[PATCH] x86_64: Fix NUMA node lookup debug code which had bitrotted
[linux-2.6/mini2440.git] / mm / page_alloc.c
blob259a71bacca40f0995f31d92ba73ba9f1cdb20dc
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
40 #include <asm/tlbflush.h>
41 #include "internal.h"
44 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
45 * initializer cleaner
47 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
48 EXPORT_SYMBOL(node_online_map);
49 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
50 EXPORT_SYMBOL(node_possible_map);
51 struct pglist_data *pgdat_list __read_mostly;
52 unsigned long totalram_pages __read_mostly;
53 unsigned long totalhigh_pages __read_mostly;
54 long nr_swap_pages;
57 * results with 256, 32 in the lowmem_reserve sysctl:
58 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
59 * 1G machine -> (16M dma, 784M normal, 224M high)
60 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
61 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
62 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
64 * TBD: should special case ZONE_DMA32 machines here - in those we normally
65 * don't need any ZONE_NORMAL reservation
67 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
69 EXPORT_SYMBOL(totalram_pages);
70 EXPORT_SYMBOL(nr_swap_pages);
73 * Used by page_zone() to look up the address of the struct zone whose
74 * id is encoded in the upper bits of page->flags
76 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
77 EXPORT_SYMBOL(zone_table);
79 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
80 int min_free_kbytes = 1024;
82 unsigned long __initdata nr_kernel_pages;
83 unsigned long __initdata nr_all_pages;
85 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
87 int ret = 0;
88 unsigned seq;
89 unsigned long pfn = page_to_pfn(page);
91 do {
92 seq = zone_span_seqbegin(zone);
93 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
94 ret = 1;
95 else if (pfn < zone->zone_start_pfn)
96 ret = 1;
97 } while (zone_span_seqretry(zone, seq));
99 return ret;
102 static int page_is_consistent(struct zone *zone, struct page *page)
104 #ifdef CONFIG_HOLES_IN_ZONE
105 if (!pfn_valid(page_to_pfn(page)))
106 return 0;
107 #endif
108 if (zone != page_zone(page))
109 return 0;
111 return 1;
114 * Temporary debugging check for pages not lying within a given zone.
116 static int bad_range(struct zone *zone, struct page *page)
118 if (page_outside_zone_boundaries(zone, page))
119 return 1;
120 if (!page_is_consistent(zone, page))
121 return 1;
123 return 0;
126 static void bad_page(const char *function, struct page *page)
128 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
129 function, current->comm, page);
130 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
131 (int)(2*sizeof(unsigned long)), (unsigned long)page->flags,
132 page->mapping, page_mapcount(page), page_count(page));
133 printk(KERN_EMERG "Backtrace:\n");
134 dump_stack();
135 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
136 page->flags &= ~(1 << PG_lru |
137 1 << PG_private |
138 1 << PG_locked |
139 1 << PG_active |
140 1 << PG_dirty |
141 1 << PG_reclaim |
142 1 << PG_slab |
143 1 << PG_swapcache |
144 1 << PG_writeback |
145 1 << PG_reserved );
146 set_page_count(page, 0);
147 reset_page_mapcount(page);
148 page->mapping = NULL;
149 add_taint(TAINT_BAD_PAGE);
152 #ifndef CONFIG_HUGETLB_PAGE
153 #define prep_compound_page(page, order) do { } while (0)
154 #define destroy_compound_page(page, order) do { } while (0)
155 #else
157 * Higher-order pages are called "compound pages". They are structured thusly:
159 * The first PAGE_SIZE page is called the "head page".
161 * The remaining PAGE_SIZE pages are called "tail pages".
163 * All pages have PG_compound set. All pages have their ->private pointing at
164 * the head page (even the head page has this).
166 * The first tail page's ->mapping, if non-zero, holds the address of the
167 * compound page's put_page() function.
169 * The order of the allocation is stored in the first tail page's ->index
170 * This is only for debug at present. This usage means that zero-order pages
171 * may not be compound.
173 static void prep_compound_page(struct page *page, unsigned long order)
175 int i;
176 int nr_pages = 1 << order;
178 page[1].mapping = NULL;
179 page[1].index = order;
180 for (i = 0; i < nr_pages; i++) {
181 struct page *p = page + i;
183 SetPageCompound(p);
184 set_page_private(p, (unsigned long)page);
188 static void destroy_compound_page(struct page *page, unsigned long order)
190 int i;
191 int nr_pages = 1 << order;
193 if (!PageCompound(page))
194 return;
196 if (page[1].index != order)
197 bad_page(__FUNCTION__, page);
199 for (i = 0; i < nr_pages; i++) {
200 struct page *p = page + i;
202 if (!PageCompound(p))
203 bad_page(__FUNCTION__, page);
204 if (page_private(p) != (unsigned long)page)
205 bad_page(__FUNCTION__, page);
206 ClearPageCompound(p);
209 #endif /* CONFIG_HUGETLB_PAGE */
212 * function for dealing with page's order in buddy system.
213 * zone->lock is already acquired when we use these.
214 * So, we don't need atomic page->flags operations here.
216 static inline unsigned long page_order(struct page *page) {
217 return page_private(page);
220 static inline void set_page_order(struct page *page, int order) {
221 set_page_private(page, order);
222 __SetPagePrivate(page);
225 static inline void rmv_page_order(struct page *page)
227 __ClearPagePrivate(page);
228 set_page_private(page, 0);
232 * Locate the struct page for both the matching buddy in our
233 * pair (buddy1) and the combined O(n+1) page they form (page).
235 * 1) Any buddy B1 will have an order O twin B2 which satisfies
236 * the following equation:
237 * B2 = B1 ^ (1 << O)
238 * For example, if the starting buddy (buddy2) is #8 its order
239 * 1 buddy is #10:
240 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
242 * 2) Any buddy B will have an order O+1 parent P which
243 * satisfies the following equation:
244 * P = B & ~(1 << O)
246 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
248 static inline struct page *
249 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
251 unsigned long buddy_idx = page_idx ^ (1 << order);
253 return page + (buddy_idx - page_idx);
256 static inline unsigned long
257 __find_combined_index(unsigned long page_idx, unsigned int order)
259 return (page_idx & ~(1 << order));
263 * This function checks whether a page is free && is the buddy
264 * we can do coalesce a page and its buddy if
265 * (a) the buddy is free &&
266 * (b) the buddy is on the buddy system &&
267 * (c) a page and its buddy have the same order.
268 * for recording page's order, we use page_private(page) and PG_private.
271 static inline int page_is_buddy(struct page *page, int order)
273 if (PagePrivate(page) &&
274 (page_order(page) == order) &&
275 page_count(page) == 0)
276 return 1;
277 return 0;
281 * Freeing function for a buddy system allocator.
283 * The concept of a buddy system is to maintain direct-mapped table
284 * (containing bit values) for memory blocks of various "orders".
285 * The bottom level table contains the map for the smallest allocatable
286 * units of memory (here, pages), and each level above it describes
287 * pairs of units from the levels below, hence, "buddies".
288 * At a high level, all that happens here is marking the table entry
289 * at the bottom level available, and propagating the changes upward
290 * as necessary, plus some accounting needed to play nicely with other
291 * parts of the VM system.
292 * At each level, we keep a list of pages, which are heads of continuous
293 * free pages of length of (1 << order) and marked with PG_Private.Page's
294 * order is recorded in page_private(page) field.
295 * So when we are allocating or freeing one, we can derive the state of the
296 * other. That is, if we allocate a small block, and both were
297 * free, the remainder of the region must be split into blocks.
298 * If a block is freed, and its buddy is also free, then this
299 * triggers coalescing into a block of larger size.
301 * -- wli
304 static inline void __free_pages_bulk (struct page *page,
305 struct zone *zone, unsigned int order)
307 unsigned long page_idx;
308 int order_size = 1 << order;
310 if (unlikely(order))
311 destroy_compound_page(page, order);
313 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
315 BUG_ON(page_idx & (order_size - 1));
316 BUG_ON(bad_range(zone, page));
318 zone->free_pages += order_size;
319 while (order < MAX_ORDER-1) {
320 unsigned long combined_idx;
321 struct free_area *area;
322 struct page *buddy;
324 combined_idx = __find_combined_index(page_idx, order);
325 buddy = __page_find_buddy(page, page_idx, order);
327 if (bad_range(zone, buddy))
328 break;
329 if (!page_is_buddy(buddy, order))
330 break; /* Move the buddy up one level. */
331 list_del(&buddy->lru);
332 area = zone->free_area + order;
333 area->nr_free--;
334 rmv_page_order(buddy);
335 page = page + (combined_idx - page_idx);
336 page_idx = combined_idx;
337 order++;
339 set_page_order(page, order);
340 list_add(&page->lru, &zone->free_area[order].free_list);
341 zone->free_area[order].nr_free++;
344 static inline void free_pages_check(const char *function, struct page *page)
346 if ( page_mapcount(page) ||
347 page->mapping != NULL ||
348 page_count(page) != 0 ||
349 (page->flags & (
350 1 << PG_lru |
351 1 << PG_private |
352 1 << PG_locked |
353 1 << PG_active |
354 1 << PG_reclaim |
355 1 << PG_slab |
356 1 << PG_swapcache |
357 1 << PG_writeback |
358 1 << PG_reserved )))
359 bad_page(function, page);
360 if (PageDirty(page))
361 __ClearPageDirty(page);
365 * Frees a list of pages.
366 * Assumes all pages on list are in same zone, and of same order.
367 * count is the number of pages to free.
369 * If the zone was previously in an "all pages pinned" state then look to
370 * see if this freeing clears that state.
372 * And clear the zone's pages_scanned counter, to hold off the "all pages are
373 * pinned" detection logic.
375 static int
376 free_pages_bulk(struct zone *zone, int count,
377 struct list_head *list, unsigned int order)
379 unsigned long flags;
380 struct page *page = NULL;
381 int ret = 0;
383 spin_lock_irqsave(&zone->lock, flags);
384 zone->all_unreclaimable = 0;
385 zone->pages_scanned = 0;
386 while (!list_empty(list) && count--) {
387 page = list_entry(list->prev, struct page, lru);
388 /* have to delete it as __free_pages_bulk list manipulates */
389 list_del(&page->lru);
390 __free_pages_bulk(page, zone, order);
391 ret++;
393 spin_unlock_irqrestore(&zone->lock, flags);
394 return ret;
397 void __free_pages_ok(struct page *page, unsigned int order)
399 LIST_HEAD(list);
400 int i;
402 arch_free_page(page, order);
404 mod_page_state(pgfree, 1 << order);
406 #ifndef CONFIG_MMU
407 if (order > 0)
408 for (i = 1 ; i < (1 << order) ; ++i)
409 __put_page(page + i);
410 #endif
412 for (i = 0 ; i < (1 << order) ; ++i)
413 free_pages_check(__FUNCTION__, page + i);
414 list_add(&page->lru, &list);
415 kernel_map_pages(page, 1<<order, 0);
416 free_pages_bulk(page_zone(page), 1, &list, order);
421 * The order of subdivision here is critical for the IO subsystem.
422 * Please do not alter this order without good reasons and regression
423 * testing. Specifically, as large blocks of memory are subdivided,
424 * the order in which smaller blocks are delivered depends on the order
425 * they're subdivided in this function. This is the primary factor
426 * influencing the order in which pages are delivered to the IO
427 * subsystem according to empirical testing, and this is also justified
428 * by considering the behavior of a buddy system containing a single
429 * large block of memory acted on by a series of small allocations.
430 * This behavior is a critical factor in sglist merging's success.
432 * -- wli
434 static inline struct page *
435 expand(struct zone *zone, struct page *page,
436 int low, int high, struct free_area *area)
438 unsigned long size = 1 << high;
440 while (high > low) {
441 area--;
442 high--;
443 size >>= 1;
444 BUG_ON(bad_range(zone, &page[size]));
445 list_add(&page[size].lru, &area->free_list);
446 area->nr_free++;
447 set_page_order(&page[size], high);
449 return page;
452 void set_page_refs(struct page *page, int order)
454 #ifdef CONFIG_MMU
455 set_page_count(page, 1);
456 #else
457 int i;
460 * We need to reference all the pages for this order, otherwise if
461 * anyone accesses one of the pages with (get/put) it will be freed.
462 * - eg: access_process_vm()
464 for (i = 0; i < (1 << order); i++)
465 set_page_count(page + i, 1);
466 #endif /* CONFIG_MMU */
470 * This page is about to be returned from the page allocator
472 static void prep_new_page(struct page *page, int order)
474 if ( page_mapcount(page) ||
475 page->mapping != NULL ||
476 page_count(page) != 0 ||
477 (page->flags & (
478 1 << PG_lru |
479 1 << PG_private |
480 1 << PG_locked |
481 1 << PG_active |
482 1 << PG_dirty |
483 1 << PG_reclaim |
484 1 << PG_slab |
485 1 << PG_swapcache |
486 1 << PG_writeback |
487 1 << PG_reserved )))
488 bad_page(__FUNCTION__, page);
490 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
491 1 << PG_referenced | 1 << PG_arch_1 |
492 1 << PG_checked | 1 << PG_mappedtodisk);
493 set_page_private(page, 0);
494 set_page_refs(page, order);
495 kernel_map_pages(page, 1 << order, 1);
499 * Do the hard work of removing an element from the buddy allocator.
500 * Call me with the zone->lock already held.
502 static struct page *__rmqueue(struct zone *zone, unsigned int order)
504 struct free_area * area;
505 unsigned int current_order;
506 struct page *page;
508 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
509 area = zone->free_area + current_order;
510 if (list_empty(&area->free_list))
511 continue;
513 page = list_entry(area->free_list.next, struct page, lru);
514 list_del(&page->lru);
515 rmv_page_order(page);
516 area->nr_free--;
517 zone->free_pages -= 1UL << order;
518 return expand(zone, page, order, current_order, area);
521 return NULL;
525 * Obtain a specified number of elements from the buddy allocator, all under
526 * a single hold of the lock, for efficiency. Add them to the supplied list.
527 * Returns the number of new pages which were placed at *list.
529 static int rmqueue_bulk(struct zone *zone, unsigned int order,
530 unsigned long count, struct list_head *list)
532 unsigned long flags;
533 int i;
534 int allocated = 0;
535 struct page *page;
537 spin_lock_irqsave(&zone->lock, flags);
538 for (i = 0; i < count; ++i) {
539 page = __rmqueue(zone, order);
540 if (page == NULL)
541 break;
542 allocated++;
543 list_add_tail(&page->lru, list);
545 spin_unlock_irqrestore(&zone->lock, flags);
546 return allocated;
549 #ifdef CONFIG_NUMA
550 /* Called from the slab reaper to drain remote pagesets */
551 void drain_remote_pages(void)
553 struct zone *zone;
554 int i;
555 unsigned long flags;
557 local_irq_save(flags);
558 for_each_zone(zone) {
559 struct per_cpu_pageset *pset;
561 /* Do not drain local pagesets */
562 if (zone->zone_pgdat->node_id == numa_node_id())
563 continue;
565 pset = zone->pageset[smp_processor_id()];
566 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
567 struct per_cpu_pages *pcp;
569 pcp = &pset->pcp[i];
570 if (pcp->count)
571 pcp->count -= free_pages_bulk(zone, pcp->count,
572 &pcp->list, 0);
575 local_irq_restore(flags);
577 #endif
579 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
580 static void __drain_pages(unsigned int cpu)
582 struct zone *zone;
583 int i;
585 for_each_zone(zone) {
586 struct per_cpu_pageset *pset;
588 pset = zone_pcp(zone, cpu);
589 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
590 struct per_cpu_pages *pcp;
592 pcp = &pset->pcp[i];
593 pcp->count -= free_pages_bulk(zone, pcp->count,
594 &pcp->list, 0);
598 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
600 #ifdef CONFIG_PM
602 void mark_free_pages(struct zone *zone)
604 unsigned long zone_pfn, flags;
605 int order;
606 struct list_head *curr;
608 if (!zone->spanned_pages)
609 return;
611 spin_lock_irqsave(&zone->lock, flags);
612 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
613 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
615 for (order = MAX_ORDER - 1; order >= 0; --order)
616 list_for_each(curr, &zone->free_area[order].free_list) {
617 unsigned long start_pfn, i;
619 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
621 for (i=0; i < (1<<order); i++)
622 SetPageNosaveFree(pfn_to_page(start_pfn+i));
624 spin_unlock_irqrestore(&zone->lock, flags);
628 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
630 void drain_local_pages(void)
632 unsigned long flags;
634 local_irq_save(flags);
635 __drain_pages(smp_processor_id());
636 local_irq_restore(flags);
638 #endif /* CONFIG_PM */
640 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
642 #ifdef CONFIG_NUMA
643 unsigned long flags;
644 int cpu;
645 pg_data_t *pg = z->zone_pgdat;
646 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
647 struct per_cpu_pageset *p;
649 local_irq_save(flags);
650 cpu = smp_processor_id();
651 p = zone_pcp(z,cpu);
652 if (pg == orig) {
653 p->numa_hit++;
654 } else {
655 p->numa_miss++;
656 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
658 if (pg == NODE_DATA(numa_node_id()))
659 p->local_node++;
660 else
661 p->other_node++;
662 local_irq_restore(flags);
663 #endif
667 * Free a 0-order page
669 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
670 static void fastcall free_hot_cold_page(struct page *page, int cold)
672 struct zone *zone = page_zone(page);
673 struct per_cpu_pages *pcp;
674 unsigned long flags;
676 arch_free_page(page, 0);
678 kernel_map_pages(page, 1, 0);
679 inc_page_state(pgfree);
680 if (PageAnon(page))
681 page->mapping = NULL;
682 free_pages_check(__FUNCTION__, page);
683 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
684 local_irq_save(flags);
685 list_add(&page->lru, &pcp->list);
686 pcp->count++;
687 if (pcp->count >= pcp->high)
688 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
689 local_irq_restore(flags);
690 put_cpu();
693 void fastcall free_hot_page(struct page *page)
695 free_hot_cold_page(page, 0);
698 void fastcall free_cold_page(struct page *page)
700 free_hot_cold_page(page, 1);
703 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
705 int i;
707 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
708 for(i = 0; i < (1 << order); i++)
709 clear_highpage(page + i);
713 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
714 * we cheat by calling it from here, in the order > 0 path. Saves a branch
715 * or two.
717 static struct page *
718 buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
720 unsigned long flags;
721 struct page *page = NULL;
722 int cold = !!(gfp_flags & __GFP_COLD);
724 if (order == 0) {
725 struct per_cpu_pages *pcp;
727 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
728 local_irq_save(flags);
729 if (pcp->count <= pcp->low)
730 pcp->count += rmqueue_bulk(zone, 0,
731 pcp->batch, &pcp->list);
732 if (pcp->count) {
733 page = list_entry(pcp->list.next, struct page, lru);
734 list_del(&page->lru);
735 pcp->count--;
737 local_irq_restore(flags);
738 put_cpu();
741 if (page == NULL) {
742 spin_lock_irqsave(&zone->lock, flags);
743 page = __rmqueue(zone, order);
744 spin_unlock_irqrestore(&zone->lock, flags);
747 if (page != NULL) {
748 BUG_ON(bad_range(zone, page));
749 mod_page_state_zone(zone, pgalloc, 1 << order);
750 prep_new_page(page, order);
752 if (gfp_flags & __GFP_ZERO)
753 prep_zero_page(page, order, gfp_flags);
755 if (order && (gfp_flags & __GFP_COMP))
756 prep_compound_page(page, order);
758 return page;
762 * Return 1 if free pages are above 'mark'. This takes into account the order
763 * of the allocation.
765 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
766 int classzone_idx, int can_try_harder, gfp_t gfp_high)
768 /* free_pages my go negative - that's OK */
769 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
770 int o;
772 if (gfp_high)
773 min -= min / 2;
774 if (can_try_harder)
775 min -= min / 4;
777 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
778 return 0;
779 for (o = 0; o < order; o++) {
780 /* At the next order, this order's pages become unavailable */
781 free_pages -= z->free_area[o].nr_free << o;
783 /* Require fewer higher order pages to be free */
784 min >>= 1;
786 if (free_pages <= min)
787 return 0;
789 return 1;
792 static inline int
793 should_reclaim_zone(struct zone *z, gfp_t gfp_mask)
795 if (!z->reclaim_pages)
796 return 0;
797 if (gfp_mask & __GFP_NORECLAIM)
798 return 0;
799 return 1;
803 * This is the 'heart' of the zoned buddy allocator.
805 struct page * fastcall
806 __alloc_pages(gfp_t gfp_mask, unsigned int order,
807 struct zonelist *zonelist)
809 const gfp_t wait = gfp_mask & __GFP_WAIT;
810 struct zone **zones, *z;
811 struct page *page;
812 struct reclaim_state reclaim_state;
813 struct task_struct *p = current;
814 int i;
815 int classzone_idx;
816 int do_retry;
817 int can_try_harder;
818 int did_some_progress;
820 might_sleep_if(wait);
823 * The caller may dip into page reserves a bit more if the caller
824 * cannot run direct reclaim, or is the caller has realtime scheduling
825 * policy
827 can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
829 zones = zonelist->zones; /* the list of zones suitable for gfp_mask */
831 if (unlikely(zones[0] == NULL)) {
832 /* Should this ever happen?? */
833 return NULL;
836 classzone_idx = zone_idx(zones[0]);
838 restart:
840 * Go through the zonelist once, looking for a zone with enough free.
841 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
843 for (i = 0; (z = zones[i]) != NULL; i++) {
844 int do_reclaim = should_reclaim_zone(z, gfp_mask);
846 if (!cpuset_zone_allowed(z, __GFP_HARDWALL))
847 continue;
850 * If the zone is to attempt early page reclaim then this loop
851 * will try to reclaim pages and check the watermark a second
852 * time before giving up and falling back to the next zone.
854 zone_reclaim_retry:
855 if (!zone_watermark_ok(z, order, z->pages_low,
856 classzone_idx, 0, 0)) {
857 if (!do_reclaim)
858 continue;
859 else {
860 zone_reclaim(z, gfp_mask, order);
861 /* Only try reclaim once */
862 do_reclaim = 0;
863 goto zone_reclaim_retry;
867 page = buffered_rmqueue(z, order, gfp_mask);
868 if (page)
869 goto got_pg;
872 for (i = 0; (z = zones[i]) != NULL; i++)
873 wakeup_kswapd(z, order);
876 * Go through the zonelist again. Let __GFP_HIGH and allocations
877 * coming from realtime tasks to go deeper into reserves
879 * This is the last chance, in general, before the goto nopage.
880 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
881 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
883 for (i = 0; (z = zones[i]) != NULL; i++) {
884 if (!zone_watermark_ok(z, order, z->pages_min,
885 classzone_idx, can_try_harder,
886 gfp_mask & __GFP_HIGH))
887 continue;
889 if (wait && !cpuset_zone_allowed(z, gfp_mask))
890 continue;
892 page = buffered_rmqueue(z, order, gfp_mask);
893 if (page)
894 goto got_pg;
897 /* This allocation should allow future memory freeing. */
899 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
900 && !in_interrupt()) {
901 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
902 /* go through the zonelist yet again, ignoring mins */
903 for (i = 0; (z = zones[i]) != NULL; i++) {
904 if (!cpuset_zone_allowed(z, gfp_mask))
905 continue;
906 page = buffered_rmqueue(z, order, gfp_mask);
907 if (page)
908 goto got_pg;
911 goto nopage;
914 /* Atomic allocations - we can't balance anything */
915 if (!wait)
916 goto nopage;
918 rebalance:
919 cond_resched();
921 /* We now go into synchronous reclaim */
922 p->flags |= PF_MEMALLOC;
923 reclaim_state.reclaimed_slab = 0;
924 p->reclaim_state = &reclaim_state;
926 did_some_progress = try_to_free_pages(zones, gfp_mask);
928 p->reclaim_state = NULL;
929 p->flags &= ~PF_MEMALLOC;
931 cond_resched();
933 if (likely(did_some_progress)) {
934 for (i = 0; (z = zones[i]) != NULL; i++) {
935 if (!zone_watermark_ok(z, order, z->pages_min,
936 classzone_idx, can_try_harder,
937 gfp_mask & __GFP_HIGH))
938 continue;
940 if (!cpuset_zone_allowed(z, gfp_mask))
941 continue;
943 page = buffered_rmqueue(z, order, gfp_mask);
944 if (page)
945 goto got_pg;
947 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
949 * Go through the zonelist yet one more time, keep
950 * very high watermark here, this is only to catch
951 * a parallel oom killing, we must fail if we're still
952 * under heavy pressure.
954 for (i = 0; (z = zones[i]) != NULL; i++) {
955 if (!zone_watermark_ok(z, order, z->pages_high,
956 classzone_idx, 0, 0))
957 continue;
959 if (!cpuset_zone_allowed(z, __GFP_HARDWALL))
960 continue;
962 page = buffered_rmqueue(z, order, gfp_mask);
963 if (page)
964 goto got_pg;
967 out_of_memory(gfp_mask, order);
968 goto restart;
972 * Don't let big-order allocations loop unless the caller explicitly
973 * requests that. Wait for some write requests to complete then retry.
975 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
976 * <= 3, but that may not be true in other implementations.
978 do_retry = 0;
979 if (!(gfp_mask & __GFP_NORETRY)) {
980 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
981 do_retry = 1;
982 if (gfp_mask & __GFP_NOFAIL)
983 do_retry = 1;
985 if (do_retry) {
986 blk_congestion_wait(WRITE, HZ/50);
987 goto rebalance;
990 nopage:
991 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
992 printk(KERN_WARNING "%s: page allocation failure."
993 " order:%d, mode:0x%x\n",
994 p->comm, order, gfp_mask);
995 dump_stack();
996 show_mem();
998 return NULL;
999 got_pg:
1000 zone_statistics(zonelist, z);
1001 return page;
1004 EXPORT_SYMBOL(__alloc_pages);
1007 * Common helper functions.
1009 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1011 struct page * page;
1012 page = alloc_pages(gfp_mask, order);
1013 if (!page)
1014 return 0;
1015 return (unsigned long) page_address(page);
1018 EXPORT_SYMBOL(__get_free_pages);
1020 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1022 struct page * page;
1025 * get_zeroed_page() returns a 32-bit address, which cannot represent
1026 * a highmem page
1028 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1030 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1031 if (page)
1032 return (unsigned long) page_address(page);
1033 return 0;
1036 EXPORT_SYMBOL(get_zeroed_page);
1038 void __pagevec_free(struct pagevec *pvec)
1040 int i = pagevec_count(pvec);
1042 while (--i >= 0)
1043 free_hot_cold_page(pvec->pages[i], pvec->cold);
1046 fastcall void __free_pages(struct page *page, unsigned int order)
1048 if (put_page_testzero(page)) {
1049 if (order == 0)
1050 free_hot_page(page);
1051 else
1052 __free_pages_ok(page, order);
1056 EXPORT_SYMBOL(__free_pages);
1058 fastcall void free_pages(unsigned long addr, unsigned int order)
1060 if (addr != 0) {
1061 BUG_ON(!virt_addr_valid((void *)addr));
1062 __free_pages(virt_to_page((void *)addr), order);
1066 EXPORT_SYMBOL(free_pages);
1069 * Total amount of free (allocatable) RAM:
1071 unsigned int nr_free_pages(void)
1073 unsigned int sum = 0;
1074 struct zone *zone;
1076 for_each_zone(zone)
1077 sum += zone->free_pages;
1079 return sum;
1082 EXPORT_SYMBOL(nr_free_pages);
1084 #ifdef CONFIG_NUMA
1085 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1087 unsigned int i, sum = 0;
1089 for (i = 0; i < MAX_NR_ZONES; i++)
1090 sum += pgdat->node_zones[i].free_pages;
1092 return sum;
1094 #endif
1096 static unsigned int nr_free_zone_pages(int offset)
1098 /* Just pick one node, since fallback list is circular */
1099 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1100 unsigned int sum = 0;
1102 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1103 struct zone **zonep = zonelist->zones;
1104 struct zone *zone;
1106 for (zone = *zonep++; zone; zone = *zonep++) {
1107 unsigned long size = zone->present_pages;
1108 unsigned long high = zone->pages_high;
1109 if (size > high)
1110 sum += size - high;
1113 return sum;
1117 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1119 unsigned int nr_free_buffer_pages(void)
1121 return nr_free_zone_pages(gfp_zone(GFP_USER));
1125 * Amount of free RAM allocatable within all zones
1127 unsigned int nr_free_pagecache_pages(void)
1129 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1132 #ifdef CONFIG_HIGHMEM
1133 unsigned int nr_free_highpages (void)
1135 pg_data_t *pgdat;
1136 unsigned int pages = 0;
1138 for_each_pgdat(pgdat)
1139 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1141 return pages;
1143 #endif
1145 #ifdef CONFIG_NUMA
1146 static void show_node(struct zone *zone)
1148 printk("Node %d ", zone->zone_pgdat->node_id);
1150 #else
1151 #define show_node(zone) do { } while (0)
1152 #endif
1155 * Accumulate the page_state information across all CPUs.
1156 * The result is unavoidably approximate - it can change
1157 * during and after execution of this function.
1159 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1161 atomic_t nr_pagecache = ATOMIC_INIT(0);
1162 EXPORT_SYMBOL(nr_pagecache);
1163 #ifdef CONFIG_SMP
1164 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1165 #endif
1167 void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1169 int cpu = 0;
1171 memset(ret, 0, sizeof(*ret));
1172 cpus_and(*cpumask, *cpumask, cpu_online_map);
1174 cpu = first_cpu(*cpumask);
1175 while (cpu < NR_CPUS) {
1176 unsigned long *in, *out, off;
1178 in = (unsigned long *)&per_cpu(page_states, cpu);
1180 cpu = next_cpu(cpu, *cpumask);
1182 if (cpu < NR_CPUS)
1183 prefetch(&per_cpu(page_states, cpu));
1185 out = (unsigned long *)ret;
1186 for (off = 0; off < nr; off++)
1187 *out++ += *in++;
1191 void get_page_state_node(struct page_state *ret, int node)
1193 int nr;
1194 cpumask_t mask = node_to_cpumask(node);
1196 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1197 nr /= sizeof(unsigned long);
1199 __get_page_state(ret, nr+1, &mask);
1202 void get_page_state(struct page_state *ret)
1204 int nr;
1205 cpumask_t mask = CPU_MASK_ALL;
1207 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1208 nr /= sizeof(unsigned long);
1210 __get_page_state(ret, nr + 1, &mask);
1213 void get_full_page_state(struct page_state *ret)
1215 cpumask_t mask = CPU_MASK_ALL;
1217 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1220 unsigned long __read_page_state(unsigned long offset)
1222 unsigned long ret = 0;
1223 int cpu;
1225 for_each_online_cpu(cpu) {
1226 unsigned long in;
1228 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1229 ret += *((unsigned long *)in);
1231 return ret;
1234 void __mod_page_state(unsigned long offset, unsigned long delta)
1236 unsigned long flags;
1237 void* ptr;
1239 local_irq_save(flags);
1240 ptr = &__get_cpu_var(page_states);
1241 *(unsigned long*)(ptr + offset) += delta;
1242 local_irq_restore(flags);
1245 EXPORT_SYMBOL(__mod_page_state);
1247 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1248 unsigned long *free, struct pglist_data *pgdat)
1250 struct zone *zones = pgdat->node_zones;
1251 int i;
1253 *active = 0;
1254 *inactive = 0;
1255 *free = 0;
1256 for (i = 0; i < MAX_NR_ZONES; i++) {
1257 *active += zones[i].nr_active;
1258 *inactive += zones[i].nr_inactive;
1259 *free += zones[i].free_pages;
1263 void get_zone_counts(unsigned long *active,
1264 unsigned long *inactive, unsigned long *free)
1266 struct pglist_data *pgdat;
1268 *active = 0;
1269 *inactive = 0;
1270 *free = 0;
1271 for_each_pgdat(pgdat) {
1272 unsigned long l, m, n;
1273 __get_zone_counts(&l, &m, &n, pgdat);
1274 *active += l;
1275 *inactive += m;
1276 *free += n;
1280 void si_meminfo(struct sysinfo *val)
1282 val->totalram = totalram_pages;
1283 val->sharedram = 0;
1284 val->freeram = nr_free_pages();
1285 val->bufferram = nr_blockdev_pages();
1286 #ifdef CONFIG_HIGHMEM
1287 val->totalhigh = totalhigh_pages;
1288 val->freehigh = nr_free_highpages();
1289 #else
1290 val->totalhigh = 0;
1291 val->freehigh = 0;
1292 #endif
1293 val->mem_unit = PAGE_SIZE;
1296 EXPORT_SYMBOL(si_meminfo);
1298 #ifdef CONFIG_NUMA
1299 void si_meminfo_node(struct sysinfo *val, int nid)
1301 pg_data_t *pgdat = NODE_DATA(nid);
1303 val->totalram = pgdat->node_present_pages;
1304 val->freeram = nr_free_pages_pgdat(pgdat);
1305 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1306 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1307 val->mem_unit = PAGE_SIZE;
1309 #endif
1311 #define K(x) ((x) << (PAGE_SHIFT-10))
1314 * Show free area list (used inside shift_scroll-lock stuff)
1315 * We also calculate the percentage fragmentation. We do this by counting the
1316 * memory on each free list with the exception of the first item on the list.
1318 void show_free_areas(void)
1320 struct page_state ps;
1321 int cpu, temperature;
1322 unsigned long active;
1323 unsigned long inactive;
1324 unsigned long free;
1325 struct zone *zone;
1327 for_each_zone(zone) {
1328 show_node(zone);
1329 printk("%s per-cpu:", zone->name);
1331 if (!zone->present_pages) {
1332 printk(" empty\n");
1333 continue;
1334 } else
1335 printk("\n");
1337 for_each_cpu(cpu) {
1338 struct per_cpu_pageset *pageset;
1340 pageset = zone_pcp(zone, cpu);
1342 for (temperature = 0; temperature < 2; temperature++)
1343 printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1344 cpu,
1345 temperature ? "cold" : "hot",
1346 pageset->pcp[temperature].low,
1347 pageset->pcp[temperature].high,
1348 pageset->pcp[temperature].batch,
1349 pageset->pcp[temperature].count);
1353 get_page_state(&ps);
1354 get_zone_counts(&active, &inactive, &free);
1356 printk("Free pages: %11ukB (%ukB HighMem)\n",
1357 K(nr_free_pages()),
1358 K(nr_free_highpages()));
1360 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1361 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1362 active,
1363 inactive,
1364 ps.nr_dirty,
1365 ps.nr_writeback,
1366 ps.nr_unstable,
1367 nr_free_pages(),
1368 ps.nr_slab,
1369 ps.nr_mapped,
1370 ps.nr_page_table_pages);
1372 for_each_zone(zone) {
1373 int i;
1375 show_node(zone);
1376 printk("%s"
1377 " free:%lukB"
1378 " min:%lukB"
1379 " low:%lukB"
1380 " high:%lukB"
1381 " active:%lukB"
1382 " inactive:%lukB"
1383 " present:%lukB"
1384 " pages_scanned:%lu"
1385 " all_unreclaimable? %s"
1386 "\n",
1387 zone->name,
1388 K(zone->free_pages),
1389 K(zone->pages_min),
1390 K(zone->pages_low),
1391 K(zone->pages_high),
1392 K(zone->nr_active),
1393 K(zone->nr_inactive),
1394 K(zone->present_pages),
1395 zone->pages_scanned,
1396 (zone->all_unreclaimable ? "yes" : "no")
1398 printk("lowmem_reserve[]:");
1399 for (i = 0; i < MAX_NR_ZONES; i++)
1400 printk(" %lu", zone->lowmem_reserve[i]);
1401 printk("\n");
1404 for_each_zone(zone) {
1405 unsigned long nr, flags, order, total = 0;
1407 show_node(zone);
1408 printk("%s: ", zone->name);
1409 if (!zone->present_pages) {
1410 printk("empty\n");
1411 continue;
1414 spin_lock_irqsave(&zone->lock, flags);
1415 for (order = 0; order < MAX_ORDER; order++) {
1416 nr = zone->free_area[order].nr_free;
1417 total += nr << order;
1418 printk("%lu*%lukB ", nr, K(1UL) << order);
1420 spin_unlock_irqrestore(&zone->lock, flags);
1421 printk("= %lukB\n", K(total));
1424 show_swap_cache_info();
1428 * Builds allocation fallback zone lists.
1430 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1432 switch (k) {
1433 struct zone *zone;
1434 default:
1435 BUG();
1436 case ZONE_HIGHMEM:
1437 zone = pgdat->node_zones + ZONE_HIGHMEM;
1438 if (zone->present_pages) {
1439 #ifndef CONFIG_HIGHMEM
1440 BUG();
1441 #endif
1442 zonelist->zones[j++] = zone;
1444 case ZONE_NORMAL:
1445 zone = pgdat->node_zones + ZONE_NORMAL;
1446 if (zone->present_pages)
1447 zonelist->zones[j++] = zone;
1448 case ZONE_DMA32:
1449 zone = pgdat->node_zones + ZONE_DMA32;
1450 if (zone->present_pages)
1451 zonelist->zones[j++] = zone;
1452 case ZONE_DMA:
1453 zone = pgdat->node_zones + ZONE_DMA;
1454 if (zone->present_pages)
1455 zonelist->zones[j++] = zone;
1458 return j;
1461 static inline int highest_zone(int zone_bits)
1463 int res = ZONE_NORMAL;
1464 if (zone_bits & (__force int)__GFP_HIGHMEM)
1465 res = ZONE_HIGHMEM;
1466 if (zone_bits & (__force int)__GFP_DMA32)
1467 res = ZONE_DMA32;
1468 if (zone_bits & (__force int)__GFP_DMA)
1469 res = ZONE_DMA;
1470 return res;
1473 #ifdef CONFIG_NUMA
1474 #define MAX_NODE_LOAD (num_online_nodes())
1475 static int __initdata node_load[MAX_NUMNODES];
1477 * find_next_best_node - find the next node that should appear in a given node's fallback list
1478 * @node: node whose fallback list we're appending
1479 * @used_node_mask: nodemask_t of already used nodes
1481 * We use a number of factors to determine which is the next node that should
1482 * appear on a given node's fallback list. The node should not have appeared
1483 * already in @node's fallback list, and it should be the next closest node
1484 * according to the distance array (which contains arbitrary distance values
1485 * from each node to each node in the system), and should also prefer nodes
1486 * with no CPUs, since presumably they'll have very little allocation pressure
1487 * on them otherwise.
1488 * It returns -1 if no node is found.
1490 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1492 int i, n, val;
1493 int min_val = INT_MAX;
1494 int best_node = -1;
1496 for_each_online_node(i) {
1497 cpumask_t tmp;
1499 /* Start from local node */
1500 n = (node+i) % num_online_nodes();
1502 /* Don't want a node to appear more than once */
1503 if (node_isset(n, *used_node_mask))
1504 continue;
1506 /* Use the local node if we haven't already */
1507 if (!node_isset(node, *used_node_mask)) {
1508 best_node = node;
1509 break;
1512 /* Use the distance array to find the distance */
1513 val = node_distance(node, n);
1515 /* Give preference to headless and unused nodes */
1516 tmp = node_to_cpumask(n);
1517 if (!cpus_empty(tmp))
1518 val += PENALTY_FOR_NODE_WITH_CPUS;
1520 /* Slight preference for less loaded node */
1521 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1522 val += node_load[n];
1524 if (val < min_val) {
1525 min_val = val;
1526 best_node = n;
1530 if (best_node >= 0)
1531 node_set(best_node, *used_node_mask);
1533 return best_node;
1536 static void __init build_zonelists(pg_data_t *pgdat)
1538 int i, j, k, node, local_node;
1539 int prev_node, load;
1540 struct zonelist *zonelist;
1541 nodemask_t used_mask;
1543 /* initialize zonelists */
1544 for (i = 0; i < GFP_ZONETYPES; i++) {
1545 zonelist = pgdat->node_zonelists + i;
1546 zonelist->zones[0] = NULL;
1549 /* NUMA-aware ordering of nodes */
1550 local_node = pgdat->node_id;
1551 load = num_online_nodes();
1552 prev_node = local_node;
1553 nodes_clear(used_mask);
1554 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1556 * We don't want to pressure a particular node.
1557 * So adding penalty to the first node in same
1558 * distance group to make it round-robin.
1560 if (node_distance(local_node, node) !=
1561 node_distance(local_node, prev_node))
1562 node_load[node] += load;
1563 prev_node = node;
1564 load--;
1565 for (i = 0; i < GFP_ZONETYPES; i++) {
1566 zonelist = pgdat->node_zonelists + i;
1567 for (j = 0; zonelist->zones[j] != NULL; j++);
1569 k = highest_zone(i);
1571 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1572 zonelist->zones[j] = NULL;
1577 #else /* CONFIG_NUMA */
1579 static void __init build_zonelists(pg_data_t *pgdat)
1581 int i, j, k, node, local_node;
1583 local_node = pgdat->node_id;
1584 for (i = 0; i < GFP_ZONETYPES; i++) {
1585 struct zonelist *zonelist;
1587 zonelist = pgdat->node_zonelists + i;
1589 j = 0;
1590 k = highest_zone(i);
1591 j = build_zonelists_node(pgdat, zonelist, j, k);
1593 * Now we build the zonelist so that it contains the zones
1594 * of all the other nodes.
1595 * We don't want to pressure a particular node, so when
1596 * building the zones for node N, we make sure that the
1597 * zones coming right after the local ones are those from
1598 * node N+1 (modulo N)
1600 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1601 if (!node_online(node))
1602 continue;
1603 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1605 for (node = 0; node < local_node; node++) {
1606 if (!node_online(node))
1607 continue;
1608 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1611 zonelist->zones[j] = NULL;
1615 #endif /* CONFIG_NUMA */
1617 void __init build_all_zonelists(void)
1619 int i;
1621 for_each_online_node(i)
1622 build_zonelists(NODE_DATA(i));
1623 printk("Built %i zonelists\n", num_online_nodes());
1624 cpuset_init_current_mems_allowed();
1628 * Helper functions to size the waitqueue hash table.
1629 * Essentially these want to choose hash table sizes sufficiently
1630 * large so that collisions trying to wait on pages are rare.
1631 * But in fact, the number of active page waitqueues on typical
1632 * systems is ridiculously low, less than 200. So this is even
1633 * conservative, even though it seems large.
1635 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1636 * waitqueues, i.e. the size of the waitq table given the number of pages.
1638 #define PAGES_PER_WAITQUEUE 256
1640 static inline unsigned long wait_table_size(unsigned long pages)
1642 unsigned long size = 1;
1644 pages /= PAGES_PER_WAITQUEUE;
1646 while (size < pages)
1647 size <<= 1;
1650 * Once we have dozens or even hundreds of threads sleeping
1651 * on IO we've got bigger problems than wait queue collision.
1652 * Limit the size of the wait table to a reasonable size.
1654 size = min(size, 4096UL);
1656 return max(size, 4UL);
1660 * This is an integer logarithm so that shifts can be used later
1661 * to extract the more random high bits from the multiplicative
1662 * hash function before the remainder is taken.
1664 static inline unsigned long wait_table_bits(unsigned long size)
1666 return ffz(~size);
1669 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1671 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1672 unsigned long *zones_size, unsigned long *zholes_size)
1674 unsigned long realtotalpages, totalpages = 0;
1675 int i;
1677 for (i = 0; i < MAX_NR_ZONES; i++)
1678 totalpages += zones_size[i];
1679 pgdat->node_spanned_pages = totalpages;
1681 realtotalpages = totalpages;
1682 if (zholes_size)
1683 for (i = 0; i < MAX_NR_ZONES; i++)
1684 realtotalpages -= zholes_size[i];
1685 pgdat->node_present_pages = realtotalpages;
1686 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1691 * Initially all pages are reserved - free ones are freed
1692 * up by free_all_bootmem() once the early boot process is
1693 * done. Non-atomic initialization, single-pass.
1695 void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1696 unsigned long start_pfn)
1698 struct page *page;
1699 unsigned long end_pfn = start_pfn + size;
1700 unsigned long pfn;
1702 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1703 if (!early_pfn_valid(pfn))
1704 continue;
1705 if (!early_pfn_in_nid(pfn, nid))
1706 continue;
1707 page = pfn_to_page(pfn);
1708 set_page_links(page, zone, nid, pfn);
1709 set_page_count(page, 1);
1710 reset_page_mapcount(page);
1711 SetPageReserved(page);
1712 INIT_LIST_HEAD(&page->lru);
1713 #ifdef WANT_PAGE_VIRTUAL
1714 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1715 if (!is_highmem_idx(zone))
1716 set_page_address(page, __va(pfn << PAGE_SHIFT));
1717 #endif
1721 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1722 unsigned long size)
1724 int order;
1725 for (order = 0; order < MAX_ORDER ; order++) {
1726 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1727 zone->free_area[order].nr_free = 0;
1731 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1732 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1733 unsigned long size)
1735 unsigned long snum = pfn_to_section_nr(pfn);
1736 unsigned long end = pfn_to_section_nr(pfn + size);
1738 if (FLAGS_HAS_NODE)
1739 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1740 else
1741 for (; snum <= end; snum++)
1742 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1745 #ifndef __HAVE_ARCH_MEMMAP_INIT
1746 #define memmap_init(size, nid, zone, start_pfn) \
1747 memmap_init_zone((size), (nid), (zone), (start_pfn))
1748 #endif
1750 static int __devinit zone_batchsize(struct zone *zone)
1752 int batch;
1755 * The per-cpu-pages pools are set to around 1000th of the
1756 * size of the zone. But no more than 1/2 of a meg.
1758 * OK, so we don't know how big the cache is. So guess.
1760 batch = zone->present_pages / 1024;
1761 if (batch * PAGE_SIZE > 512 * 1024)
1762 batch = (512 * 1024) / PAGE_SIZE;
1763 batch /= 4; /* We effectively *= 4 below */
1764 if (batch < 1)
1765 batch = 1;
1768 * We will be trying to allcoate bigger chunks of contiguous
1769 * memory of the order of fls(batch). This should result in
1770 * better cache coloring.
1772 * A sanity check also to ensure that batch is still in limits.
1774 batch = (1 << fls(batch + batch/2));
1776 if (fls(batch) >= (PAGE_SHIFT + MAX_ORDER - 2))
1777 batch = PAGE_SHIFT + ((MAX_ORDER - 1 - PAGE_SHIFT)/2);
1779 return batch;
1782 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1784 struct per_cpu_pages *pcp;
1786 memset(p, 0, sizeof(*p));
1788 pcp = &p->pcp[0]; /* hot */
1789 pcp->count = 0;
1790 pcp->low = 0;
1791 pcp->high = 6 * batch;
1792 pcp->batch = max(1UL, 1 * batch);
1793 INIT_LIST_HEAD(&pcp->list);
1795 pcp = &p->pcp[1]; /* cold*/
1796 pcp->count = 0;
1797 pcp->low = 0;
1798 pcp->high = 2 * batch;
1799 pcp->batch = max(1UL, batch/2);
1800 INIT_LIST_HEAD(&pcp->list);
1803 #ifdef CONFIG_NUMA
1805 * Boot pageset table. One per cpu which is going to be used for all
1806 * zones and all nodes. The parameters will be set in such a way
1807 * that an item put on a list will immediately be handed over to
1808 * the buddy list. This is safe since pageset manipulation is done
1809 * with interrupts disabled.
1811 * Some NUMA counter updates may also be caught by the boot pagesets.
1813 * The boot_pagesets must be kept even after bootup is complete for
1814 * unused processors and/or zones. They do play a role for bootstrapping
1815 * hotplugged processors.
1817 * zoneinfo_show() and maybe other functions do
1818 * not check if the processor is online before following the pageset pointer.
1819 * Other parts of the kernel may not check if the zone is available.
1821 static struct per_cpu_pageset
1822 boot_pageset[NR_CPUS];
1825 * Dynamically allocate memory for the
1826 * per cpu pageset array in struct zone.
1828 static int __devinit process_zones(int cpu)
1830 struct zone *zone, *dzone;
1832 for_each_zone(zone) {
1834 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1835 GFP_KERNEL, cpu_to_node(cpu));
1836 if (!zone->pageset[cpu])
1837 goto bad;
1839 setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1842 return 0;
1843 bad:
1844 for_each_zone(dzone) {
1845 if (dzone == zone)
1846 break;
1847 kfree(dzone->pageset[cpu]);
1848 dzone->pageset[cpu] = NULL;
1850 return -ENOMEM;
1853 static inline void free_zone_pagesets(int cpu)
1855 #ifdef CONFIG_NUMA
1856 struct zone *zone;
1858 for_each_zone(zone) {
1859 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1861 zone_pcp(zone, cpu) = NULL;
1862 kfree(pset);
1864 #endif
1867 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1868 unsigned long action,
1869 void *hcpu)
1871 int cpu = (long)hcpu;
1872 int ret = NOTIFY_OK;
1874 switch (action) {
1875 case CPU_UP_PREPARE:
1876 if (process_zones(cpu))
1877 ret = NOTIFY_BAD;
1878 break;
1879 case CPU_UP_CANCELED:
1880 case CPU_DEAD:
1881 free_zone_pagesets(cpu);
1882 break;
1883 default:
1884 break;
1886 return ret;
1889 static struct notifier_block pageset_notifier =
1890 { &pageset_cpuup_callback, NULL, 0 };
1892 void __init setup_per_cpu_pageset()
1894 int err;
1896 /* Initialize per_cpu_pageset for cpu 0.
1897 * A cpuup callback will do this for every cpu
1898 * as it comes online
1900 err = process_zones(smp_processor_id());
1901 BUG_ON(err);
1902 register_cpu_notifier(&pageset_notifier);
1905 #endif
1907 static __devinit
1908 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1910 int i;
1911 struct pglist_data *pgdat = zone->zone_pgdat;
1914 * The per-page waitqueue mechanism uses hashed waitqueues
1915 * per zone.
1917 zone->wait_table_size = wait_table_size(zone_size_pages);
1918 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1919 zone->wait_table = (wait_queue_head_t *)
1920 alloc_bootmem_node(pgdat, zone->wait_table_size
1921 * sizeof(wait_queue_head_t));
1923 for(i = 0; i < zone->wait_table_size; ++i)
1924 init_waitqueue_head(zone->wait_table + i);
1927 static __devinit void zone_pcp_init(struct zone *zone)
1929 int cpu;
1930 unsigned long batch = zone_batchsize(zone);
1932 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1933 #ifdef CONFIG_NUMA
1934 /* Early boot. Slab allocator not functional yet */
1935 zone->pageset[cpu] = &boot_pageset[cpu];
1936 setup_pageset(&boot_pageset[cpu],0);
1937 #else
1938 setup_pageset(zone_pcp(zone,cpu), batch);
1939 #endif
1941 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1942 zone->name, zone->present_pages, batch);
1945 static __devinit void init_currently_empty_zone(struct zone *zone,
1946 unsigned long zone_start_pfn, unsigned long size)
1948 struct pglist_data *pgdat = zone->zone_pgdat;
1950 zone_wait_table_init(zone, size);
1951 pgdat->nr_zones = zone_idx(zone) + 1;
1953 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1954 zone->zone_start_pfn = zone_start_pfn;
1956 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1958 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1962 * Set up the zone data structures:
1963 * - mark all pages reserved
1964 * - mark all memory queues empty
1965 * - clear the memory bitmaps
1967 static void __init free_area_init_core(struct pglist_data *pgdat,
1968 unsigned long *zones_size, unsigned long *zholes_size)
1970 unsigned long j;
1971 int nid = pgdat->node_id;
1972 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1974 pgdat_resize_init(pgdat);
1975 pgdat->nr_zones = 0;
1976 init_waitqueue_head(&pgdat->kswapd_wait);
1977 pgdat->kswapd_max_order = 0;
1979 for (j = 0; j < MAX_NR_ZONES; j++) {
1980 struct zone *zone = pgdat->node_zones + j;
1981 unsigned long size, realsize;
1983 realsize = size = zones_size[j];
1984 if (zholes_size)
1985 realsize -= zholes_size[j];
1987 if (j < ZONE_HIGHMEM)
1988 nr_kernel_pages += realsize;
1989 nr_all_pages += realsize;
1991 zone->spanned_pages = size;
1992 zone->present_pages = realsize;
1993 zone->name = zone_names[j];
1994 spin_lock_init(&zone->lock);
1995 spin_lock_init(&zone->lru_lock);
1996 zone_seqlock_init(zone);
1997 zone->zone_pgdat = pgdat;
1998 zone->free_pages = 0;
2000 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2002 zone_pcp_init(zone);
2003 INIT_LIST_HEAD(&zone->active_list);
2004 INIT_LIST_HEAD(&zone->inactive_list);
2005 zone->nr_scan_active = 0;
2006 zone->nr_scan_inactive = 0;
2007 zone->nr_active = 0;
2008 zone->nr_inactive = 0;
2009 atomic_set(&zone->reclaim_in_progress, 0);
2010 if (!size)
2011 continue;
2013 zonetable_add(zone, nid, j, zone_start_pfn, size);
2014 init_currently_empty_zone(zone, zone_start_pfn, size);
2015 zone_start_pfn += size;
2019 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2021 /* Skip empty nodes */
2022 if (!pgdat->node_spanned_pages)
2023 return;
2025 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2026 /* ia64 gets its own node_mem_map, before this, without bootmem */
2027 if (!pgdat->node_mem_map) {
2028 unsigned long size;
2029 struct page *map;
2031 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2032 map = alloc_remap(pgdat->node_id, size);
2033 if (!map)
2034 map = alloc_bootmem_node(pgdat, size);
2035 pgdat->node_mem_map = map;
2037 #ifdef CONFIG_FLATMEM
2039 * With no DISCONTIG, the global mem_map is just set as node 0's
2041 if (pgdat == NODE_DATA(0))
2042 mem_map = NODE_DATA(0)->node_mem_map;
2043 #endif
2044 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2047 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2048 unsigned long *zones_size, unsigned long node_start_pfn,
2049 unsigned long *zholes_size)
2051 pgdat->node_id = nid;
2052 pgdat->node_start_pfn = node_start_pfn;
2053 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2055 alloc_node_mem_map(pgdat);
2057 free_area_init_core(pgdat, zones_size, zholes_size);
2060 #ifndef CONFIG_NEED_MULTIPLE_NODES
2061 static bootmem_data_t contig_bootmem_data;
2062 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2064 EXPORT_SYMBOL(contig_page_data);
2065 #endif
2067 void __init free_area_init(unsigned long *zones_size)
2069 free_area_init_node(0, NODE_DATA(0), zones_size,
2070 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2073 #ifdef CONFIG_PROC_FS
2075 #include <linux/seq_file.h>
2077 static void *frag_start(struct seq_file *m, loff_t *pos)
2079 pg_data_t *pgdat;
2080 loff_t node = *pos;
2082 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2083 --node;
2085 return pgdat;
2088 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2090 pg_data_t *pgdat = (pg_data_t *)arg;
2092 (*pos)++;
2093 return pgdat->pgdat_next;
2096 static void frag_stop(struct seq_file *m, void *arg)
2101 * This walks the free areas for each zone.
2103 static int frag_show(struct seq_file *m, void *arg)
2105 pg_data_t *pgdat = (pg_data_t *)arg;
2106 struct zone *zone;
2107 struct zone *node_zones = pgdat->node_zones;
2108 unsigned long flags;
2109 int order;
2111 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2112 if (!zone->present_pages)
2113 continue;
2115 spin_lock_irqsave(&zone->lock, flags);
2116 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2117 for (order = 0; order < MAX_ORDER; ++order)
2118 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2119 spin_unlock_irqrestore(&zone->lock, flags);
2120 seq_putc(m, '\n');
2122 return 0;
2125 struct seq_operations fragmentation_op = {
2126 .start = frag_start,
2127 .next = frag_next,
2128 .stop = frag_stop,
2129 .show = frag_show,
2133 * Output information about zones in @pgdat.
2135 static int zoneinfo_show(struct seq_file *m, void *arg)
2137 pg_data_t *pgdat = arg;
2138 struct zone *zone;
2139 struct zone *node_zones = pgdat->node_zones;
2140 unsigned long flags;
2142 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2143 int i;
2145 if (!zone->present_pages)
2146 continue;
2148 spin_lock_irqsave(&zone->lock, flags);
2149 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2150 seq_printf(m,
2151 "\n pages free %lu"
2152 "\n min %lu"
2153 "\n low %lu"
2154 "\n high %lu"
2155 "\n active %lu"
2156 "\n inactive %lu"
2157 "\n scanned %lu (a: %lu i: %lu)"
2158 "\n spanned %lu"
2159 "\n present %lu",
2160 zone->free_pages,
2161 zone->pages_min,
2162 zone->pages_low,
2163 zone->pages_high,
2164 zone->nr_active,
2165 zone->nr_inactive,
2166 zone->pages_scanned,
2167 zone->nr_scan_active, zone->nr_scan_inactive,
2168 zone->spanned_pages,
2169 zone->present_pages);
2170 seq_printf(m,
2171 "\n protection: (%lu",
2172 zone->lowmem_reserve[0]);
2173 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2174 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2175 seq_printf(m,
2177 "\n pagesets");
2178 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2179 struct per_cpu_pageset *pageset;
2180 int j;
2182 pageset = zone_pcp(zone, i);
2183 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2184 if (pageset->pcp[j].count)
2185 break;
2187 if (j == ARRAY_SIZE(pageset->pcp))
2188 continue;
2189 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2190 seq_printf(m,
2191 "\n cpu: %i pcp: %i"
2192 "\n count: %i"
2193 "\n low: %i"
2194 "\n high: %i"
2195 "\n batch: %i",
2196 i, j,
2197 pageset->pcp[j].count,
2198 pageset->pcp[j].low,
2199 pageset->pcp[j].high,
2200 pageset->pcp[j].batch);
2202 #ifdef CONFIG_NUMA
2203 seq_printf(m,
2204 "\n numa_hit: %lu"
2205 "\n numa_miss: %lu"
2206 "\n numa_foreign: %lu"
2207 "\n interleave_hit: %lu"
2208 "\n local_node: %lu"
2209 "\n other_node: %lu",
2210 pageset->numa_hit,
2211 pageset->numa_miss,
2212 pageset->numa_foreign,
2213 pageset->interleave_hit,
2214 pageset->local_node,
2215 pageset->other_node);
2216 #endif
2218 seq_printf(m,
2219 "\n all_unreclaimable: %u"
2220 "\n prev_priority: %i"
2221 "\n temp_priority: %i"
2222 "\n start_pfn: %lu",
2223 zone->all_unreclaimable,
2224 zone->prev_priority,
2225 zone->temp_priority,
2226 zone->zone_start_pfn);
2227 spin_unlock_irqrestore(&zone->lock, flags);
2228 seq_putc(m, '\n');
2230 return 0;
2233 struct seq_operations zoneinfo_op = {
2234 .start = frag_start, /* iterate over all zones. The same as in
2235 * fragmentation. */
2236 .next = frag_next,
2237 .stop = frag_stop,
2238 .show = zoneinfo_show,
2241 static char *vmstat_text[] = {
2242 "nr_dirty",
2243 "nr_writeback",
2244 "nr_unstable",
2245 "nr_page_table_pages",
2246 "nr_mapped",
2247 "nr_slab",
2249 "pgpgin",
2250 "pgpgout",
2251 "pswpin",
2252 "pswpout",
2253 "pgalloc_high",
2255 "pgalloc_normal",
2256 "pgalloc_dma",
2257 "pgfree",
2258 "pgactivate",
2259 "pgdeactivate",
2261 "pgfault",
2262 "pgmajfault",
2263 "pgrefill_high",
2264 "pgrefill_normal",
2265 "pgrefill_dma",
2267 "pgsteal_high",
2268 "pgsteal_normal",
2269 "pgsteal_dma",
2270 "pgscan_kswapd_high",
2271 "pgscan_kswapd_normal",
2273 "pgscan_kswapd_dma",
2274 "pgscan_direct_high",
2275 "pgscan_direct_normal",
2276 "pgscan_direct_dma",
2277 "pginodesteal",
2279 "slabs_scanned",
2280 "kswapd_steal",
2281 "kswapd_inodesteal",
2282 "pageoutrun",
2283 "allocstall",
2285 "pgrotated",
2286 "nr_bounce",
2289 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2291 struct page_state *ps;
2293 if (*pos >= ARRAY_SIZE(vmstat_text))
2294 return NULL;
2296 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2297 m->private = ps;
2298 if (!ps)
2299 return ERR_PTR(-ENOMEM);
2300 get_full_page_state(ps);
2301 ps->pgpgin /= 2; /* sectors -> kbytes */
2302 ps->pgpgout /= 2;
2303 return (unsigned long *)ps + *pos;
2306 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2308 (*pos)++;
2309 if (*pos >= ARRAY_SIZE(vmstat_text))
2310 return NULL;
2311 return (unsigned long *)m->private + *pos;
2314 static int vmstat_show(struct seq_file *m, void *arg)
2316 unsigned long *l = arg;
2317 unsigned long off = l - (unsigned long *)m->private;
2319 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2320 return 0;
2323 static void vmstat_stop(struct seq_file *m, void *arg)
2325 kfree(m->private);
2326 m->private = NULL;
2329 struct seq_operations vmstat_op = {
2330 .start = vmstat_start,
2331 .next = vmstat_next,
2332 .stop = vmstat_stop,
2333 .show = vmstat_show,
2336 #endif /* CONFIG_PROC_FS */
2338 #ifdef CONFIG_HOTPLUG_CPU
2339 static int page_alloc_cpu_notify(struct notifier_block *self,
2340 unsigned long action, void *hcpu)
2342 int cpu = (unsigned long)hcpu;
2343 long *count;
2344 unsigned long *src, *dest;
2346 if (action == CPU_DEAD) {
2347 int i;
2349 /* Drain local pagecache count. */
2350 count = &per_cpu(nr_pagecache_local, cpu);
2351 atomic_add(*count, &nr_pagecache);
2352 *count = 0;
2353 local_irq_disable();
2354 __drain_pages(cpu);
2356 /* Add dead cpu's page_states to our own. */
2357 dest = (unsigned long *)&__get_cpu_var(page_states);
2358 src = (unsigned long *)&per_cpu(page_states, cpu);
2360 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2361 i++) {
2362 dest[i] += src[i];
2363 src[i] = 0;
2366 local_irq_enable();
2368 return NOTIFY_OK;
2370 #endif /* CONFIG_HOTPLUG_CPU */
2372 void __init page_alloc_init(void)
2374 hotcpu_notifier(page_alloc_cpu_notify, 0);
2378 * setup_per_zone_lowmem_reserve - called whenever
2379 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2380 * has a correct pages reserved value, so an adequate number of
2381 * pages are left in the zone after a successful __alloc_pages().
2383 static void setup_per_zone_lowmem_reserve(void)
2385 struct pglist_data *pgdat;
2386 int j, idx;
2388 for_each_pgdat(pgdat) {
2389 for (j = 0; j < MAX_NR_ZONES; j++) {
2390 struct zone *zone = pgdat->node_zones + j;
2391 unsigned long present_pages = zone->present_pages;
2393 zone->lowmem_reserve[j] = 0;
2395 for (idx = j-1; idx >= 0; idx--) {
2396 struct zone *lower_zone;
2398 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2399 sysctl_lowmem_reserve_ratio[idx] = 1;
2401 lower_zone = pgdat->node_zones + idx;
2402 lower_zone->lowmem_reserve[j] = present_pages /
2403 sysctl_lowmem_reserve_ratio[idx];
2404 present_pages += lower_zone->present_pages;
2411 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2412 * that the pages_{min,low,high} values for each zone are set correctly
2413 * with respect to min_free_kbytes.
2415 void setup_per_zone_pages_min(void)
2417 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2418 unsigned long lowmem_pages = 0;
2419 struct zone *zone;
2420 unsigned long flags;
2422 /* Calculate total number of !ZONE_HIGHMEM pages */
2423 for_each_zone(zone) {
2424 if (!is_highmem(zone))
2425 lowmem_pages += zone->present_pages;
2428 for_each_zone(zone) {
2429 spin_lock_irqsave(&zone->lru_lock, flags);
2430 if (is_highmem(zone)) {
2432 * Often, highmem doesn't need to reserve any pages.
2433 * But the pages_min/low/high values are also used for
2434 * batching up page reclaim activity so we need a
2435 * decent value here.
2437 int min_pages;
2439 min_pages = zone->present_pages / 1024;
2440 if (min_pages < SWAP_CLUSTER_MAX)
2441 min_pages = SWAP_CLUSTER_MAX;
2442 if (min_pages > 128)
2443 min_pages = 128;
2444 zone->pages_min = min_pages;
2445 } else {
2446 /* if it's a lowmem zone, reserve a number of pages
2447 * proportionate to the zone's size.
2449 zone->pages_min = (pages_min * zone->present_pages) /
2450 lowmem_pages;
2454 * When interpreting these watermarks, just keep in mind that:
2455 * zone->pages_min == (zone->pages_min * 4) / 4;
2457 zone->pages_low = (zone->pages_min * 5) / 4;
2458 zone->pages_high = (zone->pages_min * 6) / 4;
2459 spin_unlock_irqrestore(&zone->lru_lock, flags);
2464 * Initialise min_free_kbytes.
2466 * For small machines we want it small (128k min). For large machines
2467 * we want it large (64MB max). But it is not linear, because network
2468 * bandwidth does not increase linearly with machine size. We use
2470 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2471 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2473 * which yields
2475 * 16MB: 512k
2476 * 32MB: 724k
2477 * 64MB: 1024k
2478 * 128MB: 1448k
2479 * 256MB: 2048k
2480 * 512MB: 2896k
2481 * 1024MB: 4096k
2482 * 2048MB: 5792k
2483 * 4096MB: 8192k
2484 * 8192MB: 11584k
2485 * 16384MB: 16384k
2487 static int __init init_per_zone_pages_min(void)
2489 unsigned long lowmem_kbytes;
2491 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2493 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2494 if (min_free_kbytes < 128)
2495 min_free_kbytes = 128;
2496 if (min_free_kbytes > 65536)
2497 min_free_kbytes = 65536;
2498 setup_per_zone_pages_min();
2499 setup_per_zone_lowmem_reserve();
2500 return 0;
2502 module_init(init_per_zone_pages_min)
2505 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2506 * that we can call two helper functions whenever min_free_kbytes
2507 * changes.
2509 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2510 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2512 proc_dointvec(table, write, file, buffer, length, ppos);
2513 setup_per_zone_pages_min();
2514 return 0;
2518 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2519 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2520 * whenever sysctl_lowmem_reserve_ratio changes.
2522 * The reserve ratio obviously has absolutely no relation with the
2523 * pages_min watermarks. The lowmem reserve ratio can only make sense
2524 * if in function of the boot time zone sizes.
2526 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2527 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2529 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2530 setup_per_zone_lowmem_reserve();
2531 return 0;
2534 __initdata int hashdist = HASHDIST_DEFAULT;
2536 #ifdef CONFIG_NUMA
2537 static int __init set_hashdist(char *str)
2539 if (!str)
2540 return 0;
2541 hashdist = simple_strtoul(str, &str, 0);
2542 return 1;
2544 __setup("hashdist=", set_hashdist);
2545 #endif
2548 * allocate a large system hash table from bootmem
2549 * - it is assumed that the hash table must contain an exact power-of-2
2550 * quantity of entries
2551 * - limit is the number of hash buckets, not the total allocation size
2553 void *__init alloc_large_system_hash(const char *tablename,
2554 unsigned long bucketsize,
2555 unsigned long numentries,
2556 int scale,
2557 int flags,
2558 unsigned int *_hash_shift,
2559 unsigned int *_hash_mask,
2560 unsigned long limit)
2562 unsigned long long max = limit;
2563 unsigned long log2qty, size;
2564 void *table = NULL;
2566 /* allow the kernel cmdline to have a say */
2567 if (!numentries) {
2568 /* round applicable memory size up to nearest megabyte */
2569 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2570 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2571 numentries >>= 20 - PAGE_SHIFT;
2572 numentries <<= 20 - PAGE_SHIFT;
2574 /* limit to 1 bucket per 2^scale bytes of low memory */
2575 if (scale > PAGE_SHIFT)
2576 numentries >>= (scale - PAGE_SHIFT);
2577 else
2578 numentries <<= (PAGE_SHIFT - scale);
2580 /* rounded up to nearest power of 2 in size */
2581 numentries = 1UL << (long_log2(numentries) + 1);
2583 /* limit allocation size to 1/16 total memory by default */
2584 if (max == 0) {
2585 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2586 do_div(max, bucketsize);
2589 if (numentries > max)
2590 numentries = max;
2592 log2qty = long_log2(numentries);
2594 do {
2595 size = bucketsize << log2qty;
2596 if (flags & HASH_EARLY)
2597 table = alloc_bootmem(size);
2598 else if (hashdist)
2599 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2600 else {
2601 unsigned long order;
2602 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2604 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2606 } while (!table && size > PAGE_SIZE && --log2qty);
2608 if (!table)
2609 panic("Failed to allocate %s hash table\n", tablename);
2611 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2612 tablename,
2613 (1U << log2qty),
2614 long_log2(size) - PAGE_SHIFT,
2615 size);
2617 if (_hash_shift)
2618 *_hash_shift = log2qty;
2619 if (_hash_mask)
2620 *_hash_mask = (1 << log2qty) - 1;
2622 return table;