4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/bootmem.h>
27 #include <linux/pfn.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
34 /*** Page table manipulation functions ***/
36 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
40 pte
= pte_offset_kernel(pmd
, addr
);
42 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
43 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
44 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
47 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
52 pmd
= pmd_offset(pud
, addr
);
54 next
= pmd_addr_end(addr
, end
);
55 if (pmd_none_or_clear_bad(pmd
))
57 vunmap_pte_range(pmd
, addr
, next
);
58 } while (pmd
++, addr
= next
, addr
!= end
);
61 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
66 pud
= pud_offset(pgd
, addr
);
68 next
= pud_addr_end(addr
, end
);
69 if (pud_none_or_clear_bad(pud
))
71 vunmap_pmd_range(pud
, addr
, next
);
72 } while (pud
++, addr
= next
, addr
!= end
);
75 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
81 pgd
= pgd_offset_k(addr
);
83 next
= pgd_addr_end(addr
, end
);
84 if (pgd_none_or_clear_bad(pgd
))
86 vunmap_pud_range(pgd
, addr
, next
);
87 } while (pgd
++, addr
= next
, addr
!= end
);
90 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
91 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
100 pte
= pte_alloc_kernel(pmd
, addr
);
104 struct page
*page
= pages
[*nr
];
106 if (WARN_ON(!pte_none(*pte
)))
110 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
112 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
116 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
117 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
122 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
126 next
= pmd_addr_end(addr
, end
);
127 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
129 } while (pmd
++, addr
= next
, addr
!= end
);
133 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
134 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
139 pud
= pud_alloc(&init_mm
, pgd
, addr
);
143 next
= pud_addr_end(addr
, end
);
144 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
146 } while (pud
++, addr
= next
, addr
!= end
);
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
157 pgprot_t prot
, struct page
**pages
)
161 unsigned long addr
= start
;
166 pgd
= pgd_offset_k(addr
);
168 next
= pgd_addr_end(addr
, end
);
169 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
172 } while (pgd
++, addr
= next
, addr
!= end
);
179 static int vmap_page_range(unsigned long start
, unsigned long end
,
180 pgprot_t prot
, struct page
**pages
)
184 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
185 flush_cache_vmap(start
, end
);
189 static inline int is_vmalloc_or_module_addr(const void *x
)
192 * ARM, x86-64 and sparc64 put modules in a special place,
193 * and fall back on vmalloc() if that fails. Others
194 * just put it in the vmalloc space.
196 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
197 unsigned long addr
= (unsigned long)x
;
198 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
201 return is_vmalloc_addr(x
);
205 * Walk a vmap address to the struct page it maps.
207 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
209 unsigned long addr
= (unsigned long) vmalloc_addr
;
210 struct page
*page
= NULL
;
211 pgd_t
*pgd
= pgd_offset_k(addr
);
214 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
215 * architectures that do not vmalloc module space
217 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
219 if (!pgd_none(*pgd
)) {
220 pud_t
*pud
= pud_offset(pgd
, addr
);
221 if (!pud_none(*pud
)) {
222 pmd_t
*pmd
= pmd_offset(pud
, addr
);
223 if (!pmd_none(*pmd
)) {
226 ptep
= pte_offset_map(pmd
, addr
);
228 if (pte_present(pte
))
229 page
= pte_page(pte
);
236 EXPORT_SYMBOL(vmalloc_to_page
);
239 * Map a vmalloc()-space virtual address to the physical page frame number.
241 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
243 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
245 EXPORT_SYMBOL(vmalloc_to_pfn
);
248 /*** Global kva allocator ***/
250 #define VM_LAZY_FREE 0x01
251 #define VM_LAZY_FREEING 0x02
252 #define VM_VM_AREA 0x04
255 unsigned long va_start
;
256 unsigned long va_end
;
258 struct rb_node rb_node
; /* address sorted rbtree */
259 struct list_head list
; /* address sorted list */
260 struct list_head purge_list
; /* "lazy purge" list */
262 struct rcu_head rcu_head
;
265 static DEFINE_SPINLOCK(vmap_area_lock
);
266 static struct rb_root vmap_area_root
= RB_ROOT
;
267 static LIST_HEAD(vmap_area_list
);
269 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
271 struct rb_node
*n
= vmap_area_root
.rb_node
;
274 struct vmap_area
*va
;
276 va
= rb_entry(n
, struct vmap_area
, rb_node
);
277 if (addr
< va
->va_start
)
279 else if (addr
> va
->va_start
)
288 static void __insert_vmap_area(struct vmap_area
*va
)
290 struct rb_node
**p
= &vmap_area_root
.rb_node
;
291 struct rb_node
*parent
= NULL
;
295 struct vmap_area
*tmp
;
298 tmp
= rb_entry(parent
, struct vmap_area
, rb_node
);
299 if (va
->va_start
< tmp
->va_end
)
301 else if (va
->va_end
> tmp
->va_start
)
307 rb_link_node(&va
->rb_node
, parent
, p
);
308 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
310 /* address-sort this list so it is usable like the vmlist */
311 tmp
= rb_prev(&va
->rb_node
);
313 struct vmap_area
*prev
;
314 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
315 list_add_rcu(&va
->list
, &prev
->list
);
317 list_add_rcu(&va
->list
, &vmap_area_list
);
320 static void purge_vmap_area_lazy(void);
323 * Allocate a region of KVA of the specified size and alignment, within the
326 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
328 unsigned long vstart
, unsigned long vend
,
329 int node
, gfp_t gfp_mask
)
331 struct vmap_area
*va
;
337 BUG_ON(size
& ~PAGE_MASK
);
339 va
= kmalloc_node(sizeof(struct vmap_area
),
340 gfp_mask
& GFP_RECLAIM_MASK
, node
);
342 return ERR_PTR(-ENOMEM
);
345 addr
= ALIGN(vstart
, align
);
347 spin_lock(&vmap_area_lock
);
348 if (addr
+ size
- 1 < addr
)
351 /* XXX: could have a last_hole cache */
352 n
= vmap_area_root
.rb_node
;
354 struct vmap_area
*first
= NULL
;
357 struct vmap_area
*tmp
;
358 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
359 if (tmp
->va_end
>= addr
) {
360 if (!first
&& tmp
->va_start
< addr
+ size
)
372 if (first
->va_end
< addr
) {
373 n
= rb_next(&first
->rb_node
);
375 first
= rb_entry(n
, struct vmap_area
, rb_node
);
380 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
381 addr
= ALIGN(first
->va_end
+ PAGE_SIZE
, align
);
382 if (addr
+ size
- 1 < addr
)
385 n
= rb_next(&first
->rb_node
);
387 first
= rb_entry(n
, struct vmap_area
, rb_node
);
393 if (addr
+ size
> vend
) {
395 spin_unlock(&vmap_area_lock
);
397 purge_vmap_area_lazy();
401 if (printk_ratelimit())
403 "vmap allocation for size %lu failed: "
404 "use vmalloc=<size> to increase size.\n", size
);
405 return ERR_PTR(-EBUSY
);
408 BUG_ON(addr
& (align
-1));
411 va
->va_end
= addr
+ size
;
413 __insert_vmap_area(va
);
414 spin_unlock(&vmap_area_lock
);
419 static void rcu_free_va(struct rcu_head
*head
)
421 struct vmap_area
*va
= container_of(head
, struct vmap_area
, rcu_head
);
426 static void __free_vmap_area(struct vmap_area
*va
)
428 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
429 rb_erase(&va
->rb_node
, &vmap_area_root
);
430 RB_CLEAR_NODE(&va
->rb_node
);
431 list_del_rcu(&va
->list
);
433 call_rcu(&va
->rcu_head
, rcu_free_va
);
437 * Free a region of KVA allocated by alloc_vmap_area
439 static void free_vmap_area(struct vmap_area
*va
)
441 spin_lock(&vmap_area_lock
);
442 __free_vmap_area(va
);
443 spin_unlock(&vmap_area_lock
);
447 * Clear the pagetable entries of a given vmap_area
449 static void unmap_vmap_area(struct vmap_area
*va
)
451 vunmap_page_range(va
->va_start
, va
->va_end
);
454 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
457 * Unmap page tables and force a TLB flush immediately if
458 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
459 * bugs similarly to those in linear kernel virtual address
460 * space after a page has been freed.
462 * All the lazy freeing logic is still retained, in order to
463 * minimise intrusiveness of this debugging feature.
465 * This is going to be *slow* (linear kernel virtual address
466 * debugging doesn't do a broadcast TLB flush so it is a lot
469 #ifdef CONFIG_DEBUG_PAGEALLOC
470 vunmap_page_range(start
, end
);
471 flush_tlb_kernel_range(start
, end
);
476 * lazy_max_pages is the maximum amount of virtual address space we gather up
477 * before attempting to purge with a TLB flush.
479 * There is a tradeoff here: a larger number will cover more kernel page tables
480 * and take slightly longer to purge, but it will linearly reduce the number of
481 * global TLB flushes that must be performed. It would seem natural to scale
482 * this number up linearly with the number of CPUs (because vmapping activity
483 * could also scale linearly with the number of CPUs), however it is likely
484 * that in practice, workloads might be constrained in other ways that mean
485 * vmap activity will not scale linearly with CPUs. Also, I want to be
486 * conservative and not introduce a big latency on huge systems, so go with
487 * a less aggressive log scale. It will still be an improvement over the old
488 * code, and it will be simple to change the scale factor if we find that it
489 * becomes a problem on bigger systems.
491 static unsigned long lazy_max_pages(void)
495 log
= fls(num_online_cpus());
497 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
500 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
503 * Purges all lazily-freed vmap areas.
505 * If sync is 0 then don't purge if there is already a purge in progress.
506 * If force_flush is 1, then flush kernel TLBs between *start and *end even
507 * if we found no lazy vmap areas to unmap (callers can use this to optimise
508 * their own TLB flushing).
509 * Returns with *start = min(*start, lowest purged address)
510 * *end = max(*end, highest purged address)
512 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
513 int sync
, int force_flush
)
515 static DEFINE_SPINLOCK(purge_lock
);
517 struct vmap_area
*va
;
518 struct vmap_area
*n_va
;
522 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
523 * should not expect such behaviour. This just simplifies locking for
524 * the case that isn't actually used at the moment anyway.
526 if (!sync
&& !force_flush
) {
527 if (!spin_trylock(&purge_lock
))
530 spin_lock(&purge_lock
);
533 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
534 if (va
->flags
& VM_LAZY_FREE
) {
535 if (va
->va_start
< *start
)
536 *start
= va
->va_start
;
537 if (va
->va_end
> *end
)
539 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
541 list_add_tail(&va
->purge_list
, &valist
);
542 va
->flags
|= VM_LAZY_FREEING
;
543 va
->flags
&= ~VM_LAZY_FREE
;
549 BUG_ON(nr
> atomic_read(&vmap_lazy_nr
));
550 atomic_sub(nr
, &vmap_lazy_nr
);
553 if (nr
|| force_flush
)
554 flush_tlb_kernel_range(*start
, *end
);
557 spin_lock(&vmap_area_lock
);
558 list_for_each_entry_safe(va
, n_va
, &valist
, purge_list
)
559 __free_vmap_area(va
);
560 spin_unlock(&vmap_area_lock
);
562 spin_unlock(&purge_lock
);
566 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
567 * is already purging.
569 static void try_purge_vmap_area_lazy(void)
571 unsigned long start
= ULONG_MAX
, end
= 0;
573 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
577 * Kick off a purge of the outstanding lazy areas.
579 static void purge_vmap_area_lazy(void)
581 unsigned long start
= ULONG_MAX
, end
= 0;
583 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
587 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
588 * called for the correct range previously.
590 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
592 va
->flags
|= VM_LAZY_FREE
;
593 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
594 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
595 try_purge_vmap_area_lazy();
599 * Free and unmap a vmap area
601 static void free_unmap_vmap_area(struct vmap_area
*va
)
603 flush_cache_vunmap(va
->va_start
, va
->va_end
);
604 free_unmap_vmap_area_noflush(va
);
607 static struct vmap_area
*find_vmap_area(unsigned long addr
)
609 struct vmap_area
*va
;
611 spin_lock(&vmap_area_lock
);
612 va
= __find_vmap_area(addr
);
613 spin_unlock(&vmap_area_lock
);
618 static void free_unmap_vmap_area_addr(unsigned long addr
)
620 struct vmap_area
*va
;
622 va
= find_vmap_area(addr
);
624 free_unmap_vmap_area(va
);
628 /*** Per cpu kva allocator ***/
631 * vmap space is limited especially on 32 bit architectures. Ensure there is
632 * room for at least 16 percpu vmap blocks per CPU.
635 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
636 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
637 * instead (we just need a rough idea)
639 #if BITS_PER_LONG == 32
640 #define VMALLOC_SPACE (128UL*1024*1024)
642 #define VMALLOC_SPACE (128UL*1024*1024*1024)
645 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
646 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
647 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
648 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
649 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
650 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
651 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
652 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
653 VMALLOC_PAGES / NR_CPUS / 16))
655 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
657 static bool vmap_initialized __read_mostly
= false;
659 struct vmap_block_queue
{
661 struct list_head free
;
662 struct list_head dirty
;
663 unsigned int nr_dirty
;
668 struct vmap_area
*va
;
669 struct vmap_block_queue
*vbq
;
670 unsigned long free
, dirty
;
671 DECLARE_BITMAP(alloc_map
, VMAP_BBMAP_BITS
);
672 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
675 struct list_head free_list
;
676 struct list_head dirty_list
;
678 struct rcu_head rcu_head
;
682 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
683 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
686 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
687 * in the free path. Could get rid of this if we change the API to return a
688 * "cookie" from alloc, to be passed to free. But no big deal yet.
690 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
691 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
694 * We should probably have a fallback mechanism to allocate virtual memory
695 * out of partially filled vmap blocks. However vmap block sizing should be
696 * fairly reasonable according to the vmalloc size, so it shouldn't be a
700 static unsigned long addr_to_vb_idx(unsigned long addr
)
702 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
703 addr
/= VMAP_BLOCK_SIZE
;
707 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
709 struct vmap_block_queue
*vbq
;
710 struct vmap_block
*vb
;
711 struct vmap_area
*va
;
712 unsigned long vb_idx
;
715 node
= numa_node_id();
717 vb
= kmalloc_node(sizeof(struct vmap_block
),
718 gfp_mask
& GFP_RECLAIM_MASK
, node
);
720 return ERR_PTR(-ENOMEM
);
722 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
723 VMALLOC_START
, VMALLOC_END
,
725 if (unlikely(IS_ERR(va
))) {
727 return ERR_PTR(PTR_ERR(va
));
730 err
= radix_tree_preload(gfp_mask
);
737 spin_lock_init(&vb
->lock
);
739 vb
->free
= VMAP_BBMAP_BITS
;
741 bitmap_zero(vb
->alloc_map
, VMAP_BBMAP_BITS
);
742 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
743 INIT_LIST_HEAD(&vb
->free_list
);
744 INIT_LIST_HEAD(&vb
->dirty_list
);
746 vb_idx
= addr_to_vb_idx(va
->va_start
);
747 spin_lock(&vmap_block_tree_lock
);
748 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
749 spin_unlock(&vmap_block_tree_lock
);
751 radix_tree_preload_end();
753 vbq
= &get_cpu_var(vmap_block_queue
);
755 spin_lock(&vbq
->lock
);
756 list_add(&vb
->free_list
, &vbq
->free
);
757 spin_unlock(&vbq
->lock
);
758 put_cpu_var(vmap_cpu_blocks
);
763 static void rcu_free_vb(struct rcu_head
*head
)
765 struct vmap_block
*vb
= container_of(head
, struct vmap_block
, rcu_head
);
770 static void free_vmap_block(struct vmap_block
*vb
)
772 struct vmap_block
*tmp
;
773 unsigned long vb_idx
;
775 spin_lock(&vb
->vbq
->lock
);
776 if (!list_empty(&vb
->free_list
))
777 list_del(&vb
->free_list
);
778 if (!list_empty(&vb
->dirty_list
))
779 list_del(&vb
->dirty_list
);
780 spin_unlock(&vb
->vbq
->lock
);
782 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
783 spin_lock(&vmap_block_tree_lock
);
784 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
785 spin_unlock(&vmap_block_tree_lock
);
788 free_unmap_vmap_area_noflush(vb
->va
);
789 call_rcu(&vb
->rcu_head
, rcu_free_vb
);
792 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
794 struct vmap_block_queue
*vbq
;
795 struct vmap_block
*vb
;
796 unsigned long addr
= 0;
799 BUG_ON(size
& ~PAGE_MASK
);
800 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
801 order
= get_order(size
);
805 vbq
= &get_cpu_var(vmap_block_queue
);
806 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
809 spin_lock(&vb
->lock
);
810 i
= bitmap_find_free_region(vb
->alloc_map
,
811 VMAP_BBMAP_BITS
, order
);
814 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
815 BUG_ON(addr_to_vb_idx(addr
) !=
816 addr_to_vb_idx(vb
->va
->va_start
));
817 vb
->free
-= 1UL << order
;
819 spin_lock(&vbq
->lock
);
820 list_del_init(&vb
->free_list
);
821 spin_unlock(&vbq
->lock
);
823 spin_unlock(&vb
->lock
);
826 spin_unlock(&vb
->lock
);
828 put_cpu_var(vmap_cpu_blocks
);
832 vb
= new_vmap_block(gfp_mask
);
841 static void vb_free(const void *addr
, unsigned long size
)
843 unsigned long offset
;
844 unsigned long vb_idx
;
846 struct vmap_block
*vb
;
848 BUG_ON(size
& ~PAGE_MASK
);
849 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
851 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
853 order
= get_order(size
);
855 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
857 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
859 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
863 spin_lock(&vb
->lock
);
864 bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
);
866 spin_lock(&vb
->vbq
->lock
);
867 list_add(&vb
->dirty_list
, &vb
->vbq
->dirty
);
868 spin_unlock(&vb
->vbq
->lock
);
870 vb
->dirty
+= 1UL << order
;
871 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
872 BUG_ON(vb
->free
|| !list_empty(&vb
->free_list
));
873 spin_unlock(&vb
->lock
);
876 spin_unlock(&vb
->lock
);
880 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
882 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
883 * to amortize TLB flushing overheads. What this means is that any page you
884 * have now, may, in a former life, have been mapped into kernel virtual
885 * address by the vmap layer and so there might be some CPUs with TLB entries
886 * still referencing that page (additional to the regular 1:1 kernel mapping).
888 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
889 * be sure that none of the pages we have control over will have any aliases
890 * from the vmap layer.
892 void vm_unmap_aliases(void)
894 unsigned long start
= ULONG_MAX
, end
= 0;
898 if (unlikely(!vmap_initialized
))
901 for_each_possible_cpu(cpu
) {
902 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
903 struct vmap_block
*vb
;
906 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
909 spin_lock(&vb
->lock
);
910 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
911 while (i
< VMAP_BBMAP_BITS
) {
914 j
= find_next_zero_bit(vb
->dirty_map
,
917 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
918 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
919 vunmap_page_range(s
, e
);
928 i
= find_next_bit(vb
->dirty_map
,
931 spin_unlock(&vb
->lock
);
936 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
938 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
941 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
942 * @mem: the pointer returned by vm_map_ram
943 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
945 void vm_unmap_ram(const void *mem
, unsigned int count
)
947 unsigned long size
= count
<< PAGE_SHIFT
;
948 unsigned long addr
= (unsigned long)mem
;
951 BUG_ON(addr
< VMALLOC_START
);
952 BUG_ON(addr
> VMALLOC_END
);
953 BUG_ON(addr
& (PAGE_SIZE
-1));
955 debug_check_no_locks_freed(mem
, size
);
956 vmap_debug_free_range(addr
, addr
+size
);
958 if (likely(count
<= VMAP_MAX_ALLOC
))
961 free_unmap_vmap_area_addr(addr
);
963 EXPORT_SYMBOL(vm_unmap_ram
);
966 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
967 * @pages: an array of pointers to the pages to be mapped
968 * @count: number of pages
969 * @node: prefer to allocate data structures on this node
970 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
972 * Returns: a pointer to the address that has been mapped, or %NULL on failure
974 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
976 unsigned long size
= count
<< PAGE_SHIFT
;
980 if (likely(count
<= VMAP_MAX_ALLOC
)) {
981 mem
= vb_alloc(size
, GFP_KERNEL
);
984 addr
= (unsigned long)mem
;
986 struct vmap_area
*va
;
987 va
= alloc_vmap_area(size
, PAGE_SIZE
,
988 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
995 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
996 vm_unmap_ram(mem
, count
);
1001 EXPORT_SYMBOL(vm_map_ram
);
1004 * vm_area_register_early - register vmap area early during boot
1005 * @vm: vm_struct to register
1006 * @align: requested alignment
1008 * This function is used to register kernel vm area before
1009 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1010 * proper values on entry and other fields should be zero. On return,
1011 * vm->addr contains the allocated address.
1013 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1015 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1017 static size_t vm_init_off __initdata
;
1020 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1021 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1023 vm
->addr
= (void *)addr
;
1029 void __init
vmalloc_init(void)
1031 struct vmap_area
*va
;
1032 struct vm_struct
*tmp
;
1035 for_each_possible_cpu(i
) {
1036 struct vmap_block_queue
*vbq
;
1038 vbq
= &per_cpu(vmap_block_queue
, i
);
1039 spin_lock_init(&vbq
->lock
);
1040 INIT_LIST_HEAD(&vbq
->free
);
1041 INIT_LIST_HEAD(&vbq
->dirty
);
1045 /* Import existing vmlist entries. */
1046 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1047 va
= alloc_bootmem(sizeof(struct vmap_area
));
1048 va
->flags
= tmp
->flags
| VM_VM_AREA
;
1049 va
->va_start
= (unsigned long)tmp
->addr
;
1050 va
->va_end
= va
->va_start
+ tmp
->size
;
1051 __insert_vmap_area(va
);
1053 vmap_initialized
= true;
1057 * map_kernel_range_noflush - map kernel VM area with the specified pages
1058 * @addr: start of the VM area to map
1059 * @size: size of the VM area to map
1060 * @prot: page protection flags to use
1061 * @pages: pages to map
1063 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1064 * specify should have been allocated using get_vm_area() and its
1068 * This function does NOT do any cache flushing. The caller is
1069 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1070 * before calling this function.
1073 * The number of pages mapped on success, -errno on failure.
1075 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1076 pgprot_t prot
, struct page
**pages
)
1078 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1082 * unmap_kernel_range_noflush - unmap kernel VM area
1083 * @addr: start of the VM area to unmap
1084 * @size: size of the VM area to unmap
1086 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1087 * specify should have been allocated using get_vm_area() and its
1091 * This function does NOT do any cache flushing. The caller is
1092 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1093 * before calling this function and flush_tlb_kernel_range() after.
1095 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1097 vunmap_page_range(addr
, addr
+ size
);
1101 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1102 * @addr: start of the VM area to unmap
1103 * @size: size of the VM area to unmap
1105 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1106 * the unmapping and tlb after.
1108 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1110 unsigned long end
= addr
+ size
;
1112 flush_cache_vunmap(addr
, end
);
1113 vunmap_page_range(addr
, end
);
1114 flush_tlb_kernel_range(addr
, end
);
1117 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
1119 unsigned long addr
= (unsigned long)area
->addr
;
1120 unsigned long end
= addr
+ area
->size
- PAGE_SIZE
;
1123 err
= vmap_page_range(addr
, end
, prot
, *pages
);
1131 EXPORT_SYMBOL_GPL(map_vm_area
);
1133 /*** Old vmalloc interfaces ***/
1134 DEFINE_RWLOCK(vmlist_lock
);
1135 struct vm_struct
*vmlist
;
1137 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1138 unsigned long flags
, unsigned long start
, unsigned long end
,
1139 int node
, gfp_t gfp_mask
, void *caller
)
1141 static struct vmap_area
*va
;
1142 struct vm_struct
*area
;
1143 struct vm_struct
*tmp
, **p
;
1144 unsigned long align
= 1;
1146 BUG_ON(in_interrupt());
1147 if (flags
& VM_IOREMAP
) {
1148 int bit
= fls(size
);
1150 if (bit
> IOREMAP_MAX_ORDER
)
1151 bit
= IOREMAP_MAX_ORDER
;
1152 else if (bit
< PAGE_SHIFT
)
1158 size
= PAGE_ALIGN(size
);
1159 if (unlikely(!size
))
1162 area
= kmalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1163 if (unlikely(!area
))
1167 * We always allocate a guard page.
1171 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1177 area
->flags
= flags
;
1178 area
->addr
= (void *)va
->va_start
;
1182 area
->phys_addr
= 0;
1183 area
->caller
= caller
;
1185 va
->flags
|= VM_VM_AREA
;
1187 write_lock(&vmlist_lock
);
1188 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1189 if (tmp
->addr
>= area
->addr
)
1194 write_unlock(&vmlist_lock
);
1199 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1200 unsigned long start
, unsigned long end
)
1202 return __get_vm_area_node(size
, flags
, start
, end
, -1, GFP_KERNEL
,
1203 __builtin_return_address(0));
1205 EXPORT_SYMBOL_GPL(__get_vm_area
);
1207 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1208 unsigned long start
, unsigned long end
,
1211 return __get_vm_area_node(size
, flags
, start
, end
, -1, GFP_KERNEL
,
1216 * get_vm_area - reserve a contiguous kernel virtual area
1217 * @size: size of the area
1218 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1220 * Search an area of @size in the kernel virtual mapping area,
1221 * and reserved it for out purposes. Returns the area descriptor
1222 * on success or %NULL on failure.
1224 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1226 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1227 -1, GFP_KERNEL
, __builtin_return_address(0));
1230 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1233 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
,
1234 -1, GFP_KERNEL
, caller
);
1237 struct vm_struct
*get_vm_area_node(unsigned long size
, unsigned long flags
,
1238 int node
, gfp_t gfp_mask
)
1240 return __get_vm_area_node(size
, flags
, VMALLOC_START
, VMALLOC_END
, node
,
1241 gfp_mask
, __builtin_return_address(0));
1244 static struct vm_struct
*find_vm_area(const void *addr
)
1246 struct vmap_area
*va
;
1248 va
= find_vmap_area((unsigned long)addr
);
1249 if (va
&& va
->flags
& VM_VM_AREA
)
1256 * remove_vm_area - find and remove a continuous kernel virtual area
1257 * @addr: base address
1259 * Search for the kernel VM area starting at @addr, and remove it.
1260 * This function returns the found VM area, but using it is NOT safe
1261 * on SMP machines, except for its size or flags.
1263 struct vm_struct
*remove_vm_area(const void *addr
)
1265 struct vmap_area
*va
;
1267 va
= find_vmap_area((unsigned long)addr
);
1268 if (va
&& va
->flags
& VM_VM_AREA
) {
1269 struct vm_struct
*vm
= va
->private;
1270 struct vm_struct
*tmp
, **p
;
1272 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1273 free_unmap_vmap_area(va
);
1274 vm
->size
-= PAGE_SIZE
;
1276 write_lock(&vmlist_lock
);
1277 for (p
= &vmlist
; (tmp
= *p
) != vm
; p
= &tmp
->next
)
1280 write_unlock(&vmlist_lock
);
1287 static void __vunmap(const void *addr
, int deallocate_pages
)
1289 struct vm_struct
*area
;
1294 if ((PAGE_SIZE
-1) & (unsigned long)addr
) {
1295 WARN(1, KERN_ERR
"Trying to vfree() bad address (%p)\n", addr
);
1299 area
= remove_vm_area(addr
);
1300 if (unlikely(!area
)) {
1301 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1306 debug_check_no_locks_freed(addr
, area
->size
);
1307 debug_check_no_obj_freed(addr
, area
->size
);
1309 if (deallocate_pages
) {
1312 for (i
= 0; i
< area
->nr_pages
; i
++) {
1313 struct page
*page
= area
->pages
[i
];
1319 if (area
->flags
& VM_VPAGES
)
1330 * vfree - release memory allocated by vmalloc()
1331 * @addr: memory base address
1333 * Free the virtually continuous memory area starting at @addr, as
1334 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1335 * NULL, no operation is performed.
1337 * Must not be called in interrupt context.
1339 void vfree(const void *addr
)
1341 BUG_ON(in_interrupt());
1344 EXPORT_SYMBOL(vfree
);
1347 * vunmap - release virtual mapping obtained by vmap()
1348 * @addr: memory base address
1350 * Free the virtually contiguous memory area starting at @addr,
1351 * which was created from the page array passed to vmap().
1353 * Must not be called in interrupt context.
1355 void vunmap(const void *addr
)
1357 BUG_ON(in_interrupt());
1361 EXPORT_SYMBOL(vunmap
);
1364 * vmap - map an array of pages into virtually contiguous space
1365 * @pages: array of page pointers
1366 * @count: number of pages to map
1367 * @flags: vm_area->flags
1368 * @prot: page protection for the mapping
1370 * Maps @count pages from @pages into contiguous kernel virtual
1373 void *vmap(struct page
**pages
, unsigned int count
,
1374 unsigned long flags
, pgprot_t prot
)
1376 struct vm_struct
*area
;
1380 if (count
> num_physpages
)
1383 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1384 __builtin_return_address(0));
1388 if (map_vm_area(area
, prot
, &pages
)) {
1395 EXPORT_SYMBOL(vmap
);
1397 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1398 int node
, void *caller
);
1399 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1400 pgprot_t prot
, int node
, void *caller
)
1402 struct page
**pages
;
1403 unsigned int nr_pages
, array_size
, i
;
1405 nr_pages
= (area
->size
- PAGE_SIZE
) >> PAGE_SHIFT
;
1406 array_size
= (nr_pages
* sizeof(struct page
*));
1408 area
->nr_pages
= nr_pages
;
1409 /* Please note that the recursion is strictly bounded. */
1410 if (array_size
> PAGE_SIZE
) {
1411 pages
= __vmalloc_node(array_size
, gfp_mask
| __GFP_ZERO
,
1412 PAGE_KERNEL
, node
, caller
);
1413 area
->flags
|= VM_VPAGES
;
1415 pages
= kmalloc_node(array_size
,
1416 (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
,
1419 area
->pages
= pages
;
1420 area
->caller
= caller
;
1422 remove_vm_area(area
->addr
);
1427 for (i
= 0; i
< area
->nr_pages
; i
++) {
1431 page
= alloc_page(gfp_mask
);
1433 page
= alloc_pages_node(node
, gfp_mask
, 0);
1435 if (unlikely(!page
)) {
1436 /* Successfully allocated i pages, free them in __vunmap() */
1440 area
->pages
[i
] = page
;
1443 if (map_vm_area(area
, prot
, &pages
))
1452 void *__vmalloc_area(struct vm_struct
*area
, gfp_t gfp_mask
, pgprot_t prot
)
1454 return __vmalloc_area_node(area
, gfp_mask
, prot
, -1,
1455 __builtin_return_address(0));
1459 * __vmalloc_node - allocate virtually contiguous memory
1460 * @size: allocation size
1461 * @gfp_mask: flags for the page level allocator
1462 * @prot: protection mask for the allocated pages
1463 * @node: node to use for allocation or -1
1464 * @caller: caller's return address
1466 * Allocate enough pages to cover @size from the page level
1467 * allocator with @gfp_mask flags. Map them into contiguous
1468 * kernel virtual space, using a pagetable protection of @prot.
1470 static void *__vmalloc_node(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
,
1471 int node
, void *caller
)
1473 struct vm_struct
*area
;
1475 size
= PAGE_ALIGN(size
);
1476 if (!size
|| (size
>> PAGE_SHIFT
) > num_physpages
)
1479 area
= __get_vm_area_node(size
, VM_ALLOC
, VMALLOC_START
, VMALLOC_END
,
1480 node
, gfp_mask
, caller
);
1485 return __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1488 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1490 return __vmalloc_node(size
, gfp_mask
, prot
, -1,
1491 __builtin_return_address(0));
1493 EXPORT_SYMBOL(__vmalloc
);
1496 * vmalloc - allocate virtually contiguous memory
1497 * @size: allocation size
1498 * Allocate enough pages to cover @size from the page level
1499 * allocator and map them into contiguous kernel virtual space.
1501 * For tight control over page level allocator and protection flags
1502 * use __vmalloc() instead.
1504 void *vmalloc(unsigned long size
)
1506 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1507 -1, __builtin_return_address(0));
1509 EXPORT_SYMBOL(vmalloc
);
1512 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1513 * @size: allocation size
1515 * The resulting memory area is zeroed so it can be mapped to userspace
1516 * without leaking data.
1518 void *vmalloc_user(unsigned long size
)
1520 struct vm_struct
*area
;
1523 ret
= __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1524 PAGE_KERNEL
, -1, __builtin_return_address(0));
1526 area
= find_vm_area(ret
);
1527 area
->flags
|= VM_USERMAP
;
1531 EXPORT_SYMBOL(vmalloc_user
);
1534 * vmalloc_node - allocate memory on a specific node
1535 * @size: allocation size
1538 * Allocate enough pages to cover @size from the page level
1539 * allocator and map them into contiguous kernel virtual space.
1541 * For tight control over page level allocator and protection flags
1542 * use __vmalloc() instead.
1544 void *vmalloc_node(unsigned long size
, int node
)
1546 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1547 node
, __builtin_return_address(0));
1549 EXPORT_SYMBOL(vmalloc_node
);
1551 #ifndef PAGE_KERNEL_EXEC
1552 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1556 * vmalloc_exec - allocate virtually contiguous, executable memory
1557 * @size: allocation size
1559 * Kernel-internal function to allocate enough pages to cover @size
1560 * the page level allocator and map them into contiguous and
1561 * executable kernel virtual space.
1563 * For tight control over page level allocator and protection flags
1564 * use __vmalloc() instead.
1567 void *vmalloc_exec(unsigned long size
)
1569 return __vmalloc_node(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1570 -1, __builtin_return_address(0));
1573 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1574 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1575 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1576 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1578 #define GFP_VMALLOC32 GFP_KERNEL
1582 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1583 * @size: allocation size
1585 * Allocate enough 32bit PA addressable pages to cover @size from the
1586 * page level allocator and map them into contiguous kernel virtual space.
1588 void *vmalloc_32(unsigned long size
)
1590 return __vmalloc_node(size
, GFP_VMALLOC32
, PAGE_KERNEL
,
1591 -1, __builtin_return_address(0));
1593 EXPORT_SYMBOL(vmalloc_32
);
1596 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1597 * @size: allocation size
1599 * The resulting memory area is 32bit addressable and zeroed so it can be
1600 * mapped to userspace without leaking data.
1602 void *vmalloc_32_user(unsigned long size
)
1604 struct vm_struct
*area
;
1607 ret
= __vmalloc_node(size
, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1608 -1, __builtin_return_address(0));
1610 area
= find_vm_area(ret
);
1611 area
->flags
|= VM_USERMAP
;
1615 EXPORT_SYMBOL(vmalloc_32_user
);
1617 long vread(char *buf
, char *addr
, unsigned long count
)
1619 struct vm_struct
*tmp
;
1620 char *vaddr
, *buf_start
= buf
;
1623 /* Don't allow overflow */
1624 if ((unsigned long) addr
+ count
< count
)
1625 count
= -(unsigned long) addr
;
1627 read_lock(&vmlist_lock
);
1628 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1629 vaddr
= (char *) tmp
->addr
;
1630 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1632 while (addr
< vaddr
) {
1640 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1651 read_unlock(&vmlist_lock
);
1652 return buf
- buf_start
;
1655 long vwrite(char *buf
, char *addr
, unsigned long count
)
1657 struct vm_struct
*tmp
;
1658 char *vaddr
, *buf_start
= buf
;
1661 /* Don't allow overflow */
1662 if ((unsigned long) addr
+ count
< count
)
1663 count
= -(unsigned long) addr
;
1665 read_lock(&vmlist_lock
);
1666 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1667 vaddr
= (char *) tmp
->addr
;
1668 if (addr
>= vaddr
+ tmp
->size
- PAGE_SIZE
)
1670 while (addr
< vaddr
) {
1677 n
= vaddr
+ tmp
->size
- PAGE_SIZE
- addr
;
1688 read_unlock(&vmlist_lock
);
1689 return buf
- buf_start
;
1693 * remap_vmalloc_range - map vmalloc pages to userspace
1694 * @vma: vma to cover (map full range of vma)
1695 * @addr: vmalloc memory
1696 * @pgoff: number of pages into addr before first page to map
1698 * Returns: 0 for success, -Exxx on failure
1700 * This function checks that addr is a valid vmalloc'ed area, and
1701 * that it is big enough to cover the vma. Will return failure if
1702 * that criteria isn't met.
1704 * Similar to remap_pfn_range() (see mm/memory.c)
1706 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1707 unsigned long pgoff
)
1709 struct vm_struct
*area
;
1710 unsigned long uaddr
= vma
->vm_start
;
1711 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1713 if ((PAGE_SIZE
-1) & (unsigned long)addr
)
1716 area
= find_vm_area(addr
);
1720 if (!(area
->flags
& VM_USERMAP
))
1723 if (usize
+ (pgoff
<< PAGE_SHIFT
) > area
->size
- PAGE_SIZE
)
1726 addr
+= pgoff
<< PAGE_SHIFT
;
1728 struct page
*page
= vmalloc_to_page(addr
);
1731 ret
= vm_insert_page(vma
, uaddr
, page
);
1738 } while (usize
> 0);
1740 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1741 vma
->vm_flags
|= VM_RESERVED
;
1745 EXPORT_SYMBOL(remap_vmalloc_range
);
1748 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1751 void __attribute__((weak
)) vmalloc_sync_all(void)
1756 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
1758 /* apply_to_page_range() does all the hard work. */
1763 * alloc_vm_area - allocate a range of kernel address space
1764 * @size: size of the area
1766 * Returns: NULL on failure, vm_struct on success
1768 * This function reserves a range of kernel address space, and
1769 * allocates pagetables to map that range. No actual mappings
1770 * are created. If the kernel address space is not shared
1771 * between processes, it syncs the pagetable across all
1774 struct vm_struct
*alloc_vm_area(size_t size
)
1776 struct vm_struct
*area
;
1778 area
= get_vm_area_caller(size
, VM_IOREMAP
,
1779 __builtin_return_address(0));
1784 * This ensures that page tables are constructed for this region
1785 * of kernel virtual address space and mapped into init_mm.
1787 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
1788 area
->size
, f
, NULL
)) {
1793 /* Make sure the pagetables are constructed in process kernel
1799 EXPORT_SYMBOL_GPL(alloc_vm_area
);
1801 void free_vm_area(struct vm_struct
*area
)
1803 struct vm_struct
*ret
;
1804 ret
= remove_vm_area(area
->addr
);
1805 BUG_ON(ret
!= area
);
1808 EXPORT_SYMBOL_GPL(free_vm_area
);
1811 #ifdef CONFIG_PROC_FS
1812 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
1815 struct vm_struct
*v
;
1817 read_lock(&vmlist_lock
);
1819 while (n
> 0 && v
) {
1830 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1832 struct vm_struct
*v
= p
;
1838 static void s_stop(struct seq_file
*m
, void *p
)
1840 read_unlock(&vmlist_lock
);
1843 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
1846 unsigned int nr
, *counters
= m
->private;
1851 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
1853 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
1854 counters
[page_to_nid(v
->pages
[nr
])]++;
1856 for_each_node_state(nr
, N_HIGH_MEMORY
)
1858 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
1862 static int s_show(struct seq_file
*m
, void *p
)
1864 struct vm_struct
*v
= p
;
1866 seq_printf(m
, "0x%p-0x%p %7ld",
1867 v
->addr
, v
->addr
+ v
->size
, v
->size
);
1870 char buff
[KSYM_SYMBOL_LEN
];
1873 sprint_symbol(buff
, (unsigned long)v
->caller
);
1878 seq_printf(m
, " pages=%d", v
->nr_pages
);
1881 seq_printf(m
, " phys=%lx", v
->phys_addr
);
1883 if (v
->flags
& VM_IOREMAP
)
1884 seq_printf(m
, " ioremap");
1886 if (v
->flags
& VM_ALLOC
)
1887 seq_printf(m
, " vmalloc");
1889 if (v
->flags
& VM_MAP
)
1890 seq_printf(m
, " vmap");
1892 if (v
->flags
& VM_USERMAP
)
1893 seq_printf(m
, " user");
1895 if (v
->flags
& VM_VPAGES
)
1896 seq_printf(m
, " vpages");
1898 show_numa_info(m
, v
);
1903 static const struct seq_operations vmalloc_op
= {
1910 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
1912 unsigned int *ptr
= NULL
;
1916 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
1917 ret
= seq_open(file
, &vmalloc_op
);
1919 struct seq_file
*m
= file
->private_data
;
1926 static const struct file_operations proc_vmalloc_operations
= {
1927 .open
= vmalloc_open
,
1929 .llseek
= seq_lseek
,
1930 .release
= seq_release_private
,
1933 static int __init
proc_vmalloc_init(void)
1935 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
1938 module_init(proc_vmalloc_init
);