igb: fixup AER with proper error handling
[linux-2.6/mini2440.git] / drivers / net / igb / igb_main.c
blob25df7c9310647080c5da278b798c613fca408374
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/pci-aspm.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/if_ether.h>
45 #include <linux/aer.h>
46 #ifdef CONFIG_IGB_DCA
47 #include <linux/dca.h>
48 #endif
49 #include "igb.h"
51 #define DRV_VERSION "1.2.45-k2"
52 char igb_driver_name[] = "igb";
53 char igb_driver_version[] = DRV_VERSION;
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
58 static const struct e1000_info *igb_info_tbl[] = {
59 [board_82575] = &e1000_82575_info,
62 static struct pci_device_id igb_pci_tbl[] = {
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
69 /* required last entry */
70 {0, }
73 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
75 void igb_reset(struct igb_adapter *);
76 static int igb_setup_all_tx_resources(struct igb_adapter *);
77 static int igb_setup_all_rx_resources(struct igb_adapter *);
78 static void igb_free_all_tx_resources(struct igb_adapter *);
79 static void igb_free_all_rx_resources(struct igb_adapter *);
80 void igb_update_stats(struct igb_adapter *);
81 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
82 static void __devexit igb_remove(struct pci_dev *pdev);
83 static int igb_sw_init(struct igb_adapter *);
84 static int igb_open(struct net_device *);
85 static int igb_close(struct net_device *);
86 static void igb_configure_tx(struct igb_adapter *);
87 static void igb_configure_rx(struct igb_adapter *);
88 static void igb_setup_rctl(struct igb_adapter *);
89 static void igb_clean_all_tx_rings(struct igb_adapter *);
90 static void igb_clean_all_rx_rings(struct igb_adapter *);
91 static void igb_clean_tx_ring(struct igb_ring *);
92 static void igb_clean_rx_ring(struct igb_ring *);
93 static void igb_set_multi(struct net_device *);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct *);
97 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
98 struct igb_ring *);
99 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
100 static struct net_device_stats *igb_get_stats(struct net_device *);
101 static int igb_change_mtu(struct net_device *, int);
102 static int igb_set_mac(struct net_device *, void *);
103 static irqreturn_t igb_intr(int irq, void *);
104 static irqreturn_t igb_intr_msi(int irq, void *);
105 static irqreturn_t igb_msix_other(int irq, void *);
106 static irqreturn_t igb_msix_rx(int irq, void *);
107 static irqreturn_t igb_msix_tx(int irq, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 #ifdef CONFIG_IGB_LRO
119 static int igb_get_skb_hdr(struct sk_buff *skb, void **, void **, u64 *, void *);
120 #endif
121 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
122 static void igb_tx_timeout(struct net_device *);
123 static void igb_reset_task(struct work_struct *);
124 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
125 static void igb_vlan_rx_add_vid(struct net_device *, u16);
126 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
127 static void igb_restore_vlan(struct igb_adapter *);
129 static int igb_suspend(struct pci_dev *, pm_message_t);
130 #ifdef CONFIG_PM
131 static int igb_resume(struct pci_dev *);
132 #endif
133 static void igb_shutdown(struct pci_dev *);
134 #ifdef CONFIG_IGB_DCA
135 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
136 static struct notifier_block dca_notifier = {
137 .notifier_call = igb_notify_dca,
138 .next = NULL,
139 .priority = 0
141 #endif
143 #ifdef CONFIG_NET_POLL_CONTROLLER
144 /* for netdump / net console */
145 static void igb_netpoll(struct net_device *);
146 #endif
148 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
149 pci_channel_state_t);
150 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
151 static void igb_io_resume(struct pci_dev *);
153 static struct pci_error_handlers igb_err_handler = {
154 .error_detected = igb_io_error_detected,
155 .slot_reset = igb_io_slot_reset,
156 .resume = igb_io_resume,
160 static struct pci_driver igb_driver = {
161 .name = igb_driver_name,
162 .id_table = igb_pci_tbl,
163 .probe = igb_probe,
164 .remove = __devexit_p(igb_remove),
165 #ifdef CONFIG_PM
166 /* Power Managment Hooks */
167 .suspend = igb_suspend,
168 .resume = igb_resume,
169 #endif
170 .shutdown = igb_shutdown,
171 .err_handler = &igb_err_handler
174 static int global_quad_port_a; /* global quad port a indication */
176 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
177 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
178 MODULE_LICENSE("GPL");
179 MODULE_VERSION(DRV_VERSION);
181 #ifdef DEBUG
183 * igb_get_hw_dev_name - return device name string
184 * used by hardware layer to print debugging information
186 char *igb_get_hw_dev_name(struct e1000_hw *hw)
188 struct igb_adapter *adapter = hw->back;
189 return adapter->netdev->name;
191 #endif
194 * igb_init_module - Driver Registration Routine
196 * igb_init_module is the first routine called when the driver is
197 * loaded. All it does is register with the PCI subsystem.
199 static int __init igb_init_module(void)
201 int ret;
202 printk(KERN_INFO "%s - version %s\n",
203 igb_driver_string, igb_driver_version);
205 printk(KERN_INFO "%s\n", igb_copyright);
207 global_quad_port_a = 0;
209 ret = pci_register_driver(&igb_driver);
210 #ifdef CONFIG_IGB_DCA
211 dca_register_notify(&dca_notifier);
212 #endif
213 return ret;
216 module_init(igb_init_module);
219 * igb_exit_module - Driver Exit Cleanup Routine
221 * igb_exit_module is called just before the driver is removed
222 * from memory.
224 static void __exit igb_exit_module(void)
226 #ifdef CONFIG_IGB_DCA
227 dca_unregister_notify(&dca_notifier);
228 #endif
229 pci_unregister_driver(&igb_driver);
232 module_exit(igb_exit_module);
235 * igb_alloc_queues - Allocate memory for all rings
236 * @adapter: board private structure to initialize
238 * We allocate one ring per queue at run-time since we don't know the
239 * number of queues at compile-time.
241 static int igb_alloc_queues(struct igb_adapter *adapter)
243 int i;
245 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
246 sizeof(struct igb_ring), GFP_KERNEL);
247 if (!adapter->tx_ring)
248 return -ENOMEM;
250 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
251 sizeof(struct igb_ring), GFP_KERNEL);
252 if (!adapter->rx_ring) {
253 kfree(adapter->tx_ring);
254 return -ENOMEM;
257 adapter->rx_ring->buddy = adapter->tx_ring;
259 for (i = 0; i < adapter->num_tx_queues; i++) {
260 struct igb_ring *ring = &(adapter->tx_ring[i]);
261 ring->count = adapter->tx_ring_count;
262 ring->adapter = adapter;
263 ring->queue_index = i;
265 for (i = 0; i < adapter->num_rx_queues; i++) {
266 struct igb_ring *ring = &(adapter->rx_ring[i]);
267 ring->count = adapter->rx_ring_count;
268 ring->adapter = adapter;
269 ring->queue_index = i;
270 ring->itr_register = E1000_ITR;
272 /* set a default napi handler for each rx_ring */
273 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
275 return 0;
278 static void igb_free_queues(struct igb_adapter *adapter)
280 int i;
282 for (i = 0; i < adapter->num_rx_queues; i++)
283 netif_napi_del(&adapter->rx_ring[i].napi);
285 kfree(adapter->tx_ring);
286 kfree(adapter->rx_ring);
289 #define IGB_N0_QUEUE -1
290 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
291 int tx_queue, int msix_vector)
293 u32 msixbm = 0;
294 struct e1000_hw *hw = &adapter->hw;
295 u32 ivar, index;
297 switch (hw->mac.type) {
298 case e1000_82575:
299 /* The 82575 assigns vectors using a bitmask, which matches the
300 bitmask for the EICR/EIMS/EIMC registers. To assign one
301 or more queues to a vector, we write the appropriate bits
302 into the MSIXBM register for that vector. */
303 if (rx_queue > IGB_N0_QUEUE) {
304 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
305 adapter->rx_ring[rx_queue].eims_value = msixbm;
307 if (tx_queue > IGB_N0_QUEUE) {
308 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
309 adapter->tx_ring[tx_queue].eims_value =
310 E1000_EICR_TX_QUEUE0 << tx_queue;
312 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
313 break;
314 case e1000_82576:
315 /* The 82576 uses a table-based method for assigning vectors.
316 Each queue has a single entry in the table to which we write
317 a vector number along with a "valid" bit. Sadly, the layout
318 of the table is somewhat counterintuitive. */
319 if (rx_queue > IGB_N0_QUEUE) {
320 index = (rx_queue & 0x7);
321 ivar = array_rd32(E1000_IVAR0, index);
322 if (rx_queue < 8) {
323 /* vector goes into low byte of register */
324 ivar = ivar & 0xFFFFFF00;
325 ivar |= msix_vector | E1000_IVAR_VALID;
326 } else {
327 /* vector goes into third byte of register */
328 ivar = ivar & 0xFF00FFFF;
329 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
331 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
332 array_wr32(E1000_IVAR0, index, ivar);
334 if (tx_queue > IGB_N0_QUEUE) {
335 index = (tx_queue & 0x7);
336 ivar = array_rd32(E1000_IVAR0, index);
337 if (tx_queue < 8) {
338 /* vector goes into second byte of register */
339 ivar = ivar & 0xFFFF00FF;
340 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
341 } else {
342 /* vector goes into high byte of register */
343 ivar = ivar & 0x00FFFFFF;
344 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
346 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
347 array_wr32(E1000_IVAR0, index, ivar);
349 break;
350 default:
351 BUG();
352 break;
357 * igb_configure_msix - Configure MSI-X hardware
359 * igb_configure_msix sets up the hardware to properly
360 * generate MSI-X interrupts.
362 static void igb_configure_msix(struct igb_adapter *adapter)
364 u32 tmp;
365 int i, vector = 0;
366 struct e1000_hw *hw = &adapter->hw;
368 adapter->eims_enable_mask = 0;
369 if (hw->mac.type == e1000_82576)
370 /* Turn on MSI-X capability first, or our settings
371 * won't stick. And it will take days to debug. */
372 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
373 E1000_GPIE_PBA | E1000_GPIE_EIAME |
374 E1000_GPIE_NSICR);
376 for (i = 0; i < adapter->num_tx_queues; i++) {
377 struct igb_ring *tx_ring = &adapter->tx_ring[i];
378 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
379 adapter->eims_enable_mask |= tx_ring->eims_value;
380 if (tx_ring->itr_val)
381 writel(tx_ring->itr_val,
382 hw->hw_addr + tx_ring->itr_register);
383 else
384 writel(1, hw->hw_addr + tx_ring->itr_register);
387 for (i = 0; i < adapter->num_rx_queues; i++) {
388 struct igb_ring *rx_ring = &adapter->rx_ring[i];
389 rx_ring->buddy = NULL;
390 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
391 adapter->eims_enable_mask |= rx_ring->eims_value;
392 if (rx_ring->itr_val)
393 writel(rx_ring->itr_val,
394 hw->hw_addr + rx_ring->itr_register);
395 else
396 writel(1, hw->hw_addr + rx_ring->itr_register);
400 /* set vector for other causes, i.e. link changes */
401 switch (hw->mac.type) {
402 case e1000_82575:
403 array_wr32(E1000_MSIXBM(0), vector++,
404 E1000_EIMS_OTHER);
406 tmp = rd32(E1000_CTRL_EXT);
407 /* enable MSI-X PBA support*/
408 tmp |= E1000_CTRL_EXT_PBA_CLR;
410 /* Auto-Mask interrupts upon ICR read. */
411 tmp |= E1000_CTRL_EXT_EIAME;
412 tmp |= E1000_CTRL_EXT_IRCA;
414 wr32(E1000_CTRL_EXT, tmp);
415 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
416 adapter->eims_other = E1000_EIMS_OTHER;
418 break;
420 case e1000_82576:
421 tmp = (vector++ | E1000_IVAR_VALID) << 8;
422 wr32(E1000_IVAR_MISC, tmp);
424 adapter->eims_enable_mask = (1 << (vector)) - 1;
425 adapter->eims_other = 1 << (vector - 1);
426 break;
427 default:
428 /* do nothing, since nothing else supports MSI-X */
429 break;
430 } /* switch (hw->mac.type) */
431 wrfl();
435 * igb_request_msix - Initialize MSI-X interrupts
437 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
438 * kernel.
440 static int igb_request_msix(struct igb_adapter *adapter)
442 struct net_device *netdev = adapter->netdev;
443 int i, err = 0, vector = 0;
445 vector = 0;
447 for (i = 0; i < adapter->num_tx_queues; i++) {
448 struct igb_ring *ring = &(adapter->tx_ring[i]);
449 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
450 err = request_irq(adapter->msix_entries[vector].vector,
451 &igb_msix_tx, 0, ring->name,
452 &(adapter->tx_ring[i]));
453 if (err)
454 goto out;
455 ring->itr_register = E1000_EITR(0) + (vector << 2);
456 ring->itr_val = 976; /* ~4000 ints/sec */
457 vector++;
459 for (i = 0; i < adapter->num_rx_queues; i++) {
460 struct igb_ring *ring = &(adapter->rx_ring[i]);
461 if (strlen(netdev->name) < (IFNAMSIZ - 5))
462 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
463 else
464 memcpy(ring->name, netdev->name, IFNAMSIZ);
465 err = request_irq(adapter->msix_entries[vector].vector,
466 &igb_msix_rx, 0, ring->name,
467 &(adapter->rx_ring[i]));
468 if (err)
469 goto out;
470 ring->itr_register = E1000_EITR(0) + (vector << 2);
471 ring->itr_val = adapter->itr;
472 /* overwrite the poll routine for MSIX, we've already done
473 * netif_napi_add */
474 ring->napi.poll = &igb_clean_rx_ring_msix;
475 vector++;
478 err = request_irq(adapter->msix_entries[vector].vector,
479 &igb_msix_other, 0, netdev->name, netdev);
480 if (err)
481 goto out;
483 igb_configure_msix(adapter);
484 return 0;
485 out:
486 return err;
489 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
491 if (adapter->msix_entries) {
492 pci_disable_msix(adapter->pdev);
493 kfree(adapter->msix_entries);
494 adapter->msix_entries = NULL;
495 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
496 pci_disable_msi(adapter->pdev);
497 return;
502 * igb_set_interrupt_capability - set MSI or MSI-X if supported
504 * Attempt to configure interrupts using the best available
505 * capabilities of the hardware and kernel.
507 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
509 int err;
510 int numvecs, i;
512 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
513 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
514 GFP_KERNEL);
515 if (!adapter->msix_entries)
516 goto msi_only;
518 for (i = 0; i < numvecs; i++)
519 adapter->msix_entries[i].entry = i;
521 err = pci_enable_msix(adapter->pdev,
522 adapter->msix_entries,
523 numvecs);
524 if (err == 0)
525 goto out;
527 igb_reset_interrupt_capability(adapter);
529 /* If we can't do MSI-X, try MSI */
530 msi_only:
531 adapter->num_rx_queues = 1;
532 adapter->num_tx_queues = 1;
533 if (!pci_enable_msi(adapter->pdev))
534 adapter->flags |= IGB_FLAG_HAS_MSI;
535 out:
536 /* Notify the stack of the (possibly) reduced Tx Queue count. */
537 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
538 return;
542 * igb_request_irq - initialize interrupts
544 * Attempts to configure interrupts using the best available
545 * capabilities of the hardware and kernel.
547 static int igb_request_irq(struct igb_adapter *adapter)
549 struct net_device *netdev = adapter->netdev;
550 struct e1000_hw *hw = &adapter->hw;
551 int err = 0;
553 if (adapter->msix_entries) {
554 err = igb_request_msix(adapter);
555 if (!err)
556 goto request_done;
557 /* fall back to MSI */
558 igb_reset_interrupt_capability(adapter);
559 if (!pci_enable_msi(adapter->pdev))
560 adapter->flags |= IGB_FLAG_HAS_MSI;
561 igb_free_all_tx_resources(adapter);
562 igb_free_all_rx_resources(adapter);
563 adapter->num_rx_queues = 1;
564 igb_alloc_queues(adapter);
565 } else {
566 switch (hw->mac.type) {
567 case e1000_82575:
568 wr32(E1000_MSIXBM(0),
569 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
570 break;
571 case e1000_82576:
572 wr32(E1000_IVAR0, E1000_IVAR_VALID);
573 break;
574 default:
575 break;
579 if (adapter->flags & IGB_FLAG_HAS_MSI) {
580 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
581 netdev->name, netdev);
582 if (!err)
583 goto request_done;
584 /* fall back to legacy interrupts */
585 igb_reset_interrupt_capability(adapter);
586 adapter->flags &= ~IGB_FLAG_HAS_MSI;
589 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
590 netdev->name, netdev);
592 if (err)
593 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
594 err);
596 request_done:
597 return err;
600 static void igb_free_irq(struct igb_adapter *adapter)
602 struct net_device *netdev = adapter->netdev;
604 if (adapter->msix_entries) {
605 int vector = 0, i;
607 for (i = 0; i < adapter->num_tx_queues; i++)
608 free_irq(adapter->msix_entries[vector++].vector,
609 &(adapter->tx_ring[i]));
610 for (i = 0; i < adapter->num_rx_queues; i++)
611 free_irq(adapter->msix_entries[vector++].vector,
612 &(adapter->rx_ring[i]));
614 free_irq(adapter->msix_entries[vector++].vector, netdev);
615 return;
618 free_irq(adapter->pdev->irq, netdev);
622 * igb_irq_disable - Mask off interrupt generation on the NIC
623 * @adapter: board private structure
625 static void igb_irq_disable(struct igb_adapter *adapter)
627 struct e1000_hw *hw = &adapter->hw;
629 if (adapter->msix_entries) {
630 wr32(E1000_EIAM, 0);
631 wr32(E1000_EIMC, ~0);
632 wr32(E1000_EIAC, 0);
635 wr32(E1000_IAM, 0);
636 wr32(E1000_IMC, ~0);
637 wrfl();
638 synchronize_irq(adapter->pdev->irq);
642 * igb_irq_enable - Enable default interrupt generation settings
643 * @adapter: board private structure
645 static void igb_irq_enable(struct igb_adapter *adapter)
647 struct e1000_hw *hw = &adapter->hw;
649 if (adapter->msix_entries) {
650 wr32(E1000_EIAC, adapter->eims_enable_mask);
651 wr32(E1000_EIAM, adapter->eims_enable_mask);
652 wr32(E1000_EIMS, adapter->eims_enable_mask);
653 wr32(E1000_IMS, E1000_IMS_LSC);
654 } else {
655 wr32(E1000_IMS, IMS_ENABLE_MASK);
656 wr32(E1000_IAM, IMS_ENABLE_MASK);
660 static void igb_update_mng_vlan(struct igb_adapter *adapter)
662 struct net_device *netdev = adapter->netdev;
663 u16 vid = adapter->hw.mng_cookie.vlan_id;
664 u16 old_vid = adapter->mng_vlan_id;
665 if (adapter->vlgrp) {
666 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
667 if (adapter->hw.mng_cookie.status &
668 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
669 igb_vlan_rx_add_vid(netdev, vid);
670 adapter->mng_vlan_id = vid;
671 } else
672 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
674 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
675 (vid != old_vid) &&
676 !vlan_group_get_device(adapter->vlgrp, old_vid))
677 igb_vlan_rx_kill_vid(netdev, old_vid);
678 } else
679 adapter->mng_vlan_id = vid;
684 * igb_release_hw_control - release control of the h/w to f/w
685 * @adapter: address of board private structure
687 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
688 * For ASF and Pass Through versions of f/w this means that the
689 * driver is no longer loaded.
692 static void igb_release_hw_control(struct igb_adapter *adapter)
694 struct e1000_hw *hw = &adapter->hw;
695 u32 ctrl_ext;
697 /* Let firmware take over control of h/w */
698 ctrl_ext = rd32(E1000_CTRL_EXT);
699 wr32(E1000_CTRL_EXT,
700 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
705 * igb_get_hw_control - get control of the h/w from f/w
706 * @adapter: address of board private structure
708 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
709 * For ASF and Pass Through versions of f/w this means that
710 * the driver is loaded.
713 static void igb_get_hw_control(struct igb_adapter *adapter)
715 struct e1000_hw *hw = &adapter->hw;
716 u32 ctrl_ext;
718 /* Let firmware know the driver has taken over */
719 ctrl_ext = rd32(E1000_CTRL_EXT);
720 wr32(E1000_CTRL_EXT,
721 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
725 * igb_configure - configure the hardware for RX and TX
726 * @adapter: private board structure
728 static void igb_configure(struct igb_adapter *adapter)
730 struct net_device *netdev = adapter->netdev;
731 int i;
733 igb_get_hw_control(adapter);
734 igb_set_multi(netdev);
736 igb_restore_vlan(adapter);
738 igb_configure_tx(adapter);
739 igb_setup_rctl(adapter);
740 igb_configure_rx(adapter);
742 igb_rx_fifo_flush_82575(&adapter->hw);
744 /* call IGB_DESC_UNUSED which always leaves
745 * at least 1 descriptor unused to make sure
746 * next_to_use != next_to_clean */
747 for (i = 0; i < adapter->num_rx_queues; i++) {
748 struct igb_ring *ring = &adapter->rx_ring[i];
749 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
753 adapter->tx_queue_len = netdev->tx_queue_len;
758 * igb_up - Open the interface and prepare it to handle traffic
759 * @adapter: board private structure
762 int igb_up(struct igb_adapter *adapter)
764 struct e1000_hw *hw = &adapter->hw;
765 int i;
767 /* hardware has been reset, we need to reload some things */
768 igb_configure(adapter);
770 clear_bit(__IGB_DOWN, &adapter->state);
772 for (i = 0; i < adapter->num_rx_queues; i++)
773 napi_enable(&adapter->rx_ring[i].napi);
774 if (adapter->msix_entries)
775 igb_configure_msix(adapter);
777 /* Clear any pending interrupts. */
778 rd32(E1000_ICR);
779 igb_irq_enable(adapter);
781 /* Fire a link change interrupt to start the watchdog. */
782 wr32(E1000_ICS, E1000_ICS_LSC);
783 return 0;
786 void igb_down(struct igb_adapter *adapter)
788 struct e1000_hw *hw = &adapter->hw;
789 struct net_device *netdev = adapter->netdev;
790 u32 tctl, rctl;
791 int i;
793 /* signal that we're down so the interrupt handler does not
794 * reschedule our watchdog timer */
795 set_bit(__IGB_DOWN, &adapter->state);
797 /* disable receives in the hardware */
798 rctl = rd32(E1000_RCTL);
799 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
800 /* flush and sleep below */
802 netif_tx_stop_all_queues(netdev);
804 /* disable transmits in the hardware */
805 tctl = rd32(E1000_TCTL);
806 tctl &= ~E1000_TCTL_EN;
807 wr32(E1000_TCTL, tctl);
808 /* flush both disables and wait for them to finish */
809 wrfl();
810 msleep(10);
812 for (i = 0; i < adapter->num_rx_queues; i++)
813 napi_disable(&adapter->rx_ring[i].napi);
815 igb_irq_disable(adapter);
817 del_timer_sync(&adapter->watchdog_timer);
818 del_timer_sync(&adapter->phy_info_timer);
820 netdev->tx_queue_len = adapter->tx_queue_len;
821 netif_carrier_off(netdev);
822 adapter->link_speed = 0;
823 adapter->link_duplex = 0;
825 if (!pci_channel_offline(adapter->pdev))
826 igb_reset(adapter);
827 igb_clean_all_tx_rings(adapter);
828 igb_clean_all_rx_rings(adapter);
831 void igb_reinit_locked(struct igb_adapter *adapter)
833 WARN_ON(in_interrupt());
834 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
835 msleep(1);
836 igb_down(adapter);
837 igb_up(adapter);
838 clear_bit(__IGB_RESETTING, &adapter->state);
841 void igb_reset(struct igb_adapter *adapter)
843 struct e1000_hw *hw = &adapter->hw;
844 struct e1000_mac_info *mac = &hw->mac;
845 struct e1000_fc_info *fc = &hw->fc;
846 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
847 u16 hwm;
849 /* Repartition Pba for greater than 9k mtu
850 * To take effect CTRL.RST is required.
852 if (mac->type != e1000_82576) {
853 pba = E1000_PBA_34K;
855 else {
856 pba = E1000_PBA_64K;
859 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
860 (mac->type < e1000_82576)) {
861 /* adjust PBA for jumbo frames */
862 wr32(E1000_PBA, pba);
864 /* To maintain wire speed transmits, the Tx FIFO should be
865 * large enough to accommodate two full transmit packets,
866 * rounded up to the next 1KB and expressed in KB. Likewise,
867 * the Rx FIFO should be large enough to accommodate at least
868 * one full receive packet and is similarly rounded up and
869 * expressed in KB. */
870 pba = rd32(E1000_PBA);
871 /* upper 16 bits has Tx packet buffer allocation size in KB */
872 tx_space = pba >> 16;
873 /* lower 16 bits has Rx packet buffer allocation size in KB */
874 pba &= 0xffff;
875 /* the tx fifo also stores 16 bytes of information about the tx
876 * but don't include ethernet FCS because hardware appends it */
877 min_tx_space = (adapter->max_frame_size +
878 sizeof(struct e1000_tx_desc) -
879 ETH_FCS_LEN) * 2;
880 min_tx_space = ALIGN(min_tx_space, 1024);
881 min_tx_space >>= 10;
882 /* software strips receive CRC, so leave room for it */
883 min_rx_space = adapter->max_frame_size;
884 min_rx_space = ALIGN(min_rx_space, 1024);
885 min_rx_space >>= 10;
887 /* If current Tx allocation is less than the min Tx FIFO size,
888 * and the min Tx FIFO size is less than the current Rx FIFO
889 * allocation, take space away from current Rx allocation */
890 if (tx_space < min_tx_space &&
891 ((min_tx_space - tx_space) < pba)) {
892 pba = pba - (min_tx_space - tx_space);
894 /* if short on rx space, rx wins and must trump tx
895 * adjustment */
896 if (pba < min_rx_space)
897 pba = min_rx_space;
899 wr32(E1000_PBA, pba);
902 /* flow control settings */
903 /* The high water mark must be low enough to fit one full frame
904 * (or the size used for early receive) above it in the Rx FIFO.
905 * Set it to the lower of:
906 * - 90% of the Rx FIFO size, or
907 * - the full Rx FIFO size minus one full frame */
908 hwm = min(((pba << 10) * 9 / 10),
909 ((pba << 10) - 2 * adapter->max_frame_size));
911 if (mac->type < e1000_82576) {
912 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
913 fc->low_water = fc->high_water - 8;
914 } else {
915 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
916 fc->low_water = fc->high_water - 16;
918 fc->pause_time = 0xFFFF;
919 fc->send_xon = 1;
920 fc->type = fc->original_type;
922 /* Allow time for pending master requests to run */
923 adapter->hw.mac.ops.reset_hw(&adapter->hw);
924 wr32(E1000_WUC, 0);
926 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
927 dev_err(&adapter->pdev->dev, "Hardware Error\n");
929 igb_update_mng_vlan(adapter);
931 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
932 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
934 igb_reset_adaptive(&adapter->hw);
935 igb_get_phy_info(&adapter->hw);
939 * igb_is_need_ioport - determine if an adapter needs ioport resources or not
940 * @pdev: PCI device information struct
942 * Returns true if an adapter needs ioport resources
944 static int igb_is_need_ioport(struct pci_dev *pdev)
946 switch (pdev->device) {
947 /* Currently there are no adapters that need ioport resources */
948 default:
949 return false;
953 static const struct net_device_ops igb_netdev_ops = {
954 .ndo_open = igb_open,
955 .ndo_stop = igb_close,
956 .ndo_start_xmit = igb_xmit_frame_adv,
957 .ndo_get_stats = igb_get_stats,
958 .ndo_set_multicast_list = igb_set_multi,
959 .ndo_set_mac_address = igb_set_mac,
960 .ndo_change_mtu = igb_change_mtu,
961 .ndo_do_ioctl = igb_ioctl,
962 .ndo_tx_timeout = igb_tx_timeout,
963 .ndo_validate_addr = eth_validate_addr,
964 .ndo_vlan_rx_register = igb_vlan_rx_register,
965 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
966 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
967 #ifdef CONFIG_NET_POLL_CONTROLLER
968 .ndo_poll_controller = igb_netpoll,
969 #endif
973 * igb_probe - Device Initialization Routine
974 * @pdev: PCI device information struct
975 * @ent: entry in igb_pci_tbl
977 * Returns 0 on success, negative on failure
979 * igb_probe initializes an adapter identified by a pci_dev structure.
980 * The OS initialization, configuring of the adapter private structure,
981 * and a hardware reset occur.
983 static int __devinit igb_probe(struct pci_dev *pdev,
984 const struct pci_device_id *ent)
986 struct net_device *netdev;
987 struct igb_adapter *adapter;
988 struct e1000_hw *hw;
989 struct pci_dev *us_dev;
990 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
991 unsigned long mmio_start, mmio_len;
992 int i, err, pci_using_dac, pos;
993 u16 eeprom_data = 0, state = 0;
994 u16 eeprom_apme_mask = IGB_EEPROM_APME;
995 u32 part_num;
996 int bars, need_ioport;
998 /* do not allocate ioport bars when not needed */
999 need_ioport = igb_is_need_ioport(pdev);
1000 if (need_ioport) {
1001 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
1002 err = pci_enable_device(pdev);
1003 } else {
1004 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1005 err = pci_enable_device_mem(pdev);
1007 if (err)
1008 return err;
1010 pci_using_dac = 0;
1011 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1012 if (!err) {
1013 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1014 if (!err)
1015 pci_using_dac = 1;
1016 } else {
1017 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1018 if (err) {
1019 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1020 if (err) {
1021 dev_err(&pdev->dev, "No usable DMA "
1022 "configuration, aborting\n");
1023 goto err_dma;
1028 /* 82575 requires that the pci-e link partner disable the L0s state */
1029 switch (pdev->device) {
1030 case E1000_DEV_ID_82575EB_COPPER:
1031 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1032 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1033 us_dev = pdev->bus->self;
1034 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1035 if (pos) {
1036 pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1037 &state);
1038 state &= ~PCIE_LINK_STATE_L0S;
1039 pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1040 state);
1041 dev_info(&pdev->dev,
1042 "Disabling ASPM L0s upstream switch port %s\n",
1043 pci_name(us_dev));
1045 default:
1046 break;
1049 err = pci_request_selected_regions(pdev, bars, igb_driver_name);
1050 if (err)
1051 goto err_pci_reg;
1053 err = pci_enable_pcie_error_reporting(pdev);
1054 if (err) {
1055 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1056 "0x%x\n", err);
1057 /* non-fatal, continue */
1060 pci_set_master(pdev);
1061 pci_save_state(pdev);
1063 err = -ENOMEM;
1064 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1065 if (!netdev)
1066 goto err_alloc_etherdev;
1068 SET_NETDEV_DEV(netdev, &pdev->dev);
1070 pci_set_drvdata(pdev, netdev);
1071 adapter = netdev_priv(netdev);
1072 adapter->netdev = netdev;
1073 adapter->pdev = pdev;
1074 hw = &adapter->hw;
1075 hw->back = adapter;
1076 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1077 adapter->bars = bars;
1078 adapter->need_ioport = need_ioport;
1080 mmio_start = pci_resource_start(pdev, 0);
1081 mmio_len = pci_resource_len(pdev, 0);
1083 err = -EIO;
1084 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1085 if (!adapter->hw.hw_addr)
1086 goto err_ioremap;
1088 netdev->netdev_ops = &igb_netdev_ops;
1089 igb_set_ethtool_ops(netdev);
1090 netdev->watchdog_timeo = 5 * HZ;
1092 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1094 netdev->mem_start = mmio_start;
1095 netdev->mem_end = mmio_start + mmio_len;
1097 /* PCI config space info */
1098 hw->vendor_id = pdev->vendor;
1099 hw->device_id = pdev->device;
1100 hw->revision_id = pdev->revision;
1101 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1102 hw->subsystem_device_id = pdev->subsystem_device;
1104 /* setup the private structure */
1105 hw->back = adapter;
1106 /* Copy the default MAC, PHY and NVM function pointers */
1107 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1108 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1109 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1110 /* Initialize skew-specific constants */
1111 err = ei->get_invariants(hw);
1112 if (err)
1113 goto err_hw_init;
1115 err = igb_sw_init(adapter);
1116 if (err)
1117 goto err_sw_init;
1119 igb_get_bus_info_pcie(hw);
1121 /* set flags */
1122 switch (hw->mac.type) {
1123 case e1000_82576:
1124 case e1000_82575:
1125 adapter->flags |= IGB_FLAG_HAS_DCA;
1126 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1127 break;
1128 default:
1129 break;
1132 hw->phy.autoneg_wait_to_complete = false;
1133 hw->mac.adaptive_ifs = true;
1135 /* Copper options */
1136 if (hw->phy.media_type == e1000_media_type_copper) {
1137 hw->phy.mdix = AUTO_ALL_MODES;
1138 hw->phy.disable_polarity_correction = false;
1139 hw->phy.ms_type = e1000_ms_hw_default;
1142 if (igb_check_reset_block(hw))
1143 dev_info(&pdev->dev,
1144 "PHY reset is blocked due to SOL/IDER session.\n");
1146 netdev->features = NETIF_F_SG |
1147 NETIF_F_HW_CSUM |
1148 NETIF_F_HW_VLAN_TX |
1149 NETIF_F_HW_VLAN_RX |
1150 NETIF_F_HW_VLAN_FILTER;
1152 netdev->features |= NETIF_F_TSO;
1153 netdev->features |= NETIF_F_TSO6;
1155 #ifdef CONFIG_IGB_LRO
1156 netdev->features |= NETIF_F_LRO;
1157 #endif
1159 netdev->vlan_features |= NETIF_F_TSO;
1160 netdev->vlan_features |= NETIF_F_TSO6;
1161 netdev->vlan_features |= NETIF_F_HW_CSUM;
1162 netdev->vlan_features |= NETIF_F_SG;
1164 if (pci_using_dac)
1165 netdev->features |= NETIF_F_HIGHDMA;
1167 netdev->features |= NETIF_F_LLTX;
1168 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1170 /* before reading the NVM, reset the controller to put the device in a
1171 * known good starting state */
1172 hw->mac.ops.reset_hw(hw);
1174 /* make sure the NVM is good */
1175 if (igb_validate_nvm_checksum(hw) < 0) {
1176 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1177 err = -EIO;
1178 goto err_eeprom;
1181 /* copy the MAC address out of the NVM */
1182 if (hw->mac.ops.read_mac_addr(hw))
1183 dev_err(&pdev->dev, "NVM Read Error\n");
1185 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1186 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1188 if (!is_valid_ether_addr(netdev->perm_addr)) {
1189 dev_err(&pdev->dev, "Invalid MAC Address\n");
1190 err = -EIO;
1191 goto err_eeprom;
1194 init_timer(&adapter->watchdog_timer);
1195 adapter->watchdog_timer.function = &igb_watchdog;
1196 adapter->watchdog_timer.data = (unsigned long) adapter;
1198 init_timer(&adapter->phy_info_timer);
1199 adapter->phy_info_timer.function = &igb_update_phy_info;
1200 adapter->phy_info_timer.data = (unsigned long) adapter;
1202 INIT_WORK(&adapter->reset_task, igb_reset_task);
1203 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1205 /* Initialize link & ring properties that are user-changeable */
1206 adapter->tx_ring->count = 256;
1207 for (i = 0; i < adapter->num_tx_queues; i++)
1208 adapter->tx_ring[i].count = adapter->tx_ring->count;
1209 adapter->rx_ring->count = 256;
1210 for (i = 0; i < adapter->num_rx_queues; i++)
1211 adapter->rx_ring[i].count = adapter->rx_ring->count;
1213 adapter->fc_autoneg = true;
1214 hw->mac.autoneg = true;
1215 hw->phy.autoneg_advertised = 0x2f;
1217 hw->fc.original_type = e1000_fc_default;
1218 hw->fc.type = e1000_fc_default;
1220 adapter->itr_setting = 3;
1221 adapter->itr = IGB_START_ITR;
1223 igb_validate_mdi_setting(hw);
1225 adapter->rx_csum = 1;
1227 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1228 * enable the ACPI Magic Packet filter
1231 if (hw->bus.func == 0 ||
1232 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1233 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1234 &eeprom_data);
1236 if (eeprom_data & eeprom_apme_mask)
1237 adapter->eeprom_wol |= E1000_WUFC_MAG;
1239 /* now that we have the eeprom settings, apply the special cases where
1240 * the eeprom may be wrong or the board simply won't support wake on
1241 * lan on a particular port */
1242 switch (pdev->device) {
1243 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1244 adapter->eeprom_wol = 0;
1245 break;
1246 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1247 case E1000_DEV_ID_82576_FIBER:
1248 case E1000_DEV_ID_82576_SERDES:
1249 /* Wake events only supported on port A for dual fiber
1250 * regardless of eeprom setting */
1251 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1252 adapter->eeprom_wol = 0;
1253 break;
1256 /* initialize the wol settings based on the eeprom settings */
1257 adapter->wol = adapter->eeprom_wol;
1258 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1260 /* reset the hardware with the new settings */
1261 igb_reset(adapter);
1263 /* let the f/w know that the h/w is now under the control of the
1264 * driver. */
1265 igb_get_hw_control(adapter);
1267 /* tell the stack to leave us alone until igb_open() is called */
1268 netif_carrier_off(netdev);
1269 netif_tx_stop_all_queues(netdev);
1271 strcpy(netdev->name, "eth%d");
1272 err = register_netdev(netdev);
1273 if (err)
1274 goto err_register;
1276 #ifdef CONFIG_IGB_DCA
1277 if ((adapter->flags & IGB_FLAG_HAS_DCA) &&
1278 (dca_add_requester(&pdev->dev) == 0)) {
1279 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1280 dev_info(&pdev->dev, "DCA enabled\n");
1281 /* Always use CB2 mode, difference is masked
1282 * in the CB driver. */
1283 wr32(E1000_DCA_CTRL, 2);
1284 igb_setup_dca(adapter);
1286 #endif
1288 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1289 /* print bus type/speed/width info */
1290 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1291 netdev->name,
1292 ((hw->bus.speed == e1000_bus_speed_2500)
1293 ? "2.5Gb/s" : "unknown"),
1294 ((hw->bus.width == e1000_bus_width_pcie_x4)
1295 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1296 ? "Width x1" : "unknown"),
1297 netdev->dev_addr);
1299 igb_read_part_num(hw, &part_num);
1300 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1301 (part_num >> 8), (part_num & 0xff));
1303 dev_info(&pdev->dev,
1304 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1305 adapter->msix_entries ? "MSI-X" :
1306 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1307 adapter->num_rx_queues, adapter->num_tx_queues);
1309 return 0;
1311 err_register:
1312 igb_release_hw_control(adapter);
1313 err_eeprom:
1314 if (!igb_check_reset_block(hw))
1315 igb_reset_phy(hw);
1317 if (hw->flash_address)
1318 iounmap(hw->flash_address);
1320 igb_remove_device(hw);
1321 igb_free_queues(adapter);
1322 err_sw_init:
1323 err_hw_init:
1324 iounmap(hw->hw_addr);
1325 err_ioremap:
1326 free_netdev(netdev);
1327 err_alloc_etherdev:
1328 pci_release_selected_regions(pdev, bars);
1329 err_pci_reg:
1330 err_dma:
1331 pci_disable_device(pdev);
1332 return err;
1336 * igb_remove - Device Removal Routine
1337 * @pdev: PCI device information struct
1339 * igb_remove is called by the PCI subsystem to alert the driver
1340 * that it should release a PCI device. The could be caused by a
1341 * Hot-Plug event, or because the driver is going to be removed from
1342 * memory.
1344 static void __devexit igb_remove(struct pci_dev *pdev)
1346 struct net_device *netdev = pci_get_drvdata(pdev);
1347 struct igb_adapter *adapter = netdev_priv(netdev);
1348 #ifdef CONFIG_IGB_DCA
1349 struct e1000_hw *hw = &adapter->hw;
1350 #endif
1351 int err;
1353 /* flush_scheduled work may reschedule our watchdog task, so
1354 * explicitly disable watchdog tasks from being rescheduled */
1355 set_bit(__IGB_DOWN, &adapter->state);
1356 del_timer_sync(&adapter->watchdog_timer);
1357 del_timer_sync(&adapter->phy_info_timer);
1359 flush_scheduled_work();
1361 #ifdef CONFIG_IGB_DCA
1362 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1363 dev_info(&pdev->dev, "DCA disabled\n");
1364 dca_remove_requester(&pdev->dev);
1365 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1366 wr32(E1000_DCA_CTRL, 1);
1368 #endif
1370 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1371 * would have already happened in close and is redundant. */
1372 igb_release_hw_control(adapter);
1374 unregister_netdev(netdev);
1376 if (!igb_check_reset_block(&adapter->hw))
1377 igb_reset_phy(&adapter->hw);
1379 igb_remove_device(&adapter->hw);
1380 igb_reset_interrupt_capability(adapter);
1382 igb_free_queues(adapter);
1384 iounmap(adapter->hw.hw_addr);
1385 if (adapter->hw.flash_address)
1386 iounmap(adapter->hw.flash_address);
1387 pci_release_selected_regions(pdev, adapter->bars);
1389 free_netdev(netdev);
1391 err = pci_disable_pcie_error_reporting(pdev);
1392 if (err)
1393 dev_err(&pdev->dev,
1394 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1396 pci_disable_device(pdev);
1400 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1401 * @adapter: board private structure to initialize
1403 * igb_sw_init initializes the Adapter private data structure.
1404 * Fields are initialized based on PCI device information and
1405 * OS network device settings (MTU size).
1407 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1409 struct e1000_hw *hw = &adapter->hw;
1410 struct net_device *netdev = adapter->netdev;
1411 struct pci_dev *pdev = adapter->pdev;
1413 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1415 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1416 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1417 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1418 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1419 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1420 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1422 /* Number of supported queues. */
1423 /* Having more queues than CPUs doesn't make sense. */
1424 adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1425 adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1427 /* This call may decrease the number of queues depending on
1428 * interrupt mode. */
1429 igb_set_interrupt_capability(adapter);
1431 if (igb_alloc_queues(adapter)) {
1432 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1433 return -ENOMEM;
1436 /* Explicitly disable IRQ since the NIC can be in any state. */
1437 igb_irq_disable(adapter);
1439 set_bit(__IGB_DOWN, &adapter->state);
1440 return 0;
1444 * igb_open - Called when a network interface is made active
1445 * @netdev: network interface device structure
1447 * Returns 0 on success, negative value on failure
1449 * The open entry point is called when a network interface is made
1450 * active by the system (IFF_UP). At this point all resources needed
1451 * for transmit and receive operations are allocated, the interrupt
1452 * handler is registered with the OS, the watchdog timer is started,
1453 * and the stack is notified that the interface is ready.
1455 static int igb_open(struct net_device *netdev)
1457 struct igb_adapter *adapter = netdev_priv(netdev);
1458 struct e1000_hw *hw = &adapter->hw;
1459 int err;
1460 int i;
1462 /* disallow open during test */
1463 if (test_bit(__IGB_TESTING, &adapter->state))
1464 return -EBUSY;
1466 /* allocate transmit descriptors */
1467 err = igb_setup_all_tx_resources(adapter);
1468 if (err)
1469 goto err_setup_tx;
1471 /* allocate receive descriptors */
1472 err = igb_setup_all_rx_resources(adapter);
1473 if (err)
1474 goto err_setup_rx;
1476 /* e1000_power_up_phy(adapter); */
1478 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1479 if ((adapter->hw.mng_cookie.status &
1480 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1481 igb_update_mng_vlan(adapter);
1483 /* before we allocate an interrupt, we must be ready to handle it.
1484 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1485 * as soon as we call pci_request_irq, so we have to setup our
1486 * clean_rx handler before we do so. */
1487 igb_configure(adapter);
1489 err = igb_request_irq(adapter);
1490 if (err)
1491 goto err_req_irq;
1493 /* From here on the code is the same as igb_up() */
1494 clear_bit(__IGB_DOWN, &adapter->state);
1496 for (i = 0; i < adapter->num_rx_queues; i++)
1497 napi_enable(&adapter->rx_ring[i].napi);
1499 /* Clear any pending interrupts. */
1500 rd32(E1000_ICR);
1502 igb_irq_enable(adapter);
1504 netif_tx_start_all_queues(netdev);
1506 /* Fire a link status change interrupt to start the watchdog. */
1507 wr32(E1000_ICS, E1000_ICS_LSC);
1509 return 0;
1511 err_req_irq:
1512 igb_release_hw_control(adapter);
1513 /* e1000_power_down_phy(adapter); */
1514 igb_free_all_rx_resources(adapter);
1515 err_setup_rx:
1516 igb_free_all_tx_resources(adapter);
1517 err_setup_tx:
1518 igb_reset(adapter);
1520 return err;
1524 * igb_close - Disables a network interface
1525 * @netdev: network interface device structure
1527 * Returns 0, this is not allowed to fail
1529 * The close entry point is called when an interface is de-activated
1530 * by the OS. The hardware is still under the driver's control, but
1531 * needs to be disabled. A global MAC reset is issued to stop the
1532 * hardware, and all transmit and receive resources are freed.
1534 static int igb_close(struct net_device *netdev)
1536 struct igb_adapter *adapter = netdev_priv(netdev);
1538 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1539 igb_down(adapter);
1541 igb_free_irq(adapter);
1543 igb_free_all_tx_resources(adapter);
1544 igb_free_all_rx_resources(adapter);
1546 /* kill manageability vlan ID if supported, but not if a vlan with
1547 * the same ID is registered on the host OS (let 8021q kill it) */
1548 if ((adapter->hw.mng_cookie.status &
1549 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1550 !(adapter->vlgrp &&
1551 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1552 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1554 return 0;
1558 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1559 * @adapter: board private structure
1560 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1562 * Return 0 on success, negative on failure
1565 int igb_setup_tx_resources(struct igb_adapter *adapter,
1566 struct igb_ring *tx_ring)
1568 struct pci_dev *pdev = adapter->pdev;
1569 int size;
1571 size = sizeof(struct igb_buffer) * tx_ring->count;
1572 tx_ring->buffer_info = vmalloc(size);
1573 if (!tx_ring->buffer_info)
1574 goto err;
1575 memset(tx_ring->buffer_info, 0, size);
1577 /* round up to nearest 4K */
1578 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1579 + sizeof(u32);
1580 tx_ring->size = ALIGN(tx_ring->size, 4096);
1582 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1583 &tx_ring->dma);
1585 if (!tx_ring->desc)
1586 goto err;
1588 tx_ring->adapter = adapter;
1589 tx_ring->next_to_use = 0;
1590 tx_ring->next_to_clean = 0;
1591 return 0;
1593 err:
1594 vfree(tx_ring->buffer_info);
1595 dev_err(&adapter->pdev->dev,
1596 "Unable to allocate memory for the transmit descriptor ring\n");
1597 return -ENOMEM;
1601 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1602 * (Descriptors) for all queues
1603 * @adapter: board private structure
1605 * Return 0 on success, negative on failure
1607 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1609 int i, err = 0;
1610 int r_idx;
1612 for (i = 0; i < adapter->num_tx_queues; i++) {
1613 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1614 if (err) {
1615 dev_err(&adapter->pdev->dev,
1616 "Allocation for Tx Queue %u failed\n", i);
1617 for (i--; i >= 0; i--)
1618 igb_free_tx_resources(&adapter->tx_ring[i]);
1619 break;
1623 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1624 r_idx = i % adapter->num_tx_queues;
1625 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1627 return err;
1631 * igb_configure_tx - Configure transmit Unit after Reset
1632 * @adapter: board private structure
1634 * Configure the Tx unit of the MAC after a reset.
1636 static void igb_configure_tx(struct igb_adapter *adapter)
1638 u64 tdba, tdwba;
1639 struct e1000_hw *hw = &adapter->hw;
1640 u32 tctl;
1641 u32 txdctl, txctrl;
1642 int i;
1644 for (i = 0; i < adapter->num_tx_queues; i++) {
1645 struct igb_ring *ring = &(adapter->tx_ring[i]);
1647 wr32(E1000_TDLEN(i),
1648 ring->count * sizeof(struct e1000_tx_desc));
1649 tdba = ring->dma;
1650 wr32(E1000_TDBAL(i),
1651 tdba & 0x00000000ffffffffULL);
1652 wr32(E1000_TDBAH(i), tdba >> 32);
1654 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1655 tdwba |= 1; /* enable head wb */
1656 wr32(E1000_TDWBAL(i),
1657 tdwba & 0x00000000ffffffffULL);
1658 wr32(E1000_TDWBAH(i), tdwba >> 32);
1660 ring->head = E1000_TDH(i);
1661 ring->tail = E1000_TDT(i);
1662 writel(0, hw->hw_addr + ring->tail);
1663 writel(0, hw->hw_addr + ring->head);
1664 txdctl = rd32(E1000_TXDCTL(i));
1665 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1666 wr32(E1000_TXDCTL(i), txdctl);
1668 /* Turn off Relaxed Ordering on head write-backs. The
1669 * writebacks MUST be delivered in order or it will
1670 * completely screw up our bookeeping.
1672 txctrl = rd32(E1000_DCA_TXCTRL(i));
1673 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1674 wr32(E1000_DCA_TXCTRL(i), txctrl);
1679 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1681 /* Program the Transmit Control Register */
1683 tctl = rd32(E1000_TCTL);
1684 tctl &= ~E1000_TCTL_CT;
1685 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1686 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1688 igb_config_collision_dist(hw);
1690 /* Setup Transmit Descriptor Settings for eop descriptor */
1691 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1693 /* Enable transmits */
1694 tctl |= E1000_TCTL_EN;
1696 wr32(E1000_TCTL, tctl);
1700 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1701 * @adapter: board private structure
1702 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1704 * Returns 0 on success, negative on failure
1707 int igb_setup_rx_resources(struct igb_adapter *adapter,
1708 struct igb_ring *rx_ring)
1710 struct pci_dev *pdev = adapter->pdev;
1711 int size, desc_len;
1713 #ifdef CONFIG_IGB_LRO
1714 size = sizeof(struct net_lro_desc) * MAX_LRO_DESCRIPTORS;
1715 rx_ring->lro_mgr.lro_arr = vmalloc(size);
1716 if (!rx_ring->lro_mgr.lro_arr)
1717 goto err;
1718 memset(rx_ring->lro_mgr.lro_arr, 0, size);
1719 #endif
1721 size = sizeof(struct igb_buffer) * rx_ring->count;
1722 rx_ring->buffer_info = vmalloc(size);
1723 if (!rx_ring->buffer_info)
1724 goto err;
1725 memset(rx_ring->buffer_info, 0, size);
1727 desc_len = sizeof(union e1000_adv_rx_desc);
1729 /* Round up to nearest 4K */
1730 rx_ring->size = rx_ring->count * desc_len;
1731 rx_ring->size = ALIGN(rx_ring->size, 4096);
1733 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1734 &rx_ring->dma);
1736 if (!rx_ring->desc)
1737 goto err;
1739 rx_ring->next_to_clean = 0;
1740 rx_ring->next_to_use = 0;
1742 rx_ring->adapter = adapter;
1744 return 0;
1746 err:
1747 #ifdef CONFIG_IGB_LRO
1748 vfree(rx_ring->lro_mgr.lro_arr);
1749 rx_ring->lro_mgr.lro_arr = NULL;
1750 #endif
1751 vfree(rx_ring->buffer_info);
1752 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1753 "the receive descriptor ring\n");
1754 return -ENOMEM;
1758 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1759 * (Descriptors) for all queues
1760 * @adapter: board private structure
1762 * Return 0 on success, negative on failure
1764 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1766 int i, err = 0;
1768 for (i = 0; i < adapter->num_rx_queues; i++) {
1769 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1770 if (err) {
1771 dev_err(&adapter->pdev->dev,
1772 "Allocation for Rx Queue %u failed\n", i);
1773 for (i--; i >= 0; i--)
1774 igb_free_rx_resources(&adapter->rx_ring[i]);
1775 break;
1779 return err;
1783 * igb_setup_rctl - configure the receive control registers
1784 * @adapter: Board private structure
1786 static void igb_setup_rctl(struct igb_adapter *adapter)
1788 struct e1000_hw *hw = &adapter->hw;
1789 u32 rctl;
1790 u32 srrctl = 0;
1791 int i;
1793 rctl = rd32(E1000_RCTL);
1795 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1796 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1798 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1799 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1802 * enable stripping of CRC. It's unlikely this will break BMC
1803 * redirection as it did with e1000. Newer features require
1804 * that the HW strips the CRC.
1806 rctl |= E1000_RCTL_SECRC;
1809 * disable store bad packets, long packet enable, and clear size bits.
1811 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_LPE | E1000_RCTL_SZ_256);
1813 if (adapter->netdev->mtu > ETH_DATA_LEN)
1814 rctl |= E1000_RCTL_LPE;
1816 /* Setup buffer sizes */
1817 switch (adapter->rx_buffer_len) {
1818 case IGB_RXBUFFER_256:
1819 rctl |= E1000_RCTL_SZ_256;
1820 break;
1821 case IGB_RXBUFFER_512:
1822 rctl |= E1000_RCTL_SZ_512;
1823 break;
1824 default:
1825 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1826 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1827 break;
1830 /* 82575 and greater support packet-split where the protocol
1831 * header is placed in skb->data and the packet data is
1832 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1833 * In the case of a non-split, skb->data is linearly filled,
1834 * followed by the page buffers. Therefore, skb->data is
1835 * sized to hold the largest protocol header.
1837 /* allocations using alloc_page take too long for regular MTU
1838 * so only enable packet split for jumbo frames */
1839 if (rctl & E1000_RCTL_LPE) {
1840 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1841 srrctl |= adapter->rx_ps_hdr_size <<
1842 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1843 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1844 } else {
1845 adapter->rx_ps_hdr_size = 0;
1846 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1849 for (i = 0; i < adapter->num_rx_queues; i++)
1850 wr32(E1000_SRRCTL(i), srrctl);
1852 wr32(E1000_RCTL, rctl);
1856 * igb_configure_rx - Configure receive Unit after Reset
1857 * @adapter: board private structure
1859 * Configure the Rx unit of the MAC after a reset.
1861 static void igb_configure_rx(struct igb_adapter *adapter)
1863 u64 rdba;
1864 struct e1000_hw *hw = &adapter->hw;
1865 u32 rctl, rxcsum;
1866 u32 rxdctl;
1867 int i;
1869 /* disable receives while setting up the descriptors */
1870 rctl = rd32(E1000_RCTL);
1871 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1872 wrfl();
1873 mdelay(10);
1875 if (adapter->itr_setting > 3)
1876 wr32(E1000_ITR, adapter->itr);
1878 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1879 * the Base and Length of the Rx Descriptor Ring */
1880 for (i = 0; i < adapter->num_rx_queues; i++) {
1881 struct igb_ring *ring = &(adapter->rx_ring[i]);
1882 rdba = ring->dma;
1883 wr32(E1000_RDBAL(i),
1884 rdba & 0x00000000ffffffffULL);
1885 wr32(E1000_RDBAH(i), rdba >> 32);
1886 wr32(E1000_RDLEN(i),
1887 ring->count * sizeof(union e1000_adv_rx_desc));
1889 ring->head = E1000_RDH(i);
1890 ring->tail = E1000_RDT(i);
1891 writel(0, hw->hw_addr + ring->tail);
1892 writel(0, hw->hw_addr + ring->head);
1894 rxdctl = rd32(E1000_RXDCTL(i));
1895 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1896 rxdctl &= 0xFFF00000;
1897 rxdctl |= IGB_RX_PTHRESH;
1898 rxdctl |= IGB_RX_HTHRESH << 8;
1899 rxdctl |= IGB_RX_WTHRESH << 16;
1900 wr32(E1000_RXDCTL(i), rxdctl);
1901 #ifdef CONFIG_IGB_LRO
1902 /* Intitial LRO Settings */
1903 ring->lro_mgr.max_aggr = MAX_LRO_AGGR;
1904 ring->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS;
1905 ring->lro_mgr.get_skb_header = igb_get_skb_hdr;
1906 ring->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
1907 ring->lro_mgr.dev = adapter->netdev;
1908 ring->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY;
1909 ring->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
1910 #endif
1913 if (adapter->num_rx_queues > 1) {
1914 u32 random[10];
1915 u32 mrqc;
1916 u32 j, shift;
1917 union e1000_reta {
1918 u32 dword;
1919 u8 bytes[4];
1920 } reta;
1922 get_random_bytes(&random[0], 40);
1924 if (hw->mac.type >= e1000_82576)
1925 shift = 0;
1926 else
1927 shift = 6;
1928 for (j = 0; j < (32 * 4); j++) {
1929 reta.bytes[j & 3] =
1930 (j % adapter->num_rx_queues) << shift;
1931 if ((j & 3) == 3)
1932 writel(reta.dword,
1933 hw->hw_addr + E1000_RETA(0) + (j & ~3));
1935 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1937 /* Fill out hash function seeds */
1938 for (j = 0; j < 10; j++)
1939 array_wr32(E1000_RSSRK(0), j, random[j]);
1941 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1942 E1000_MRQC_RSS_FIELD_IPV4_TCP);
1943 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1944 E1000_MRQC_RSS_FIELD_IPV6_TCP);
1945 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1946 E1000_MRQC_RSS_FIELD_IPV6_UDP);
1947 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1948 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1951 wr32(E1000_MRQC, mrqc);
1953 /* Multiqueue and raw packet checksumming are mutually
1954 * exclusive. Note that this not the same as TCP/IP
1955 * checksumming, which works fine. */
1956 rxcsum = rd32(E1000_RXCSUM);
1957 rxcsum |= E1000_RXCSUM_PCSD;
1958 wr32(E1000_RXCSUM, rxcsum);
1959 } else {
1960 /* Enable Receive Checksum Offload for TCP and UDP */
1961 rxcsum = rd32(E1000_RXCSUM);
1962 if (adapter->rx_csum) {
1963 rxcsum |= E1000_RXCSUM_TUOFL;
1965 /* Enable IPv4 payload checksum for UDP fragments
1966 * Must be used in conjunction with packet-split. */
1967 if (adapter->rx_ps_hdr_size)
1968 rxcsum |= E1000_RXCSUM_IPPCSE;
1969 } else {
1970 rxcsum &= ~E1000_RXCSUM_TUOFL;
1971 /* don't need to clear IPPCSE as it defaults to 0 */
1973 wr32(E1000_RXCSUM, rxcsum);
1976 if (adapter->vlgrp)
1977 wr32(E1000_RLPML,
1978 adapter->max_frame_size + VLAN_TAG_SIZE);
1979 else
1980 wr32(E1000_RLPML, adapter->max_frame_size);
1982 /* Enable Receives */
1983 wr32(E1000_RCTL, rctl);
1987 * igb_free_tx_resources - Free Tx Resources per Queue
1988 * @tx_ring: Tx descriptor ring for a specific queue
1990 * Free all transmit software resources
1992 void igb_free_tx_resources(struct igb_ring *tx_ring)
1994 struct pci_dev *pdev = tx_ring->adapter->pdev;
1996 igb_clean_tx_ring(tx_ring);
1998 vfree(tx_ring->buffer_info);
1999 tx_ring->buffer_info = NULL;
2001 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2003 tx_ring->desc = NULL;
2007 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2008 * @adapter: board private structure
2010 * Free all transmit software resources
2012 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2014 int i;
2016 for (i = 0; i < adapter->num_tx_queues; i++)
2017 igb_free_tx_resources(&adapter->tx_ring[i]);
2020 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2021 struct igb_buffer *buffer_info)
2023 if (buffer_info->dma) {
2024 pci_unmap_page(adapter->pdev,
2025 buffer_info->dma,
2026 buffer_info->length,
2027 PCI_DMA_TODEVICE);
2028 buffer_info->dma = 0;
2030 if (buffer_info->skb) {
2031 dev_kfree_skb_any(buffer_info->skb);
2032 buffer_info->skb = NULL;
2034 buffer_info->time_stamp = 0;
2035 /* buffer_info must be completely set up in the transmit path */
2039 * igb_clean_tx_ring - Free Tx Buffers
2040 * @tx_ring: ring to be cleaned
2042 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2044 struct igb_adapter *adapter = tx_ring->adapter;
2045 struct igb_buffer *buffer_info;
2046 unsigned long size;
2047 unsigned int i;
2049 if (!tx_ring->buffer_info)
2050 return;
2051 /* Free all the Tx ring sk_buffs */
2053 for (i = 0; i < tx_ring->count; i++) {
2054 buffer_info = &tx_ring->buffer_info[i];
2055 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2058 size = sizeof(struct igb_buffer) * tx_ring->count;
2059 memset(tx_ring->buffer_info, 0, size);
2061 /* Zero out the descriptor ring */
2063 memset(tx_ring->desc, 0, tx_ring->size);
2065 tx_ring->next_to_use = 0;
2066 tx_ring->next_to_clean = 0;
2068 writel(0, adapter->hw.hw_addr + tx_ring->head);
2069 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2073 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2074 * @adapter: board private structure
2076 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2078 int i;
2080 for (i = 0; i < adapter->num_tx_queues; i++)
2081 igb_clean_tx_ring(&adapter->tx_ring[i]);
2085 * igb_free_rx_resources - Free Rx Resources
2086 * @rx_ring: ring to clean the resources from
2088 * Free all receive software resources
2090 void igb_free_rx_resources(struct igb_ring *rx_ring)
2092 struct pci_dev *pdev = rx_ring->adapter->pdev;
2094 igb_clean_rx_ring(rx_ring);
2096 vfree(rx_ring->buffer_info);
2097 rx_ring->buffer_info = NULL;
2099 #ifdef CONFIG_IGB_LRO
2100 vfree(rx_ring->lro_mgr.lro_arr);
2101 rx_ring->lro_mgr.lro_arr = NULL;
2102 #endif
2104 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2106 rx_ring->desc = NULL;
2110 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2111 * @adapter: board private structure
2113 * Free all receive software resources
2115 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2117 int i;
2119 for (i = 0; i < adapter->num_rx_queues; i++)
2120 igb_free_rx_resources(&adapter->rx_ring[i]);
2124 * igb_clean_rx_ring - Free Rx Buffers per Queue
2125 * @rx_ring: ring to free buffers from
2127 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2129 struct igb_adapter *adapter = rx_ring->adapter;
2130 struct igb_buffer *buffer_info;
2131 struct pci_dev *pdev = adapter->pdev;
2132 unsigned long size;
2133 unsigned int i;
2135 if (!rx_ring->buffer_info)
2136 return;
2137 /* Free all the Rx ring sk_buffs */
2138 for (i = 0; i < rx_ring->count; i++) {
2139 buffer_info = &rx_ring->buffer_info[i];
2140 if (buffer_info->dma) {
2141 if (adapter->rx_ps_hdr_size)
2142 pci_unmap_single(pdev, buffer_info->dma,
2143 adapter->rx_ps_hdr_size,
2144 PCI_DMA_FROMDEVICE);
2145 else
2146 pci_unmap_single(pdev, buffer_info->dma,
2147 adapter->rx_buffer_len,
2148 PCI_DMA_FROMDEVICE);
2149 buffer_info->dma = 0;
2152 if (buffer_info->skb) {
2153 dev_kfree_skb(buffer_info->skb);
2154 buffer_info->skb = NULL;
2156 if (buffer_info->page) {
2157 if (buffer_info->page_dma)
2158 pci_unmap_page(pdev, buffer_info->page_dma,
2159 PAGE_SIZE / 2,
2160 PCI_DMA_FROMDEVICE);
2161 put_page(buffer_info->page);
2162 buffer_info->page = NULL;
2163 buffer_info->page_dma = 0;
2164 buffer_info->page_offset = 0;
2168 size = sizeof(struct igb_buffer) * rx_ring->count;
2169 memset(rx_ring->buffer_info, 0, size);
2171 /* Zero out the descriptor ring */
2172 memset(rx_ring->desc, 0, rx_ring->size);
2174 rx_ring->next_to_clean = 0;
2175 rx_ring->next_to_use = 0;
2177 writel(0, adapter->hw.hw_addr + rx_ring->head);
2178 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2182 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2183 * @adapter: board private structure
2185 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2187 int i;
2189 for (i = 0; i < adapter->num_rx_queues; i++)
2190 igb_clean_rx_ring(&adapter->rx_ring[i]);
2194 * igb_set_mac - Change the Ethernet Address of the NIC
2195 * @netdev: network interface device structure
2196 * @p: pointer to an address structure
2198 * Returns 0 on success, negative on failure
2200 static int igb_set_mac(struct net_device *netdev, void *p)
2202 struct igb_adapter *adapter = netdev_priv(netdev);
2203 struct sockaddr *addr = p;
2205 if (!is_valid_ether_addr(addr->sa_data))
2206 return -EADDRNOTAVAIL;
2208 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2209 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2211 adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2213 return 0;
2217 * igb_set_multi - Multicast and Promiscuous mode set
2218 * @netdev: network interface device structure
2220 * The set_multi entry point is called whenever the multicast address
2221 * list or the network interface flags are updated. This routine is
2222 * responsible for configuring the hardware for proper multicast,
2223 * promiscuous mode, and all-multi behavior.
2225 static void igb_set_multi(struct net_device *netdev)
2227 struct igb_adapter *adapter = netdev_priv(netdev);
2228 struct e1000_hw *hw = &adapter->hw;
2229 struct e1000_mac_info *mac = &hw->mac;
2230 struct dev_mc_list *mc_ptr;
2231 u8 *mta_list;
2232 u32 rctl;
2233 int i;
2235 /* Check for Promiscuous and All Multicast modes */
2237 rctl = rd32(E1000_RCTL);
2239 if (netdev->flags & IFF_PROMISC) {
2240 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2241 rctl &= ~E1000_RCTL_VFE;
2242 } else {
2243 if (netdev->flags & IFF_ALLMULTI) {
2244 rctl |= E1000_RCTL_MPE;
2245 rctl &= ~E1000_RCTL_UPE;
2246 } else
2247 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2248 rctl |= E1000_RCTL_VFE;
2250 wr32(E1000_RCTL, rctl);
2252 if (!netdev->mc_count) {
2253 /* nothing to program, so clear mc list */
2254 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2255 mac->rar_entry_count);
2256 return;
2259 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2260 if (!mta_list)
2261 return;
2263 /* The shared function expects a packed array of only addresses. */
2264 mc_ptr = netdev->mc_list;
2266 for (i = 0; i < netdev->mc_count; i++) {
2267 if (!mc_ptr)
2268 break;
2269 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2270 mc_ptr = mc_ptr->next;
2272 igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2273 mac->rar_entry_count);
2274 kfree(mta_list);
2277 /* Need to wait a few seconds after link up to get diagnostic information from
2278 * the phy */
2279 static void igb_update_phy_info(unsigned long data)
2281 struct igb_adapter *adapter = (struct igb_adapter *) data;
2282 igb_get_phy_info(&adapter->hw);
2286 * igb_watchdog - Timer Call-back
2287 * @data: pointer to adapter cast into an unsigned long
2289 static void igb_watchdog(unsigned long data)
2291 struct igb_adapter *adapter = (struct igb_adapter *)data;
2292 /* Do the rest outside of interrupt context */
2293 schedule_work(&adapter->watchdog_task);
2296 static void igb_watchdog_task(struct work_struct *work)
2298 struct igb_adapter *adapter = container_of(work,
2299 struct igb_adapter, watchdog_task);
2300 struct e1000_hw *hw = &adapter->hw;
2302 struct net_device *netdev = adapter->netdev;
2303 struct igb_ring *tx_ring = adapter->tx_ring;
2304 struct e1000_mac_info *mac = &adapter->hw.mac;
2305 u32 link;
2306 u32 eics = 0;
2307 s32 ret_val;
2308 int i;
2310 if ((netif_carrier_ok(netdev)) &&
2311 (rd32(E1000_STATUS) & E1000_STATUS_LU))
2312 goto link_up;
2314 ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2315 if ((ret_val == E1000_ERR_PHY) &&
2316 (hw->phy.type == e1000_phy_igp_3) &&
2317 (rd32(E1000_CTRL) &
2318 E1000_PHY_CTRL_GBE_DISABLE))
2319 dev_info(&adapter->pdev->dev,
2320 "Gigabit has been disabled, downgrading speed\n");
2322 if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2323 !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2324 link = mac->serdes_has_link;
2325 else
2326 link = rd32(E1000_STATUS) &
2327 E1000_STATUS_LU;
2329 if (link) {
2330 if (!netif_carrier_ok(netdev)) {
2331 u32 ctrl;
2332 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2333 &adapter->link_speed,
2334 &adapter->link_duplex);
2336 ctrl = rd32(E1000_CTRL);
2337 /* Links status message must follow this format */
2338 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2339 "Flow Control: %s\n",
2340 netdev->name,
2341 adapter->link_speed,
2342 adapter->link_duplex == FULL_DUPLEX ?
2343 "Full Duplex" : "Half Duplex",
2344 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2345 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2346 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2347 E1000_CTRL_TFCE) ? "TX" : "None")));
2349 /* tweak tx_queue_len according to speed/duplex and
2350 * adjust the timeout factor */
2351 netdev->tx_queue_len = adapter->tx_queue_len;
2352 adapter->tx_timeout_factor = 1;
2353 switch (adapter->link_speed) {
2354 case SPEED_10:
2355 netdev->tx_queue_len = 10;
2356 adapter->tx_timeout_factor = 14;
2357 break;
2358 case SPEED_100:
2359 netdev->tx_queue_len = 100;
2360 /* maybe add some timeout factor ? */
2361 break;
2364 netif_carrier_on(netdev);
2365 netif_tx_wake_all_queues(netdev);
2367 if (!test_bit(__IGB_DOWN, &adapter->state))
2368 mod_timer(&adapter->phy_info_timer,
2369 round_jiffies(jiffies + 2 * HZ));
2371 } else {
2372 if (netif_carrier_ok(netdev)) {
2373 adapter->link_speed = 0;
2374 adapter->link_duplex = 0;
2375 /* Links status message must follow this format */
2376 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2377 netdev->name);
2378 netif_carrier_off(netdev);
2379 netif_tx_stop_all_queues(netdev);
2380 if (!test_bit(__IGB_DOWN, &adapter->state))
2381 mod_timer(&adapter->phy_info_timer,
2382 round_jiffies(jiffies + 2 * HZ));
2386 link_up:
2387 igb_update_stats(adapter);
2389 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2390 adapter->tpt_old = adapter->stats.tpt;
2391 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2392 adapter->colc_old = adapter->stats.colc;
2394 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2395 adapter->gorc_old = adapter->stats.gorc;
2396 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2397 adapter->gotc_old = adapter->stats.gotc;
2399 igb_update_adaptive(&adapter->hw);
2401 if (!netif_carrier_ok(netdev)) {
2402 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2403 /* We've lost link, so the controller stops DMA,
2404 * but we've got queued Tx work that's never going
2405 * to get done, so reset controller to flush Tx.
2406 * (Do the reset outside of interrupt context). */
2407 adapter->tx_timeout_count++;
2408 schedule_work(&adapter->reset_task);
2412 /* Cause software interrupt to ensure rx ring is cleaned */
2413 if (adapter->msix_entries) {
2414 for (i = 0; i < adapter->num_rx_queues; i++)
2415 eics |= adapter->rx_ring[i].eims_value;
2416 wr32(E1000_EICS, eics);
2417 } else {
2418 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2421 /* Force detection of hung controller every watchdog period */
2422 tx_ring->detect_tx_hung = true;
2424 /* Reset the timer */
2425 if (!test_bit(__IGB_DOWN, &adapter->state))
2426 mod_timer(&adapter->watchdog_timer,
2427 round_jiffies(jiffies + 2 * HZ));
2430 enum latency_range {
2431 lowest_latency = 0,
2432 low_latency = 1,
2433 bulk_latency = 2,
2434 latency_invalid = 255
2439 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2441 * Stores a new ITR value based on strictly on packet size. This
2442 * algorithm is less sophisticated than that used in igb_update_itr,
2443 * due to the difficulty of synchronizing statistics across multiple
2444 * receive rings. The divisors and thresholds used by this fuction
2445 * were determined based on theoretical maximum wire speed and testing
2446 * data, in order to minimize response time while increasing bulk
2447 * throughput.
2448 * This functionality is controlled by the InterruptThrottleRate module
2449 * parameter (see igb_param.c)
2450 * NOTE: This function is called only when operating in a multiqueue
2451 * receive environment.
2452 * @rx_ring: pointer to ring
2454 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2456 int new_val = rx_ring->itr_val;
2457 int avg_wire_size = 0;
2458 struct igb_adapter *adapter = rx_ring->adapter;
2460 if (!rx_ring->total_packets)
2461 goto clear_counts; /* no packets, so don't do anything */
2463 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2464 * ints/sec - ITR timer value of 120 ticks.
2466 if (adapter->link_speed != SPEED_1000) {
2467 new_val = 120;
2468 goto set_itr_val;
2470 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2472 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2473 avg_wire_size += 24;
2475 /* Don't starve jumbo frames */
2476 avg_wire_size = min(avg_wire_size, 3000);
2478 /* Give a little boost to mid-size frames */
2479 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2480 new_val = avg_wire_size / 3;
2481 else
2482 new_val = avg_wire_size / 2;
2484 set_itr_val:
2485 if (new_val != rx_ring->itr_val) {
2486 rx_ring->itr_val = new_val;
2487 rx_ring->set_itr = 1;
2489 clear_counts:
2490 rx_ring->total_bytes = 0;
2491 rx_ring->total_packets = 0;
2495 * igb_update_itr - update the dynamic ITR value based on statistics
2496 * Stores a new ITR value based on packets and byte
2497 * counts during the last interrupt. The advantage of per interrupt
2498 * computation is faster updates and more accurate ITR for the current
2499 * traffic pattern. Constants in this function were computed
2500 * based on theoretical maximum wire speed and thresholds were set based
2501 * on testing data as well as attempting to minimize response time
2502 * while increasing bulk throughput.
2503 * this functionality is controlled by the InterruptThrottleRate module
2504 * parameter (see igb_param.c)
2505 * NOTE: These calculations are only valid when operating in a single-
2506 * queue environment.
2507 * @adapter: pointer to adapter
2508 * @itr_setting: current adapter->itr
2509 * @packets: the number of packets during this measurement interval
2510 * @bytes: the number of bytes during this measurement interval
2512 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2513 int packets, int bytes)
2515 unsigned int retval = itr_setting;
2517 if (packets == 0)
2518 goto update_itr_done;
2520 switch (itr_setting) {
2521 case lowest_latency:
2522 /* handle TSO and jumbo frames */
2523 if (bytes/packets > 8000)
2524 retval = bulk_latency;
2525 else if ((packets < 5) && (bytes > 512))
2526 retval = low_latency;
2527 break;
2528 case low_latency: /* 50 usec aka 20000 ints/s */
2529 if (bytes > 10000) {
2530 /* this if handles the TSO accounting */
2531 if (bytes/packets > 8000) {
2532 retval = bulk_latency;
2533 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2534 retval = bulk_latency;
2535 } else if ((packets > 35)) {
2536 retval = lowest_latency;
2538 } else if (bytes/packets > 2000) {
2539 retval = bulk_latency;
2540 } else if (packets <= 2 && bytes < 512) {
2541 retval = lowest_latency;
2543 break;
2544 case bulk_latency: /* 250 usec aka 4000 ints/s */
2545 if (bytes > 25000) {
2546 if (packets > 35)
2547 retval = low_latency;
2548 } else if (bytes < 6000) {
2549 retval = low_latency;
2551 break;
2554 update_itr_done:
2555 return retval;
2558 static void igb_set_itr(struct igb_adapter *adapter)
2560 u16 current_itr;
2561 u32 new_itr = adapter->itr;
2563 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2564 if (adapter->link_speed != SPEED_1000) {
2565 current_itr = 0;
2566 new_itr = 4000;
2567 goto set_itr_now;
2570 adapter->rx_itr = igb_update_itr(adapter,
2571 adapter->rx_itr,
2572 adapter->rx_ring->total_packets,
2573 adapter->rx_ring->total_bytes);
2575 if (adapter->rx_ring->buddy) {
2576 adapter->tx_itr = igb_update_itr(adapter,
2577 adapter->tx_itr,
2578 adapter->tx_ring->total_packets,
2579 adapter->tx_ring->total_bytes);
2581 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2582 } else {
2583 current_itr = adapter->rx_itr;
2586 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2587 if (adapter->itr_setting == 3 &&
2588 current_itr == lowest_latency)
2589 current_itr = low_latency;
2591 switch (current_itr) {
2592 /* counts and packets in update_itr are dependent on these numbers */
2593 case lowest_latency:
2594 new_itr = 70000;
2595 break;
2596 case low_latency:
2597 new_itr = 20000; /* aka hwitr = ~200 */
2598 break;
2599 case bulk_latency:
2600 new_itr = 4000;
2601 break;
2602 default:
2603 break;
2606 set_itr_now:
2607 adapter->rx_ring->total_bytes = 0;
2608 adapter->rx_ring->total_packets = 0;
2609 if (adapter->rx_ring->buddy) {
2610 adapter->rx_ring->buddy->total_bytes = 0;
2611 adapter->rx_ring->buddy->total_packets = 0;
2614 if (new_itr != adapter->itr) {
2615 /* this attempts to bias the interrupt rate towards Bulk
2616 * by adding intermediate steps when interrupt rate is
2617 * increasing */
2618 new_itr = new_itr > adapter->itr ?
2619 min(adapter->itr + (new_itr >> 2), new_itr) :
2620 new_itr;
2621 /* Don't write the value here; it resets the adapter's
2622 * internal timer, and causes us to delay far longer than
2623 * we should between interrupts. Instead, we write the ITR
2624 * value at the beginning of the next interrupt so the timing
2625 * ends up being correct.
2627 adapter->itr = new_itr;
2628 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2629 adapter->rx_ring->set_itr = 1;
2632 return;
2636 #define IGB_TX_FLAGS_CSUM 0x00000001
2637 #define IGB_TX_FLAGS_VLAN 0x00000002
2638 #define IGB_TX_FLAGS_TSO 0x00000004
2639 #define IGB_TX_FLAGS_IPV4 0x00000008
2640 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2641 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2643 static inline int igb_tso_adv(struct igb_adapter *adapter,
2644 struct igb_ring *tx_ring,
2645 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2647 struct e1000_adv_tx_context_desc *context_desc;
2648 unsigned int i;
2649 int err;
2650 struct igb_buffer *buffer_info;
2651 u32 info = 0, tu_cmd = 0;
2652 u32 mss_l4len_idx, l4len;
2653 *hdr_len = 0;
2655 if (skb_header_cloned(skb)) {
2656 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2657 if (err)
2658 return err;
2661 l4len = tcp_hdrlen(skb);
2662 *hdr_len += l4len;
2664 if (skb->protocol == htons(ETH_P_IP)) {
2665 struct iphdr *iph = ip_hdr(skb);
2666 iph->tot_len = 0;
2667 iph->check = 0;
2668 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2669 iph->daddr, 0,
2670 IPPROTO_TCP,
2672 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2673 ipv6_hdr(skb)->payload_len = 0;
2674 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2675 &ipv6_hdr(skb)->daddr,
2676 0, IPPROTO_TCP, 0);
2679 i = tx_ring->next_to_use;
2681 buffer_info = &tx_ring->buffer_info[i];
2682 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2683 /* VLAN MACLEN IPLEN */
2684 if (tx_flags & IGB_TX_FLAGS_VLAN)
2685 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2686 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2687 *hdr_len += skb_network_offset(skb);
2688 info |= skb_network_header_len(skb);
2689 *hdr_len += skb_network_header_len(skb);
2690 context_desc->vlan_macip_lens = cpu_to_le32(info);
2692 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2693 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2695 if (skb->protocol == htons(ETH_P_IP))
2696 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2697 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2699 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2701 /* MSS L4LEN IDX */
2702 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2703 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2705 /* Context index must be unique per ring. */
2706 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2707 mss_l4len_idx |= tx_ring->queue_index << 4;
2709 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2710 context_desc->seqnum_seed = 0;
2712 buffer_info->time_stamp = jiffies;
2713 buffer_info->dma = 0;
2714 i++;
2715 if (i == tx_ring->count)
2716 i = 0;
2718 tx_ring->next_to_use = i;
2720 return true;
2723 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2724 struct igb_ring *tx_ring,
2725 struct sk_buff *skb, u32 tx_flags)
2727 struct e1000_adv_tx_context_desc *context_desc;
2728 unsigned int i;
2729 struct igb_buffer *buffer_info;
2730 u32 info = 0, tu_cmd = 0;
2732 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2733 (tx_flags & IGB_TX_FLAGS_VLAN)) {
2734 i = tx_ring->next_to_use;
2735 buffer_info = &tx_ring->buffer_info[i];
2736 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2738 if (tx_flags & IGB_TX_FLAGS_VLAN)
2739 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2740 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2741 if (skb->ip_summed == CHECKSUM_PARTIAL)
2742 info |= skb_network_header_len(skb);
2744 context_desc->vlan_macip_lens = cpu_to_le32(info);
2746 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2748 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2749 switch (skb->protocol) {
2750 case __constant_htons(ETH_P_IP):
2751 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2752 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2753 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2754 break;
2755 case __constant_htons(ETH_P_IPV6):
2756 /* XXX what about other V6 headers?? */
2757 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2758 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2759 break;
2760 default:
2761 if (unlikely(net_ratelimit()))
2762 dev_warn(&adapter->pdev->dev,
2763 "partial checksum but proto=%x!\n",
2764 skb->protocol);
2765 break;
2769 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2770 context_desc->seqnum_seed = 0;
2771 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2772 context_desc->mss_l4len_idx =
2773 cpu_to_le32(tx_ring->queue_index << 4);
2775 buffer_info->time_stamp = jiffies;
2776 buffer_info->dma = 0;
2778 i++;
2779 if (i == tx_ring->count)
2780 i = 0;
2781 tx_ring->next_to_use = i;
2783 return true;
2787 return false;
2790 #define IGB_MAX_TXD_PWR 16
2791 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2793 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2794 struct igb_ring *tx_ring,
2795 struct sk_buff *skb)
2797 struct igb_buffer *buffer_info;
2798 unsigned int len = skb_headlen(skb);
2799 unsigned int count = 0, i;
2800 unsigned int f;
2802 i = tx_ring->next_to_use;
2804 buffer_info = &tx_ring->buffer_info[i];
2805 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2806 buffer_info->length = len;
2807 /* set time_stamp *before* dma to help avoid a possible race */
2808 buffer_info->time_stamp = jiffies;
2809 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2810 PCI_DMA_TODEVICE);
2811 count++;
2812 i++;
2813 if (i == tx_ring->count)
2814 i = 0;
2816 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2817 struct skb_frag_struct *frag;
2819 frag = &skb_shinfo(skb)->frags[f];
2820 len = frag->size;
2822 buffer_info = &tx_ring->buffer_info[i];
2823 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2824 buffer_info->length = len;
2825 buffer_info->time_stamp = jiffies;
2826 buffer_info->dma = pci_map_page(adapter->pdev,
2827 frag->page,
2828 frag->page_offset,
2829 len,
2830 PCI_DMA_TODEVICE);
2832 count++;
2833 i++;
2834 if (i == tx_ring->count)
2835 i = 0;
2838 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2839 tx_ring->buffer_info[i].skb = skb;
2841 return count;
2844 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2845 struct igb_ring *tx_ring,
2846 int tx_flags, int count, u32 paylen,
2847 u8 hdr_len)
2849 union e1000_adv_tx_desc *tx_desc = NULL;
2850 struct igb_buffer *buffer_info;
2851 u32 olinfo_status = 0, cmd_type_len;
2852 unsigned int i;
2854 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2855 E1000_ADVTXD_DCMD_DEXT);
2857 if (tx_flags & IGB_TX_FLAGS_VLAN)
2858 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2860 if (tx_flags & IGB_TX_FLAGS_TSO) {
2861 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2863 /* insert tcp checksum */
2864 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2866 /* insert ip checksum */
2867 if (tx_flags & IGB_TX_FLAGS_IPV4)
2868 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2870 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2871 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2874 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2875 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2876 IGB_TX_FLAGS_VLAN)))
2877 olinfo_status |= tx_ring->queue_index << 4;
2879 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2881 i = tx_ring->next_to_use;
2882 while (count--) {
2883 buffer_info = &tx_ring->buffer_info[i];
2884 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2885 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2886 tx_desc->read.cmd_type_len =
2887 cpu_to_le32(cmd_type_len | buffer_info->length);
2888 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2889 i++;
2890 if (i == tx_ring->count)
2891 i = 0;
2894 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2895 /* Force memory writes to complete before letting h/w
2896 * know there are new descriptors to fetch. (Only
2897 * applicable for weak-ordered memory model archs,
2898 * such as IA-64). */
2899 wmb();
2901 tx_ring->next_to_use = i;
2902 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2903 /* we need this if more than one processor can write to our tail
2904 * at a time, it syncronizes IO on IA64/Altix systems */
2905 mmiowb();
2908 static int __igb_maybe_stop_tx(struct net_device *netdev,
2909 struct igb_ring *tx_ring, int size)
2911 struct igb_adapter *adapter = netdev_priv(netdev);
2913 netif_stop_subqueue(netdev, tx_ring->queue_index);
2915 /* Herbert's original patch had:
2916 * smp_mb__after_netif_stop_queue();
2917 * but since that doesn't exist yet, just open code it. */
2918 smp_mb();
2920 /* We need to check again in a case another CPU has just
2921 * made room available. */
2922 if (IGB_DESC_UNUSED(tx_ring) < size)
2923 return -EBUSY;
2925 /* A reprieve! */
2926 netif_wake_subqueue(netdev, tx_ring->queue_index);
2927 ++adapter->restart_queue;
2928 return 0;
2931 static int igb_maybe_stop_tx(struct net_device *netdev,
2932 struct igb_ring *tx_ring, int size)
2934 if (IGB_DESC_UNUSED(tx_ring) >= size)
2935 return 0;
2936 return __igb_maybe_stop_tx(netdev, tx_ring, size);
2939 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2941 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2942 struct net_device *netdev,
2943 struct igb_ring *tx_ring)
2945 struct igb_adapter *adapter = netdev_priv(netdev);
2946 unsigned int tx_flags = 0;
2947 unsigned int len;
2948 u8 hdr_len = 0;
2949 int tso = 0;
2951 len = skb_headlen(skb);
2953 if (test_bit(__IGB_DOWN, &adapter->state)) {
2954 dev_kfree_skb_any(skb);
2955 return NETDEV_TX_OK;
2958 if (skb->len <= 0) {
2959 dev_kfree_skb_any(skb);
2960 return NETDEV_TX_OK;
2963 /* need: 1 descriptor per page,
2964 * + 2 desc gap to keep tail from touching head,
2965 * + 1 desc for skb->data,
2966 * + 1 desc for context descriptor,
2967 * otherwise try next time */
2968 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2969 /* this is a hard error */
2970 return NETDEV_TX_BUSY;
2972 skb_orphan(skb);
2974 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2975 tx_flags |= IGB_TX_FLAGS_VLAN;
2976 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2979 if (skb->protocol == htons(ETH_P_IP))
2980 tx_flags |= IGB_TX_FLAGS_IPV4;
2982 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2983 &hdr_len) : 0;
2985 if (tso < 0) {
2986 dev_kfree_skb_any(skb);
2987 return NETDEV_TX_OK;
2990 if (tso)
2991 tx_flags |= IGB_TX_FLAGS_TSO;
2992 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2993 if (skb->ip_summed == CHECKSUM_PARTIAL)
2994 tx_flags |= IGB_TX_FLAGS_CSUM;
2996 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2997 igb_tx_map_adv(adapter, tx_ring, skb),
2998 skb->len, hdr_len);
3000 netdev->trans_start = jiffies;
3002 /* Make sure there is space in the ring for the next send. */
3003 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3005 return NETDEV_TX_OK;
3008 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3010 struct igb_adapter *adapter = netdev_priv(netdev);
3011 struct igb_ring *tx_ring;
3013 int r_idx = 0;
3014 r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3015 tx_ring = adapter->multi_tx_table[r_idx];
3017 /* This goes back to the question of how to logically map a tx queue
3018 * to a flow. Right now, performance is impacted slightly negatively
3019 * if using multiple tx queues. If the stack breaks away from a
3020 * single qdisc implementation, we can look at this again. */
3021 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3025 * igb_tx_timeout - Respond to a Tx Hang
3026 * @netdev: network interface device structure
3028 static void igb_tx_timeout(struct net_device *netdev)
3030 struct igb_adapter *adapter = netdev_priv(netdev);
3031 struct e1000_hw *hw = &adapter->hw;
3033 /* Do the reset outside of interrupt context */
3034 adapter->tx_timeout_count++;
3035 schedule_work(&adapter->reset_task);
3036 wr32(E1000_EICS, adapter->eims_enable_mask &
3037 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3040 static void igb_reset_task(struct work_struct *work)
3042 struct igb_adapter *adapter;
3043 adapter = container_of(work, struct igb_adapter, reset_task);
3045 igb_reinit_locked(adapter);
3049 * igb_get_stats - Get System Network Statistics
3050 * @netdev: network interface device structure
3052 * Returns the address of the device statistics structure.
3053 * The statistics are actually updated from the timer callback.
3055 static struct net_device_stats *
3056 igb_get_stats(struct net_device *netdev)
3058 struct igb_adapter *adapter = netdev_priv(netdev);
3060 /* only return the current stats */
3061 return &adapter->net_stats;
3065 * igb_change_mtu - Change the Maximum Transfer Unit
3066 * @netdev: network interface device structure
3067 * @new_mtu: new value for maximum frame size
3069 * Returns 0 on success, negative on failure
3071 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3073 struct igb_adapter *adapter = netdev_priv(netdev);
3074 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3076 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3077 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3078 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3079 return -EINVAL;
3082 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3083 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3084 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3085 return -EINVAL;
3088 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3089 msleep(1);
3090 /* igb_down has a dependency on max_frame_size */
3091 adapter->max_frame_size = max_frame;
3092 if (netif_running(netdev))
3093 igb_down(adapter);
3095 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3096 * means we reserve 2 more, this pushes us to allocate from the next
3097 * larger slab size.
3098 * i.e. RXBUFFER_2048 --> size-4096 slab
3101 if (max_frame <= IGB_RXBUFFER_256)
3102 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3103 else if (max_frame <= IGB_RXBUFFER_512)
3104 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3105 else if (max_frame <= IGB_RXBUFFER_1024)
3106 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3107 else if (max_frame <= IGB_RXBUFFER_2048)
3108 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3109 else
3110 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3111 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3112 #else
3113 adapter->rx_buffer_len = PAGE_SIZE / 2;
3114 #endif
3115 /* adjust allocation if LPE protects us, and we aren't using SBP */
3116 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3117 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3118 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3120 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3121 netdev->mtu, new_mtu);
3122 netdev->mtu = new_mtu;
3124 if (netif_running(netdev))
3125 igb_up(adapter);
3126 else
3127 igb_reset(adapter);
3129 clear_bit(__IGB_RESETTING, &adapter->state);
3131 return 0;
3135 * igb_update_stats - Update the board statistics counters
3136 * @adapter: board private structure
3139 void igb_update_stats(struct igb_adapter *adapter)
3141 struct e1000_hw *hw = &adapter->hw;
3142 struct pci_dev *pdev = adapter->pdev;
3143 u16 phy_tmp;
3145 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3148 * Prevent stats update while adapter is being reset, or if the pci
3149 * connection is down.
3151 if (adapter->link_speed == 0)
3152 return;
3153 if (pci_channel_offline(pdev))
3154 return;
3156 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3157 adapter->stats.gprc += rd32(E1000_GPRC);
3158 adapter->stats.gorc += rd32(E1000_GORCL);
3159 rd32(E1000_GORCH); /* clear GORCL */
3160 adapter->stats.bprc += rd32(E1000_BPRC);
3161 adapter->stats.mprc += rd32(E1000_MPRC);
3162 adapter->stats.roc += rd32(E1000_ROC);
3164 adapter->stats.prc64 += rd32(E1000_PRC64);
3165 adapter->stats.prc127 += rd32(E1000_PRC127);
3166 adapter->stats.prc255 += rd32(E1000_PRC255);
3167 adapter->stats.prc511 += rd32(E1000_PRC511);
3168 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3169 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3170 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3171 adapter->stats.sec += rd32(E1000_SEC);
3173 adapter->stats.mpc += rd32(E1000_MPC);
3174 adapter->stats.scc += rd32(E1000_SCC);
3175 adapter->stats.ecol += rd32(E1000_ECOL);
3176 adapter->stats.mcc += rd32(E1000_MCC);
3177 adapter->stats.latecol += rd32(E1000_LATECOL);
3178 adapter->stats.dc += rd32(E1000_DC);
3179 adapter->stats.rlec += rd32(E1000_RLEC);
3180 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3181 adapter->stats.xontxc += rd32(E1000_XONTXC);
3182 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3183 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3184 adapter->stats.fcruc += rd32(E1000_FCRUC);
3185 adapter->stats.gptc += rd32(E1000_GPTC);
3186 adapter->stats.gotc += rd32(E1000_GOTCL);
3187 rd32(E1000_GOTCH); /* clear GOTCL */
3188 adapter->stats.rnbc += rd32(E1000_RNBC);
3189 adapter->stats.ruc += rd32(E1000_RUC);
3190 adapter->stats.rfc += rd32(E1000_RFC);
3191 adapter->stats.rjc += rd32(E1000_RJC);
3192 adapter->stats.tor += rd32(E1000_TORH);
3193 adapter->stats.tot += rd32(E1000_TOTH);
3194 adapter->stats.tpr += rd32(E1000_TPR);
3196 adapter->stats.ptc64 += rd32(E1000_PTC64);
3197 adapter->stats.ptc127 += rd32(E1000_PTC127);
3198 adapter->stats.ptc255 += rd32(E1000_PTC255);
3199 adapter->stats.ptc511 += rd32(E1000_PTC511);
3200 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3201 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3203 adapter->stats.mptc += rd32(E1000_MPTC);
3204 adapter->stats.bptc += rd32(E1000_BPTC);
3206 /* used for adaptive IFS */
3208 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3209 adapter->stats.tpt += hw->mac.tx_packet_delta;
3210 hw->mac.collision_delta = rd32(E1000_COLC);
3211 adapter->stats.colc += hw->mac.collision_delta;
3213 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3214 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3215 adapter->stats.tncrs += rd32(E1000_TNCRS);
3216 adapter->stats.tsctc += rd32(E1000_TSCTC);
3217 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3219 adapter->stats.iac += rd32(E1000_IAC);
3220 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3221 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3222 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3223 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3224 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3225 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3226 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3227 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3229 /* Fill out the OS statistics structure */
3230 adapter->net_stats.multicast = adapter->stats.mprc;
3231 adapter->net_stats.collisions = adapter->stats.colc;
3233 /* Rx Errors */
3235 /* RLEC on some newer hardware can be incorrect so build
3236 * our own version based on RUC and ROC */
3237 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3238 adapter->stats.crcerrs + adapter->stats.algnerrc +
3239 adapter->stats.ruc + adapter->stats.roc +
3240 adapter->stats.cexterr;
3241 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3242 adapter->stats.roc;
3243 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3244 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3245 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3247 /* Tx Errors */
3248 adapter->net_stats.tx_errors = adapter->stats.ecol +
3249 adapter->stats.latecol;
3250 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3251 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3252 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3254 /* Tx Dropped needs to be maintained elsewhere */
3256 /* Phy Stats */
3257 if (hw->phy.media_type == e1000_media_type_copper) {
3258 if ((adapter->link_speed == SPEED_1000) &&
3259 (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
3260 &phy_tmp))) {
3261 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3262 adapter->phy_stats.idle_errors += phy_tmp;
3266 /* Management Stats */
3267 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3268 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3269 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3273 static irqreturn_t igb_msix_other(int irq, void *data)
3275 struct net_device *netdev = data;
3276 struct igb_adapter *adapter = netdev_priv(netdev);
3277 struct e1000_hw *hw = &adapter->hw;
3278 u32 icr = rd32(E1000_ICR);
3280 /* reading ICR causes bit 31 of EICR to be cleared */
3281 if (!(icr & E1000_ICR_LSC))
3282 goto no_link_interrupt;
3283 hw->mac.get_link_status = 1;
3284 /* guard against interrupt when we're going down */
3285 if (!test_bit(__IGB_DOWN, &adapter->state))
3286 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3288 no_link_interrupt:
3289 wr32(E1000_IMS, E1000_IMS_LSC);
3290 wr32(E1000_EIMS, adapter->eims_other);
3292 return IRQ_HANDLED;
3295 static irqreturn_t igb_msix_tx(int irq, void *data)
3297 struct igb_ring *tx_ring = data;
3298 struct igb_adapter *adapter = tx_ring->adapter;
3299 struct e1000_hw *hw = &adapter->hw;
3301 #ifdef CONFIG_IGB_DCA
3302 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3303 igb_update_tx_dca(tx_ring);
3304 #endif
3305 tx_ring->total_bytes = 0;
3306 tx_ring->total_packets = 0;
3308 /* auto mask will automatically reenable the interrupt when we write
3309 * EICS */
3310 if (!igb_clean_tx_irq(tx_ring))
3311 /* Ring was not completely cleaned, so fire another interrupt */
3312 wr32(E1000_EICS, tx_ring->eims_value);
3313 else
3314 wr32(E1000_EIMS, tx_ring->eims_value);
3316 return IRQ_HANDLED;
3319 static void igb_write_itr(struct igb_ring *ring)
3321 struct e1000_hw *hw = &ring->adapter->hw;
3322 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3323 switch (hw->mac.type) {
3324 case e1000_82576:
3325 wr32(ring->itr_register,
3326 ring->itr_val |
3327 0x80000000);
3328 break;
3329 default:
3330 wr32(ring->itr_register,
3331 ring->itr_val |
3332 (ring->itr_val << 16));
3333 break;
3335 ring->set_itr = 0;
3339 static irqreturn_t igb_msix_rx(int irq, void *data)
3341 struct igb_ring *rx_ring = data;
3342 struct igb_adapter *adapter = rx_ring->adapter;
3344 /* Write the ITR value calculated at the end of the
3345 * previous interrupt.
3348 igb_write_itr(rx_ring);
3350 if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3351 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3353 #ifdef CONFIG_IGB_DCA
3354 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3355 igb_update_rx_dca(rx_ring);
3356 #endif
3357 return IRQ_HANDLED;
3360 #ifdef CONFIG_IGB_DCA
3361 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3363 u32 dca_rxctrl;
3364 struct igb_adapter *adapter = rx_ring->adapter;
3365 struct e1000_hw *hw = &adapter->hw;
3366 int cpu = get_cpu();
3367 int q = rx_ring - adapter->rx_ring;
3369 if (rx_ring->cpu != cpu) {
3370 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3371 if (hw->mac.type == e1000_82576) {
3372 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3373 dca_rxctrl |= dca_get_tag(cpu) <<
3374 E1000_DCA_RXCTRL_CPUID_SHIFT;
3375 } else {
3376 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3377 dca_rxctrl |= dca_get_tag(cpu);
3379 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3380 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3381 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3382 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3383 rx_ring->cpu = cpu;
3385 put_cpu();
3388 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3390 u32 dca_txctrl;
3391 struct igb_adapter *adapter = tx_ring->adapter;
3392 struct e1000_hw *hw = &adapter->hw;
3393 int cpu = get_cpu();
3394 int q = tx_ring - adapter->tx_ring;
3396 if (tx_ring->cpu != cpu) {
3397 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3398 if (hw->mac.type == e1000_82576) {
3399 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3400 dca_txctrl |= dca_get_tag(cpu) <<
3401 E1000_DCA_TXCTRL_CPUID_SHIFT;
3402 } else {
3403 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3404 dca_txctrl |= dca_get_tag(cpu);
3406 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3407 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3408 tx_ring->cpu = cpu;
3410 put_cpu();
3413 static void igb_setup_dca(struct igb_adapter *adapter)
3415 int i;
3417 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3418 return;
3420 for (i = 0; i < adapter->num_tx_queues; i++) {
3421 adapter->tx_ring[i].cpu = -1;
3422 igb_update_tx_dca(&adapter->tx_ring[i]);
3424 for (i = 0; i < adapter->num_rx_queues; i++) {
3425 adapter->rx_ring[i].cpu = -1;
3426 igb_update_rx_dca(&adapter->rx_ring[i]);
3430 static int __igb_notify_dca(struct device *dev, void *data)
3432 struct net_device *netdev = dev_get_drvdata(dev);
3433 struct igb_adapter *adapter = netdev_priv(netdev);
3434 struct e1000_hw *hw = &adapter->hw;
3435 unsigned long event = *(unsigned long *)data;
3437 if (!(adapter->flags & IGB_FLAG_HAS_DCA))
3438 goto out;
3440 switch (event) {
3441 case DCA_PROVIDER_ADD:
3442 /* if already enabled, don't do it again */
3443 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3444 break;
3445 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3446 /* Always use CB2 mode, difference is masked
3447 * in the CB driver. */
3448 wr32(E1000_DCA_CTRL, 2);
3449 if (dca_add_requester(dev) == 0) {
3450 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3451 igb_setup_dca(adapter);
3452 break;
3454 /* Fall Through since DCA is disabled. */
3455 case DCA_PROVIDER_REMOVE:
3456 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3457 /* without this a class_device is left
3458 * hanging around in the sysfs model */
3459 dca_remove_requester(dev);
3460 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3461 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3462 wr32(E1000_DCA_CTRL, 1);
3464 break;
3466 out:
3467 return 0;
3470 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3471 void *p)
3473 int ret_val;
3475 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3476 __igb_notify_dca);
3478 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3480 #endif /* CONFIG_IGB_DCA */
3483 * igb_intr_msi - Interrupt Handler
3484 * @irq: interrupt number
3485 * @data: pointer to a network interface device structure
3487 static irqreturn_t igb_intr_msi(int irq, void *data)
3489 struct net_device *netdev = data;
3490 struct igb_adapter *adapter = netdev_priv(netdev);
3491 struct e1000_hw *hw = &adapter->hw;
3492 /* read ICR disables interrupts using IAM */
3493 u32 icr = rd32(E1000_ICR);
3495 igb_write_itr(adapter->rx_ring);
3497 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3498 hw->mac.get_link_status = 1;
3499 if (!test_bit(__IGB_DOWN, &adapter->state))
3500 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3503 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3505 return IRQ_HANDLED;
3509 * igb_intr - Interrupt Handler
3510 * @irq: interrupt number
3511 * @data: pointer to a network interface device structure
3513 static irqreturn_t igb_intr(int irq, void *data)
3515 struct net_device *netdev = data;
3516 struct igb_adapter *adapter = netdev_priv(netdev);
3517 struct e1000_hw *hw = &adapter->hw;
3518 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3519 * need for the IMC write */
3520 u32 icr = rd32(E1000_ICR);
3521 u32 eicr = 0;
3522 if (!icr)
3523 return IRQ_NONE; /* Not our interrupt */
3525 igb_write_itr(adapter->rx_ring);
3527 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3528 * not set, then the adapter didn't send an interrupt */
3529 if (!(icr & E1000_ICR_INT_ASSERTED))
3530 return IRQ_NONE;
3532 eicr = rd32(E1000_EICR);
3534 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3535 hw->mac.get_link_status = 1;
3536 /* guard against interrupt when we're going down */
3537 if (!test_bit(__IGB_DOWN, &adapter->state))
3538 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3541 netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3543 return IRQ_HANDLED;
3547 * igb_poll - NAPI Rx polling callback
3548 * @napi: napi polling structure
3549 * @budget: count of how many packets we should handle
3551 static int igb_poll(struct napi_struct *napi, int budget)
3553 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3554 struct igb_adapter *adapter = rx_ring->adapter;
3555 struct net_device *netdev = adapter->netdev;
3556 int tx_clean_complete, work_done = 0;
3558 /* this poll routine only supports one tx and one rx queue */
3559 #ifdef CONFIG_IGB_DCA
3560 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3561 igb_update_tx_dca(&adapter->tx_ring[0]);
3562 #endif
3563 tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3565 #ifdef CONFIG_IGB_DCA
3566 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3567 igb_update_rx_dca(&adapter->rx_ring[0]);
3568 #endif
3569 igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3571 /* If no Tx and not enough Rx work done, exit the polling mode */
3572 if ((tx_clean_complete && (work_done < budget)) ||
3573 !netif_running(netdev)) {
3574 if (adapter->itr_setting & 3)
3575 igb_set_itr(adapter);
3576 netif_rx_complete(netdev, napi);
3577 if (!test_bit(__IGB_DOWN, &adapter->state))
3578 igb_irq_enable(adapter);
3579 return 0;
3582 return 1;
3585 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3587 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3588 struct igb_adapter *adapter = rx_ring->adapter;
3589 struct e1000_hw *hw = &adapter->hw;
3590 struct net_device *netdev = adapter->netdev;
3591 int work_done = 0;
3593 #ifdef CONFIG_IGB_DCA
3594 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3595 igb_update_rx_dca(rx_ring);
3596 #endif
3597 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3600 /* If not enough Rx work done, exit the polling mode */
3601 if ((work_done == 0) || !netif_running(netdev)) {
3602 netif_rx_complete(netdev, napi);
3604 if (adapter->itr_setting & 3) {
3605 if (adapter->num_rx_queues == 1)
3606 igb_set_itr(adapter);
3607 else
3608 igb_update_ring_itr(rx_ring);
3611 if (!test_bit(__IGB_DOWN, &adapter->state))
3612 wr32(E1000_EIMS, rx_ring->eims_value);
3614 return 0;
3617 return 1;
3620 static inline u32 get_head(struct igb_ring *tx_ring)
3622 void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3623 return le32_to_cpu(*(volatile __le32 *)end);
3627 * igb_clean_tx_irq - Reclaim resources after transmit completes
3628 * @adapter: board private structure
3629 * returns true if ring is completely cleaned
3631 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3633 struct igb_adapter *adapter = tx_ring->adapter;
3634 struct e1000_hw *hw = &adapter->hw;
3635 struct net_device *netdev = adapter->netdev;
3636 struct e1000_tx_desc *tx_desc;
3637 struct igb_buffer *buffer_info;
3638 struct sk_buff *skb;
3639 unsigned int i;
3640 u32 head, oldhead;
3641 unsigned int count = 0;
3642 unsigned int total_bytes = 0, total_packets = 0;
3643 bool retval = true;
3645 rmb();
3646 head = get_head(tx_ring);
3647 i = tx_ring->next_to_clean;
3648 while (1) {
3649 while (i != head) {
3650 tx_desc = E1000_TX_DESC(*tx_ring, i);
3651 buffer_info = &tx_ring->buffer_info[i];
3652 skb = buffer_info->skb;
3654 if (skb) {
3655 unsigned int segs, bytecount;
3656 /* gso_segs is currently only valid for tcp */
3657 segs = skb_shinfo(skb)->gso_segs ?: 1;
3658 /* multiply data chunks by size of headers */
3659 bytecount = ((segs - 1) * skb_headlen(skb)) +
3660 skb->len;
3661 total_packets += segs;
3662 total_bytes += bytecount;
3665 igb_unmap_and_free_tx_resource(adapter, buffer_info);
3667 i++;
3668 if (i == tx_ring->count)
3669 i = 0;
3671 count++;
3672 if (count == IGB_MAX_TX_CLEAN) {
3673 retval = false;
3674 goto done_cleaning;
3677 oldhead = head;
3678 rmb();
3679 head = get_head(tx_ring);
3680 if (head == oldhead)
3681 goto done_cleaning;
3682 } /* while (1) */
3684 done_cleaning:
3685 tx_ring->next_to_clean = i;
3687 if (unlikely(count &&
3688 netif_carrier_ok(netdev) &&
3689 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3690 /* Make sure that anybody stopping the queue after this
3691 * sees the new next_to_clean.
3693 smp_mb();
3694 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3695 !(test_bit(__IGB_DOWN, &adapter->state))) {
3696 netif_wake_subqueue(netdev, tx_ring->queue_index);
3697 ++adapter->restart_queue;
3701 if (tx_ring->detect_tx_hung) {
3702 /* Detect a transmit hang in hardware, this serializes the
3703 * check with the clearing of time_stamp and movement of i */
3704 tx_ring->detect_tx_hung = false;
3705 if (tx_ring->buffer_info[i].time_stamp &&
3706 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3707 (adapter->tx_timeout_factor * HZ))
3708 && !(rd32(E1000_STATUS) &
3709 E1000_STATUS_TXOFF)) {
3711 tx_desc = E1000_TX_DESC(*tx_ring, i);
3712 /* detected Tx unit hang */
3713 dev_err(&adapter->pdev->dev,
3714 "Detected Tx Unit Hang\n"
3715 " Tx Queue <%d>\n"
3716 " TDH <%x>\n"
3717 " TDT <%x>\n"
3718 " next_to_use <%x>\n"
3719 " next_to_clean <%x>\n"
3720 " head (WB) <%x>\n"
3721 "buffer_info[next_to_clean]\n"
3722 " time_stamp <%lx>\n"
3723 " jiffies <%lx>\n"
3724 " desc.status <%x>\n",
3725 tx_ring->queue_index,
3726 readl(adapter->hw.hw_addr + tx_ring->head),
3727 readl(adapter->hw.hw_addr + tx_ring->tail),
3728 tx_ring->next_to_use,
3729 tx_ring->next_to_clean,
3730 head,
3731 tx_ring->buffer_info[i].time_stamp,
3732 jiffies,
3733 tx_desc->upper.fields.status);
3734 netif_stop_subqueue(netdev, tx_ring->queue_index);
3737 tx_ring->total_bytes += total_bytes;
3738 tx_ring->total_packets += total_packets;
3739 tx_ring->tx_stats.bytes += total_bytes;
3740 tx_ring->tx_stats.packets += total_packets;
3741 adapter->net_stats.tx_bytes += total_bytes;
3742 adapter->net_stats.tx_packets += total_packets;
3743 return retval;
3746 #ifdef CONFIG_IGB_LRO
3748 * igb_get_skb_hdr - helper function for LRO header processing
3749 * @skb: pointer to sk_buff to be added to LRO packet
3750 * @iphdr: pointer to ip header structure
3751 * @tcph: pointer to tcp header structure
3752 * @hdr_flags: pointer to header flags
3753 * @priv: pointer to the receive descriptor for the current sk_buff
3755 static int igb_get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph,
3756 u64 *hdr_flags, void *priv)
3758 union e1000_adv_rx_desc *rx_desc = priv;
3759 u16 pkt_type = rx_desc->wb.lower.lo_dword.pkt_info &
3760 (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP);
3762 /* Verify that this is a valid IPv4 TCP packet */
3763 if (pkt_type != (E1000_RXDADV_PKTTYPE_IPV4 |
3764 E1000_RXDADV_PKTTYPE_TCP))
3765 return -1;
3767 /* Set network headers */
3768 skb_reset_network_header(skb);
3769 skb_set_transport_header(skb, ip_hdrlen(skb));
3770 *iphdr = ip_hdr(skb);
3771 *tcph = tcp_hdr(skb);
3772 *hdr_flags = LRO_IPV4 | LRO_TCP;
3774 return 0;
3777 #endif /* CONFIG_IGB_LRO */
3780 * igb_receive_skb - helper function to handle rx indications
3781 * @ring: pointer to receive ring receving this packet
3782 * @status: descriptor status field as written by hardware
3783 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3784 * @skb: pointer to sk_buff to be indicated to stack
3786 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3787 union e1000_adv_rx_desc * rx_desc,
3788 struct sk_buff *skb)
3790 struct igb_adapter * adapter = ring->adapter;
3791 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3793 #ifdef CONFIG_IGB_LRO
3794 if (adapter->netdev->features & NETIF_F_LRO &&
3795 skb->ip_summed == CHECKSUM_UNNECESSARY) {
3796 if (vlan_extracted)
3797 lro_vlan_hwaccel_receive_skb(&ring->lro_mgr, skb,
3798 adapter->vlgrp,
3799 le16_to_cpu(rx_desc->wb.upper.vlan),
3800 rx_desc);
3801 else
3802 lro_receive_skb(&ring->lro_mgr,skb, rx_desc);
3803 ring->lro_used = 1;
3804 } else {
3805 #endif
3806 if (vlan_extracted)
3807 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3808 le16_to_cpu(rx_desc->wb.upper.vlan));
3809 else
3811 netif_receive_skb(skb);
3812 #ifdef CONFIG_IGB_LRO
3814 #endif
3818 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3819 u32 status_err, struct sk_buff *skb)
3821 skb->ip_summed = CHECKSUM_NONE;
3823 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3824 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3825 return;
3826 /* TCP/UDP checksum error bit is set */
3827 if (status_err &
3828 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3829 /* let the stack verify checksum errors */
3830 adapter->hw_csum_err++;
3831 return;
3833 /* It must be a TCP or UDP packet with a valid checksum */
3834 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3835 skb->ip_summed = CHECKSUM_UNNECESSARY;
3837 adapter->hw_csum_good++;
3840 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3841 int *work_done, int budget)
3843 struct igb_adapter *adapter = rx_ring->adapter;
3844 struct net_device *netdev = adapter->netdev;
3845 struct pci_dev *pdev = adapter->pdev;
3846 union e1000_adv_rx_desc *rx_desc , *next_rxd;
3847 struct igb_buffer *buffer_info , *next_buffer;
3848 struct sk_buff *skb;
3849 unsigned int i;
3850 u32 length, hlen, staterr;
3851 bool cleaned = false;
3852 int cleaned_count = 0;
3853 unsigned int total_bytes = 0, total_packets = 0;
3855 i = rx_ring->next_to_clean;
3856 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3857 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3859 while (staterr & E1000_RXD_STAT_DD) {
3860 if (*work_done >= budget)
3861 break;
3862 (*work_done)++;
3863 buffer_info = &rx_ring->buffer_info[i];
3865 /* HW will not DMA in data larger than the given buffer, even
3866 * if it parses the (NFS, of course) header to be larger. In
3867 * that case, it fills the header buffer and spills the rest
3868 * into the page.
3870 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3871 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3872 if (hlen > adapter->rx_ps_hdr_size)
3873 hlen = adapter->rx_ps_hdr_size;
3875 length = le16_to_cpu(rx_desc->wb.upper.length);
3876 cleaned = true;
3877 cleaned_count++;
3879 skb = buffer_info->skb;
3880 prefetch(skb->data - NET_IP_ALIGN);
3881 buffer_info->skb = NULL;
3882 if (!adapter->rx_ps_hdr_size) {
3883 pci_unmap_single(pdev, buffer_info->dma,
3884 adapter->rx_buffer_len +
3885 NET_IP_ALIGN,
3886 PCI_DMA_FROMDEVICE);
3887 skb_put(skb, length);
3888 goto send_up;
3891 if (!skb_shinfo(skb)->nr_frags) {
3892 pci_unmap_single(pdev, buffer_info->dma,
3893 adapter->rx_ps_hdr_size +
3894 NET_IP_ALIGN,
3895 PCI_DMA_FROMDEVICE);
3896 skb_put(skb, hlen);
3899 if (length) {
3900 pci_unmap_page(pdev, buffer_info->page_dma,
3901 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3902 buffer_info->page_dma = 0;
3904 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3905 buffer_info->page,
3906 buffer_info->page_offset,
3907 length);
3909 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3910 (page_count(buffer_info->page) != 1))
3911 buffer_info->page = NULL;
3912 else
3913 get_page(buffer_info->page);
3915 skb->len += length;
3916 skb->data_len += length;
3918 skb->truesize += length;
3920 send_up:
3921 i++;
3922 if (i == rx_ring->count)
3923 i = 0;
3924 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3925 prefetch(next_rxd);
3926 next_buffer = &rx_ring->buffer_info[i];
3928 if (!(staterr & E1000_RXD_STAT_EOP)) {
3929 buffer_info->skb = next_buffer->skb;
3930 buffer_info->dma = next_buffer->dma;
3931 next_buffer->skb = skb;
3932 next_buffer->dma = 0;
3933 goto next_desc;
3936 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3937 dev_kfree_skb_irq(skb);
3938 goto next_desc;
3941 total_bytes += skb->len;
3942 total_packets++;
3944 igb_rx_checksum_adv(adapter, staterr, skb);
3946 skb->protocol = eth_type_trans(skb, netdev);
3948 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3950 next_desc:
3951 rx_desc->wb.upper.status_error = 0;
3953 /* return some buffers to hardware, one at a time is too slow */
3954 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3955 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3956 cleaned_count = 0;
3959 /* use prefetched values */
3960 rx_desc = next_rxd;
3961 buffer_info = next_buffer;
3963 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3966 rx_ring->next_to_clean = i;
3967 cleaned_count = IGB_DESC_UNUSED(rx_ring);
3969 #ifdef CONFIG_IGB_LRO
3970 if (rx_ring->lro_used) {
3971 lro_flush_all(&rx_ring->lro_mgr);
3972 rx_ring->lro_used = 0;
3974 #endif
3976 if (cleaned_count)
3977 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3979 rx_ring->total_packets += total_packets;
3980 rx_ring->total_bytes += total_bytes;
3981 rx_ring->rx_stats.packets += total_packets;
3982 rx_ring->rx_stats.bytes += total_bytes;
3983 adapter->net_stats.rx_bytes += total_bytes;
3984 adapter->net_stats.rx_packets += total_packets;
3985 return cleaned;
3990 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3991 * @adapter: address of board private structure
3993 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3994 int cleaned_count)
3996 struct igb_adapter *adapter = rx_ring->adapter;
3997 struct net_device *netdev = adapter->netdev;
3998 struct pci_dev *pdev = adapter->pdev;
3999 union e1000_adv_rx_desc *rx_desc;
4000 struct igb_buffer *buffer_info;
4001 struct sk_buff *skb;
4002 unsigned int i;
4004 i = rx_ring->next_to_use;
4005 buffer_info = &rx_ring->buffer_info[i];
4007 while (cleaned_count--) {
4008 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4010 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4011 if (!buffer_info->page) {
4012 buffer_info->page = alloc_page(GFP_ATOMIC);
4013 if (!buffer_info->page) {
4014 adapter->alloc_rx_buff_failed++;
4015 goto no_buffers;
4017 buffer_info->page_offset = 0;
4018 } else {
4019 buffer_info->page_offset ^= PAGE_SIZE / 2;
4021 buffer_info->page_dma =
4022 pci_map_page(pdev,
4023 buffer_info->page,
4024 buffer_info->page_offset,
4025 PAGE_SIZE / 2,
4026 PCI_DMA_FROMDEVICE);
4029 if (!buffer_info->skb) {
4030 int bufsz;
4032 if (adapter->rx_ps_hdr_size)
4033 bufsz = adapter->rx_ps_hdr_size;
4034 else
4035 bufsz = adapter->rx_buffer_len;
4036 bufsz += NET_IP_ALIGN;
4037 skb = netdev_alloc_skb(netdev, bufsz);
4039 if (!skb) {
4040 adapter->alloc_rx_buff_failed++;
4041 goto no_buffers;
4044 /* Make buffer alignment 2 beyond a 16 byte boundary
4045 * this will result in a 16 byte aligned IP header after
4046 * the 14 byte MAC header is removed
4048 skb_reserve(skb, NET_IP_ALIGN);
4050 buffer_info->skb = skb;
4051 buffer_info->dma = pci_map_single(pdev, skb->data,
4052 bufsz,
4053 PCI_DMA_FROMDEVICE);
4056 /* Refresh the desc even if buffer_addrs didn't change because
4057 * each write-back erases this info. */
4058 if (adapter->rx_ps_hdr_size) {
4059 rx_desc->read.pkt_addr =
4060 cpu_to_le64(buffer_info->page_dma);
4061 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4062 } else {
4063 rx_desc->read.pkt_addr =
4064 cpu_to_le64(buffer_info->dma);
4065 rx_desc->read.hdr_addr = 0;
4068 i++;
4069 if (i == rx_ring->count)
4070 i = 0;
4071 buffer_info = &rx_ring->buffer_info[i];
4074 no_buffers:
4075 if (rx_ring->next_to_use != i) {
4076 rx_ring->next_to_use = i;
4077 if (i == 0)
4078 i = (rx_ring->count - 1);
4079 else
4080 i--;
4082 /* Force memory writes to complete before letting h/w
4083 * know there are new descriptors to fetch. (Only
4084 * applicable for weak-ordered memory model archs,
4085 * such as IA-64). */
4086 wmb();
4087 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4092 * igb_mii_ioctl -
4093 * @netdev:
4094 * @ifreq:
4095 * @cmd:
4097 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4099 struct igb_adapter *adapter = netdev_priv(netdev);
4100 struct mii_ioctl_data *data = if_mii(ifr);
4102 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4103 return -EOPNOTSUPP;
4105 switch (cmd) {
4106 case SIOCGMIIPHY:
4107 data->phy_id = adapter->hw.phy.addr;
4108 break;
4109 case SIOCGMIIREG:
4110 if (!capable(CAP_NET_ADMIN))
4111 return -EPERM;
4112 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4113 &data->val_out))
4114 return -EIO;
4115 break;
4116 case SIOCSMIIREG:
4117 default:
4118 return -EOPNOTSUPP;
4120 return 0;
4124 * igb_ioctl -
4125 * @netdev:
4126 * @ifreq:
4127 * @cmd:
4129 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4131 switch (cmd) {
4132 case SIOCGMIIPHY:
4133 case SIOCGMIIREG:
4134 case SIOCSMIIREG:
4135 return igb_mii_ioctl(netdev, ifr, cmd);
4136 default:
4137 return -EOPNOTSUPP;
4141 static void igb_vlan_rx_register(struct net_device *netdev,
4142 struct vlan_group *grp)
4144 struct igb_adapter *adapter = netdev_priv(netdev);
4145 struct e1000_hw *hw = &adapter->hw;
4146 u32 ctrl, rctl;
4148 igb_irq_disable(adapter);
4149 adapter->vlgrp = grp;
4151 if (grp) {
4152 /* enable VLAN tag insert/strip */
4153 ctrl = rd32(E1000_CTRL);
4154 ctrl |= E1000_CTRL_VME;
4155 wr32(E1000_CTRL, ctrl);
4157 /* enable VLAN receive filtering */
4158 rctl = rd32(E1000_RCTL);
4159 rctl &= ~E1000_RCTL_CFIEN;
4160 wr32(E1000_RCTL, rctl);
4161 igb_update_mng_vlan(adapter);
4162 wr32(E1000_RLPML,
4163 adapter->max_frame_size + VLAN_TAG_SIZE);
4164 } else {
4165 /* disable VLAN tag insert/strip */
4166 ctrl = rd32(E1000_CTRL);
4167 ctrl &= ~E1000_CTRL_VME;
4168 wr32(E1000_CTRL, ctrl);
4170 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4171 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4172 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4174 wr32(E1000_RLPML,
4175 adapter->max_frame_size);
4178 if (!test_bit(__IGB_DOWN, &adapter->state))
4179 igb_irq_enable(adapter);
4182 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4184 struct igb_adapter *adapter = netdev_priv(netdev);
4185 struct e1000_hw *hw = &adapter->hw;
4186 u32 vfta, index;
4188 if ((adapter->hw.mng_cookie.status &
4189 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4190 (vid == adapter->mng_vlan_id))
4191 return;
4192 /* add VID to filter table */
4193 index = (vid >> 5) & 0x7F;
4194 vfta = array_rd32(E1000_VFTA, index);
4195 vfta |= (1 << (vid & 0x1F));
4196 igb_write_vfta(&adapter->hw, index, vfta);
4199 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4201 struct igb_adapter *adapter = netdev_priv(netdev);
4202 struct e1000_hw *hw = &adapter->hw;
4203 u32 vfta, index;
4205 igb_irq_disable(adapter);
4206 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4208 if (!test_bit(__IGB_DOWN, &adapter->state))
4209 igb_irq_enable(adapter);
4211 if ((adapter->hw.mng_cookie.status &
4212 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4213 (vid == adapter->mng_vlan_id)) {
4214 /* release control to f/w */
4215 igb_release_hw_control(adapter);
4216 return;
4219 /* remove VID from filter table */
4220 index = (vid >> 5) & 0x7F;
4221 vfta = array_rd32(E1000_VFTA, index);
4222 vfta &= ~(1 << (vid & 0x1F));
4223 igb_write_vfta(&adapter->hw, index, vfta);
4226 static void igb_restore_vlan(struct igb_adapter *adapter)
4228 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4230 if (adapter->vlgrp) {
4231 u16 vid;
4232 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4233 if (!vlan_group_get_device(adapter->vlgrp, vid))
4234 continue;
4235 igb_vlan_rx_add_vid(adapter->netdev, vid);
4240 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4242 struct e1000_mac_info *mac = &adapter->hw.mac;
4244 mac->autoneg = 0;
4246 /* Fiber NICs only allow 1000 gbps Full duplex */
4247 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4248 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4249 dev_err(&adapter->pdev->dev,
4250 "Unsupported Speed/Duplex configuration\n");
4251 return -EINVAL;
4254 switch (spddplx) {
4255 case SPEED_10 + DUPLEX_HALF:
4256 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4257 break;
4258 case SPEED_10 + DUPLEX_FULL:
4259 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4260 break;
4261 case SPEED_100 + DUPLEX_HALF:
4262 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4263 break;
4264 case SPEED_100 + DUPLEX_FULL:
4265 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4266 break;
4267 case SPEED_1000 + DUPLEX_FULL:
4268 mac->autoneg = 1;
4269 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4270 break;
4271 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4272 default:
4273 dev_err(&adapter->pdev->dev,
4274 "Unsupported Speed/Duplex configuration\n");
4275 return -EINVAL;
4277 return 0;
4281 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4283 struct net_device *netdev = pci_get_drvdata(pdev);
4284 struct igb_adapter *adapter = netdev_priv(netdev);
4285 struct e1000_hw *hw = &adapter->hw;
4286 u32 ctrl, rctl, status;
4287 u32 wufc = adapter->wol;
4288 #ifdef CONFIG_PM
4289 int retval = 0;
4290 #endif
4292 netif_device_detach(netdev);
4294 if (netif_running(netdev))
4295 igb_close(netdev);
4297 igb_reset_interrupt_capability(adapter);
4299 igb_free_queues(adapter);
4301 #ifdef CONFIG_PM
4302 retval = pci_save_state(pdev);
4303 if (retval)
4304 return retval;
4305 #endif
4307 status = rd32(E1000_STATUS);
4308 if (status & E1000_STATUS_LU)
4309 wufc &= ~E1000_WUFC_LNKC;
4311 if (wufc) {
4312 igb_setup_rctl(adapter);
4313 igb_set_multi(netdev);
4315 /* turn on all-multi mode if wake on multicast is enabled */
4316 if (wufc & E1000_WUFC_MC) {
4317 rctl = rd32(E1000_RCTL);
4318 rctl |= E1000_RCTL_MPE;
4319 wr32(E1000_RCTL, rctl);
4322 ctrl = rd32(E1000_CTRL);
4323 /* advertise wake from D3Cold */
4324 #define E1000_CTRL_ADVD3WUC 0x00100000
4325 /* phy power management enable */
4326 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4327 ctrl |= E1000_CTRL_ADVD3WUC;
4328 wr32(E1000_CTRL, ctrl);
4330 /* Allow time for pending master requests to run */
4331 igb_disable_pcie_master(&adapter->hw);
4333 wr32(E1000_WUC, E1000_WUC_PME_EN);
4334 wr32(E1000_WUFC, wufc);
4335 } else {
4336 wr32(E1000_WUC, 0);
4337 wr32(E1000_WUFC, 0);
4340 /* make sure adapter isn't asleep if manageability/wol is enabled */
4341 if (wufc || adapter->en_mng_pt) {
4342 pci_enable_wake(pdev, PCI_D3hot, 1);
4343 pci_enable_wake(pdev, PCI_D3cold, 1);
4344 } else {
4345 igb_shutdown_fiber_serdes_link_82575(hw);
4346 pci_enable_wake(pdev, PCI_D3hot, 0);
4347 pci_enable_wake(pdev, PCI_D3cold, 0);
4350 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4351 * would have already happened in close and is redundant. */
4352 igb_release_hw_control(adapter);
4354 pci_disable_device(pdev);
4356 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4358 return 0;
4361 #ifdef CONFIG_PM
4362 static int igb_resume(struct pci_dev *pdev)
4364 struct net_device *netdev = pci_get_drvdata(pdev);
4365 struct igb_adapter *adapter = netdev_priv(netdev);
4366 struct e1000_hw *hw = &adapter->hw;
4367 u32 err;
4369 pci_set_power_state(pdev, PCI_D0);
4370 pci_restore_state(pdev);
4372 if (adapter->need_ioport)
4373 err = pci_enable_device(pdev);
4374 else
4375 err = pci_enable_device_mem(pdev);
4376 if (err) {
4377 dev_err(&pdev->dev,
4378 "igb: Cannot enable PCI device from suspend\n");
4379 return err;
4381 pci_set_master(pdev);
4383 pci_enable_wake(pdev, PCI_D3hot, 0);
4384 pci_enable_wake(pdev, PCI_D3cold, 0);
4386 igb_set_interrupt_capability(adapter);
4388 if (igb_alloc_queues(adapter)) {
4389 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4390 return -ENOMEM;
4393 /* e1000_power_up_phy(adapter); */
4395 igb_reset(adapter);
4396 wr32(E1000_WUS, ~0);
4398 if (netif_running(netdev)) {
4399 err = igb_open(netdev);
4400 if (err)
4401 return err;
4404 netif_device_attach(netdev);
4406 /* let the f/w know that the h/w is now under the control of the
4407 * driver. */
4408 igb_get_hw_control(adapter);
4410 return 0;
4412 #endif
4414 static void igb_shutdown(struct pci_dev *pdev)
4416 igb_suspend(pdev, PMSG_SUSPEND);
4419 #ifdef CONFIG_NET_POLL_CONTROLLER
4421 * Polling 'interrupt' - used by things like netconsole to send skbs
4422 * without having to re-enable interrupts. It's not called while
4423 * the interrupt routine is executing.
4425 static void igb_netpoll(struct net_device *netdev)
4427 struct igb_adapter *adapter = netdev_priv(netdev);
4428 int i;
4429 int work_done = 0;
4431 igb_irq_disable(adapter);
4432 adapter->flags |= IGB_FLAG_IN_NETPOLL;
4434 for (i = 0; i < adapter->num_tx_queues; i++)
4435 igb_clean_tx_irq(&adapter->tx_ring[i]);
4437 for (i = 0; i < adapter->num_rx_queues; i++)
4438 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4439 &work_done,
4440 adapter->rx_ring[i].napi.weight);
4442 adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4443 igb_irq_enable(adapter);
4445 #endif /* CONFIG_NET_POLL_CONTROLLER */
4448 * igb_io_error_detected - called when PCI error is detected
4449 * @pdev: Pointer to PCI device
4450 * @state: The current pci connection state
4452 * This function is called after a PCI bus error affecting
4453 * this device has been detected.
4455 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4456 pci_channel_state_t state)
4458 struct net_device *netdev = pci_get_drvdata(pdev);
4459 struct igb_adapter *adapter = netdev_priv(netdev);
4461 netif_device_detach(netdev);
4463 if (netif_running(netdev))
4464 igb_down(adapter);
4465 pci_disable_device(pdev);
4467 /* Request a slot slot reset. */
4468 return PCI_ERS_RESULT_NEED_RESET;
4472 * igb_io_slot_reset - called after the pci bus has been reset.
4473 * @pdev: Pointer to PCI device
4475 * Restart the card from scratch, as if from a cold-boot. Implementation
4476 * resembles the first-half of the igb_resume routine.
4478 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4480 struct net_device *netdev = pci_get_drvdata(pdev);
4481 struct igb_adapter *adapter = netdev_priv(netdev);
4482 struct e1000_hw *hw = &adapter->hw;
4483 pci_ers_result_t result;
4484 int err;
4486 if (adapter->need_ioport)
4487 err = pci_enable_device(pdev);
4488 else
4489 err = pci_enable_device_mem(pdev);
4491 if (err) {
4492 dev_err(&pdev->dev,
4493 "Cannot re-enable PCI device after reset.\n");
4494 result = PCI_ERS_RESULT_DISCONNECT;
4495 } else {
4496 pci_set_master(pdev);
4497 pci_restore_state(pdev);
4499 pci_enable_wake(pdev, PCI_D3hot, 0);
4500 pci_enable_wake(pdev, PCI_D3cold, 0);
4502 igb_reset(adapter);
4503 wr32(E1000_WUS, ~0);
4504 result = PCI_ERS_RESULT_RECOVERED;
4507 err = pci_cleanup_aer_uncorrect_error_status(pdev);
4508 if (err) {
4509 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4510 "failed 0x%0x\n", err);
4511 /* non-fatal, continue */
4514 return result;
4518 * igb_io_resume - called when traffic can start flowing again.
4519 * @pdev: Pointer to PCI device
4521 * This callback is called when the error recovery driver tells us that
4522 * its OK to resume normal operation. Implementation resembles the
4523 * second-half of the igb_resume routine.
4525 static void igb_io_resume(struct pci_dev *pdev)
4527 struct net_device *netdev = pci_get_drvdata(pdev);
4528 struct igb_adapter *adapter = netdev_priv(netdev);
4530 if (netif_running(netdev)) {
4531 if (igb_up(adapter)) {
4532 dev_err(&pdev->dev, "igb_up failed after reset\n");
4533 return;
4537 netif_device_attach(netdev);
4539 /* let the f/w know that the h/w is now under the control of the
4540 * driver. */
4541 igb_get_hw_control(adapter);
4544 /* igb_main.c */