix_vector
, msixbm
);
315 /* The 82576 uses a table-based method for assigning vectors.
316 Each queue has a single entry in the table to which we write
317 a vector number along with a "valid" bit. Sadly, the layout
318 of the table is somewhat counterintuitive. */
319 if (rx_queue
> IGB_N0_QUEUE
) {
320 index
= (rx_queue
& 0x7);
321 ivar
= array_rd32(E1000_IVAR0
, index
);
323 /* vector goes into low byte of register */
324 ivar
= ivar
& 0xFFFFFF00;
325 ivar
|= msix_vector
| E1000_IVAR_VALID
;
327 /* vector goes into third byte of register */
328 ivar
= ivar
& 0xFF00FFFF;
329 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
331 adapter
->rx_ring
[rx_queue
].eims_value
= 1 << msix_vector
;
332 array_wr32(E1000_IVAR0
, index
, ivar
);
334 if (tx_queue
> IGB_N0_QUEUE
) {
335 index
= (tx_queue
& 0x7);
336 ivar
= array_rd32(E1000_IVAR0
, index
);
338 /* vector goes into second byte of register */
339 ivar
= ivar
& 0xFFFF00FF;
340 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
342 /* vector goes into high byte of register */
343 ivar
= ivar
& 0x00FFFFFF;
344 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
346 adapter
->tx_ring
[tx_queue
].eims_value
= 1 << msix_vector
;
347 array_wr32(E1000_IVAR0
, index
, ivar
);
357 * igb_configure_msix - Configure MSI-X hardware
359 * igb_configure_msix sets up the hardware to properly
360 * generate MSI-X interrupts.
362 static void igb_configure_msix(struct igb_adapter
*adapter
)
366 struct e1000_hw
*hw
= &adapter
->hw
;
368 adapter
->eims_enable_mask
= 0;
369 if (hw
->mac
.type
== e1000_82576
)
370 /* Turn on MSI-X capability first, or our settings
371 * won't stick. And it will take days to debug. */
372 wr32(E1000_GPIE
, E1000_GPIE_MSIX_MODE
|
373 E1000_GPIE_PBA
| E1000_GPIE_EIAME
|
376 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
377 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[i
];
378 igb_assign_vector(adapter
, IGB_N0_QUEUE
, i
, vector
++);
379 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
380 if (tx_ring
->itr_val
)
381 writel(tx_ring
->itr_val
,
382 hw
->hw_addr
+ tx_ring
->itr_register
);
384 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
387 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
388 struct igb_ring
*rx_ring
= &adapter
->rx_ring
[i
];
389 rx_ring
->buddy
= NULL
;
390 igb_assign_vector(adapter
, i
, IGB_N0_QUEUE
, vector
++);
391 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
392 if (rx_ring
->itr_val
)
393 writel(rx_ring
->itr_val
,
394 hw
->hw_addr
+ rx_ring
->itr_register
);
396 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
400 /* set vector for other causes, i.e. link changes */
401 switch (hw
->mac
.type
) {
403 array_wr32(E1000_MSIXBM(0), vector
++,
406 tmp
= rd32(E1000_CTRL_EXT
);
407 /* enable MSI-X PBA support*/
408 tmp
|= E1000_CTRL_EXT_PBA_CLR
;
410 /* Auto-Mask interrupts upon ICR read. */
411 tmp
|= E1000_CTRL_EXT_EIAME
;
412 tmp
|= E1000_CTRL_EXT_IRCA
;
414 wr32(E1000_CTRL_EXT
, tmp
);
415 adapter
->eims_enable_mask
|= E1000_EIMS_OTHER
;
416 adapter
->eims_other
= E1000_EIMS_OTHER
;
421 tmp
= (vector
++ | E1000_IVAR_VALID
) << 8;
422 wr32(E1000_IVAR_MISC
, tmp
);
424 adapter
->eims_enable_mask
= (1 << (vector
)) - 1;
425 adapter
->eims_other
= 1 << (vector
- 1);
428 /* do nothing, since nothing else supports MSI-X */
430 } /* switch (hw->mac.type) */
435 * igb_request_msix - Initialize MSI-X interrupts
437 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
440 static int igb_request_msix(struct igb_adapter
*adapter
)
442 struct net_device
*netdev
= adapter
->netdev
;
443 int i
, err
= 0, vector
= 0;
447 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
448 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
449 sprintf(ring
->name
, "%s-tx-%d", netdev
->name
, i
);
450 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
451 &igb_msix_tx
, 0, ring
->name
,
452 &(adapter
->tx_ring
[i
]));
455 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
456 ring
->itr_val
= 976; /* ~4000 ints/sec */
459 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
460 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
461 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
462 sprintf(ring
->name
, "%s-rx-%d", netdev
->name
, i
);
464 memcpy(ring
->name
, netdev
->name
, IFNAMSIZ
);
465 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
466 &igb_msix_rx
, 0, ring
->name
,
467 &(adapter
->rx_ring
[i
]));
470 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
471 ring
->itr_val
= adapter
->itr
;
472 /* overwrite the poll routine for MSIX, we've already done
474 ring
->napi
.poll
= &igb_clean_rx_ring_msix
;
478 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
479 &igb_msix_other
, 0, netdev
->name
, netdev
);
483 igb_configure_msix(adapter
);
489 static void igb_reset_interrupt_capability(struct igb_adapter
*adapter
)
491 if (adapter
->msix_entries
) {
492 pci_disable_msix(adapter
->pdev
);
493 kfree(adapter
->msix_entries
);
494 adapter
->msix_entries
= NULL
;
495 } else if (adapter
->flags
& IGB_FLAG_HAS_MSI
)
496 pci_disable_msi(adapter
->pdev
);
502 * igb_set_interrupt_capability - set MSI or MSI-X if supported
504 * Attempt to configure interrupts using the best available
505 * capabilities of the hardware and kernel.
507 static void igb_set_interrupt_capability(struct igb_adapter
*adapter
)
512 numvecs
= adapter
->num_tx_queues
+ adapter
->num_rx_queues
+ 1;
513 adapter
->msix_entries
= kcalloc(numvecs
, sizeof(struct msix_entry
),
515 if (!adapter
->msix_entries
)
518 for (i
= 0; i
< numvecs
; i
++)
519 adapter
->msix_entries
[i
].entry
= i
;
521 err
= pci_enable_msix(adapter
->pdev
,
522 adapter
->msix_entries
,
527 igb_reset_interrupt_capability(adapter
);
529 /* If we can't do MSI-X, try MSI */
531 adapter
->num_rx_queues
= 1;
532 adapter
->num_tx_queues
= 1;
533 if (!pci_enable_msi(adapter
->pdev
))
534 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
536 /* Notify the stack of the (possibly) reduced Tx Queue count. */
537 adapter
->netdev
->real_num_tx_queues
= adapter
->num_tx_queues
;
542 * igb_request_irq - initialize interrupts
544 * Attempts to configure interrupts using the best available
545 * capabilities of the hardware and kernel.
547 static int igb_request_irq(struct igb_adapter
*adapter
)
549 struct net_device
*netdev
= adapter
->netdev
;
550 struct e1000_hw
*hw
= &adapter
->hw
;
553 if (adapter
->msix_entries
) {
554 err
= igb_request_msix(adapter
);
557 /* fall back to MSI */
558 igb_reset_interrupt_capability(adapter
);
559 if (!pci_enable_msi(adapter
->pdev
))
560 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
561 igb_free_all_tx_resources(adapter
);
562 igb_free_all_rx_resources(adapter
);
563 adapter
->num_rx_queues
= 1;
564 igb_alloc_queues(adapter
);
566 switch (hw
->mac
.type
) {
568 wr32(E1000_MSIXBM(0),
569 (E1000_EICR_RX_QUEUE0
| E1000_EIMS_OTHER
));
572 wr32(E1000_IVAR0
, E1000_IVAR_VALID
);
579 if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
580 err
= request_irq(adapter
->pdev
->irq
, &igb_intr_msi
, 0,
581 netdev
->name
, netdev
);
584 /* fall back to legacy interrupts */
585 igb_reset_interrupt_capability(adapter
);
586 adapter
->flags
&= ~IGB_FLAG_HAS_MSI
;
589 err
= request_irq(adapter
->pdev
->irq
, &igb_intr
, IRQF_SHARED
,
590 netdev
->name
, netdev
);
593 dev_err(&adapter
->pdev
->dev
, "Error %d getting interrupt\n",
600 static void igb_free_irq(struct igb_adapter
*adapter
)
602 struct net_device
*netdev
= adapter
->netdev
;
604 if (adapter
->msix_entries
) {
607 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
608 free_irq(adapter
->msix_entries
[vector
++].vector
,
609 &(adapter
->tx_ring
[i
]));
610 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
611 free_irq(adapter
->msix_entries
[vector
++].vector
,
612 &(adapter
->rx_ring
[i
]));
614 free_irq(adapter
->msix_entries
[vector
++].vector
, netdev
);
618 free_irq(adapter
->pdev
->irq
, netdev
);
622 * igb_irq_disable - Mask off interrupt generation on the NIC
623 * @adapter: board private structure
625 static void igb_irq_disable(struct igb_adapter
*adapter
)
627 struct e1000_hw
*hw
= &adapter
->hw
;
629 if (adapter
->msix_entries
) {
631 wr32(E1000_EIMC
, ~0);
638 synchronize_irq(adapter
->pdev
->irq
);
642 * igb_irq_enable - Enable default interrupt generation settings
643 * @adapter: board private structure
645 static void igb_irq_enable(struct igb_adapter
*adapter
)
647 struct e1000_hw
*hw
= &adapter
->hw
;
649 if (adapter
->msix_entries
) {
650 wr32(E1000_EIAC
, adapter
->eims_enable_mask
);
651 wr32(E1000_EIAM
, adapter
->eims_enable_mask
);
652 wr32(E1000_EIMS
, adapter
->eims_enable_mask
);
653 wr32(E1000_IMS
, E1000_IMS_LSC
);
655 wr32(E1000_IMS
, IMS_ENABLE_MASK
);
656 wr32(E1000_IAM
, IMS_ENABLE_MASK
);
660 static void igb_update_mng_vlan(struct igb_adapter
*adapter
)
662 struct net_device
*netdev
= adapter
->netdev
;
663 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
664 u16 old_vid
= adapter
->mng_vlan_id
;
665 if (adapter
->vlgrp
) {
666 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
667 if (adapter
->hw
.mng_cookie
.status
&
668 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
669 igb_vlan_rx_add_vid(netdev
, vid
);
670 adapter
->mng_vlan_id
= vid
;
672 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
674 if ((old_vid
!= (u16
)IGB_MNG_VLAN_NONE
) &&
676 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
677 igb_vlan_rx_kill_vid(netdev
, old_vid
);
679 adapter
->mng_vlan_id
= vid
;
684 * igb_release_hw_control - release control of the h/w to f/w
685 * @adapter: address of board private structure
687 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
688 * For ASF and Pass Through versions of f/w this means that the
689 * driver is no longer loaded.
692 static void igb_release_hw_control(struct igb_adapter
*adapter
)
694 struct e1000_hw
*hw
= &adapter
->hw
;
697 /* Let firmware take over control of h/w */
698 ctrl_ext
= rd32(E1000_CTRL_EXT
);
700 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
705 * igb_get_hw_control - get control of the h/w from f/w
706 * @adapter: address of board private structure
708 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
709 * For ASF and Pass Through versions of f/w this means that
710 * the driver is loaded.
713 static void igb_get_hw_control(struct igb_adapter
*adapter
)
715 struct e1000_hw
*hw
= &adapter
->hw
;
718 /* Let firmware know the driver has taken over */
719 ctrl_ext
= rd32(E1000_CTRL_EXT
);
721 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
725 * igb_configure - configure the hardware for RX and TX
726 * @adapter: private board structure
728 static void igb_configure(struct igb_adapter
*adapter
)
730 struct net_device
*netdev
= adapter
->netdev
;
733 igb_get_hw_control(adapter
);
734 igb_set_multi(netdev
);
736 igb_restore_vlan(adapter
);
738 igb_configure_tx(adapter
);
739 igb_setup_rctl(adapter
);
740 igb_configure_rx(adapter
);
742 igb_rx_fifo_flush_82575(&adapter
->hw
);
744 /* call IGB_DESC_UNUSED which always leaves
745 * at least 1 descriptor unused to make sure
746 * next_to_use != next_to_clean */
747 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
748 struct igb_ring
*ring
= &adapter
->rx_ring
[i
];
749 igb_alloc_rx_buffers_adv(ring
, IGB_DESC_UNUSED(ring
));
753 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
758 * igb_up - Open the interface and prepare it to handle traffic
759 * @adapter: board private structure
762 int igb_up(struct igb_adapter
*adapter
)
764 struct e1000_hw
*hw
= &adapter
->hw
;
767 /* hardware has been reset, we need to reload some things */
768 igb_configure(adapter
);
770 clear_bit(__IGB_DOWN
, &adapter
->state
);
772 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
773 napi_enable(&adapter
->rx_ring
[i
].napi
);
774 if (adapter
->msix_entries
)
775 igb_configure_msix(adapter
);
777 /* Clear any pending interrupts. */
779 igb_irq_enable(adapter
);
781 /* Fire a link change interrupt to start the watchdog. */
782 wr32(E1000_ICS
, E1000_ICS_LSC
);
786 void igb_down(struct igb_adapter
*adapter
)
788 struct e1000_hw
*hw
= &adapter
->hw
;
789 struct net_device
*netdev
= adapter
->netdev
;
793 /* signal that we're down so the interrupt handler does not
794 * reschedule our watchdog timer */
795 set_bit(__IGB_DOWN
, &adapter
->state
);
797 /* disable receives in the hardware */
798 rctl
= rd32(E1000_RCTL
);
799 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
800 /* flush and sleep below */
802 netif_tx_stop_all_queues(netdev
);
804 /* disable transmits in the hardware */
805 tctl
= rd32(E1000_TCTL
);
806 tctl
&= ~E1000_TCTL_EN
;
807 wr32(E1000_TCTL
, tctl
);
808 /* flush both disables and wait for them to finish */
812 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
813 napi_disable(&adapter
->rx_ring
[i
].napi
);
815 igb_irq_disable(adapter
);
817 del_timer_sync(&adapter
->watchdog_timer
);
818 del_timer_sync(&adapter
->phy_info_timer
);
820 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
821 netif_carrier_off(netdev
);
822 adapter
->link_speed
= 0;
823 adapter
->link_duplex
= 0;
825 if (!pci_channel_offline(adapter
->pdev
))
827 igb_clean_all_tx_rings(adapter
);
828 igb_clean_all_rx_rings(adapter
);
831 void igb_reinit_locked(struct igb_adapter
*adapter
)
833 WARN_ON(in_interrupt());
834 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
838 clear_bit(__IGB_RESETTING
, &adapter
->state
);
841 void igb_reset(struct igb_adapter
*adapter
)
843 struct e1000_hw
*hw
= &adapter
->hw
;
844 struct e1000_mac_info
*mac
= &hw
->mac
;
845 struct e1000_fc_info
*fc
= &hw
->fc
;
846 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
849 /* Repartition Pba for greater than 9k mtu
850 * To take effect CTRL.RST is required.
852 if (mac
->type
!= e1000_82576
) {
859 if ((adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
860 (mac
->type
< e1000_82576
)) {
861 /* adjust PBA for jumbo frames */
862 wr32(E1000_PBA
, pba
);
864 /* To maintain wire speed transmits, the Tx FIFO should be
865 * large enough to accommodate two full transmit packets,
866 * rounded up to the next 1KB and expressed in KB. Likewise,
867 * the Rx FIFO should be large enough to accommodate at least
868 * one full receive packet and is similarly rounded up and
869 * expressed in KB. */
870 pba
= rd32(E1000_PBA
);
871 /* upper 16 bits has Tx packet buffer allocation size in KB */
872 tx_space
= pba
>> 16;
873 /* lower 16 bits has Rx packet buffer allocation size in KB */
875 /* the tx fifo also stores 16 bytes of information about the tx
876 * but don't include ethernet FCS because hardware appends it */
877 min_tx_space
= (adapter
->max_frame_size
+
878 sizeof(struct e1000_tx_desc
) -
880 min_tx_space
= ALIGN(min_tx_space
, 1024);
882 /* software strips receive CRC, so leave room for it */
883 min_rx_space
= adapter
->max_frame_size
;
884 min_rx_space
= ALIGN(min_rx_space
, 1024);
887 /* If current Tx allocation is less than the min Tx FIFO size,
888 * and the min Tx FIFO size is less than the current Rx FIFO
889 * allocation, take space away from current Rx allocation */
890 if (tx_space
< min_tx_space
&&
891 ((min_tx_space
- tx_space
) < pba
)) {
892 pba
= pba
- (min_tx_space
- tx_space
);
894 /* if short on rx space, rx wins and must trump tx
896 if (pba
< min_rx_space
)
899 wr32(E1000_PBA
, pba
);
902 /* flow control settings */
903 /* The high water mark must be low enough to fit one full frame
904 * (or the size used for early receive) above it in the Rx FIFO.
905 * Set it to the lower of:
906 * - 90% of the Rx FIFO size, or
907 * - the full Rx FIFO size minus one full frame */
908 hwm
= min(((pba
<< 10) * 9 / 10),
909 ((pba
<< 10) - 2 * adapter
->max_frame_size
));
911 if (mac
->type
< e1000_82576
) {
912 fc
->high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
913 fc
->low_water
= fc
->high_water
- 8;
915 fc
->high_water
= hwm
& 0xFFF0; /* 16-byte granularity */
916 fc
->low_water
= fc
->high_water
- 16;
918 fc
->pause_time
= 0xFFFF;
920 fc
->type
= fc
->original_type
;
922 /* Allow time for pending master requests to run */
923 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
926 if (adapter
->hw
.mac
.ops
.init_hw(&adapter
->hw
))
927 dev_err(&adapter
->pdev
->dev
, "Hardware Error\n");
929 igb_update_mng_vlan(adapter
);
931 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
932 wr32(E1000_VET
, ETHERNET_IEEE_VLAN_TYPE
);
934 igb_reset_adaptive(&adapter
->hw
);
935 igb_get_phy_info(&adapter
->hw
);
939 * igb_is_need_ioport - determine if an adapter needs ioport resources or not
940 * @pdev: PCI device information struct
942 * Returns true if an adapter needs ioport resources
944 static int igb_is_need_ioport(struct pci_dev
*pdev
)
946 switch (pdev
->device
) {
947 /* Currently there are no adapters that need ioport resources */
953 static const struct net_device_ops igb_netdev_ops
= {
954 .ndo_open
= igb_open
,
955 .ndo_stop
= igb_close
,
956 .ndo_start_xmit
= igb_xmit_frame_adv
,
957 .ndo_get_stats
= igb_get_stats
,
958 .ndo_set_multicast_list
= igb_set_multi
,
959 .ndo_set_mac_address
= igb_set_mac
,
960 .ndo_change_mtu
= igb_change_mtu
,
961 .ndo_do_ioctl
= igb_ioctl
,
962 .ndo_tx_timeout
= igb_tx_timeout
,
963 .ndo_validate_addr
= eth_validate_addr
,
964 .ndo_vlan_rx_register
= igb_vlan_rx_register
,
965 .ndo_vlan_rx_add_vid
= igb_vlan_rx_add_vid
,
966 .ndo_vlan_rx_kill_vid
= igb_vlan_rx_kill_vid
,
967 #ifdef CONFIG_NET_POLL_CONTROLLER
968 .ndo_poll_controller
= igb_netpoll
,
973 * igb_probe - Device Initialization Routine
974 * @pdev: PCI device information struct
975 * @ent: entry in igb_pci_tbl
977 * Returns 0 on success, negative on failure
979 * igb_probe initializes an adapter identified by a pci_dev structure.
980 * The OS initialization, configuring of the adapter private structure,
981 * and a hardware reset occur.
983 static int __devinit
igb_probe(struct pci_dev
*pdev
,
984 const struct pci_device_id
*ent
)
986 struct net_device
*netdev
;
987 struct igb_adapter
*adapter
;
989 struct pci_dev
*us_dev
;
990 const struct e1000_info
*ei
= igb_info_tbl
[ent
->driver_data
];
991 unsigned long mmio_start
, mmio_len
;
992 int i
, err
, pci_using_dac
, pos
;
993 u16 eeprom_data
= 0, state
= 0;
994 u16 eeprom_apme_mask
= IGB_EEPROM_APME
;
996 int bars
, need_ioport
;
998 /* do not allocate ioport bars when not needed */
999 need_ioport
= igb_is_need_ioport(pdev
);
1001 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
1002 err
= pci_enable_device(pdev
);
1004 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
1005 err
= pci_enable_device_mem(pdev
);
1011 err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
);
1013 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
1017 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
1019 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
1021 dev_err(&pdev
->dev
, "No usable DMA "
1022 "configuration, aborting\n");
1028 /* 82575 requires that the pci-e link partner disable the L0s state */
1029 switch (pdev
->device
) {
1030 case E1000_DEV_ID_82575EB_COPPER
:
1031 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1032 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1033 us_dev
= pdev
->bus
->self
;
1034 pos
= pci_find_capability(us_dev
, PCI_CAP_ID_EXP
);
1036 pci_read_config_word(us_dev
, pos
+ PCI_EXP_LNKCTL
,
1038 state
&= ~PCIE_LINK_STATE_L0S
;
1039 pci_write_config_word(us_dev
, pos
+ PCI_EXP_LNKCTL
,
1041 dev_info(&pdev
->dev
,
1042 "Disabling ASPM L0s upstream switch port %s\n",
1049 err
= pci_request_selected_regions(pdev
, bars
, igb_driver_name
);
1053 err
= pci_enable_pcie_error_reporting(pdev
);
1055 dev_err(&pdev
->dev
, "pci_enable_pcie_error_reporting failed "
1057 /* non-fatal, continue */
1060 pci_set_master(pdev
);
1061 pci_save_state(pdev
);
1064 netdev
= alloc_etherdev_mq(sizeof(struct igb_adapter
), IGB_MAX_TX_QUEUES
);
1066 goto err_alloc_etherdev
;
1068 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
1070 pci_set_drvdata(pdev
, netdev
);
1071 adapter
= netdev_priv(netdev
);
1072 adapter
->netdev
= netdev
;
1073 adapter
->pdev
= pdev
;
1076 adapter
->msg_enable
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
1077 adapter
->bars
= bars
;
1078 adapter
->need_ioport
= need_ioport
;
1080 mmio_start
= pci_resource_start(pdev
, 0);
1081 mmio_len
= pci_resource_len(pdev
, 0);
1084 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
1085 if (!adapter
->hw
.hw_addr
)
1088 netdev
->netdev_ops
= &igb_netdev_ops
;
1089 igb_set_ethtool_ops(netdev
);
1090 netdev
->watchdog_timeo
= 5 * HZ
;
1092 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1094 netdev
->mem_start
= mmio_start
;
1095 netdev
->mem_end
= mmio_start
+ mmio_len
;
1097 /* PCI config space info */
1098 hw
->vendor_id
= pdev
->vendor
;
1099 hw
->device_id
= pdev
->device
;
1100 hw
->revision_id
= pdev
->revision
;
1101 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1102 hw
->subsystem_device_id
= pdev
->subsystem_device
;
1104 /* setup the private structure */
1106 /* Copy the default MAC, PHY and NVM function pointers */
1107 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
1108 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
1109 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
1110 /* Initialize skew-specific constants */
1111 err
= ei
->get_invariants(hw
);
1115 err
= igb_sw_init(adapter
);
1119 igb_get_bus_info_pcie(hw
);
1122 switch (hw
->mac
.type
) {
1125 adapter
->flags
|= IGB_FLAG_HAS_DCA
;
1126 adapter
->flags
|= IGB_FLAG_NEED_CTX_IDX
;
1132 hw
->phy
.autoneg_wait_to_complete
= false;
1133 hw
->mac
.adaptive_ifs
= true;
1135 /* Copper options */
1136 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1137 hw
->phy
.mdix
= AUTO_ALL_MODES
;
1138 hw
->phy
.disable_polarity_correction
= false;
1139 hw
->phy
.ms_type
= e1000_ms_hw_default
;
1142 if (igb_check_reset_block(hw
))
1143 dev_info(&pdev
->dev
,
1144 "PHY reset is blocked due to SOL/IDER session.\n");
1146 netdev
->features
= NETIF_F_SG
|
1148 NETIF_F_HW_VLAN_TX
|
1149 NETIF_F_HW_VLAN_RX
|
1150 NETIF_F_HW_VLAN_FILTER
;
1152 netdev
->features
|= NETIF_F_TSO
;
1153 netdev
->features
|= NETIF_F_TSO6
;
1155 #ifdef CONFIG_IGB_LRO
1156 netdev
->features
|= NETIF_F_LRO
;
1159 netdev
->vlan_features
|= NETIF_F_TSO
;
1160 netdev
->vlan_features
|= NETIF_F_TSO6
;
1161 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
1162 netdev
->vlan_features
|= NETIF_F_SG
;
1165 netdev
->features
|= NETIF_F_HIGHDMA
;
1167 netdev
->features
|= NETIF_F_LLTX
;
1168 adapter
->en_mng_pt
= igb_enable_mng_pass_thru(&adapter
->hw
);
1170 /* before reading the NVM, reset the controller to put the device in a
1171 * known good starting state */
1172 hw
->mac
.ops
.reset_hw(hw
);
1174 /* make sure the NVM is good */
1175 if (igb_validate_nvm_checksum(hw
) < 0) {
1176 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
1181 /* copy the MAC address out of the NVM */
1182 if (hw
->mac
.ops
.read_mac_addr(hw
))
1183 dev_err(&pdev
->dev
, "NVM Read Error\n");
1185 memcpy(netdev
->dev_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1186 memcpy(netdev
->perm_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1188 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
1189 dev_err(&pdev
->dev
, "Invalid MAC Address\n");
1194 init_timer(&adapter
->watchdog_timer
);
1195 adapter
->watchdog_timer
.function
= &igb_watchdog
;
1196 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1198 init_timer(&adapter
->phy_info_timer
);
1199 adapter
->phy_info_timer
.function
= &igb_update_phy_info
;
1200 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
1202 INIT_WORK(&adapter
->reset_task
, igb_reset_task
);
1203 INIT_WORK(&adapter
->watchdog_task
, igb_watchdog_task
);
1205 /* Initialize link & ring properties that are user-changeable */
1206 adapter
->tx_ring
->count
= 256;
1207 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1208 adapter
->tx_ring
[i
].count
= adapter
->tx_ring
->count
;
1209 adapter
->rx_ring
->count
= 256;
1210 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1211 adapter
->rx_ring
[i
].count
= adapter
->rx_ring
->count
;
1213 adapter
->fc_autoneg
= true;
1214 hw
->mac
.autoneg
= true;
1215 hw
->phy
.autoneg_advertised
= 0x2f;
1217 hw
->fc
.original_type
= e1000_fc_default
;
1218 hw
->fc
.type
= e1000_fc_default
;
1220 adapter
->itr_setting
= 3;
1221 adapter
->itr
= IGB_START_ITR
;
1223 igb_validate_mdi_setting(hw
);
1225 adapter
->rx_csum
= 1;
1227 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1228 * enable the ACPI Magic Packet filter
1231 if (hw
->bus
.func
== 0 ||
1232 hw
->device_id
== E1000_DEV_ID_82575EB_COPPER
)
1233 hw
->nvm
.ops
.read_nvm(hw
, NVM_INIT_CONTROL3_PORT_A
, 1,
1236 if (eeprom_data
& eeprom_apme_mask
)
1237 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1239 /* now that we have the eeprom settings, apply the special cases where
1240 * the eeprom may be wrong or the board simply won't support wake on
1241 * lan on a particular port */
1242 switch (pdev
->device
) {
1243 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1244 adapter
->eeprom_wol
= 0;
1246 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1247 case E1000_DEV_ID_82576_FIBER
:
1248 case E1000_DEV_ID_82576_SERDES
:
1249 /* Wake events only supported on port A for dual fiber
1250 * regardless of eeprom setting */
1251 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
)
1252 adapter
->eeprom_wol
= 0;
1256 /* initialize the wol settings based on the eeprom settings */
1257 adapter
->wol
= adapter
->eeprom_wol
;
1258 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1260 /* reset the hardware with the new settings */
1263 /* let the f/w know that the h/w is now under the control of the
1265 igb_get_hw_control(adapter
);
1267 /* tell the stack to leave us alone until igb_open() is called */
1268 netif_carrier_off(netdev
);
1269 netif_tx_stop_all_queues(netdev
);
1271 strcpy(netdev
->name
, "eth%d");
1272 err
= register_netdev(netdev
);
1276 #ifdef CONFIG_IGB_DCA
1277 if ((adapter
->flags
& IGB_FLAG_HAS_DCA
) &&
1278 (dca_add_requester(&pdev
->dev
) == 0)) {
1279 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
1280 dev_info(&pdev
->dev
, "DCA enabled\n");
1281 /* Always use CB2 mode, difference is masked
1282 * in the CB driver. */
1283 wr32(E1000_DCA_CTRL
, 2);
1284 igb_setup_dca(adapter
);
1288 dev_info(&pdev
->dev
, "Intel(R) Gigabit Ethernet Network Connection\n");
1289 /* print bus type/speed/width info */
1290 dev_info(&pdev
->dev
, "%s: (PCIe:%s:%s) %pM\n",
1292 ((hw
->bus
.speed
== e1000_bus_speed_2500
)
1293 ? "2.5Gb/s" : "unknown"),
1294 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
)
1295 ? "Width x4" : (hw
->bus
.width
== e1000_bus_width_pcie_x1
)
1296 ? "Width x1" : "unknown"),
1299 igb_read_part_num(hw
, &part_num
);
1300 dev_info(&pdev
->dev
, "%s: PBA No: %06x-%03x\n", netdev
->name
,
1301 (part_num
>> 8), (part_num
& 0xff));
1303 dev_info(&pdev
->dev
,
1304 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1305 adapter
->msix_entries
? "MSI-X" :
1306 (adapter
->flags
& IGB_FLAG_HAS_MSI
) ? "MSI" : "legacy",
1307 adapter
->num_rx_queues
, adapter
->num_tx_queues
);
1312 igb_release_hw_control(adapter
);
1314 if (!igb_check_reset_block(hw
))
1317 if (hw
->flash_address
)
1318 iounmap(hw
->flash_address
);
1320 igb_remove_device(hw
);
1321 igb_free_queues(adapter
);
1324 iounmap(hw
->hw_addr
);
1326 free_netdev(netdev
);
1328 pci_release_selected_regions(pdev
, bars
);
1331 pci_disable_device(pdev
);
1336 * igb_remove - Device Removal Routine
1337 * @pdev: PCI device information struct
1339 * igb_remove is called by the PCI subsystem to alert the driver
1340 * that it should release a PCI device. The could be caused by a
1341 * Hot-Plug event, or because the driver is going to be removed from
1344 static void __devexit
igb_remove(struct pci_dev
*pdev
)
1346 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1347 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1348 #ifdef CONFIG_IGB_DCA
1349 struct e1000_hw
*hw
= &adapter
->hw
;
1353 /* flush_scheduled work may reschedule our watchdog task, so
1354 * explicitly disable watchdog tasks from being rescheduled */
1355 set_bit(__IGB_DOWN
, &adapter
->state
);
1356 del_timer_sync(&adapter
->watchdog_timer
);
1357 del_timer_sync(&adapter
->phy_info_timer
);
1359 flush_scheduled_work();
1361 #ifdef CONFIG_IGB_DCA
1362 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
1363 dev_info(&pdev
->dev
, "DCA disabled\n");
1364 dca_remove_requester(&pdev
->dev
);
1365 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
1366 wr32(E1000_DCA_CTRL
, 1);
1370 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1371 * would have already happened in close and is redundant. */
1372 igb_release_hw_control(adapter
);
1374 unregister_netdev(netdev
);
1376 if (!igb_check_reset_block(&adapter
->hw
))
1377 igb_reset_phy(&adapter
->hw
);
1379 igb_remove_device(&adapter
->hw
);
1380 igb_reset_interrupt_capability(adapter
);
1382 igb_free_queues(adapter
);
1384 iounmap(adapter
->hw
.hw_addr
);
1385 if (adapter
->hw
.flash_address
)
1386 iounmap(adapter
->hw
.flash_address
);
1387 pci_release_selected_regions(pdev
, adapter
->bars
);
1389 free_netdev(netdev
);
1391 err
= pci_disable_pcie_error_reporting(pdev
);
1394 "pci_disable_pcie_error_reporting failed 0x%x\n", err
);
1396 pci_disable_device(pdev
);
1400 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1401 * @adapter: board private structure to initialize
1403 * igb_sw_init initializes the Adapter private data structure.
1404 * Fields are initialized based on PCI device information and
1405 * OS network device settings (MTU size).
1407 static int __devinit
igb_sw_init(struct igb_adapter
*adapter
)
1409 struct e1000_hw
*hw
= &adapter
->hw
;
1410 struct net_device
*netdev
= adapter
->netdev
;
1411 struct pci_dev
*pdev
= adapter
->pdev
;
1413 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->bus
.pci_cmd_word
);
1415 adapter
->tx_ring_count
= IGB_DEFAULT_TXD
;
1416 adapter
->rx_ring_count
= IGB_DEFAULT_RXD
;
1417 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1418 adapter
->rx_ps_hdr_size
= 0; /* disable packet split */
1419 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1420 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1422 /* Number of supported queues. */
1423 /* Having more queues than CPUs doesn't make sense. */
1424 adapter
->num_rx_queues
= min((u32
)IGB_MAX_RX_QUEUES
, (u32
)num_online_cpus());
1425 adapter
->num_tx_queues
= min(IGB_MAX_TX_QUEUES
, num_online_cpus());
1427 /* This call may decrease the number of queues depending on
1428 * interrupt mode. */
1429 igb_set_interrupt_capability(adapter
);
1431 if (igb_alloc_queues(adapter
)) {
1432 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
1436 /* Explicitly disable IRQ since the NIC can be in any state. */
1437 igb_irq_disable(adapter
);
1439 set_bit(__IGB_DOWN
, &adapter
->state
);
1444 * igb_open - Called when a network interface is made active
1445 * @netdev: network interface device structure
1447 * Returns 0 on success, negative value on failure
1449 * The open entry point is called when a network interface is made
1450 * active by the system (IFF_UP). At this point all resources needed
1451 * for transmit and receive operations are allocated, the interrupt
1452 * handler is registered with the OS, the watchdog timer is started,
1453 * and the stack is notified that the interface is ready.
1455 static int igb_open(struct net_device
*netdev
)
1457 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1458 struct e1000_hw
*hw
= &adapter
->hw
;
1462 /* disallow open during test */
1463 if (test_bit(__IGB_TESTING
, &adapter
->state
))
1466 /* allocate transmit descriptors */
1467 err
= igb_setup_all_tx_resources(adapter
);
1471 /* allocate receive descriptors */
1472 err
= igb_setup_all_rx_resources(adapter
);
1476 /* e1000_power_up_phy(adapter); */
1478 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
1479 if ((adapter
->hw
.mng_cookie
.status
&
1480 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
1481 igb_update_mng_vlan(adapter
);
1483 /* before we allocate an interrupt, we must be ready to handle it.
1484 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1485 * as soon as we call pci_request_irq, so we have to setup our
1486 * clean_rx handler before we do so. */
1487 igb_configure(adapter
);
1489 err
= igb_request_irq(adapter
);
1493 /* From here on the code is the same as igb_up() */
1494 clear_bit(__IGB_DOWN
, &adapter
->state
);
1496 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1497 napi_enable(&adapter
->rx_ring
[i
].napi
);
1499 /* Clear any pending interrupts. */
1502 igb_irq_enable(adapter
);
1504 netif_tx_start_all_queues(netdev
);
1506 /* Fire a link status change interrupt to start the watchdog. */
1507 wr32(E1000_ICS
, E1000_ICS_LSC
);
1512 igb_release_hw_control(adapter
);
1513 /* e1000_power_down_phy(adapter); */
1514 igb_free_all_rx_resources(adapter
);
1516 igb_free_all_tx_resources(adapter
);
1524 * igb_close - Disables a network interface
1525 * @netdev: network interface device structure
1527 * Returns 0, this is not allowed to fail
1529 * The close entry point is called when an interface is de-activated
1530 * by the OS. The hardware is still under the driver's control, but
1531 * needs to be disabled. A global MAC reset is issued to stop the
1532 * hardware, and all transmit and receive resources are freed.
1534 static int igb_close(struct net_device
*netdev
)
1536 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1538 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
1541 igb_free_irq(adapter
);
1543 igb_free_all_tx_resources(adapter
);
1544 igb_free_all_rx_resources(adapter
);
1546 /* kill manageability vlan ID if supported, but not if a vlan with
1547 * the same ID is registered on the host OS (let 8021q kill it) */
1548 if ((adapter
->hw
.mng_cookie
.status
&
1549 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1551 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
1552 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1558 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1559 * @adapter: board private structure
1560 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1562 * Return 0 on success, negative on failure
1565 int igb_setup_tx_resources(struct igb_adapter
*adapter
,
1566 struct igb_ring
*tx_ring
)
1568 struct pci_dev
*pdev
= adapter
->pdev
;
1571 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
1572 tx_ring
->buffer_info
= vmalloc(size
);
1573 if (!tx_ring
->buffer_info
)
1575 memset(tx_ring
->buffer_info
, 0, size
);
1577 /* round up to nearest 4K */
1578 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
)
1580 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1582 tx_ring
->desc
= pci_alloc_consistent(pdev
, tx_ring
->size
,
1588 tx_ring
->adapter
= adapter
;
1589 tx_ring
->next_to_use
= 0;
1590 tx_ring
->next_to_clean
= 0;
1594 vfree(tx_ring
->buffer_info
);
1595 dev_err(&adapter
->pdev
->dev
,
1596 "Unable to allocate memory for the transmit descriptor ring\n");
1601 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1602 * (Descriptors) for all queues
1603 * @adapter: board private structure
1605 * Return 0 on success, negative on failure
1607 static int igb_setup_all_tx_resources(struct igb_adapter
*adapter
)
1612 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1613 err
= igb_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1615 dev_err(&adapter
->pdev
->dev
,
1616 "Allocation for Tx Queue %u failed\n", i
);
1617 for (i
--; i
>= 0; i
--)
1618 igb_free_tx_resources(&adapter
->tx_ring
[i
]);
1623 for (i
= 0; i
< IGB_MAX_TX_QUEUES
; i
++) {
1624 r_idx
= i
% adapter
->num_tx_queues
;
1625 adapter
->multi_tx_table
[i
] = &adapter
->tx_ring
[r_idx
];
1631 * igb_configure_tx - Configure transmit Unit after Reset
1632 * @adapter: board private structure
1634 * Configure the Tx unit of the MAC after a reset.
1636 static void igb_configure_tx(struct igb_adapter
*adapter
)
1639 struct e1000_hw
*hw
= &adapter
->hw
;
1644 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1645 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
1647 wr32(E1000_TDLEN(i
),
1648 ring
->count
* sizeof(struct e1000_tx_desc
));
1650 wr32(E1000_TDBAL(i
),
1651 tdba
& 0x00000000ffffffffULL
);
1652 wr32(E1000_TDBAH(i
), tdba
>> 32);
1654 tdwba
= ring
->dma
+ ring
->count
* sizeof(struct e1000_tx_desc
);
1655 tdwba
|= 1; /* enable head wb */
1656 wr32(E1000_TDWBAL(i
),
1657 tdwba
& 0x00000000ffffffffULL
);
1658 wr32(E1000_TDWBAH(i
), tdwba
>> 32);
1660 ring
->head
= E1000_TDH(i
);
1661 ring
->tail
= E1000_TDT(i
);
1662 writel(0, hw
->hw_addr
+ ring
->tail
);
1663 writel(0, hw
->hw_addr
+ ring
->head
);
1664 txdctl
= rd32(E1000_TXDCTL(i
));
1665 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1666 wr32(E1000_TXDCTL(i
), txdctl
);
1668 /* Turn off Relaxed Ordering on head write-backs. The
1669 * writebacks MUST be delivered in order or it will
1670 * completely screw up our bookeeping.
1672 txctrl
= rd32(E1000_DCA_TXCTRL(i
));
1673 txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1674 wr32(E1000_DCA_TXCTRL(i
), txctrl
);
1679 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1681 /* Program the Transmit Control Register */
1683 tctl
= rd32(E1000_TCTL
);
1684 tctl
&= ~E1000_TCTL_CT
;
1685 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1686 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1688 igb_config_collision_dist(hw
);
1690 /* Setup Transmit Descriptor Settings for eop descriptor */
1691 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_RS
;
1693 /* Enable transmits */
1694 tctl
|= E1000_TCTL_EN
;
1696 wr32(E1000_TCTL
, tctl
);
1700 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1701 * @adapter: board private structure
1702 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1704 * Returns 0 on success, negative on failure
1707 int igb_setup_rx_resources(struct igb_adapter
*adapter
,
1708 struct igb_ring
*rx_ring
)
1710 struct pci_dev
*pdev
= adapter
->pdev
;
1713 #ifdef CONFIG_IGB_LRO
1714 size
= sizeof(struct net_lro_desc
) * MAX_LRO_DESCRIPTORS
;
1715 rx_ring
->lro_mgr
.lro_arr
= vmalloc(size
);
1716 if (!rx_ring
->lro_mgr
.lro_arr
)
1718 memset(rx_ring
->lro_mgr
.lro_arr
, 0, size
);
1721 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
1722 rx_ring
->buffer_info
= vmalloc(size
);
1723 if (!rx_ring
->buffer_info
)
1725 memset(rx_ring
->buffer_info
, 0, size
);
1727 desc_len
= sizeof(union e1000_adv_rx_desc
);
1729 /* Round up to nearest 4K */
1730 rx_ring
->size
= rx_ring
->count
* desc_len
;
1731 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1733 rx_ring
->desc
= pci_alloc_consistent(pdev
, rx_ring
->size
,
1739 rx_ring
->next_to_clean
= 0;
1740 rx_ring
->next_to_use
= 0;
1742 rx_ring
->adapter
= adapter
;
1747 #ifdef CONFIG_IGB_LRO
1748 vfree(rx_ring
->lro_mgr
.lro_arr
);
1749 rx_ring
->lro_mgr
.lro_arr
= NULL
;
1751 vfree(rx_ring
->buffer_info
);
1752 dev_err(&adapter
->pdev
->dev
, "Unable to allocate memory for "
1753 "the receive descriptor ring\n");
1758 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1759 * (Descriptors) for all queues
1760 * @adapter: board private structure
1762 * Return 0 on success, negative on failure
1764 static int igb_setup_all_rx_resources(struct igb_adapter
*adapter
)
1768 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1769 err
= igb_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1771 dev_err(&adapter
->pdev
->dev
,
1772 "Allocation for Rx Queue %u failed\n", i
);
1773 for (i
--; i
>= 0; i
--)
1774 igb_free_rx_resources(&adapter
->rx_ring
[i
]);
1783 * igb_setup_rctl - configure the receive control registers
1784 * @adapter: Board private structure
1786 static void igb_setup_rctl(struct igb_adapter
*adapter
)
1788 struct e1000_hw
*hw
= &adapter
->hw
;
1793 rctl
= rd32(E1000_RCTL
);
1795 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1796 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1798 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_RDMTS_HALF
|
1799 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1802 * enable stripping of CRC. It's unlikely this will break BMC
1803 * redirection as it did with e1000. Newer features require
1804 * that the HW strips the CRC.
1806 rctl
|= E1000_RCTL_SECRC
;
1809 * disable store bad packets, long packet enable, and clear size bits.
1811 rctl
&= ~(E1000_RCTL_SBP
| E1000_RCTL_LPE
| E1000_RCTL_SZ_256
);
1813 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
)
1814 rctl
|= E1000_RCTL_LPE
;
1816 /* Setup buffer sizes */
1817 switch (adapter
->rx_buffer_len
) {
1818 case IGB_RXBUFFER_256
:
1819 rctl
|= E1000_RCTL_SZ_256
;
1821 case IGB_RXBUFFER_512
:
1822 rctl
|= E1000_RCTL_SZ_512
;
1825 srrctl
= ALIGN(adapter
->rx_buffer_len
, 1024)
1826 >> E1000_SRRCTL_BSIZEPKT_SHIFT
;
1830 /* 82575 and greater support packet-split where the protocol
1831 * header is placed in skb->data and the packet data is
1832 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1833 * In the case of a non-split, skb->data is linearly filled,
1834 * followed by the page buffers. Therefore, skb->data is
1835 * sized to hold the largest protocol header.
1837 /* allocations using alloc_page take too long for regular MTU
1838 * so only enable packet split for jumbo frames */
1839 if (rctl
& E1000_RCTL_LPE
) {
1840 adapter
->rx_ps_hdr_size
= IGB_RXBUFFER_128
;
1841 srrctl
|= adapter
->rx_ps_hdr_size
<<
1842 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1843 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1845 adapter
->rx_ps_hdr_size
= 0;
1846 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1849 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1850 wr32(E1000_SRRCTL(i
), srrctl
);
1852 wr32(E1000_RCTL
, rctl
);
1856 * igb_configure_rx - Configure receive Unit after Reset
1857 * @adapter: board private structure
1859 * Configure the Rx unit of the MAC after a reset.
1861 static void igb_configure_rx(struct igb_adapter
*adapter
)
1864 struct e1000_hw
*hw
= &adapter
->hw
;
1869 /* disable receives while setting up the descriptors */
1870 rctl
= rd32(E1000_RCTL
);
1871 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
1875 if (adapter
->itr_setting
> 3)
1876 wr32(E1000_ITR
, adapter
->itr
);
1878 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1879 * the Base and Length of the Rx Descriptor Ring */
1880 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1881 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
1883 wr32(E1000_RDBAL(i
),
1884 rdba
& 0x00000000ffffffffULL
);
1885 wr32(E1000_RDBAH(i
), rdba
>> 32);
1886 wr32(E1000_RDLEN(i
),
1887 ring
->count
* sizeof(union e1000_adv_rx_desc
));
1889 ring
->head
= E1000_RDH(i
);
1890 ring
->tail
= E1000_RDT(i
);
1891 writel(0, hw
->hw_addr
+ ring
->tail
);
1892 writel(0, hw
->hw_addr
+ ring
->head
);
1894 rxdctl
= rd32(E1000_RXDCTL(i
));
1895 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1896 rxdctl
&= 0xFFF00000;
1897 rxdctl
|= IGB_RX_PTHRESH
;
1898 rxdctl
|= IGB_RX_HTHRESH
<< 8;
1899 rxdctl
|= IGB_RX_WTHRESH
<< 16;
1900 wr32(E1000_RXDCTL(i
), rxdctl
);
1901 #ifdef CONFIG_IGB_LRO
1902 /* Intitial LRO Settings */
1903 ring
->lro_mgr
.max_aggr
= MAX_LRO_AGGR
;
1904 ring
->lro_mgr
.max_desc
= MAX_LRO_DESCRIPTORS
;
1905 ring
->lro_mgr
.get_skb_header
= igb_get_skb_hdr
;
1906 ring
->lro_mgr
.features
= LRO_F_NAPI
| LRO_F_EXTRACT_VLAN_ID
;
1907 ring
->lro_mgr
.dev
= adapter
->netdev
;
1908 ring
->lro_mgr
.ip_summed
= CHECKSUM_UNNECESSARY
;
1909 ring
->lro_mgr
.ip_summed_aggr
= CHECKSUM_UNNECESSARY
;
1913 if (adapter
->num_rx_queues
> 1) {
1922 get_random_bytes(&random
[0], 40);
1924 if (hw
->mac
.type
>= e1000_82576
)
1928 for (j
= 0; j
< (32 * 4); j
++) {
1930 (j
% adapter
->num_rx_queues
) << shift
;
1933 hw
->hw_addr
+ E1000_RETA(0) + (j
& ~3));
1935 mrqc
= E1000_MRQC_ENABLE_RSS_4Q
;
1937 /* Fill out hash function seeds */
1938 for (j
= 0; j
< 10; j
++)
1939 array_wr32(E1000_RSSRK(0), j
, random
[j
]);
1941 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4
|
1942 E1000_MRQC_RSS_FIELD_IPV4_TCP
);
1943 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6
|
1944 E1000_MRQC_RSS_FIELD_IPV6_TCP
);
1945 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4_UDP
|
1946 E1000_MRQC_RSS_FIELD_IPV6_UDP
);
1947 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX
|
1948 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
1951 wr32(E1000_MRQC
, mrqc
);
1953 /* Multiqueue and raw packet checksumming are mutually
1954 * exclusive. Note that this not the same as TCP/IP
1955 * checksumming, which works fine. */
1956 rxcsum
= rd32(E1000_RXCSUM
);
1957 rxcsum
|= E1000_RXCSUM_PCSD
;
1958 wr32(E1000_RXCSUM
, rxcsum
);
1960 /* Enable Receive Checksum Offload for TCP and UDP */
1961 rxcsum
= rd32(E1000_RXCSUM
);
1962 if (adapter
->rx_csum
) {
1963 rxcsum
|= E1000_RXCSUM_TUOFL
;
1965 /* Enable IPv4 payload checksum for UDP fragments
1966 * Must be used in conjunction with packet-split. */
1967 if (adapter
->rx_ps_hdr_size
)
1968 rxcsum
|= E1000_RXCSUM_IPPCSE
;
1970 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1971 /* don't need to clear IPPCSE as it defaults to 0 */
1973 wr32(E1000_RXCSUM
, rxcsum
);
1978 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
1980 wr32(E1000_RLPML
, adapter
->max_frame_size
);
1982 /* Enable Receives */
1983 wr32(E1000_RCTL
, rctl
);
1987 * igb_free_tx_resources - Free Tx Resources per Queue
1988 * @tx_ring: Tx descriptor ring for a specific queue
1990 * Free all transmit software resources
1992 void igb_free_tx_resources(struct igb_ring
*tx_ring
)
1994 struct pci_dev
*pdev
= tx_ring
->adapter
->pdev
;
1996 igb_clean_tx_ring(tx_ring
);
1998 vfree(tx_ring
->buffer_info
);
1999 tx_ring
->buffer_info
= NULL
;
2001 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
2003 tx_ring
->desc
= NULL
;
2007 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2008 * @adapter: board private structure
2010 * Free all transmit software resources
2012 static void igb_free_all_tx_resources(struct igb_adapter
*adapter
)
2016 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2017 igb_free_tx_resources(&adapter
->tx_ring
[i
]);
2020 static void igb_unmap_and_free_tx_resource(struct igb_adapter
*adapter
,
2021 struct igb_buffer
*buffer_info
)
2023 if (buffer_info
->dma
) {
2024 pci_unmap_page(adapter
->pdev
,
2026 buffer_info
->length
,
2028 buffer_info
->dma
= 0;
2030 if (buffer_info
->skb
) {
2031 dev_kfree_skb_any(buffer_info
->skb
);
2032 buffer_info
->skb
= NULL
;
2034 buffer_info
->time_stamp
= 0;
2035 /* buffer_info must be completely set up in the transmit path */
2039 * igb_clean_tx_ring - Free Tx Buffers
2040 * @tx_ring: ring to be cleaned
2042 static void igb_clean_tx_ring(struct igb_ring
*tx_ring
)
2044 struct igb_adapter
*adapter
= tx_ring
->adapter
;
2045 struct igb_buffer
*buffer_info
;
2049 if (!tx_ring
->buffer_info
)
2051 /* Free all the Tx ring sk_buffs */
2053 for (i
= 0; i
< tx_ring
->count
; i
++) {
2054 buffer_info
= &tx_ring
->buffer_info
[i
];
2055 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
2058 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
2059 memset(tx_ring
->buffer_info
, 0, size
);
2061 /* Zero out the descriptor ring */
2063 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2065 tx_ring
->next_to_use
= 0;
2066 tx_ring
->next_to_clean
= 0;
2068 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
2069 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2073 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2074 * @adapter: board private structure
2076 static void igb_clean_all_tx_rings(struct igb_adapter
*adapter
)
2080 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2081 igb_clean_tx_ring(&adapter
->tx_ring
[i
]);
2085 * igb_free_rx_resources - Free Rx Resources
2086 * @rx_ring: ring to clean the resources from
2088 * Free all receive software resources
2090 void igb_free_rx_resources(struct igb_ring
*rx_ring
)
2092 struct pci_dev
*pdev
= rx_ring
->adapter
->pdev
;
2094 igb_clean_rx_ring(rx_ring
);
2096 vfree(rx_ring
->buffer_info
);
2097 rx_ring
->buffer_info
= NULL
;
2099 #ifdef CONFIG_IGB_LRO
2100 vfree(rx_ring
->lro_mgr
.lro_arr
);
2101 rx_ring
->lro_mgr
.lro_arr
= NULL
;
2104 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
2106 rx_ring
->desc
= NULL
;
2110 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2111 * @adapter: board private structure
2113 * Free all receive software resources
2115 static void igb_free_all_rx_resources(struct igb_adapter
*adapter
)
2119 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2120 igb_free_rx_resources(&adapter
->rx_ring
[i
]);
2124 * igb_clean_rx_ring - Free Rx Buffers per Queue
2125 * @rx_ring: ring to free buffers from
2127 static void igb_clean_rx_ring(struct igb_ring
*rx_ring
)
2129 struct igb_adapter
*adapter
= rx_ring
->adapter
;
2130 struct igb_buffer
*buffer_info
;
2131 struct pci_dev
*pdev
= adapter
->pdev
;
2135 if (!rx_ring
->buffer_info
)
2137 /* Free all the Rx ring sk_buffs */
2138 for (i
= 0; i
< rx_ring
->count
; i
++) {
2139 buffer_info
= &rx_ring
->buffer_info
[i
];
2140 if (buffer_info
->dma
) {
2141 if (adapter
->rx_ps_hdr_size
)
2142 pci_unmap_single(pdev
, buffer_info
->dma
,
2143 adapter
->rx_ps_hdr_size
,
2144 PCI_DMA_FROMDEVICE
);
2146 pci_unmap_single(pdev
, buffer_info
->dma
,
2147 adapter
->rx_buffer_len
,
2148 PCI_DMA_FROMDEVICE
);
2149 buffer_info
->dma
= 0;
2152 if (buffer_info
->skb
) {
2153 dev_kfree_skb(buffer_info
->skb
);
2154 buffer_info
->skb
= NULL
;
2156 if (buffer_info
->page
) {
2157 if (buffer_info
->page_dma
)
2158 pci_unmap_page(pdev
, buffer_info
->page_dma
,
2160 PCI_DMA_FROMDEVICE
);
2161 put_page(buffer_info
->page
);
2162 buffer_info
->page
= NULL
;
2163 buffer_info
->page_dma
= 0;
2164 buffer_info
->page_offset
= 0;
2168 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
2169 memset(rx_ring
->buffer_info
, 0, size
);
2171 /* Zero out the descriptor ring */
2172 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2174 rx_ring
->next_to_clean
= 0;
2175 rx_ring
->next_to_use
= 0;
2177 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
2178 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
2182 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2183 * @adapter: board private structure
2185 static void igb_clean_all_rx_rings(struct igb_adapter
*adapter
)
2189 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2190 igb_clean_rx_ring(&adapter
->rx_ring
[i
]);
2194 * igb_set_mac - Change the Ethernet Address of the NIC
2195 * @netdev: network interface device structure
2196 * @p: pointer to an address structure
2198 * Returns 0 on success, negative on failure
2200 static int igb_set_mac(struct net_device
*netdev
, void *p
)
2202 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2203 struct sockaddr
*addr
= p
;
2205 if (!is_valid_ether_addr(addr
->sa_data
))
2206 return -EADDRNOTAVAIL
;
2208 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2209 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
2211 adapter
->hw
.mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
2217 * igb_set_multi - Multicast and Promiscuous mode set
2218 * @netdev: network interface device structure
2220 * The set_multi entry point is called whenever the multicast address
2221 * list or the network interface flags are updated. This routine is
2222 * responsible for configuring the hardware for proper multicast,
2223 * promiscuous mode, and all-multi behavior.
2225 static void igb_set_multi(struct net_device
*netdev
)
2227 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2228 struct e1000_hw
*hw
= &adapter
->hw
;
2229 struct e1000_mac_info
*mac
= &hw
->mac
;
2230 struct dev_mc_list
*mc_ptr
;
2235 /* Check for Promiscuous and All Multicast modes */
2237 rctl
= rd32(E1000_RCTL
);
2239 if (netdev
->flags
& IFF_PROMISC
) {
2240 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2241 rctl
&= ~E1000_RCTL_VFE
;
2243 if (netdev
->flags
& IFF_ALLMULTI
) {
2244 rctl
|= E1000_RCTL_MPE
;
2245 rctl
&= ~E1000_RCTL_UPE
;
2247 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2248 rctl
|= E1000_RCTL_VFE
;
2250 wr32(E1000_RCTL
, rctl
);
2252 if (!netdev
->mc_count
) {
2253 /* nothing to program, so clear mc list */
2254 igb_update_mc_addr_list_82575(hw
, NULL
, 0, 1,
2255 mac
->rar_entry_count
);
2259 mta_list
= kzalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2263 /* The shared function expects a packed array of only addresses. */
2264 mc_ptr
= netdev
->mc_list
;
2266 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2269 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
, ETH_ALEN
);
2270 mc_ptr
= mc_ptr
->next
;
2272 igb_update_mc_addr_list_82575(hw
, mta_list
, i
, 1,
2273 mac
->rar_entry_count
);
2277 /* Need to wait a few seconds after link up to get diagnostic information from
2279 static void igb_update_phy_info(unsigned long data
)
2281 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
2282 igb_get_phy_info(&adapter
->hw
);
2286 * igb_watchdog - Timer Call-back
2287 * @data: pointer to adapter cast into an unsigned long
2289 static void igb_watchdog(unsigned long data
)
2291 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
2292 /* Do the rest outside of interrupt context */
2293 schedule_work(&adapter
->watchdog_task
);
2296 static void igb_watchdog_task(struct work_struct
*work
)
2298 struct igb_adapter
*adapter
= container_of(work
,
2299 struct igb_adapter
, watchdog_task
);
2300 struct e1000_hw
*hw
= &adapter
->hw
;
2302 struct net_device
*netdev
= adapter
->netdev
;
2303 struct igb_ring
*tx_ring
= adapter
->tx_ring
;
2304 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2310 if ((netif_carrier_ok(netdev
)) &&
2311 (rd32(E1000_STATUS
) & E1000_STATUS_LU
))
2314 ret_val
= hw
->mac
.ops
.check_for_link(&adapter
->hw
);
2315 if ((ret_val
== E1000_ERR_PHY
) &&
2316 (hw
->phy
.type
== e1000_phy_igp_3
) &&
2318 E1000_PHY_CTRL_GBE_DISABLE
))
2319 dev_info(&adapter
->pdev
->dev
,
2320 "Gigabit has been disabled, downgrading speed\n");
2322 if ((hw
->phy
.media_type
== e1000_media_type_internal_serdes
) &&
2323 !(rd32(E1000_TXCW
) & E1000_TXCW_ANE
))
2324 link
= mac
->serdes_has_link
;
2326 link
= rd32(E1000_STATUS
) &
2330 if (!netif_carrier_ok(netdev
)) {
2332 hw
->mac
.ops
.get_speed_and_duplex(&adapter
->hw
,
2333 &adapter
->link_speed
,
2334 &adapter
->link_duplex
);
2336 ctrl
= rd32(E1000_CTRL
);
2337 /* Links status message must follow this format */
2338 printk(KERN_INFO
"igb: %s NIC Link is Up %d Mbps %s, "
2339 "Flow Control: %s\n",
2341 adapter
->link_speed
,
2342 adapter
->link_duplex
== FULL_DUPLEX
?
2343 "Full Duplex" : "Half Duplex",
2344 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2345 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2346 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2347 E1000_CTRL_TFCE
) ? "TX" : "None")));
2349 /* tweak tx_queue_len according to speed/duplex and
2350 * adjust the timeout factor */
2351 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2352 adapter
->tx_timeout_factor
= 1;
2353 switch (adapter
->link_speed
) {
2355 netdev
->tx_queue_len
= 10;
2356 adapter
->tx_timeout_factor
= 14;
2359 netdev
->tx_queue_len
= 100;
2360 /* maybe add some timeout factor ? */
2364 netif_carrier_on(netdev
);
2365 netif_tx_wake_all_queues(netdev
);
2367 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2368 mod_timer(&adapter
->phy_info_timer
,
2369 round_jiffies(jiffies
+ 2 * HZ
));
2372 if (netif_carrier_ok(netdev
)) {
2373 adapter
->link_speed
= 0;
2374 adapter
->link_duplex
= 0;
2375 /* Links status message must follow this format */
2376 printk(KERN_INFO
"igb: %s NIC Link is Down\n",
2378 netif_carrier_off(netdev
);
2379 netif_tx_stop_all_queues(netdev
);
2380 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2381 mod_timer(&adapter
->phy_info_timer
,
2382 round_jiffies(jiffies
+ 2 * HZ
));
2387 igb_update_stats(adapter
);
2389 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2390 adapter
->tpt_old
= adapter
->stats
.tpt
;
2391 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2392 adapter
->colc_old
= adapter
->stats
.colc
;
2394 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
2395 adapter
->gorc_old
= adapter
->stats
.gorc
;
2396 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
2397 adapter
->gotc_old
= adapter
->stats
.gotc
;
2399 igb_update_adaptive(&adapter
->hw
);
2401 if (!netif_carrier_ok(netdev
)) {
2402 if (IGB_DESC_UNUSED(tx_ring
) + 1 < tx_ring
->count
) {
2403 /* We've lost link, so the controller stops DMA,
2404 * but we've got queued Tx work that's never going
2405 * to get done, so reset controller to flush Tx.
2406 * (Do the reset outside of interrupt context). */
2407 adapter
->tx_timeout_count
++;
2408 schedule_work(&adapter
->reset_task
);
2412 /* Cause software interrupt to ensure rx ring is cleaned */
2413 if (adapter
->msix_entries
) {
2414 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2415 eics
|= adapter
->rx_ring
[i
].eims_value
;
2416 wr32(E1000_EICS
, eics
);
2418 wr32(E1000_ICS
, E1000_ICS_RXDMT0
);
2421 /* Force detection of hung controller every watchdog period */
2422 tx_ring
->detect_tx_hung
= true;
2424 /* Reset the timer */
2425 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2426 mod_timer(&adapter
->watchdog_timer
,
2427 round_jiffies(jiffies
+ 2 * HZ
));
2430 enum latency_range
{
2434 latency_invalid
= 255
2439 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2441 * Stores a new ITR value based on strictly on packet size. This
2442 * algorithm is less sophisticated than that used in igb_update_itr,
2443 * due to the difficulty of synchronizing statistics across multiple
2444 * receive rings. The divisors and thresholds used by this fuction
2445 * were determined based on theoretical maximum wire speed and testing
2446 * data, in order to minimize response time while increasing bulk
2448 * This functionality is controlled by the InterruptThrottleRate module
2449 * parameter (see igb_param.c)
2450 * NOTE: This function is called only when operating in a multiqueue
2451 * receive environment.
2452 * @rx_ring: pointer to ring
2454 static void igb_update_ring_itr(struct igb_ring
*rx_ring
)
2456 int new_val
= rx_ring
->itr_val
;
2457 int avg_wire_size
= 0;
2458 struct igb_adapter
*adapter
= rx_ring
->adapter
;
2460 if (!rx_ring
->total_packets
)
2461 goto clear_counts
; /* no packets, so don't do anything */
2463 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2464 * ints/sec - ITR timer value of 120 ticks.
2466 if (adapter
->link_speed
!= SPEED_1000
) {
2470 avg_wire_size
= rx_ring
->total_bytes
/ rx_ring
->total_packets
;
2472 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2473 avg_wire_size
+= 24;
2475 /* Don't starve jumbo frames */
2476 avg_wire_size
= min(avg_wire_size
, 3000);
2478 /* Give a little boost to mid-size frames */
2479 if ((avg_wire_size
> 300) && (avg_wire_size
< 1200))
2480 new_val
= avg_wire_size
/ 3;
2482 new_val
= avg_wire_size
/ 2;
2485 if (new_val
!= rx_ring
->itr_val
) {
2486 rx_ring
->itr_val
= new_val
;
2487 rx_ring
->set_itr
= 1;
2490 rx_ring
->total_bytes
= 0;
2491 rx_ring
->total_packets
= 0;
2495 * igb_update_itr - update the dynamic ITR value based on statistics
2496 * Stores a new ITR value based on packets and byte
2497 * counts during the last interrupt. The advantage of per interrupt
2498 * computation is faster updates and more accurate ITR for the current
2499 * traffic pattern. Constants in this function were computed
2500 * based on theoretical maximum wire speed and thresholds were set based
2501 * on testing data as well as attempting to minimize response time
2502 * while increasing bulk throughput.
2503 * this functionality is controlled by the InterruptThrottleRate module
2504 * parameter (see igb_param.c)
2505 * NOTE: These calculations are only valid when operating in a single-
2506 * queue environment.
2507 * @adapter: pointer to adapter
2508 * @itr_setting: current adapter->itr
2509 * @packets: the number of packets during this measurement interval
2510 * @bytes: the number of bytes during this measurement interval
2512 static unsigned int igb_update_itr(struct igb_adapter
*adapter
, u16 itr_setting
,
2513 int packets
, int bytes
)
2515 unsigned int retval
= itr_setting
;
2518 goto update_itr_done
;
2520 switch (itr_setting
) {
2521 case lowest_latency
:
2522 /* handle TSO and jumbo frames */
2523 if (bytes
/packets
> 8000)
2524 retval
= bulk_latency
;
2525 else if ((packets
< 5) && (bytes
> 512))
2526 retval
= low_latency
;
2528 case low_latency
: /* 50 usec aka 20000 ints/s */
2529 if (bytes
> 10000) {
2530 /* this if handles the TSO accounting */
2531 if (bytes
/packets
> 8000) {
2532 retval
= bulk_latency
;
2533 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
2534 retval
= bulk_latency
;
2535 } else if ((packets
> 35)) {
2536 retval
= lowest_latency
;
2538 } else if (bytes
/packets
> 2000) {
2539 retval
= bulk_latency
;
2540 } else if (packets
<= 2 && bytes
< 512) {
2541 retval
= lowest_latency
;
2544 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2545 if (bytes
> 25000) {
2547 retval
= low_latency
;
2548 } else if (bytes
< 6000) {
2549 retval
= low_latency
;
2558 static void igb_set_itr(struct igb_adapter
*adapter
)
2561 u32 new_itr
= adapter
->itr
;
2563 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2564 if (adapter
->link_speed
!= SPEED_1000
) {
2570 adapter
->rx_itr
= igb_update_itr(adapter
,
2572 adapter
->rx_ring
->total_packets
,
2573 adapter
->rx_ring
->total_bytes
);
2575 if (adapter
->rx_ring
->buddy
) {
2576 adapter
->tx_itr
= igb_update_itr(adapter
,
2578 adapter
->tx_ring
->total_packets
,
2579 adapter
->tx_ring
->total_bytes
);
2581 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2583 current_itr
= adapter
->rx_itr
;
2586 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2587 if (adapter
->itr_setting
== 3 &&
2588 current_itr
== lowest_latency
)
2589 current_itr
= low_latency
;
2591 switch (current_itr
) {
2592 /* counts and packets in update_itr are dependent on these numbers */
2593 case lowest_latency
:
2597 new_itr
= 20000; /* aka hwitr = ~200 */
2607 adapter
->rx_ring
->total_bytes
= 0;
2608 adapter
->rx_ring
->total_packets
= 0;
2609 if (adapter
->rx_ring
->buddy
) {
2610 adapter
->rx_ring
->buddy
->total_bytes
= 0;
2611 adapter
->rx_ring
->buddy
->total_packets
= 0;
2614 if (new_itr
!= adapter
->itr
) {
2615 /* this attempts to bias the interrupt rate towards Bulk
2616 * by adding intermediate steps when interrupt rate is
2618 new_itr
= new_itr
> adapter
->itr
?
2619 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2621 /* Don't write the value here; it resets the adapter's
2622 * internal timer, and causes us to delay far longer than
2623 * we should between interrupts. Instead, we write the ITR
2624 * value at the beginning of the next interrupt so the timing
2625 * ends up being correct.
2627 adapter
->itr
= new_itr
;
2628 adapter
->rx_ring
->itr_val
= 1000000000 / (new_itr
* 256);
2629 adapter
->rx_ring
->set_itr
= 1;
2636 #define IGB_TX_FLAGS_CSUM 0x00000001
2637 #define IGB_TX_FLAGS_VLAN 0x00000002
2638 #define IGB_TX_FLAGS_TSO 0x00000004
2639 #define IGB_TX_FLAGS_IPV4 0x00000008
2640 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2641 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2643 static inline int igb_tso_adv(struct igb_adapter
*adapter
,
2644 struct igb_ring
*tx_ring
,
2645 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
2647 struct e1000_adv_tx_context_desc
*context_desc
;
2650 struct igb_buffer
*buffer_info
;
2651 u32 info
= 0, tu_cmd
= 0;
2652 u32 mss_l4len_idx
, l4len
;
2655 if (skb_header_cloned(skb
)) {
2656 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2661 l4len
= tcp_hdrlen(skb
);
2664 if (skb
->protocol
== htons(ETH_P_IP
)) {
2665 struct iphdr
*iph
= ip_hdr(skb
);
2668 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2672 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
2673 ipv6_hdr(skb
)->payload_len
= 0;
2674 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2675 &ipv6_hdr(skb
)->daddr
,
2679 i
= tx_ring
->next_to_use
;
2681 buffer_info
= &tx_ring
->buffer_info
[i
];
2682 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2683 /* VLAN MACLEN IPLEN */
2684 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2685 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2686 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2687 *hdr_len
+= skb_network_offset(skb
);
2688 info
|= skb_network_header_len(skb
);
2689 *hdr_len
+= skb_network_header_len(skb
);
2690 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2692 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2693 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2695 if (skb
->protocol
== htons(ETH_P_IP
))
2696 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2697 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2699 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2702 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
2703 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
2705 /* Context index must be unique per ring. */
2706 if (adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
)
2707 mss_l4len_idx
|= tx_ring
->queue_index
<< 4;
2709 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
2710 context_desc
->seqnum_seed
= 0;
2712 buffer_info
->time_stamp
= jiffies
;
2713 buffer_info
->dma
= 0;
2715 if (i
== tx_ring
->count
)
2718 tx_ring
->next_to_use
= i
;
2723 static inline bool igb_tx_csum_adv(struct igb_adapter
*adapter
,
2724 struct igb_ring
*tx_ring
,
2725 struct sk_buff
*skb
, u32 tx_flags
)
2727 struct e1000_adv_tx_context_desc
*context_desc
;
2729 struct igb_buffer
*buffer_info
;
2730 u32 info
= 0, tu_cmd
= 0;
2732 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
2733 (tx_flags
& IGB_TX_FLAGS_VLAN
)) {
2734 i
= tx_ring
->next_to_use
;
2735 buffer_info
= &tx_ring
->buffer_info
[i
];
2736 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2738 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2739 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2740 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2741 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2742 info
|= skb_network_header_len(skb
);
2744 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2746 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2748 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2749 switch (skb
->protocol
) {
2750 case __constant_htons(ETH_P_IP
):
2751 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2752 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2753 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2755 case __constant_htons(ETH_P_IPV6
):
2756 /* XXX what about other V6 headers?? */
2757 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2758 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2761 if (unlikely(net_ratelimit()))
2762 dev_warn(&adapter
->pdev
->dev
,
2763 "partial checksum but proto=%x!\n",
2769 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2770 context_desc
->seqnum_seed
= 0;
2771 if (adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
)
2772 context_desc
->mss_l4len_idx
=
2773 cpu_to_le32(tx_ring
->queue_index
<< 4);
2775 buffer_info
->time_stamp
= jiffies
;
2776 buffer_info
->dma
= 0;
2779 if (i
== tx_ring
->count
)
2781 tx_ring
->next_to_use
= i
;
2790 #define IGB_MAX_TXD_PWR 16
2791 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2793 static inline int igb_tx_map_adv(struct igb_adapter
*adapter
,
2794 struct igb_ring
*tx_ring
,
2795 struct sk_buff
*skb
)
2797 struct igb_buffer
*buffer_info
;
2798 unsigned int len
= skb_headlen(skb
);
2799 unsigned int count
= 0, i
;
2802 i
= tx_ring
->next_to_use
;
2804 buffer_info
= &tx_ring
->buffer_info
[i
];
2805 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2806 buffer_info
->length
= len
;
2807 /* set time_stamp *before* dma to help avoid a possible race */
2808 buffer_info
->time_stamp
= jiffies
;
2809 buffer_info
->dma
= pci_map_single(adapter
->pdev
, skb
->data
, len
,
2813 if (i
== tx_ring
->count
)
2816 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2817 struct skb_frag_struct
*frag
;
2819 frag
= &skb_shinfo(skb
)->frags
[f
];
2822 buffer_info
= &tx_ring
->buffer_info
[i
];
2823 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2824 buffer_info
->length
= len
;
2825 buffer_info
->time_stamp
= jiffies
;
2826 buffer_info
->dma
= pci_map_page(adapter
->pdev
,
2834 if (i
== tx_ring
->count
)
2838 i
= (i
== 0) ? tx_ring
->count
- 1 : i
- 1;
2839 tx_ring
->buffer_info
[i
].skb
= skb
;
2844 static inline void igb_tx_queue_adv(struct igb_adapter
*adapter
,
2845 struct igb_ring
*tx_ring
,
2846 int tx_flags
, int count
, u32 paylen
,
2849 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2850 struct igb_buffer
*buffer_info
;
2851 u32 olinfo_status
= 0, cmd_type_len
;
2854 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2855 E1000_ADVTXD_DCMD_DEXT
);
2857 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2858 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2860 if (tx_flags
& IGB_TX_FLAGS_TSO
) {
2861 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2863 /* insert tcp checksum */
2864 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2866 /* insert ip checksum */
2867 if (tx_flags
& IGB_TX_FLAGS_IPV4
)
2868 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2870 } else if (tx_flags
& IGB_TX_FLAGS_CSUM
) {
2871 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2874 if ((adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
) &&
2875 (tx_flags
& (IGB_TX_FLAGS_CSUM
| IGB_TX_FLAGS_TSO
|
2876 IGB_TX_FLAGS_VLAN
)))
2877 olinfo_status
|= tx_ring
->queue_index
<< 4;
2879 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2881 i
= tx_ring
->next_to_use
;
2883 buffer_info
= &tx_ring
->buffer_info
[i
];
2884 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
2885 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2886 tx_desc
->read
.cmd_type_len
=
2887 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2888 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2890 if (i
== tx_ring
->count
)
2894 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2895 /* Force memory writes to complete before letting h/w
2896 * know there are new descriptors to fetch. (Only
2897 * applicable for weak-ordered memory model archs,
2898 * such as IA-64). */
2901 tx_ring
->next_to_use
= i
;
2902 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2903 /* we need this if more than one processor can write to our tail
2904 * at a time, it syncronizes IO on IA64/Altix systems */
2908 static int __igb_maybe_stop_tx(struct net_device
*netdev
,
2909 struct igb_ring
*tx_ring
, int size
)
2911 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2913 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
2915 /* Herbert's original patch had:
2916 * smp_mb__after_netif_stop_queue();
2917 * but since that doesn't exist yet, just open code it. */
2920 /* We need to check again in a case another CPU has just
2921 * made room available. */
2922 if (IGB_DESC_UNUSED(tx_ring
) < size
)
2926 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
2927 ++adapter
->restart_queue
;
2931 static int igb_maybe_stop_tx(struct net_device
*netdev
,
2932 struct igb_ring
*tx_ring
, int size
)
2934 if (IGB_DESC_UNUSED(tx_ring
) >= size
)
2936 return __igb_maybe_stop_tx(netdev
, tx_ring
, size
);
2939 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2941 static int igb_xmit_frame_ring_adv(struct sk_buff
*skb
,
2942 struct net_device
*netdev
,
2943 struct igb_ring
*tx_ring
)
2945 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2946 unsigned int tx_flags
= 0;
2951 len
= skb_headlen(skb
);
2953 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
2954 dev_kfree_skb_any(skb
);
2955 return NETDEV_TX_OK
;
2958 if (skb
->len
<= 0) {
2959 dev_kfree_skb_any(skb
);
2960 return NETDEV_TX_OK
;
2963 /* need: 1 descriptor per page,
2964 * + 2 desc gap to keep tail from touching head,
2965 * + 1 desc for skb->data,
2966 * + 1 desc for context descriptor,
2967 * otherwise try next time */
2968 if (igb_maybe_stop_tx(netdev
, tx_ring
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2969 /* this is a hard error */
2970 return NETDEV_TX_BUSY
;
2974 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
2975 tx_flags
|= IGB_TX_FLAGS_VLAN
;
2976 tx_flags
|= (vlan_tx_tag_get(skb
) << IGB_TX_FLAGS_VLAN_SHIFT
);
2979 if (skb
->protocol
== htons(ETH_P_IP
))
2980 tx_flags
|= IGB_TX_FLAGS_IPV4
;
2982 tso
= skb_is_gso(skb
) ? igb_tso_adv(adapter
, tx_ring
, skb
, tx_flags
,
2986 dev_kfree_skb_any(skb
);
2987 return NETDEV_TX_OK
;
2991 tx_flags
|= IGB_TX_FLAGS_TSO
;
2992 else if (igb_tx_csum_adv(adapter
, tx_ring
, skb
, tx_flags
))
2993 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2994 tx_flags
|= IGB_TX_FLAGS_CSUM
;
2996 igb_tx_queue_adv(adapter
, tx_ring
, tx_flags
,
2997 igb_tx_map_adv(adapter
, tx_ring
, skb
),
3000 netdev
->trans_start
= jiffies
;
3002 /* Make sure there is space in the ring for the next send. */
3003 igb_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 4);
3005 return NETDEV_TX_OK
;
3008 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*netdev
)
3010 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3011 struct igb_ring
*tx_ring
;
3014 r_idx
= skb
->queue_mapping
& (IGB_MAX_TX_QUEUES
- 1);
3015 tx_ring
= adapter
->multi_tx_table
[r_idx
];
3017 /* This goes back to the question of how to logically map a tx queue
3018 * to a flow. Right now, performance is impacted slightly negatively
3019 * if using multiple tx queues. If the stack breaks away from a
3020 * single qdisc implementation, we can look at this again. */
3021 return (igb_xmit_frame_ring_adv(skb
, netdev
, tx_ring
));
3025 * igb_tx_timeout - Respond to a Tx Hang
3026 * @netdev: network interface device structure
3028 static void igb_tx_timeout(struct net_device
*netdev
)
3030 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3031 struct e1000_hw
*hw
= &adapter
->hw
;
3033 /* Do the reset outside of interrupt context */
3034 adapter
->tx_timeout_count
++;
3035 schedule_work(&adapter
->reset_task
);
3036 wr32(E1000_EICS
, adapter
->eims_enable_mask
&
3037 ~(E1000_EIMS_TCP_TIMER
| E1000_EIMS_OTHER
));
3040 static void igb_reset_task(struct work_struct
*work
)
3042 struct igb_adapter
*adapter
;
3043 adapter
= container_of(work
, struct igb_adapter
, reset_task
);
3045 igb_reinit_locked(adapter
);
3049 * igb_get_stats - Get System Network Statistics
3050 * @netdev: network interface device structure
3052 * Returns the address of the device statistics structure.
3053 * The statistics are actually updated from the timer callback.
3055 static struct net_device_stats
*
3056 igb_get_stats(struct net_device
*netdev
)
3058 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3060 /* only return the current stats */
3061 return &adapter
->net_stats
;
3065 * igb_change_mtu - Change the Maximum Transfer Unit
3066 * @netdev: network interface device structure
3067 * @new_mtu: new value for maximum frame size
3069 * Returns 0 on success, negative on failure
3071 static int igb_change_mtu(struct net_device
*netdev
, int new_mtu
)
3073 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3074 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3076 if ((max_frame
< ETH_ZLEN
+ ETH_FCS_LEN
) ||
3077 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3078 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
3082 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3083 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3084 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
3088 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
3090 /* igb_down has a dependency on max_frame_size */
3091 adapter
->max_frame_size
= max_frame
;
3092 if (netif_running(netdev
))
3095 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3096 * means we reserve 2 more, this pushes us to allocate from the next
3098 * i.e. RXBUFFER_2048 --> size-4096 slab
3101 if (max_frame
<= IGB_RXBUFFER_256
)
3102 adapter
->rx_buffer_len
= IGB_RXBUFFER_256
;
3103 else if (max_frame
<= IGB_RXBUFFER_512
)
3104 adapter
->rx_buffer_len
= IGB_RXBUFFER_512
;
3105 else if (max_frame
<= IGB_RXBUFFER_1024
)
3106 adapter
->rx_buffer_len
= IGB_RXBUFFER_1024
;
3107 else if (max_frame
<= IGB_RXBUFFER_2048
)
3108 adapter
->rx_buffer_len
= IGB_RXBUFFER_2048
;
3110 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3111 adapter
->rx_buffer_len
= IGB_RXBUFFER_16384
;
3113 adapter
->rx_buffer_len
= PAGE_SIZE
/ 2;
3115 /* adjust allocation if LPE protects us, and we aren't using SBP */
3116 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
3117 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
))
3118 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3120 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
3121 netdev
->mtu
, new_mtu
);
3122 netdev
->mtu
= new_mtu
;
3124 if (netif_running(netdev
))
3129 clear_bit(__IGB_RESETTING
, &adapter
->state
);
3135 * igb_update_stats - Update the board statistics counters
3136 * @adapter: board private structure
3139 void igb_update_stats(struct igb_adapter
*adapter
)
3141 struct e1000_hw
*hw
= &adapter
->hw
;
3142 struct pci_dev
*pdev
= adapter
->pdev
;
3145 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3148 * Prevent stats update while adapter is being reset, or if the pci
3149 * connection is down.
3151 if (adapter
->link_speed
== 0)
3153 if (pci_channel_offline(pdev
))
3156 adapter
->stats
.crcerrs
+= rd32(E1000_CRCERRS
);
3157 adapter
->stats
.gprc
+= rd32(E1000_GPRC
);
3158 adapter
->stats
.gorc
+= rd32(E1000_GORCL
);
3159 rd32(E1000_GORCH
); /* clear GORCL */
3160 adapter
->stats
.bprc
+= rd32(E1000_BPRC
);
3161 adapter
->stats
.mprc
+= rd32(E1000_MPRC
);
3162 adapter
->stats
.roc
+= rd32(E1000_ROC
);
3164 adapter
->stats
.prc64
+= rd32(E1000_PRC64
);
3165 adapter
->stats
.prc127
+= rd32(E1000_PRC127
);
3166 adapter
->stats
.prc255
+= rd32(E1000_PRC255
);
3167 adapter
->stats
.prc511
+= rd32(E1000_PRC511
);
3168 adapter
->stats
.prc1023
+= rd32(E1000_PRC1023
);
3169 adapter
->stats
.prc1522
+= rd32(E1000_PRC1522
);
3170 adapter
->stats
.symerrs
+= rd32(E1000_SYMERRS
);
3171 adapter
->stats
.sec
+= rd32(E1000_SEC
);
3173 adapter
->stats
.mpc
+= rd32(E1000_MPC
);
3174 adapter
->stats
.scc
+= rd32(E1000_SCC
);
3175 adapter
->stats
.ecol
+= rd32(E1000_ECOL
);
3176 adapter
->stats
.mcc
+= rd32(E1000_MCC
);
3177 adapter
->stats
.latecol
+= rd32(E1000_LATECOL
);
3178 adapter
->stats
.dc
+= rd32(E1000_DC
);
3179 adapter
->stats
.rlec
+= rd32(E1000_RLEC
);
3180 adapter
->stats
.xonrxc
+= rd32(E1000_XONRXC
);
3181 adapter
->stats
.xontxc
+= rd32(E1000_XONTXC
);
3182 adapter
->stats
.xoffrxc
+= rd32(E1000_XOFFRXC
);
3183 adapter
->stats
.xofftxc
+= rd32(E1000_XOFFTXC
);
3184 adapter
->stats
.fcruc
+= rd32(E1000_FCRUC
);
3185 adapter
->stats
.gptc
+= rd32(E1000_GPTC
);
3186 adapter
->stats
.gotc
+= rd32(E1000_GOTCL
);
3187 rd32(E1000_GOTCH
); /* clear GOTCL */
3188 adapter
->stats
.rnbc
+= rd32(E1000_RNBC
);
3189 adapter
->stats
.ruc
+= rd32(E1000_RUC
);
3190 adapter
->stats
.rfc
+= rd32(E1000_RFC
);
3191 adapter
->stats
.rjc
+= rd32(E1000_RJC
);
3192 adapter
->stats
.tor
+= rd32(E1000_TORH
);
3193 adapter
->stats
.tot
+= rd32(E1000_TOTH
);
3194 adapter
->stats
.tpr
+= rd32(E1000_TPR
);
3196 adapter
->stats
.ptc64
+= rd32(E1000_PTC64
);
3197 adapter
->stats
.ptc127
+= rd32(E1000_PTC127
);
3198 adapter
->stats
.ptc255
+= rd32(E1000_PTC255
);
3199 adapter
->stats
.ptc511
+= rd32(E1000_PTC511
);
3200 adapter
->stats
.ptc1023
+= rd32(E1000_PTC1023
);
3201 adapter
->stats
.ptc1522
+= rd32(E1000_PTC1522
);
3203 adapter
->stats
.mptc
+= rd32(E1000_MPTC
);
3204 adapter
->stats
.bptc
+= rd32(E1000_BPTC
);
3206 /* used for adaptive IFS */
3208 hw
->mac
.tx_packet_delta
= rd32(E1000_TPT
);
3209 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
3210 hw
->mac
.collision_delta
= rd32(E1000_COLC
);
3211 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
3213 adapter
->stats
.algnerrc
+= rd32(E1000_ALGNERRC
);
3214 adapter
->stats
.rxerrc
+= rd32(E1000_RXERRC
);
3215 adapter
->stats
.tncrs
+= rd32(E1000_TNCRS
);
3216 adapter
->stats
.tsctc
+= rd32(E1000_TSCTC
);
3217 adapter
->stats
.tsctfc
+= rd32(E1000_TSCTFC
);
3219 adapter
->stats
.iac
+= rd32(E1000_IAC
);
3220 adapter
->stats
.icrxoc
+= rd32(E1000_ICRXOC
);
3221 adapter
->stats
.icrxptc
+= rd32(E1000_ICRXPTC
);
3222 adapter
->stats
.icrxatc
+= rd32(E1000_ICRXATC
);
3223 adapter
->stats
.ictxptc
+= rd32(E1000_ICTXPTC
);
3224 adapter
->stats
.ictxatc
+= rd32(E1000_ICTXATC
);
3225 adapter
->stats
.ictxqec
+= rd32(E1000_ICTXQEC
);
3226 adapter
->stats
.ictxqmtc
+= rd32(E1000_ICTXQMTC
);
3227 adapter
->stats
.icrxdmtc
+= rd32(E1000_ICRXDMTC
);
3229 /* Fill out the OS statistics structure */
3230 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3231 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3235 /* RLEC on some newer hardware can be incorrect so build
3236 * our own version based on RUC and ROC */
3237 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3238 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3239 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3240 adapter
->stats
.cexterr
;
3241 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
3243 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3244 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3245 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3248 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
3249 adapter
->stats
.latecol
;
3250 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3251 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3252 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3254 /* Tx Dropped needs to be maintained elsewhere */
3257 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
3258 if ((adapter
->link_speed
== SPEED_1000
) &&
3259 (!igb_read_phy_reg(hw
, PHY_1000T_STATUS
,
3261 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3262 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3266 /* Management Stats */
3267 adapter
->stats
.mgptc
+= rd32(E1000_MGTPTC
);
3268 adapter
->stats
.mgprc
+= rd32(E1000_MGTPRC
);
3269 adapter
->stats
.mgpdc
+= rd32(E1000_MGTPDC
);
3273 static irqreturn_t
igb_msix_other(int irq
, void *data
)
3275 struct net_device
*netdev
= data
;
3276 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3277 struct e1000_hw
*hw
= &adapter
->hw
;
3278 u32 icr
= rd32(E1000_ICR
);
3280 /* reading ICR causes bit 31 of EICR to be cleared */
3281 if (!(icr
& E1000_ICR_LSC
))
3282 goto no_link_interrupt
;
3283 hw
->mac
.get_link_status
= 1;
3284 /* guard against interrupt when we're going down */
3285 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3286 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3289 wr32(E1000_IMS
, E1000_IMS_LSC
);
3290 wr32(E1000_EIMS
, adapter
->eims_other
);
3295 static irqreturn_t
igb_msix_tx(int irq
, void *data
)
3297 struct igb_ring
*tx_ring
= data
;
3298 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3299 struct e1000_hw
*hw
= &adapter
->hw
;
3301 #ifdef CONFIG_IGB_DCA
3302 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3303 igb_update_tx_dca(tx_ring
);
3305 tx_ring
->total_bytes
= 0;
3306 tx_ring
->total_packets
= 0;
3308 /* auto mask will automatically reenable the interrupt when we write
3310 if (!igb_clean_tx_irq(tx_ring
))
3311 /* Ring was not completely cleaned, so fire another interrupt */
3312 wr32(E1000_EICS
, tx_ring
->eims_value
);
3314 wr32(E1000_EIMS
, tx_ring
->eims_value
);
3319 static void igb_write_itr(struct igb_ring
*ring
)
3321 struct e1000_hw
*hw
= &ring
->adapter
->hw
;
3322 if ((ring
->adapter
->itr_setting
& 3) && ring
->set_itr
) {
3323 switch (hw
->mac
.type
) {
3325 wr32(ring
->itr_register
,
3330 wr32(ring
->itr_register
,
3332 (ring
->itr_val
<< 16));
3339 static irqreturn_t
igb_msix_rx(int irq
, void *data
)
3341 struct igb_ring
*rx_ring
= data
;
3342 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3344 /* Write the ITR value calculated at the end of the
3345 * previous interrupt.
3348 igb_write_itr(rx_ring
);
3350 if (netif_rx_schedule_prep(adapter
->netdev
, &rx_ring
->napi
))
3351 __netif_rx_schedule(adapter
->netdev
, &rx_ring
->napi
);
3353 #ifdef CONFIG_IGB_DCA
3354 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3355 igb_update_rx_dca(rx_ring
);
3360 #ifdef CONFIG_IGB_DCA
3361 static void igb_update_rx_dca(struct igb_ring
*rx_ring
)
3364 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3365 struct e1000_hw
*hw
= &adapter
->hw
;
3366 int cpu
= get_cpu();
3367 int q
= rx_ring
- adapter
->rx_ring
;
3369 if (rx_ring
->cpu
!= cpu
) {
3370 dca_rxctrl
= rd32(E1000_DCA_RXCTRL(q
));
3371 if (hw
->mac
.type
== e1000_82576
) {
3372 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK_82576
;
3373 dca_rxctrl
|= dca_get_tag(cpu
) <<
3374 E1000_DCA_RXCTRL_CPUID_SHIFT
;
3376 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK
;
3377 dca_rxctrl
|= dca_get_tag(cpu
);
3379 dca_rxctrl
|= E1000_DCA_RXCTRL_DESC_DCA_EN
;
3380 dca_rxctrl
|= E1000_DCA_RXCTRL_HEAD_DCA_EN
;
3381 dca_rxctrl
|= E1000_DCA_RXCTRL_DATA_DCA_EN
;
3382 wr32(E1000_DCA_RXCTRL(q
), dca_rxctrl
);
3388 static void igb_update_tx_dca(struct igb_ring
*tx_ring
)
3391 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3392 struct e1000_hw
*hw
= &adapter
->hw
;
3393 int cpu
= get_cpu();
3394 int q
= tx_ring
- adapter
->tx_ring
;
3396 if (tx_ring
->cpu
!= cpu
) {
3397 dca_txctrl
= rd32(E1000_DCA_TXCTRL(q
));
3398 if (hw
->mac
.type
== e1000_82576
) {
3399 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK_82576
;
3400 dca_txctrl
|= dca_get_tag(cpu
) <<
3401 E1000_DCA_TXCTRL_CPUID_SHIFT
;
3403 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK
;
3404 dca_txctrl
|= dca_get_tag(cpu
);
3406 dca_txctrl
|= E1000_DCA_TXCTRL_DESC_DCA_EN
;
3407 wr32(E1000_DCA_TXCTRL(q
), dca_txctrl
);
3413 static void igb_setup_dca(struct igb_adapter
*adapter
)
3417 if (!(adapter
->flags
& IGB_FLAG_DCA_ENABLED
))
3420 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
3421 adapter
->tx_ring
[i
].cpu
= -1;
3422 igb_update_tx_dca(&adapter
->tx_ring
[i
]);
3424 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
3425 adapter
->rx_ring
[i
].cpu
= -1;
3426 igb_update_rx_dca(&adapter
->rx_ring
[i
]);
3430 static int __igb_notify_dca(struct device
*dev
, void *data
)
3432 struct net_device
*netdev
= dev_get_drvdata(dev
);
3433 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3434 struct e1000_hw
*hw
= &adapter
->hw
;
3435 unsigned long event
= *(unsigned long *)data
;
3437 if (!(adapter
->flags
& IGB_FLAG_HAS_DCA
))
3441 case DCA_PROVIDER_ADD
:
3442 /* if already enabled, don't do it again */
3443 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3445 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
3446 /* Always use CB2 mode, difference is masked
3447 * in the CB driver. */
3448 wr32(E1000_DCA_CTRL
, 2);
3449 if (dca_add_requester(dev
) == 0) {
3450 dev_info(&adapter
->pdev
->dev
, "DCA enabled\n");
3451 igb_setup_dca(adapter
);
3454 /* Fall Through since DCA is disabled. */
3455 case DCA_PROVIDER_REMOVE
:
3456 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
3457 /* without this a class_device is left
3458 * hanging around in the sysfs model */
3459 dca_remove_requester(dev
);
3460 dev_info(&adapter
->pdev
->dev
, "DCA disabled\n");
3461 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
3462 wr32(E1000_DCA_CTRL
, 1);
3470 static int igb_notify_dca(struct notifier_block
*nb
, unsigned long event
,
3475 ret_val
= driver_for_each_device(&igb_driver
.driver
, NULL
, &event
,
3478 return ret_val
? NOTIFY_BAD
: NOTIFY_DONE
;
3480 #endif /* CONFIG_IGB_DCA */
3483 * igb_intr_msi - Interrupt Handler
3484 * @irq: interrupt number
3485 * @data: pointer to a network interface device structure
3487 static irqreturn_t
igb_intr_msi(int irq
, void *data
)
3489 struct net_device
*netdev
= data
;
3490 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3491 struct e1000_hw
*hw
= &adapter
->hw
;
3492 /* read ICR disables interrupts using IAM */
3493 u32 icr
= rd32(E1000_ICR
);
3495 igb_write_itr(adapter
->rx_ring
);
3497 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3498 hw
->mac
.get_link_status
= 1;
3499 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3500 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3503 netif_rx_schedule(netdev
, &adapter
->rx_ring
[0].napi
);
3509 * igb_intr - Interrupt Handler
3510 * @irq: interrupt number
3511 * @data: pointer to a network interface device structure
3513 static irqreturn_t
igb_intr(int irq
, void *data
)
3515 struct net_device
*netdev
= data
;
3516 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3517 struct e1000_hw
*hw
= &adapter
->hw
;
3518 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3519 * need for the IMC write */
3520 u32 icr
= rd32(E1000_ICR
);
3523 return IRQ_NONE
; /* Not our interrupt */
3525 igb_write_itr(adapter
->rx_ring
);
3527 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3528 * not set, then the adapter didn't send an interrupt */
3529 if (!(icr
& E1000_ICR_INT_ASSERTED
))
3532 eicr
= rd32(E1000_EICR
);
3534 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3535 hw
->mac
.get_link_status
= 1;
3536 /* guard against interrupt when we're going down */
3537 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3538 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3541 netif_rx_schedule(netdev
, &adapter
->rx_ring
[0].napi
);
3547 * igb_poll - NAPI Rx polling callback
3548 * @napi: napi polling structure
3549 * @budget: count of how many packets we should handle
3551 static int igb_poll(struct napi_struct
*napi
, int budget
)
3553 struct igb_ring
*rx_ring
= container_of(napi
, struct igb_ring
, napi
);
3554 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3555 struct net_device
*netdev
= adapter
->netdev
;
3556 int tx_clean_complete
, work_done
= 0;
3558 /* this poll routine only supports one tx and one rx queue */
3559 #ifdef CONFIG_IGB_DCA
3560 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3561 igb_update_tx_dca(&adapter
->tx_ring
[0]);
3563 tx_clean_complete
= igb_clean_tx_irq(&adapter
->tx_ring
[0]);
3565 #ifdef CONFIG_IGB_DCA
3566 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3567 igb_update_rx_dca(&adapter
->rx_ring
[0]);
3569 igb_clean_rx_irq_adv(&adapter
->rx_ring
[0], &work_done
, budget
);
3571 /* If no Tx and not enough Rx work done, exit the polling mode */
3572 if ((tx_clean_complete
&& (work_done
< budget
)) ||
3573 !netif_running(netdev
)) {
3574 if (adapter
->itr_setting
& 3)
3575 igb_set_itr(adapter
);
3576 netif_rx_complete(netdev
, napi
);
3577 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3578 igb_irq_enable(adapter
);
3585 static int igb_clean_rx_ring_msix(struct napi_struct
*napi
, int budget
)
3587 struct igb_ring
*rx_ring
= container_of(napi
, struct igb_ring
, napi
);
3588 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3589 struct e1000_hw
*hw
= &adapter
->hw
;
3590 struct net_device
*netdev
= adapter
->netdev
;
3593 #ifdef CONFIG_IGB_DCA
3594 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3595 igb_update_rx_dca(rx_ring
);
3597 igb_clean_rx_irq_adv(rx_ring
, &work_done
, budget
);
3600 /* If not enough Rx work done, exit the polling mode */
3601 if ((work_done
== 0) || !netif_running(netdev
)) {
3602 netif_rx_complete(netdev
, napi
);
3604 if (adapter
->itr_setting
& 3) {
3605 if (adapter
->num_rx_queues
== 1)
3606 igb_set_itr(adapter
);
3608 igb_update_ring_itr(rx_ring
);
3611 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3612 wr32(E1000_EIMS
, rx_ring
->eims_value
);
3620 static inline u32
get_head(struct igb_ring
*tx_ring
)
3622 void *end
= (struct e1000_tx_desc
*)tx_ring
->desc
+ tx_ring
->count
;
3623 return le32_to_cpu(*(volatile __le32
*)end
);
3627 * igb_clean_tx_irq - Reclaim resources after transmit completes
3628 * @adapter: board private structure
3629 * returns true if ring is completely cleaned
3631 static bool igb_clean_tx_irq(struct igb_ring
*tx_ring
)
3633 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3634 struct e1000_hw
*hw
= &adapter
->hw
;
3635 struct net_device
*netdev
= adapter
->netdev
;
3636 struct e1000_tx_desc
*tx_desc
;
3637 struct igb_buffer
*buffer_info
;
3638 struct sk_buff
*skb
;
3641 unsigned int count
= 0;
3642 unsigned int total_bytes
= 0, total_packets
= 0;
3646 head
= get_head(tx_ring
);
3647 i
= tx_ring
->next_to_clean
;
3650 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3651 buffer_info
= &tx_ring
->buffer_info
[i
];
3652 skb
= buffer_info
->skb
;
3655 unsigned int segs
, bytecount
;
3656 /* gso_segs is currently only valid for tcp */
3657 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3658 /* multiply data chunks by size of headers */
3659 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3661 total_packets
+= segs
;
3662 total_bytes
+= bytecount
;
3665 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
3668 if (i
== tx_ring
->count
)
3672 if (count
== IGB_MAX_TX_CLEAN
) {
3679 head
= get_head(tx_ring
);
3680 if (head
== oldhead
)
3685 tx_ring
->next_to_clean
= i
;
3687 if (unlikely(count
&&
3688 netif_carrier_ok(netdev
) &&
3689 IGB_DESC_UNUSED(tx_ring
) >= IGB_TX_QUEUE_WAKE
)) {
3690 /* Make sure that anybody stopping the queue after this
3691 * sees the new next_to_clean.
3694 if (__netif_subqueue_stopped(netdev
, tx_ring
->queue_index
) &&
3695 !(test_bit(__IGB_DOWN
, &adapter
->state
))) {
3696 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
3697 ++adapter
->restart_queue
;
3701 if (tx_ring
->detect_tx_hung
) {
3702 /* Detect a transmit hang in hardware, this serializes the
3703 * check with the clearing of time_stamp and movement of i */
3704 tx_ring
->detect_tx_hung
= false;
3705 if (tx_ring
->buffer_info
[i
].time_stamp
&&
3706 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
3707 (adapter
->tx_timeout_factor
* HZ
))
3708 && !(rd32(E1000_STATUS
) &
3709 E1000_STATUS_TXOFF
)) {
3711 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3712 /* detected Tx unit hang */
3713 dev_err(&adapter
->pdev
->dev
,
3714 "Detected Tx Unit Hang\n"
3718 " next_to_use <%x>\n"
3719 " next_to_clean <%x>\n"
3721 "buffer_info[next_to_clean]\n"
3722 " time_stamp <%lx>\n"
3724 " desc.status <%x>\n",
3725 tx_ring
->queue_index
,
3726 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
3727 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
3728 tx_ring
->next_to_use
,
3729 tx_ring
->next_to_clean
,
3731 tx_ring
->buffer_info
[i
].time_stamp
,
3733 tx_desc
->upper
.fields
.status
);
3734 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
3737 tx_ring
->total_bytes
+= total_bytes
;
3738 tx_ring
->total_packets
+= total_packets
;
3739 tx_ring
->tx_stats
.bytes
+= total_bytes
;
3740 tx_ring
->tx_stats
.packets
+= total_packets
;
3741 adapter
->net_stats
.tx_bytes
+= total_bytes
;
3742 adapter
->net_stats
.tx_packets
+= total_packets
;
3746 #ifdef CONFIG_IGB_LRO
3748 * igb_get_skb_hdr - helper function for LRO header processing
3749 * @skb: pointer to sk_buff to be added to LRO packet
3750 * @iphdr: pointer to ip header structure
3751 * @tcph: pointer to tcp header structure
3752 * @hdr_flags: pointer to header flags
3753 * @priv: pointer to the receive descriptor for the current sk_buff
3755 static int igb_get_skb_hdr(struct sk_buff
*skb
, void **iphdr
, void **tcph
,
3756 u64
*hdr_flags
, void *priv
)
3758 union e1000_adv_rx_desc
*rx_desc
= priv
;
3759 u16 pkt_type
= rx_desc
->wb
.lower
.lo_dword
.pkt_info
&
3760 (E1000_RXDADV_PKTTYPE_IPV4
| E1000_RXDADV_PKTTYPE_TCP
);
3762 /* Verify that this is a valid IPv4 TCP packet */
3763 if (pkt_type
!= (E1000_RXDADV_PKTTYPE_IPV4
|
3764 E1000_RXDADV_PKTTYPE_TCP
))
3767 /* Set network headers */
3768 skb_reset_network_header(skb
);
3769 skb_set_transport_header(skb
, ip_hdrlen(skb
));
3770 *iphdr
= ip_hdr(skb
);
3771 *tcph
= tcp_hdr(skb
);
3772 *hdr_flags
= LRO_IPV4
| LRO_TCP
;
3777 #endif /* CONFIG_IGB_LRO */
3780 * igb_receive_skb - helper function to handle rx indications
3781 * @ring: pointer to receive ring receving this packet
3782 * @status: descriptor status field as written by hardware
3783 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3784 * @skb: pointer to sk_buff to be indicated to stack
3786 static void igb_receive_skb(struct igb_ring
*ring
, u8 status
,
3787 union e1000_adv_rx_desc
* rx_desc
,
3788 struct sk_buff
*skb
)
3790 struct igb_adapter
* adapter
= ring
->adapter
;
3791 bool vlan_extracted
= (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
));
3793 #ifdef CONFIG_IGB_LRO
3794 if (adapter
->netdev
->features
& NETIF_F_LRO
&&
3795 skb
->ip_summed
== CHECKSUM_UNNECESSARY
) {
3797 lro_vlan_hwaccel_receive_skb(&ring
->lro_mgr
, skb
,
3799 le16_to_cpu(rx_desc
->wb
.upper
.vlan
),
3802 lro_receive_skb(&ring
->lro_mgr
,skb
, rx_desc
);
3807 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3808 le16_to_cpu(rx_desc
->wb
.upper
.vlan
));
3811 netif_receive_skb(skb
);
3812 #ifdef CONFIG_IGB_LRO
3818 static inline void igb_rx_checksum_adv(struct igb_adapter
*adapter
,
3819 u32 status_err
, struct sk_buff
*skb
)
3821 skb
->ip_summed
= CHECKSUM_NONE
;
3823 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3824 if ((status_err
& E1000_RXD_STAT_IXSM
) || !adapter
->rx_csum
)
3826 /* TCP/UDP checksum error bit is set */
3828 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
3829 /* let the stack verify checksum errors */
3830 adapter
->hw_csum_err
++;
3833 /* It must be a TCP or UDP packet with a valid checksum */
3834 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
3835 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3837 adapter
->hw_csum_good
++;
3840 static bool igb_clean_rx_irq_adv(struct igb_ring
*rx_ring
,
3841 int *work_done
, int budget
)
3843 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3844 struct net_device
*netdev
= adapter
->netdev
;
3845 struct pci_dev
*pdev
= adapter
->pdev
;
3846 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
3847 struct igb_buffer
*buffer_info
, *next_buffer
;
3848 struct sk_buff
*skb
;
3850 u32 length
, hlen
, staterr
;
3851 bool cleaned
= false;
3852 int cleaned_count
= 0;
3853 unsigned int total_bytes
= 0, total_packets
= 0;
3855 i
= rx_ring
->next_to_clean
;
3856 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3857 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3859 while (staterr
& E1000_RXD_STAT_DD
) {
3860 if (*work_done
>= budget
)
3863 buffer_info
= &rx_ring
->buffer_info
[i
];
3865 /* HW will not DMA in data larger than the given buffer, even
3866 * if it parses the (NFS, of course) header to be larger. In
3867 * that case, it fills the header buffer and spills the rest
3870 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hdr_info
) &
3871 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
;
3872 if (hlen
> adapter
->rx_ps_hdr_size
)
3873 hlen
= adapter
->rx_ps_hdr_size
;
3875 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
3879 skb
= buffer_info
->skb
;
3880 prefetch(skb
->data
- NET_IP_ALIGN
);
3881 buffer_info
->skb
= NULL
;
3882 if (!adapter
->rx_ps_hdr_size
) {
3883 pci_unmap_single(pdev
, buffer_info
->dma
,
3884 adapter
->rx_buffer_len
+
3886 PCI_DMA_FROMDEVICE
);
3887 skb_put(skb
, length
);
3891 if (!skb_shinfo(skb
)->nr_frags
) {
3892 pci_unmap_single(pdev
, buffer_info
->dma
,
3893 adapter
->rx_ps_hdr_size
+
3895 PCI_DMA_FROMDEVICE
);
3900 pci_unmap_page(pdev
, buffer_info
->page_dma
,
3901 PAGE_SIZE
/ 2, PCI_DMA_FROMDEVICE
);
3902 buffer_info
->page_dma
= 0;
3904 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
++,
3906 buffer_info
->page_offset
,
3909 if ((adapter
->rx_buffer_len
> (PAGE_SIZE
/ 2)) ||
3910 (page_count(buffer_info
->page
) != 1))
3911 buffer_info
->page
= NULL
;
3913 get_page(buffer_info
->page
);
3916 skb
->data_len
+= length
;
3918 skb
->truesize
+= length
;
3922 if (i
== rx_ring
->count
)
3924 next_rxd
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3926 next_buffer
= &rx_ring
->buffer_info
[i
];
3928 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
3929 buffer_info
->skb
= next_buffer
->skb
;
3930 buffer_info
->dma
= next_buffer
->dma
;
3931 next_buffer
->skb
= skb
;
3932 next_buffer
->dma
= 0;
3936 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
3937 dev_kfree_skb_irq(skb
);
3941 total_bytes
+= skb
->len
;
3944 igb_rx_checksum_adv(adapter
, staterr
, skb
);
3946 skb
->protocol
= eth_type_trans(skb
, netdev
);
3948 igb_receive_skb(rx_ring
, staterr
, rx_desc
, skb
);
3951 rx_desc
->wb
.upper
.status_error
= 0;
3953 /* return some buffers to hardware, one at a time is too slow */
3954 if (cleaned_count
>= IGB_RX_BUFFER_WRITE
) {
3955 igb_alloc_rx_buffers_adv(rx_ring
, cleaned_count
);
3959 /* use prefetched values */
3961 buffer_info
= next_buffer
;
3963 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3966 rx_ring
->next_to_clean
= i
;
3967 cleaned_count
= IGB_DESC_UNUSED(rx_ring
);
3969 #ifdef CONFIG_IGB_LRO
3970 if (rx_ring
->lro_used
) {
3971 lro_flush_all(&rx_ring
->lro_mgr
);
3972 rx_ring
->lro_used
= 0;
3977 igb_alloc_rx_buffers_adv(rx_ring
, cleaned_count
);
3979 rx_ring
->total_packets
+= total_packets
;
3980 rx_ring
->total_bytes
+= total_bytes
;
3981 rx_ring
->rx_stats
.packets
+= total_packets
;
3982 rx_ring
->rx_stats
.bytes
+= total_bytes
;
3983 adapter
->net_stats
.rx_bytes
+= total_bytes
;
3984 adapter
->net_stats
.rx_packets
+= total_packets
;
3990 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3991 * @adapter: address of board private structure
3993 static void igb_alloc_rx_buffers_adv(struct igb_ring
*rx_ring
,
3996 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3997 struct net_device
*netdev
= adapter
->netdev
;
3998 struct pci_dev
*pdev
= adapter
->pdev
;
3999 union e1000_adv_rx_desc
*rx_desc
;
4000 struct igb_buffer
*buffer_info
;
4001 struct sk_buff
*skb
;
4004 i
= rx_ring
->next_to_use
;
4005 buffer_info
= &rx_ring
->buffer_info
[i
];
4007 while (cleaned_count
--) {
4008 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
4010 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page_dma
) {
4011 if (!buffer_info
->page
) {
4012 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
4013 if (!buffer_info
->page
) {
4014 adapter
->alloc_rx_buff_failed
++;
4017 buffer_info
->page_offset
= 0;
4019 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
4021 buffer_info
->page_dma
=
4024 buffer_info
->page_offset
,
4026 PCI_DMA_FROMDEVICE
);
4029 if (!buffer_info
->skb
) {
4032 if (adapter
->rx_ps_hdr_size
)
4033 bufsz
= adapter
->rx_ps_hdr_size
;
4035 bufsz
= adapter
->rx_buffer_len
;
4036 bufsz
+= NET_IP_ALIGN
;
4037 skb
= netdev_alloc_skb(netdev
, bufsz
);
4040 adapter
->alloc_rx_buff_failed
++;
4044 /* Make buffer alignment 2 beyond a 16 byte boundary
4045 * this will result in a 16 byte aligned IP header after
4046 * the 14 byte MAC header is removed
4048 skb_reserve(skb
, NET_IP_ALIGN
);
4050 buffer_info
->skb
= skb
;
4051 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
4053 PCI_DMA_FROMDEVICE
);
4056 /* Refresh the desc even if buffer_addrs didn't change because
4057 * each write-back erases this info. */
4058 if (adapter
->rx_ps_hdr_size
) {
4059 rx_desc
->read
.pkt_addr
=
4060 cpu_to_le64(buffer_info
->page_dma
);
4061 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
4063 rx_desc
->read
.pkt_addr
=
4064 cpu_to_le64(buffer_info
->dma
);
4065 rx_desc
->read
.hdr_addr
= 0;
4069 if (i
== rx_ring
->count
)
4071 buffer_info
= &rx_ring
->buffer_info
[i
];
4075 if (rx_ring
->next_to_use
!= i
) {
4076 rx_ring
->next_to_use
= i
;
4078 i
= (rx_ring
->count
- 1);
4082 /* Force memory writes to complete before letting h/w
4083 * know there are new descriptors to fetch. (Only
4084 * applicable for weak-ordered memory model archs,
4085 * such as IA-64). */
4087 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
4097 static int igb_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4099 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4100 struct mii_ioctl_data
*data
= if_mii(ifr
);
4102 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
4107 data
->phy_id
= adapter
->hw
.phy
.addr
;
4110 if (!capable(CAP_NET_ADMIN
))
4112 if (igb_read_phy_reg(&adapter
->hw
, data
->reg_num
& 0x1F,
4129 static int igb_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4135 return igb_mii_ioctl(netdev
, ifr
, cmd
);
4141 static void igb_vlan_rx_register(struct net_device
*netdev
,
4142 struct vlan_group
*grp
)
4144 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4145 struct e1000_hw
*hw
= &adapter
->hw
;
4148 igb_irq_disable(adapter
);
4149 adapter
->vlgrp
= grp
;
4152 /* enable VLAN tag insert/strip */
4153 ctrl
= rd32(E1000_CTRL
);
4154 ctrl
|= E1000_CTRL_VME
;
4155 wr32(E1000_CTRL
, ctrl
);
4157 /* enable VLAN receive filtering */
4158 rctl
= rd32(E1000_RCTL
);
4159 rctl
&= ~E1000_RCTL_CFIEN
;
4160 wr32(E1000_RCTL
, rctl
);
4161 igb_update_mng_vlan(adapter
);
4163 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
4165 /* disable VLAN tag insert/strip */
4166 ctrl
= rd32(E1000_CTRL
);
4167 ctrl
&= ~E1000_CTRL_VME
;
4168 wr32(E1000_CTRL
, ctrl
);
4170 if (adapter
->mng_vlan_id
!= (u16
)IGB_MNG_VLAN_NONE
) {
4171 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
4172 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
4175 adapter
->max_frame_size
);
4178 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
4179 igb_irq_enable(adapter
);
4182 static void igb_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
4184 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4185 struct e1000_hw
*hw
= &adapter
->hw
;
4188 if ((adapter
->hw
.mng_cookie
.status
&
4189 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
4190 (vid
== adapter
->mng_vlan_id
))
4192 /* add VID to filter table */
4193 index
= (vid
>> 5) & 0x7F;
4194 vfta
= array_rd32(E1000_VFTA
, index
);
4195 vfta
|= (1 << (vid
& 0x1F));
4196 igb_write_vfta(&adapter
->hw
, index
, vfta
);
4199 static void igb_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
4201 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4202 struct e1000_hw
*hw
= &adapter
->hw
;
4205 igb_irq_disable(adapter
);
4206 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
4208 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
4209 igb_irq_enable(adapter
);
4211 if ((adapter
->hw
.mng_cookie
.status
&
4212 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
4213 (vid
== adapter
->mng_vlan_id
)) {
4214 /* release control to f/w */
4215 igb_release_hw_control(adapter
);
4219 /* remove VID from filter table */
4220 index
= (vid
>> 5) & 0x7F;
4221 vfta
= array_rd32(E1000_VFTA
, index
);
4222 vfta
&= ~(1 << (vid
& 0x1F));
4223 igb_write_vfta(&adapter
->hw
, index
, vfta
);
4226 static void igb_restore_vlan(struct igb_adapter
*adapter
)
4228 igb_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
4230 if (adapter
->vlgrp
) {
4232 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
4233 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
4235 igb_vlan_rx_add_vid(adapter
->netdev
, vid
);
4240 int igb_set_spd_dplx(struct igb_adapter
*adapter
, u16 spddplx
)
4242 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
4246 /* Fiber NICs only allow 1000 gbps Full duplex */
4247 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
4248 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
4249 dev_err(&adapter
->pdev
->dev
,
4250 "Unsupported Speed/Duplex configuration\n");
4255 case SPEED_10
+ DUPLEX_HALF
:
4256 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
4258 case SPEED_10
+ DUPLEX_FULL
:
4259 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
4261 case SPEED_100
+ DUPLEX_HALF
:
4262 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
4264 case SPEED_100
+ DUPLEX_FULL
:
4265 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
4267 case SPEED_1000
+ DUPLEX_FULL
:
4269 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
4271 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4273 dev_err(&adapter
->pdev
->dev
,
4274 "Unsupported Speed/Duplex configuration\n");
4281 static int igb_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4283 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4284 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4285 struct e1000_hw
*hw
= &adapter
->hw
;
4286 u32 ctrl
, rctl
, status
;
4287 u32 wufc
= adapter
->wol
;
4292 netif_device_detach(netdev
);
4294 if (netif_running(netdev
))
4297 igb_reset_interrupt_capability(adapter
);
4299 igb_free_queues(adapter
);
4302 retval
= pci_save_state(pdev
);
4307 status
= rd32(E1000_STATUS
);
4308 if (status
& E1000_STATUS_LU
)
4309 wufc
&= ~E1000_WUFC_LNKC
;
4312 igb_setup_rctl(adapter
);
4313 igb_set_multi(netdev
);
4315 /* turn on all-multi mode if wake on multicast is enabled */
4316 if (wufc
& E1000_WUFC_MC
) {
4317 rctl
= rd32(E1000_RCTL
);
4318 rctl
|= E1000_RCTL_MPE
;
4319 wr32(E1000_RCTL
, rctl
);
4322 ctrl
= rd32(E1000_CTRL
);
4323 /* advertise wake from D3Cold */
4324 #define E1000_CTRL_ADVD3WUC 0x00100000
4325 /* phy power management enable */
4326 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4327 ctrl
|= E1000_CTRL_ADVD3WUC
;
4328 wr32(E1000_CTRL
, ctrl
);
4330 /* Allow time for pending master requests to run */
4331 igb_disable_pcie_master(&adapter
->hw
);
4333 wr32(E1000_WUC
, E1000_WUC_PME_EN
);
4334 wr32(E1000_WUFC
, wufc
);
4337 wr32(E1000_WUFC
, 0);
4340 /* make sure adapter isn't asleep if manageability/wol is enabled */
4341 if (wufc
|| adapter
->en_mng_pt
) {
4342 pci_enable_wake(pdev
, PCI_D3hot
, 1);
4343 pci_enable_wake(pdev
, PCI_D3cold
, 1);
4345 igb_shutdown_fiber_serdes_link_82575(hw
);
4346 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4347 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4350 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4351 * would have already happened in close and is redundant. */
4352 igb_release_hw_control(adapter
);
4354 pci_disable_device(pdev
);
4356 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
4362 static int igb_resume(struct pci_dev
*pdev
)
4364 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4365 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4366 struct e1000_hw
*hw
= &adapter
->hw
;
4369 pci_set_power_state(pdev
, PCI_D0
);
4370 pci_restore_state(pdev
);
4372 if (adapter
->need_ioport
)
4373 err
= pci_enable_device(pdev
);
4375 err
= pci_enable_device_mem(pdev
);
4378 "igb: Cannot enable PCI device from suspend\n");
4381 pci_set_master(pdev
);
4383 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4384 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4386 igb_set_interrupt_capability(adapter
);
4388 if (igb_alloc_queues(adapter
)) {
4389 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
4393 /* e1000_power_up_phy(adapter); */
4396 wr32(E1000_WUS
, ~0);
4398 if (netif_running(netdev
)) {
4399 err
= igb_open(netdev
);
4404 netif_device_attach(netdev
);
4406 /* let the f/w know that the h/w is now under the control of the
4408 igb_get_hw_control(adapter
);
4414 static void igb_shutdown(struct pci_dev
*pdev
)
4416 igb_suspend(pdev
, PMSG_SUSPEND
);
4419 #ifdef CONFIG_NET_POLL_CONTROLLER
4421 * Polling 'interrupt' - used by things like netconsole to send skbs
4422 * without having to re-enable interrupts. It's not called while
4423 * the interrupt routine is executing.
4425 static void igb_netpoll(struct net_device
*netdev
)
4427 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4431 igb_irq_disable(adapter
);
4432 adapter
->flags
|= IGB_FLAG_IN_NETPOLL
;
4434 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
4435 igb_clean_tx_irq(&adapter
->tx_ring
[i
]);
4437 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
4438 igb_clean_rx_irq_adv(&adapter
->rx_ring
[i
],
4440 adapter
->rx_ring
[i
].napi
.weight
);
4442 adapter
->flags
&= ~IGB_FLAG_IN_NETPOLL
;
4443 igb_irq_enable(adapter
);
4445 #endif /* CONFIG_NET_POLL_CONTROLLER */
4448 * igb_io_error_detected - called when PCI error is detected
4449 * @pdev: Pointer to PCI device
4450 * @state: The current pci connection state
4452 * This function is called after a PCI bus error affecting
4453 * this device has been detected.
4455 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*pdev
,
4456 pci_channel_state_t state
)
4458 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4459 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4461 netif_device_detach(netdev
);
4463 if (netif_running(netdev
))
4465 pci_disable_device(pdev
);
4467 /* Request a slot slot reset. */
4468 return PCI_ERS_RESULT_NEED_RESET
;
4472 * igb_io_slot_reset - called after the pci bus has been reset.
4473 * @pdev: Pointer to PCI device
4475 * Restart the card from scratch, as if from a cold-boot. Implementation
4476 * resembles the first-half of the igb_resume routine.
4478 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*pdev
)
4480 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4481 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4482 struct e1000_hw
*hw
= &adapter
->hw
;
4483 pci_ers_result_t result
;
4486 if (adapter
->need_ioport
)
4487 err
= pci_enable_device(pdev
);
4489 err
= pci_enable_device_mem(pdev
);
4493 "Cannot re-enable PCI device after reset.\n");
4494 result
= PCI_ERS_RESULT_DISCONNECT
;
4496 pci_set_master(pdev
);
4497 pci_restore_state(pdev
);
4499 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4500 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4503 wr32(E1000_WUS
, ~0);
4504 result
= PCI_ERS_RESULT_RECOVERED
;
4507 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
4509 dev_err(&pdev
->dev
, "pci_cleanup_aer_uncorrect_error_status "
4510 "failed 0x%0x\n", err
);
4511 /* non-fatal, continue */
4518 * igb_io_resume - called when traffic can start flowing again.
4519 * @pdev: Pointer to PCI device
4521 * This callback is called when the error recovery driver tells us that
4522 * its OK to resume normal operation. Implementation resembles the
4523 * second-half of the igb_resume routine.
4525 static void igb_io_resume(struct pci_dev
*pdev
)
4527 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4528 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4530 if (netif_running(netdev
)) {
4531 if (igb_up(adapter
)) {
4532 dev_err(&pdev
->dev
, "igb_up failed after reset\n");
4537 netif_device_attach(netdev
);
4539 /* let the f/w know that the h/w is now under the control of the
4541 igb_get_hw_control(adapter
);