1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * File open, close, extend, truncate
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/capability.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
39 #define MLOG_MASK_PREFIX ML_INODE
40 #include <cluster/masklog.h>
48 #include "extent_map.h"
60 #include "buffer_head_io.h"
62 static int ocfs2_sync_inode(struct inode
*inode
)
64 filemap_fdatawrite(inode
->i_mapping
);
65 return sync_mapping_buffers(inode
->i_mapping
);
68 static int ocfs2_init_file_private(struct inode
*inode
, struct file
*file
)
70 struct ocfs2_file_private
*fp
;
72 fp
= kzalloc(sizeof(struct ocfs2_file_private
), GFP_KERNEL
);
77 mutex_init(&fp
->fp_mutex
);
78 ocfs2_file_lock_res_init(&fp
->fp_flock
, fp
);
79 file
->private_data
= fp
;
84 static void ocfs2_free_file_private(struct inode
*inode
, struct file
*file
)
86 struct ocfs2_file_private
*fp
= file
->private_data
;
87 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
90 ocfs2_simple_drop_lockres(osb
, &fp
->fp_flock
);
91 ocfs2_lock_res_free(&fp
->fp_flock
);
93 file
->private_data
= NULL
;
97 static int ocfs2_file_open(struct inode
*inode
, struct file
*file
)
100 int mode
= file
->f_flags
;
101 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
103 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode
, file
,
104 file
->f_path
.dentry
->d_name
.len
, file
->f_path
.dentry
->d_name
.name
);
106 spin_lock(&oi
->ip_lock
);
108 /* Check that the inode hasn't been wiped from disk by another
109 * node. If it hasn't then we're safe as long as we hold the
110 * spin lock until our increment of open count. */
111 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_DELETED
) {
112 spin_unlock(&oi
->ip_lock
);
119 oi
->ip_flags
|= OCFS2_INODE_OPEN_DIRECT
;
122 spin_unlock(&oi
->ip_lock
);
124 status
= ocfs2_init_file_private(inode
, file
);
127 * We want to set open count back if we're failing the
130 spin_lock(&oi
->ip_lock
);
132 spin_unlock(&oi
->ip_lock
);
140 static int ocfs2_file_release(struct inode
*inode
, struct file
*file
)
142 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
144 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode
, file
,
145 file
->f_path
.dentry
->d_name
.len
,
146 file
->f_path
.dentry
->d_name
.name
);
148 spin_lock(&oi
->ip_lock
);
149 if (!--oi
->ip_open_count
)
150 oi
->ip_flags
&= ~OCFS2_INODE_OPEN_DIRECT
;
151 spin_unlock(&oi
->ip_lock
);
153 ocfs2_free_file_private(inode
, file
);
160 static int ocfs2_dir_open(struct inode
*inode
, struct file
*file
)
162 return ocfs2_init_file_private(inode
, file
);
165 static int ocfs2_dir_release(struct inode
*inode
, struct file
*file
)
167 ocfs2_free_file_private(inode
, file
);
171 static int ocfs2_sync_file(struct file
*file
,
172 struct dentry
*dentry
,
177 struct inode
*inode
= dentry
->d_inode
;
178 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
180 mlog_entry("(0x%p, 0x%p, %d, '%.*s')\n", file
, dentry
, datasync
,
181 dentry
->d_name
.len
, dentry
->d_name
.name
);
183 err
= ocfs2_sync_inode(dentry
->d_inode
);
187 journal
= osb
->journal
->j_journal
;
188 err
= jbd2_journal_force_commit(journal
);
193 return (err
< 0) ? -EIO
: 0;
196 int ocfs2_should_update_atime(struct inode
*inode
,
197 struct vfsmount
*vfsmnt
)
200 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
202 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
205 if ((inode
->i_flags
& S_NOATIME
) ||
206 ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
210 * We can be called with no vfsmnt structure - NFSD will
213 * Note that our action here is different than touch_atime() -
214 * if we can't tell whether this is a noatime mount, then we
215 * don't know whether to trust the value of s_atime_quantum.
220 if ((vfsmnt
->mnt_flags
& MNT_NOATIME
) ||
221 ((vfsmnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
224 if (vfsmnt
->mnt_flags
& MNT_RELATIME
) {
225 if ((timespec_compare(&inode
->i_atime
, &inode
->i_mtime
) <= 0) ||
226 (timespec_compare(&inode
->i_atime
, &inode
->i_ctime
) <= 0))
233 if ((now
.tv_sec
- inode
->i_atime
.tv_sec
<= osb
->s_atime_quantum
))
239 int ocfs2_update_inode_atime(struct inode
*inode
,
240 struct buffer_head
*bh
)
243 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
245 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*) bh
->b_data
;
249 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
250 if (IS_ERR(handle
)) {
251 ret
= PTR_ERR(handle
);
256 ret
= ocfs2_journal_access(handle
, inode
, bh
,
257 OCFS2_JOURNAL_ACCESS_WRITE
);
264 * Don't use ocfs2_mark_inode_dirty() here as we don't always
265 * have i_mutex to guard against concurrent changes to other
268 inode
->i_atime
= CURRENT_TIME
;
269 di
->i_atime
= cpu_to_le64(inode
->i_atime
.tv_sec
);
270 di
->i_atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
272 ret
= ocfs2_journal_dirty(handle
, bh
);
277 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
283 static int ocfs2_set_inode_size(handle_t
*handle
,
285 struct buffer_head
*fe_bh
,
291 i_size_write(inode
, new_i_size
);
292 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
293 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
295 status
= ocfs2_mark_inode_dirty(handle
, inode
, fe_bh
);
306 static int ocfs2_simple_size_update(struct inode
*inode
,
307 struct buffer_head
*di_bh
,
311 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
312 handle_t
*handle
= NULL
;
314 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
315 if (IS_ERR(handle
)) {
316 ret
= PTR_ERR(handle
);
321 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
,
326 ocfs2_commit_trans(osb
, handle
);
331 static int ocfs2_orphan_for_truncate(struct ocfs2_super
*osb
,
333 struct buffer_head
*fe_bh
,
338 struct ocfs2_dinode
*di
;
343 /* TODO: This needs to actually orphan the inode in this
346 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
347 if (IS_ERR(handle
)) {
348 status
= PTR_ERR(handle
);
353 status
= ocfs2_journal_access(handle
, inode
, fe_bh
,
354 OCFS2_JOURNAL_ACCESS_WRITE
);
361 * Do this before setting i_size.
363 cluster_bytes
= ocfs2_align_bytes_to_clusters(inode
->i_sb
, new_i_size
);
364 status
= ocfs2_zero_range_for_truncate(inode
, handle
, new_i_size
,
371 i_size_write(inode
, new_i_size
);
372 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
374 di
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
375 di
->i_size
= cpu_to_le64(new_i_size
);
376 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
377 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
379 status
= ocfs2_journal_dirty(handle
, fe_bh
);
384 ocfs2_commit_trans(osb
, handle
);
391 static int ocfs2_truncate_file(struct inode
*inode
,
392 struct buffer_head
*di_bh
,
396 struct ocfs2_dinode
*fe
= NULL
;
397 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
398 struct ocfs2_truncate_context
*tc
= NULL
;
400 mlog_entry("(inode = %llu, new_i_size = %llu\n",
401 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
402 (unsigned long long)new_i_size
);
404 fe
= (struct ocfs2_dinode
*) di_bh
->b_data
;
405 if (!OCFS2_IS_VALID_DINODE(fe
)) {
406 OCFS2_RO_ON_INVALID_DINODE(inode
->i_sb
, fe
);
411 mlog_bug_on_msg(le64_to_cpu(fe
->i_size
) != i_size_read(inode
),
412 "Inode %llu, inode i_size = %lld != di "
413 "i_size = %llu, i_flags = 0x%x\n",
414 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
416 (unsigned long long)le64_to_cpu(fe
->i_size
),
417 le32_to_cpu(fe
->i_flags
));
419 if (new_i_size
> le64_to_cpu(fe
->i_size
)) {
420 mlog(0, "asked to truncate file with size (%llu) to size (%llu)!\n",
421 (unsigned long long)le64_to_cpu(fe
->i_size
),
422 (unsigned long long)new_i_size
);
428 mlog(0, "inode %llu, i_size = %llu, new_i_size = %llu\n",
429 (unsigned long long)le64_to_cpu(fe
->i_blkno
),
430 (unsigned long long)le64_to_cpu(fe
->i_size
),
431 (unsigned long long)new_i_size
);
433 /* lets handle the simple truncate cases before doing any more
434 * cluster locking. */
435 if (new_i_size
== le64_to_cpu(fe
->i_size
))
438 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
441 * The inode lock forced other nodes to sync and drop their
442 * pages, which (correctly) happens even if we have a truncate
443 * without allocation change - ocfs2 cluster sizes can be much
444 * greater than page size, so we have to truncate them
447 unmap_mapping_range(inode
->i_mapping
, new_i_size
+ PAGE_SIZE
- 1, 0, 1);
448 truncate_inode_pages(inode
->i_mapping
, new_i_size
);
450 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
451 status
= ocfs2_truncate_inline(inode
, di_bh
, new_i_size
,
452 i_size_read(inode
), 1);
456 goto bail_unlock_sem
;
459 /* alright, we're going to need to do a full blown alloc size
460 * change. Orphan the inode so that recovery can complete the
461 * truncate if necessary. This does the task of marking
463 status
= ocfs2_orphan_for_truncate(osb
, inode
, di_bh
, new_i_size
);
466 goto bail_unlock_sem
;
469 status
= ocfs2_prepare_truncate(osb
, inode
, di_bh
, &tc
);
472 goto bail_unlock_sem
;
475 status
= ocfs2_commit_truncate(osb
, inode
, di_bh
, tc
);
478 goto bail_unlock_sem
;
481 /* TODO: orphan dir cleanup here. */
483 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
492 * extend file allocation only here.
493 * we'll update all the disk stuff, and oip->alloc_size
495 * expect stuff to be locked, a transaction started and enough data /
496 * metadata reservations in the contexts.
498 * Will return -EAGAIN, and a reason if a restart is needed.
499 * If passed in, *reason will always be set, even in error.
501 int ocfs2_add_inode_data(struct ocfs2_super
*osb
,
506 struct buffer_head
*fe_bh
,
508 struct ocfs2_alloc_context
*data_ac
,
509 struct ocfs2_alloc_context
*meta_ac
,
510 enum ocfs2_alloc_restarted
*reason_ret
)
513 struct ocfs2_extent_tree et
;
515 ocfs2_init_dinode_extent_tree(&et
, inode
, fe_bh
);
516 ret
= ocfs2_add_clusters_in_btree(osb
, inode
, logical_offset
,
517 clusters_to_add
, mark_unwritten
,
519 data_ac
, meta_ac
, reason_ret
);
524 static int __ocfs2_extend_allocation(struct inode
*inode
, u32 logical_start
,
525 u32 clusters_to_add
, int mark_unwritten
)
528 int restart_func
= 0;
531 struct buffer_head
*bh
= NULL
;
532 struct ocfs2_dinode
*fe
= NULL
;
533 handle_t
*handle
= NULL
;
534 struct ocfs2_alloc_context
*data_ac
= NULL
;
535 struct ocfs2_alloc_context
*meta_ac
= NULL
;
536 enum ocfs2_alloc_restarted why
;
537 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
538 struct ocfs2_extent_tree et
;
540 mlog_entry("(clusters_to_add = %u)\n", clusters_to_add
);
543 * This function only exists for file systems which don't
546 BUG_ON(mark_unwritten
&& !ocfs2_sparse_alloc(osb
));
548 status
= ocfs2_read_block(inode
, OCFS2_I(inode
)->ip_blkno
, &bh
);
554 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
555 if (!OCFS2_IS_VALID_DINODE(fe
)) {
556 OCFS2_RO_ON_INVALID_DINODE(inode
->i_sb
, fe
);
562 BUG_ON(le32_to_cpu(fe
->i_clusters
) != OCFS2_I(inode
)->ip_clusters
);
564 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u, "
565 "clusters_to_add = %u\n",
566 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
567 (long long)i_size_read(inode
), le32_to_cpu(fe
->i_clusters
),
569 ocfs2_init_dinode_extent_tree(&et
, inode
, bh
);
570 status
= ocfs2_lock_allocators(inode
, &et
, clusters_to_add
, 0,
577 credits
= ocfs2_calc_extend_credits(osb
->sb
, &fe
->id2
.i_list
,
579 handle
= ocfs2_start_trans(osb
, credits
);
580 if (IS_ERR(handle
)) {
581 status
= PTR_ERR(handle
);
587 restarted_transaction
:
588 /* reserve a write to the file entry early on - that we if we
589 * run out of credits in the allocation path, we can still
591 status
= ocfs2_journal_access(handle
, inode
, bh
,
592 OCFS2_JOURNAL_ACCESS_WRITE
);
598 prev_clusters
= OCFS2_I(inode
)->ip_clusters
;
600 status
= ocfs2_add_inode_data(osb
,
610 if ((status
< 0) && (status
!= -EAGAIN
)) {
611 if (status
!= -ENOSPC
)
616 status
= ocfs2_journal_dirty(handle
, bh
);
622 spin_lock(&OCFS2_I(inode
)->ip_lock
);
623 clusters_to_add
-= (OCFS2_I(inode
)->ip_clusters
- prev_clusters
);
624 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
626 if (why
!= RESTART_NONE
&& clusters_to_add
) {
627 if (why
== RESTART_META
) {
628 mlog(0, "restarting function.\n");
631 BUG_ON(why
!= RESTART_TRANS
);
633 mlog(0, "restarting transaction.\n");
634 /* TODO: This can be more intelligent. */
635 credits
= ocfs2_calc_extend_credits(osb
->sb
,
638 status
= ocfs2_extend_trans(handle
, credits
);
640 /* handle still has to be committed at
646 goto restarted_transaction
;
650 mlog(0, "fe: i_clusters = %u, i_size=%llu\n",
651 le32_to_cpu(fe
->i_clusters
),
652 (unsigned long long)le64_to_cpu(fe
->i_size
));
653 mlog(0, "inode: ip_clusters=%u, i_size=%lld\n",
654 OCFS2_I(inode
)->ip_clusters
, (long long)i_size_read(inode
));
658 ocfs2_commit_trans(osb
, handle
);
662 ocfs2_free_alloc_context(data_ac
);
666 ocfs2_free_alloc_context(meta_ac
);
669 if ((!status
) && restart_func
) {
680 /* Some parts of this taken from generic_cont_expand, which turned out
681 * to be too fragile to do exactly what we need without us having to
682 * worry about recursive locking in ->write_begin() and ->write_end(). */
683 static int ocfs2_write_zero_page(struct inode
*inode
,
686 struct address_space
*mapping
= inode
->i_mapping
;
690 handle_t
*handle
= NULL
;
693 offset
= (size
& (PAGE_CACHE_SIZE
-1)); /* Within page */
694 /* ugh. in prepare/commit_write, if from==to==start of block, we
695 ** skip the prepare. make sure we never send an offset for the start
698 if ((offset
& (inode
->i_sb
->s_blocksize
- 1)) == 0) {
701 index
= size
>> PAGE_CACHE_SHIFT
;
703 page
= grab_cache_page(mapping
, index
);
710 ret
= ocfs2_prepare_write_nolock(inode
, page
, offset
, offset
);
716 if (ocfs2_should_order_data(inode
)) {
717 handle
= ocfs2_start_walk_page_trans(inode
, page
, offset
,
719 if (IS_ERR(handle
)) {
720 ret
= PTR_ERR(handle
);
726 /* must not update i_size! */
727 ret
= block_commit_write(page
, offset
, offset
);
734 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
737 page_cache_release(page
);
742 static int ocfs2_zero_extend(struct inode
*inode
,
747 struct super_block
*sb
= inode
->i_sb
;
749 start_off
= ocfs2_align_bytes_to_blocks(sb
, i_size_read(inode
));
750 while (start_off
< zero_to_size
) {
751 ret
= ocfs2_write_zero_page(inode
, start_off
);
757 start_off
+= sb
->s_blocksize
;
760 * Very large extends have the potential to lock up
761 * the cpu for extended periods of time.
770 int ocfs2_extend_no_holes(struct inode
*inode
, u64 new_i_size
, u64 zero_to
)
774 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
776 clusters_to_add
= ocfs2_clusters_for_bytes(inode
->i_sb
, new_i_size
);
777 if (clusters_to_add
< oi
->ip_clusters
)
780 clusters_to_add
-= oi
->ip_clusters
;
782 if (clusters_to_add
) {
783 ret
= __ocfs2_extend_allocation(inode
, oi
->ip_clusters
,
792 * Call this even if we don't add any clusters to the tree. We
793 * still need to zero the area between the old i_size and the
796 ret
= ocfs2_zero_extend(inode
, zero_to
);
804 static int ocfs2_extend_file(struct inode
*inode
,
805 struct buffer_head
*di_bh
,
809 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
813 /* setattr sometimes calls us like this. */
817 if (i_size_read(inode
) == new_i_size
)
819 BUG_ON(new_i_size
< i_size_read(inode
));
822 * Fall through for converting inline data, even if the fs
823 * supports sparse files.
825 * The check for inline data here is legal - nobody can add
826 * the feature since we have i_mutex. We must check it again
827 * after acquiring ip_alloc_sem though, as paths like mmap
828 * might have raced us to converting the inode to extents.
830 if (!(oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
831 && ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
832 goto out_update_size
;
835 * The alloc sem blocks people in read/write from reading our
836 * allocation until we're done changing it. We depend on
837 * i_mutex to block other extend/truncate calls while we're
840 down_write(&oi
->ip_alloc_sem
);
842 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
844 * We can optimize small extends by keeping the inodes
847 if (ocfs2_size_fits_inline_data(di_bh
, new_i_size
)) {
848 up_write(&oi
->ip_alloc_sem
);
849 goto out_update_size
;
852 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
854 up_write(&oi
->ip_alloc_sem
);
861 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
862 ret
= ocfs2_extend_no_holes(inode
, new_i_size
, new_i_size
);
864 up_write(&oi
->ip_alloc_sem
);
872 ret
= ocfs2_simple_size_update(inode
, di_bh
, new_i_size
);
880 int ocfs2_setattr(struct dentry
*dentry
, struct iattr
*attr
)
882 int status
= 0, size_change
;
883 struct inode
*inode
= dentry
->d_inode
;
884 struct super_block
*sb
= inode
->i_sb
;
885 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
886 struct buffer_head
*bh
= NULL
;
887 handle_t
*handle
= NULL
;
889 mlog_entry("(0x%p, '%.*s')\n", dentry
,
890 dentry
->d_name
.len
, dentry
->d_name
.name
);
892 /* ensuring we don't even attempt to truncate a symlink */
893 if (S_ISLNK(inode
->i_mode
))
894 attr
->ia_valid
&= ~ATTR_SIZE
;
896 if (attr
->ia_valid
& ATTR_MODE
)
897 mlog(0, "mode change: %d\n", attr
->ia_mode
);
898 if (attr
->ia_valid
& ATTR_UID
)
899 mlog(0, "uid change: %d\n", attr
->ia_uid
);
900 if (attr
->ia_valid
& ATTR_GID
)
901 mlog(0, "gid change: %d\n", attr
->ia_gid
);
902 if (attr
->ia_valid
& ATTR_SIZE
)
903 mlog(0, "size change...\n");
904 if (attr
->ia_valid
& (ATTR_ATIME
| ATTR_MTIME
| ATTR_CTIME
))
905 mlog(0, "time change...\n");
907 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
908 | ATTR_GID | ATTR_UID | ATTR_MODE)
909 if (!(attr
->ia_valid
& OCFS2_VALID_ATTRS
)) {
910 mlog(0, "can't handle attrs: 0x%x\n", attr
->ia_valid
);
914 status
= inode_change_ok(inode
, attr
);
918 size_change
= S_ISREG(inode
->i_mode
) && attr
->ia_valid
& ATTR_SIZE
;
920 status
= ocfs2_rw_lock(inode
, 1);
927 status
= ocfs2_inode_lock(inode
, &bh
, 1);
929 if (status
!= -ENOENT
)
934 if (size_change
&& attr
->ia_size
!= i_size_read(inode
)) {
935 if (attr
->ia_size
> sb
->s_maxbytes
) {
940 if (i_size_read(inode
) > attr
->ia_size
) {
941 if (ocfs2_should_order_data(inode
)) {
942 status
= ocfs2_begin_ordered_truncate(inode
,
947 status
= ocfs2_truncate_file(inode
, bh
, attr
->ia_size
);
949 status
= ocfs2_extend_file(inode
, bh
, attr
->ia_size
);
951 if (status
!= -ENOSPC
)
958 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
959 if (IS_ERR(handle
)) {
960 status
= PTR_ERR(handle
);
966 * This will intentionally not wind up calling vmtruncate(),
967 * since all the work for a size change has been done above.
968 * Otherwise, we could get into problems with truncate as
969 * ip_alloc_sem is used there to protect against i_size
972 status
= inode_setattr(inode
, attr
);
978 status
= ocfs2_mark_inode_dirty(handle
, inode
, bh
);
983 ocfs2_commit_trans(osb
, handle
);
985 ocfs2_inode_unlock(inode
, 1);
988 ocfs2_rw_unlock(inode
, 1);
996 int ocfs2_getattr(struct vfsmount
*mnt
,
997 struct dentry
*dentry
,
1000 struct inode
*inode
= dentry
->d_inode
;
1001 struct super_block
*sb
= dentry
->d_inode
->i_sb
;
1002 struct ocfs2_super
*osb
= sb
->s_fs_info
;
1007 err
= ocfs2_inode_revalidate(dentry
);
1014 generic_fillattr(inode
, stat
);
1016 /* We set the blksize from the cluster size for performance */
1017 stat
->blksize
= osb
->s_clustersize
;
1025 int ocfs2_permission(struct inode
*inode
, int mask
)
1031 ret
= ocfs2_inode_lock(inode
, NULL
, 0);
1038 ret
= generic_permission(inode
, mask
, NULL
);
1040 ocfs2_inode_unlock(inode
, 0);
1046 static int __ocfs2_write_remove_suid(struct inode
*inode
,
1047 struct buffer_head
*bh
)
1051 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1052 struct ocfs2_dinode
*di
;
1054 mlog_entry("(Inode %llu, mode 0%o)\n",
1055 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, inode
->i_mode
);
1057 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1058 if (IS_ERR(handle
)) {
1059 ret
= PTR_ERR(handle
);
1064 ret
= ocfs2_journal_access(handle
, inode
, bh
,
1065 OCFS2_JOURNAL_ACCESS_WRITE
);
1071 inode
->i_mode
&= ~S_ISUID
;
1072 if ((inode
->i_mode
& S_ISGID
) && (inode
->i_mode
& S_IXGRP
))
1073 inode
->i_mode
&= ~S_ISGID
;
1075 di
= (struct ocfs2_dinode
*) bh
->b_data
;
1076 di
->i_mode
= cpu_to_le16(inode
->i_mode
);
1078 ret
= ocfs2_journal_dirty(handle
, bh
);
1083 ocfs2_commit_trans(osb
, handle
);
1090 * Will look for holes and unwritten extents in the range starting at
1091 * pos for count bytes (inclusive).
1093 static int ocfs2_check_range_for_holes(struct inode
*inode
, loff_t pos
,
1097 unsigned int extent_flags
;
1098 u32 cpos
, clusters
, extent_len
, phys_cpos
;
1099 struct super_block
*sb
= inode
->i_sb
;
1101 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
1102 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
1105 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
1112 if (phys_cpos
== 0 || (extent_flags
& OCFS2_EXT_UNWRITTEN
)) {
1117 if (extent_len
> clusters
)
1118 extent_len
= clusters
;
1120 clusters
-= extent_len
;
1127 static int ocfs2_write_remove_suid(struct inode
*inode
)
1130 struct buffer_head
*bh
= NULL
;
1131 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1133 ret
= ocfs2_read_block(inode
, oi
->ip_blkno
, &bh
);
1139 ret
= __ocfs2_write_remove_suid(inode
, bh
);
1146 * Allocate enough extents to cover the region starting at byte offset
1147 * start for len bytes. Existing extents are skipped, any extents
1148 * added are marked as "unwritten".
1150 static int ocfs2_allocate_unwritten_extents(struct inode
*inode
,
1154 u32 cpos
, phys_cpos
, clusters
, alloc_size
;
1155 u64 end
= start
+ len
;
1156 struct buffer_head
*di_bh
= NULL
;
1158 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1159 ret
= ocfs2_read_block(inode
, OCFS2_I(inode
)->ip_blkno
,
1167 * Nothing to do if the requested reservation range
1168 * fits within the inode.
1170 if (ocfs2_size_fits_inline_data(di_bh
, end
))
1173 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1181 * We consider both start and len to be inclusive.
1183 cpos
= start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
1184 clusters
= ocfs2_clusters_for_bytes(inode
->i_sb
, start
+ len
);
1188 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1196 * Hole or existing extent len can be arbitrary, so
1197 * cap it to our own allocation request.
1199 if (alloc_size
> clusters
)
1200 alloc_size
= clusters
;
1204 * We already have an allocation at this
1205 * region so we can safely skip it.
1210 ret
= __ocfs2_extend_allocation(inode
, cpos
, alloc_size
, 1);
1219 clusters
-= alloc_size
;
1229 static int __ocfs2_remove_inode_range(struct inode
*inode
,
1230 struct buffer_head
*di_bh
,
1231 u32 cpos
, u32 phys_cpos
, u32 len
,
1232 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
1235 u64 phys_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys_cpos
);
1236 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1237 struct inode
*tl_inode
= osb
->osb_tl_inode
;
1239 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1240 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1241 struct ocfs2_extent_tree et
;
1243 ocfs2_init_dinode_extent_tree(&et
, inode
, di_bh
);
1245 ret
= ocfs2_lock_allocators(inode
, &et
, 0, 1, NULL
, &meta_ac
);
1251 mutex_lock(&tl_inode
->i_mutex
);
1253 if (ocfs2_truncate_log_needs_flush(osb
)) {
1254 ret
= __ocfs2_flush_truncate_log(osb
);
1261 handle
= ocfs2_start_trans(osb
, OCFS2_REMOVE_EXTENT_CREDITS
);
1262 if (IS_ERR(handle
)) {
1263 ret
= PTR_ERR(handle
);
1268 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
1269 OCFS2_JOURNAL_ACCESS_WRITE
);
1275 ret
= ocfs2_remove_extent(inode
, &et
, cpos
, len
, handle
, meta_ac
,
1282 OCFS2_I(inode
)->ip_clusters
-= len
;
1283 di
->i_clusters
= cpu_to_le32(OCFS2_I(inode
)->ip_clusters
);
1285 ret
= ocfs2_journal_dirty(handle
, di_bh
);
1291 ret
= ocfs2_truncate_log_append(osb
, handle
, phys_blkno
, len
);
1296 ocfs2_commit_trans(osb
, handle
);
1298 mutex_unlock(&tl_inode
->i_mutex
);
1301 ocfs2_free_alloc_context(meta_ac
);
1307 * Truncate a byte range, avoiding pages within partial clusters. This
1308 * preserves those pages for the zeroing code to write to.
1310 static void ocfs2_truncate_cluster_pages(struct inode
*inode
, u64 byte_start
,
1313 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1315 struct address_space
*mapping
= inode
->i_mapping
;
1317 start
= (loff_t
)ocfs2_align_bytes_to_clusters(inode
->i_sb
, byte_start
);
1318 end
= byte_start
+ byte_len
;
1319 end
= end
& ~(osb
->s_clustersize
- 1);
1322 unmap_mapping_range(mapping
, start
, end
- start
, 0);
1323 truncate_inode_pages_range(mapping
, start
, end
- 1);
1327 static int ocfs2_zero_partial_clusters(struct inode
*inode
,
1331 u64 tmpend
, end
= start
+ len
;
1332 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1333 unsigned int csize
= osb
->s_clustersize
;
1337 * The "start" and "end" values are NOT necessarily part of
1338 * the range whose allocation is being deleted. Rather, this
1339 * is what the user passed in with the request. We must zero
1340 * partial clusters here. There's no need to worry about
1341 * physical allocation - the zeroing code knows to skip holes.
1343 mlog(0, "byte start: %llu, end: %llu\n",
1344 (unsigned long long)start
, (unsigned long long)end
);
1347 * If both edges are on a cluster boundary then there's no
1348 * zeroing required as the region is part of the allocation to
1351 if ((start
& (csize
- 1)) == 0 && (end
& (csize
- 1)) == 0)
1354 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1355 if (IS_ERR(handle
)) {
1356 ret
= PTR_ERR(handle
);
1362 * We want to get the byte offset of the end of the 1st cluster.
1364 tmpend
= (u64
)osb
->s_clustersize
+ (start
& ~(osb
->s_clustersize
- 1));
1368 mlog(0, "1st range: start: %llu, tmpend: %llu\n",
1369 (unsigned long long)start
, (unsigned long long)tmpend
);
1371 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, tmpend
);
1377 * This may make start and end equal, but the zeroing
1378 * code will skip any work in that case so there's no
1379 * need to catch it up here.
1381 start
= end
& ~(osb
->s_clustersize
- 1);
1383 mlog(0, "2nd range: start: %llu, end: %llu\n",
1384 (unsigned long long)start
, (unsigned long long)end
);
1386 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, end
);
1391 ocfs2_commit_trans(osb
, handle
);
1396 static int ocfs2_remove_inode_range(struct inode
*inode
,
1397 struct buffer_head
*di_bh
, u64 byte_start
,
1401 u32 trunc_start
, trunc_len
, cpos
, phys_cpos
, alloc_size
;
1402 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1403 struct ocfs2_cached_dealloc_ctxt dealloc
;
1404 struct address_space
*mapping
= inode
->i_mapping
;
1406 ocfs2_init_dealloc_ctxt(&dealloc
);
1411 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1412 ret
= ocfs2_truncate_inline(inode
, di_bh
, byte_start
,
1413 byte_start
+ byte_len
, 0);
1419 * There's no need to get fancy with the page cache
1420 * truncate of an inline-data inode. We're talking
1421 * about less than a page here, which will be cached
1422 * in the dinode buffer anyway.
1424 unmap_mapping_range(mapping
, 0, 0, 0);
1425 truncate_inode_pages(mapping
, 0);
1429 trunc_start
= ocfs2_clusters_for_bytes(osb
->sb
, byte_start
);
1430 trunc_len
= (byte_start
+ byte_len
) >> osb
->s_clustersize_bits
;
1431 if (trunc_len
>= trunc_start
)
1432 trunc_len
-= trunc_start
;
1436 mlog(0, "Inode: %llu, start: %llu, len: %llu, cstart: %u, clen: %u\n",
1437 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1438 (unsigned long long)byte_start
,
1439 (unsigned long long)byte_len
, trunc_start
, trunc_len
);
1441 ret
= ocfs2_zero_partial_clusters(inode
, byte_start
, byte_len
);
1449 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1456 if (alloc_size
> trunc_len
)
1457 alloc_size
= trunc_len
;
1459 /* Only do work for non-holes */
1460 if (phys_cpos
!= 0) {
1461 ret
= __ocfs2_remove_inode_range(inode
, di_bh
, cpos
,
1462 phys_cpos
, alloc_size
,
1471 trunc_len
-= alloc_size
;
1474 ocfs2_truncate_cluster_pages(inode
, byte_start
, byte_len
);
1477 ocfs2_schedule_truncate_log_flush(osb
, 1);
1478 ocfs2_run_deallocs(osb
, &dealloc
);
1484 * Parts of this function taken from xfs_change_file_space()
1486 static int __ocfs2_change_file_space(struct file
*file
, struct inode
*inode
,
1487 loff_t f_pos
, unsigned int cmd
,
1488 struct ocfs2_space_resv
*sr
,
1494 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1495 struct buffer_head
*di_bh
= NULL
;
1497 unsigned long long max_off
= inode
->i_sb
->s_maxbytes
;
1499 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
1502 mutex_lock(&inode
->i_mutex
);
1505 * This prevents concurrent writes on other nodes
1507 ret
= ocfs2_rw_lock(inode
, 1);
1513 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1519 if (inode
->i_flags
& (S_IMMUTABLE
|S_APPEND
)) {
1521 goto out_inode_unlock
;
1524 switch (sr
->l_whence
) {
1525 case 0: /*SEEK_SET*/
1527 case 1: /*SEEK_CUR*/
1528 sr
->l_start
+= f_pos
;
1530 case 2: /*SEEK_END*/
1531 sr
->l_start
+= i_size_read(inode
);
1535 goto out_inode_unlock
;
1539 llen
= sr
->l_len
> 0 ? sr
->l_len
- 1 : sr
->l_len
;
1542 || sr
->l_start
> max_off
1543 || (sr
->l_start
+ llen
) < 0
1544 || (sr
->l_start
+ llen
) > max_off
) {
1546 goto out_inode_unlock
;
1548 size
= sr
->l_start
+ sr
->l_len
;
1550 if (cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) {
1551 if (sr
->l_len
<= 0) {
1553 goto out_inode_unlock
;
1557 if (file
&& should_remove_suid(file
->f_path
.dentry
)) {
1558 ret
= __ocfs2_write_remove_suid(inode
, di_bh
);
1561 goto out_inode_unlock
;
1565 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1567 case OCFS2_IOC_RESVSP
:
1568 case OCFS2_IOC_RESVSP64
:
1570 * This takes unsigned offsets, but the signed ones we
1571 * pass have been checked against overflow above.
1573 ret
= ocfs2_allocate_unwritten_extents(inode
, sr
->l_start
,
1576 case OCFS2_IOC_UNRESVSP
:
1577 case OCFS2_IOC_UNRESVSP64
:
1578 ret
= ocfs2_remove_inode_range(inode
, di_bh
, sr
->l_start
,
1584 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1587 goto out_inode_unlock
;
1591 * We update c/mtime for these changes
1593 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1594 if (IS_ERR(handle
)) {
1595 ret
= PTR_ERR(handle
);
1597 goto out_inode_unlock
;
1600 if (change_size
&& i_size_read(inode
) < size
)
1601 i_size_write(inode
, size
);
1603 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
1604 ret
= ocfs2_mark_inode_dirty(handle
, inode
, di_bh
);
1608 ocfs2_commit_trans(osb
, handle
);
1612 ocfs2_inode_unlock(inode
, 1);
1614 ocfs2_rw_unlock(inode
, 1);
1617 mutex_unlock(&inode
->i_mutex
);
1621 int ocfs2_change_file_space(struct file
*file
, unsigned int cmd
,
1622 struct ocfs2_space_resv
*sr
)
1624 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1625 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);;
1627 if ((cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) &&
1628 !ocfs2_writes_unwritten_extents(osb
))
1630 else if ((cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) &&
1631 !ocfs2_sparse_alloc(osb
))
1634 if (!S_ISREG(inode
->i_mode
))
1637 if (!(file
->f_mode
& FMODE_WRITE
))
1640 return __ocfs2_change_file_space(file
, inode
, file
->f_pos
, cmd
, sr
, 0);
1643 static long ocfs2_fallocate(struct inode
*inode
, int mode
, loff_t offset
,
1646 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1647 struct ocfs2_space_resv sr
;
1648 int change_size
= 1;
1650 if (!ocfs2_writes_unwritten_extents(osb
))
1653 if (S_ISDIR(inode
->i_mode
))
1656 if (mode
& FALLOC_FL_KEEP_SIZE
)
1660 sr
.l_start
= (s64
)offset
;
1661 sr
.l_len
= (s64
)len
;
1663 return __ocfs2_change_file_space(NULL
, inode
, offset
,
1664 OCFS2_IOC_RESVSP64
, &sr
, change_size
);
1667 static int ocfs2_prepare_inode_for_write(struct dentry
*dentry
,
1673 int ret
= 0, meta_level
= 0;
1674 struct inode
*inode
= dentry
->d_inode
;
1675 loff_t saved_pos
, end
;
1678 * We start with a read level meta lock and only jump to an ex
1679 * if we need to make modifications here.
1682 ret
= ocfs2_inode_lock(inode
, NULL
, meta_level
);
1689 /* Clear suid / sgid if necessary. We do this here
1690 * instead of later in the write path because
1691 * remove_suid() calls ->setattr without any hint that
1692 * we may have already done our cluster locking. Since
1693 * ocfs2_setattr() *must* take cluster locks to
1694 * proceeed, this will lead us to recursively lock the
1695 * inode. There's also the dinode i_size state which
1696 * can be lost via setattr during extending writes (we
1697 * set inode->i_size at the end of a write. */
1698 if (should_remove_suid(dentry
)) {
1699 if (meta_level
== 0) {
1700 ocfs2_inode_unlock(inode
, meta_level
);
1705 ret
= ocfs2_write_remove_suid(inode
);
1712 /* work on a copy of ppos until we're sure that we won't have
1713 * to recalculate it due to relocking. */
1715 saved_pos
= i_size_read(inode
);
1716 mlog(0, "O_APPEND: inode->i_size=%llu\n", saved_pos
);
1721 end
= saved_pos
+ count
;
1724 * Skip the O_DIRECT checks if we don't need
1727 if (!direct_io
|| !(*direct_io
))
1731 * There's no sane way to do direct writes to an inode
1734 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1740 * Allowing concurrent direct writes means
1741 * i_size changes wouldn't be synchronized, so
1742 * one node could wind up truncating another
1745 if (end
> i_size_read(inode
)) {
1751 * We don't fill holes during direct io, so
1752 * check for them here. If any are found, the
1753 * caller will have to retake some cluster
1754 * locks and initiate the io as buffered.
1756 ret
= ocfs2_check_range_for_holes(inode
, saved_pos
, count
);
1769 ocfs2_inode_unlock(inode
, meta_level
);
1775 static ssize_t
ocfs2_file_aio_write(struct kiocb
*iocb
,
1776 const struct iovec
*iov
,
1777 unsigned long nr_segs
,
1780 int ret
, direct_io
, appending
, rw_level
, have_alloc_sem
= 0;
1782 ssize_t written
= 0;
1783 size_t ocount
; /* original count */
1784 size_t count
; /* after file limit checks */
1785 loff_t old_size
, *ppos
= &iocb
->ki_pos
;
1787 struct file
*file
= iocb
->ki_filp
;
1788 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1789 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1791 mlog_entry("(0x%p, %u, '%.*s')\n", file
,
1792 (unsigned int)nr_segs
,
1793 file
->f_path
.dentry
->d_name
.len
,
1794 file
->f_path
.dentry
->d_name
.name
);
1796 if (iocb
->ki_left
== 0)
1799 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
1801 appending
= file
->f_flags
& O_APPEND
? 1 : 0;
1802 direct_io
= file
->f_flags
& O_DIRECT
? 1 : 0;
1804 mutex_lock(&inode
->i_mutex
);
1807 /* to match setattr's i_mutex -> i_alloc_sem -> rw_lock ordering */
1809 down_read(&inode
->i_alloc_sem
);
1813 /* concurrent O_DIRECT writes are allowed */
1814 rw_level
= !direct_io
;
1815 ret
= ocfs2_rw_lock(inode
, rw_level
);
1821 can_do_direct
= direct_io
;
1822 ret
= ocfs2_prepare_inode_for_write(file
->f_path
.dentry
, ppos
,
1823 iocb
->ki_left
, appending
,
1831 * We can't complete the direct I/O as requested, fall back to
1834 if (direct_io
&& !can_do_direct
) {
1835 ocfs2_rw_unlock(inode
, rw_level
);
1836 up_read(&inode
->i_alloc_sem
);
1846 * To later detect whether a journal commit for sync writes is
1847 * necessary, we sample i_size, and cluster count here.
1849 old_size
= i_size_read(inode
);
1850 old_clusters
= OCFS2_I(inode
)->ip_clusters
;
1852 /* communicate with ocfs2_dio_end_io */
1853 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
1856 ret
= generic_segment_checks(iov
, &nr_segs
, &ocount
,
1861 ret
= generic_write_checks(file
, ppos
, &count
,
1862 S_ISBLK(inode
->i_mode
));
1866 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, *ppos
,
1867 ppos
, count
, ocount
);
1870 * direct write may have instantiated a few
1871 * blocks outside i_size. Trim these off again.
1872 * Don't need i_size_read because we hold i_mutex.
1874 if (*ppos
+ count
> inode
->i_size
)
1875 vmtruncate(inode
, inode
->i_size
);
1880 written
= generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
1885 /* buffered aio wouldn't have proper lock coverage today */
1886 BUG_ON(ret
== -EIOCBQUEUED
&& !(file
->f_flags
& O_DIRECT
));
1888 if ((file
->f_flags
& O_SYNC
&& !direct_io
) || IS_SYNC(inode
)) {
1890 * The generic write paths have handled getting data
1891 * to disk, but since we don't make use of the dirty
1892 * inode list, a manual journal commit is necessary
1895 if (old_size
!= i_size_read(inode
) ||
1896 old_clusters
!= OCFS2_I(inode
)->ip_clusters
) {
1897 ret
= jbd2_journal_force_commit(osb
->journal
->j_journal
);
1904 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
1905 * function pointer which is called when o_direct io completes so that
1906 * it can unlock our rw lock. (it's the clustered equivalent of
1907 * i_alloc_sem; protects truncate from racing with pending ios).
1908 * Unfortunately there are error cases which call end_io and others
1909 * that don't. so we don't have to unlock the rw_lock if either an
1910 * async dio is going to do it in the future or an end_io after an
1911 * error has already done it.
1913 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
1920 ocfs2_rw_unlock(inode
, rw_level
);
1924 up_read(&inode
->i_alloc_sem
);
1926 mutex_unlock(&inode
->i_mutex
);
1929 return written
? written
: ret
;
1932 static ssize_t
ocfs2_file_splice_write(struct pipe_inode_info
*pipe
,
1939 struct inode
*inode
= out
->f_path
.dentry
->d_inode
;
1941 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", out
, pipe
,
1943 out
->f_path
.dentry
->d_name
.len
,
1944 out
->f_path
.dentry
->d_name
.name
);
1946 inode_double_lock(inode
, pipe
->inode
);
1948 ret
= ocfs2_rw_lock(inode
, 1);
1954 ret
= ocfs2_prepare_inode_for_write(out
->f_path
.dentry
, ppos
, len
, 0,
1961 ret
= generic_file_splice_write_nolock(pipe
, out
, ppos
, len
, flags
);
1964 ocfs2_rw_unlock(inode
, 1);
1966 inode_double_unlock(inode
, pipe
->inode
);
1972 static ssize_t
ocfs2_file_splice_read(struct file
*in
,
1974 struct pipe_inode_info
*pipe
,
1979 struct inode
*inode
= in
->f_path
.dentry
->d_inode
;
1981 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", in
, pipe
,
1983 in
->f_path
.dentry
->d_name
.len
,
1984 in
->f_path
.dentry
->d_name
.name
);
1987 * See the comment in ocfs2_file_aio_read()
1989 ret
= ocfs2_inode_lock(inode
, NULL
, 0);
1994 ocfs2_inode_unlock(inode
, 0);
1996 ret
= generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
2003 static ssize_t
ocfs2_file_aio_read(struct kiocb
*iocb
,
2004 const struct iovec
*iov
,
2005 unsigned long nr_segs
,
2008 int ret
= 0, rw_level
= -1, have_alloc_sem
= 0, lock_level
= 0;
2009 struct file
*filp
= iocb
->ki_filp
;
2010 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2012 mlog_entry("(0x%p, %u, '%.*s')\n", filp
,
2013 (unsigned int)nr_segs
,
2014 filp
->f_path
.dentry
->d_name
.len
,
2015 filp
->f_path
.dentry
->d_name
.name
);
2024 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2025 * need locks to protect pending reads from racing with truncate.
2027 if (filp
->f_flags
& O_DIRECT
) {
2028 down_read(&inode
->i_alloc_sem
);
2031 ret
= ocfs2_rw_lock(inode
, 0);
2037 /* communicate with ocfs2_dio_end_io */
2038 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2042 * We're fine letting folks race truncates and extending
2043 * writes with read across the cluster, just like they can
2044 * locally. Hence no rw_lock during read.
2046 * Take and drop the meta data lock to update inode fields
2047 * like i_size. This allows the checks down below
2048 * generic_file_aio_read() a chance of actually working.
2050 ret
= ocfs2_inode_lock_atime(inode
, filp
->f_vfsmnt
, &lock_level
);
2055 ocfs2_inode_unlock(inode
, lock_level
);
2057 ret
= generic_file_aio_read(iocb
, iov
, nr_segs
, iocb
->ki_pos
);
2059 mlog(0, "generic_file_aio_read returned -EINVAL\n");
2061 /* buffered aio wouldn't have proper lock coverage today */
2062 BUG_ON(ret
== -EIOCBQUEUED
&& !(filp
->f_flags
& O_DIRECT
));
2064 /* see ocfs2_file_aio_write */
2065 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2072 up_read(&inode
->i_alloc_sem
);
2074 ocfs2_rw_unlock(inode
, rw_level
);
2080 const struct inode_operations ocfs2_file_iops
= {
2081 .setattr
= ocfs2_setattr
,
2082 .getattr
= ocfs2_getattr
,
2083 .permission
= ocfs2_permission
,
2084 .setxattr
= generic_setxattr
,
2085 .getxattr
= generic_getxattr
,
2086 .listxattr
= ocfs2_listxattr
,
2087 .removexattr
= generic_removexattr
,
2088 .fallocate
= ocfs2_fallocate
,
2089 .fiemap
= ocfs2_fiemap
,
2092 const struct inode_operations ocfs2_special_file_iops
= {
2093 .setattr
= ocfs2_setattr
,
2094 .getattr
= ocfs2_getattr
,
2095 .permission
= ocfs2_permission
,
2099 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2100 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2102 const struct file_operations ocfs2_fops
= {
2103 .llseek
= generic_file_llseek
,
2104 .read
= do_sync_read
,
2105 .write
= do_sync_write
,
2107 .fsync
= ocfs2_sync_file
,
2108 .release
= ocfs2_file_release
,
2109 .open
= ocfs2_file_open
,
2110 .aio_read
= ocfs2_file_aio_read
,
2111 .aio_write
= ocfs2_file_aio_write
,
2112 .unlocked_ioctl
= ocfs2_ioctl
,
2113 #ifdef CONFIG_COMPAT
2114 .compat_ioctl
= ocfs2_compat_ioctl
,
2117 .flock
= ocfs2_flock
,
2118 .splice_read
= ocfs2_file_splice_read
,
2119 .splice_write
= ocfs2_file_splice_write
,
2122 const struct file_operations ocfs2_dops
= {
2123 .llseek
= generic_file_llseek
,
2124 .read
= generic_read_dir
,
2125 .readdir
= ocfs2_readdir
,
2126 .fsync
= ocfs2_sync_file
,
2127 .release
= ocfs2_dir_release
,
2128 .open
= ocfs2_dir_open
,
2129 .unlocked_ioctl
= ocfs2_ioctl
,
2130 #ifdef CONFIG_COMPAT
2131 .compat_ioctl
= ocfs2_compat_ioctl
,
2134 .flock
= ocfs2_flock
,
2138 * POSIX-lockless variants of our file_operations.
2140 * These will be used if the underlying cluster stack does not support
2141 * posix file locking, if the user passes the "localflocks" mount
2142 * option, or if we have a local-only fs.
2144 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2145 * so we still want it in the case of no stack support for
2146 * plocks. Internally, it will do the right thing when asked to ignore
2149 const struct file_operations ocfs2_fops_no_plocks
= {
2150 .llseek
= generic_file_llseek
,
2151 .read
= do_sync_read
,
2152 .write
= do_sync_write
,
2154 .fsync
= ocfs2_sync_file
,
2155 .release
= ocfs2_file_release
,
2156 .open
= ocfs2_file_open
,
2157 .aio_read
= ocfs2_file_aio_read
,
2158 .aio_write
= ocfs2_file_aio_write
,
2159 .unlocked_ioctl
= ocfs2_ioctl
,
2160 #ifdef CONFIG_COMPAT
2161 .compat_ioctl
= ocfs2_compat_ioctl
,
2163 .flock
= ocfs2_flock
,
2164 .splice_read
= ocfs2_file_splice_read
,
2165 .splice_write
= ocfs2_file_splice_write
,
2168 const struct file_operations ocfs2_dops_no_plocks
= {
2169 .llseek
= generic_file_llseek
,
2170 .read
= generic_read_dir
,
2171 .readdir
= ocfs2_readdir
,
2172 .fsync
= ocfs2_sync_file
,
2173 .release
= ocfs2_dir_release
,
2174 .open
= ocfs2_dir_open
,
2175 .unlocked_ioctl
= ocfs2_ioctl
,
2176 #ifdef CONFIG_COMPAT
2177 .compat_ioctl
= ocfs2_compat_ioctl
,
2179 .flock
= ocfs2_flock
,