x86, delay: tsc based udelay should have rdtsc_barrier
[linux-2.6/mini2440.git] / drivers / net / via-rhine.c
blobd3489a3c4c03b28907035181134c20ccb44b9233
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
32 #define DRV_NAME "via-rhine"
33 #define DRV_VERSION "1.4.3"
34 #define DRV_RELDATE "2007-03-06"
37 /* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
40 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41 static int max_interrupt_work = 20;
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
45 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
46 || defined(CONFIG_SPARC) || defined(__ia64__) \
47 || defined(__sh__) || defined(__mips__)
48 static int rx_copybreak = 1518;
49 #else
50 static int rx_copybreak;
51 #endif
53 /* Work-around for broken BIOSes: they are unable to get the chip back out of
54 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
55 static int avoid_D3;
58 * In case you are looking for 'options[]' or 'full_duplex[]', they
59 * are gone. Use ethtool(8) instead.
62 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
63 The Rhine has a 64 element 8390-like hash table. */
64 static const int multicast_filter_limit = 32;
67 /* Operational parameters that are set at compile time. */
69 /* Keep the ring sizes a power of two for compile efficiency.
70 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
71 Making the Tx ring too large decreases the effectiveness of channel
72 bonding and packet priority.
73 There are no ill effects from too-large receive rings. */
74 #define TX_RING_SIZE 16
75 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
76 #define RX_RING_SIZE 64
78 /* Operational parameters that usually are not changed. */
80 /* Time in jiffies before concluding the transmitter is hung. */
81 #define TX_TIMEOUT (2*HZ)
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
85 #include <linux/module.h>
86 #include <linux/moduleparam.h>
87 #include <linux/kernel.h>
88 #include <linux/string.h>
89 #include <linux/timer.h>
90 #include <linux/errno.h>
91 #include <linux/ioport.h>
92 #include <linux/slab.h>
93 #include <linux/interrupt.h>
94 #include <linux/pci.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/netdevice.h>
97 #include <linux/etherdevice.h>
98 #include <linux/skbuff.h>
99 #include <linux/init.h>
100 #include <linux/delay.h>
101 #include <linux/mii.h>
102 #include <linux/ethtool.h>
103 #include <linux/crc32.h>
104 #include <linux/bitops.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
106 #include <asm/io.h>
107 #include <asm/irq.h>
108 #include <asm/uaccess.h>
109 #include <linux/dmi.h>
111 /* These identify the driver base version and may not be removed. */
112 static const char version[] __devinitconst =
113 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE
114 " Written by Donald Becker\n";
116 /* This driver was written to use PCI memory space. Some early versions
117 of the Rhine may only work correctly with I/O space accesses. */
118 #ifdef CONFIG_VIA_RHINE_MMIO
119 #define USE_MMIO
120 #else
121 #endif
123 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
124 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
125 MODULE_LICENSE("GPL");
127 module_param(max_interrupt_work, int, 0);
128 module_param(debug, int, 0);
129 module_param(rx_copybreak, int, 0);
130 module_param(avoid_D3, bool, 0);
131 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
132 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
133 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
134 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
137 Theory of Operation
139 I. Board Compatibility
141 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
142 controller.
144 II. Board-specific settings
146 Boards with this chip are functional only in a bus-master PCI slot.
148 Many operational settings are loaded from the EEPROM to the Config word at
149 offset 0x78. For most of these settings, this driver assumes that they are
150 correct.
151 If this driver is compiled to use PCI memory space operations the EEPROM
152 must be configured to enable memory ops.
154 III. Driver operation
156 IIIa. Ring buffers
158 This driver uses two statically allocated fixed-size descriptor lists
159 formed into rings by a branch from the final descriptor to the beginning of
160 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
162 IIIb/c. Transmit/Receive Structure
164 This driver attempts to use a zero-copy receive and transmit scheme.
166 Alas, all data buffers are required to start on a 32 bit boundary, so
167 the driver must often copy transmit packets into bounce buffers.
169 The driver allocates full frame size skbuffs for the Rx ring buffers at
170 open() time and passes the skb->data field to the chip as receive data
171 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
172 a fresh skbuff is allocated and the frame is copied to the new skbuff.
173 When the incoming frame is larger, the skbuff is passed directly up the
174 protocol stack. Buffers consumed this way are replaced by newly allocated
175 skbuffs in the last phase of rhine_rx().
177 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
178 using a full-sized skbuff for small frames vs. the copying costs of larger
179 frames. New boards are typically used in generously configured machines
180 and the underfilled buffers have negligible impact compared to the benefit of
181 a single allocation size, so the default value of zero results in never
182 copying packets. When copying is done, the cost is usually mitigated by using
183 a combined copy/checksum routine. Copying also preloads the cache, which is
184 most useful with small frames.
186 Since the VIA chips are only able to transfer data to buffers on 32 bit
187 boundaries, the IP header at offset 14 in an ethernet frame isn't
188 longword aligned for further processing. Copying these unaligned buffers
189 has the beneficial effect of 16-byte aligning the IP header.
191 IIId. Synchronization
193 The driver runs as two independent, single-threaded flows of control. One
194 is the send-packet routine, which enforces single-threaded use by the
195 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
196 which is single threaded by the hardware and interrupt handling software.
198 The send packet thread has partial control over the Tx ring. It locks the
199 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
200 the ring is not available it stops the transmit queue by
201 calling netif_stop_queue.
203 The interrupt handler has exclusive control over the Rx ring and records stats
204 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
205 empty by incrementing the dirty_tx mark. If at least half of the entries in
206 the Rx ring are available the transmit queue is woken up if it was stopped.
208 IV. Notes
210 IVb. References
212 Preliminary VT86C100A manual from http://www.via.com.tw/
213 http://www.scyld.com/expert/100mbps.html
214 http://www.scyld.com/expert/NWay.html
215 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
216 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
219 IVc. Errata
221 The VT86C100A manual is not reliable information.
222 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
223 in significant performance degradation for bounce buffer copies on transmit
224 and unaligned IP headers on receive.
225 The chip does not pad to minimum transmit length.
230 /* This table drives the PCI probe routines. It's mostly boilerplate in all
231 of the drivers, and will likely be provided by some future kernel.
232 Note the matching code -- the first table entry matchs all 56** cards but
233 second only the 1234 card.
236 enum rhine_revs {
237 VT86C100A = 0x00,
238 VTunknown0 = 0x20,
239 VT6102 = 0x40,
240 VT8231 = 0x50, /* Integrated MAC */
241 VT8233 = 0x60, /* Integrated MAC */
242 VT8235 = 0x74, /* Integrated MAC */
243 VT8237 = 0x78, /* Integrated MAC */
244 VTunknown1 = 0x7C,
245 VT6105 = 0x80,
246 VT6105_B0 = 0x83,
247 VT6105L = 0x8A,
248 VT6107 = 0x8C,
249 VTunknown2 = 0x8E,
250 VT6105M = 0x90, /* Management adapter */
253 enum rhine_quirks {
254 rqWOL = 0x0001, /* Wake-On-LAN support */
255 rqForceReset = 0x0002,
256 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
257 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
258 rqRhineI = 0x0100, /* See comment below */
261 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
262 * MMIO as well as for the collision counter and the Tx FIFO underflow
263 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
266 /* Beware of PCI posted writes */
267 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
269 static const struct pci_device_id rhine_pci_tbl[] = {
270 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
271 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
272 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
273 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
274 { } /* terminate list */
276 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
279 /* Offsets to the device registers. */
280 enum register_offsets {
281 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
282 ChipCmd1=0x09,
283 IntrStatus=0x0C, IntrEnable=0x0E,
284 MulticastFilter0=0x10, MulticastFilter1=0x14,
285 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
286 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
287 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
288 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
289 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
290 StickyHW=0x83, IntrStatus2=0x84,
291 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
292 WOLcrClr1=0xA6, WOLcgClr=0xA7,
293 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
296 /* Bits in ConfigD */
297 enum backoff_bits {
298 BackOptional=0x01, BackModify=0x02,
299 BackCaptureEffect=0x04, BackRandom=0x08
302 #ifdef USE_MMIO
303 /* Registers we check that mmio and reg are the same. */
304 static const int mmio_verify_registers[] = {
305 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
308 #endif
310 /* Bits in the interrupt status/mask registers. */
311 enum intr_status_bits {
312 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
313 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
314 IntrPCIErr=0x0040,
315 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
316 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
317 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
318 IntrRxWakeUp=0x8000,
319 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
320 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
321 IntrTxErrSummary=0x082218,
324 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
325 enum wol_bits {
326 WOLucast = 0x10,
327 WOLmagic = 0x20,
328 WOLbmcast = 0x30,
329 WOLlnkon = 0x40,
330 WOLlnkoff = 0x80,
333 /* The Rx and Tx buffer descriptors. */
334 struct rx_desc {
335 __le32 rx_status;
336 __le32 desc_length; /* Chain flag, Buffer/frame length */
337 __le32 addr;
338 __le32 next_desc;
340 struct tx_desc {
341 __le32 tx_status;
342 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
343 __le32 addr;
344 __le32 next_desc;
347 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
348 #define TXDESC 0x00e08000
350 enum rx_status_bits {
351 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
354 /* Bits in *_desc.*_status */
355 enum desc_status_bits {
356 DescOwn=0x80000000
359 /* Bits in ChipCmd. */
360 enum chip_cmd_bits {
361 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
362 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
363 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
364 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
367 struct rhine_private {
368 /* Descriptor rings */
369 struct rx_desc *rx_ring;
370 struct tx_desc *tx_ring;
371 dma_addr_t rx_ring_dma;
372 dma_addr_t tx_ring_dma;
374 /* The addresses of receive-in-place skbuffs. */
375 struct sk_buff *rx_skbuff[RX_RING_SIZE];
376 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
378 /* The saved address of a sent-in-place packet/buffer, for later free(). */
379 struct sk_buff *tx_skbuff[TX_RING_SIZE];
380 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
382 /* Tx bounce buffers (Rhine-I only) */
383 unsigned char *tx_buf[TX_RING_SIZE];
384 unsigned char *tx_bufs;
385 dma_addr_t tx_bufs_dma;
387 struct pci_dev *pdev;
388 long pioaddr;
389 struct net_device *dev;
390 struct napi_struct napi;
391 spinlock_t lock;
393 /* Frequently used values: keep some adjacent for cache effect. */
394 u32 quirks;
395 struct rx_desc *rx_head_desc;
396 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
397 unsigned int cur_tx, dirty_tx;
398 unsigned int rx_buf_sz; /* Based on MTU+slack. */
399 u8 wolopts;
401 u8 tx_thresh, rx_thresh;
403 struct mii_if_info mii_if;
404 void __iomem *base;
407 static int mdio_read(struct net_device *dev, int phy_id, int location);
408 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
409 static int rhine_open(struct net_device *dev);
410 static void rhine_tx_timeout(struct net_device *dev);
411 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
412 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
413 static void rhine_tx(struct net_device *dev);
414 static int rhine_rx(struct net_device *dev, int limit);
415 static void rhine_error(struct net_device *dev, int intr_status);
416 static void rhine_set_rx_mode(struct net_device *dev);
417 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
418 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
419 static const struct ethtool_ops netdev_ethtool_ops;
420 static int rhine_close(struct net_device *dev);
421 static void rhine_shutdown (struct pci_dev *pdev);
423 #define RHINE_WAIT_FOR(condition) do { \
424 int i=1024; \
425 while (!(condition) && --i) \
427 if (debug > 1 && i < 512) \
428 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
429 DRV_NAME, 1024-i, __func__, __LINE__); \
430 } while(0)
432 static inline u32 get_intr_status(struct net_device *dev)
434 struct rhine_private *rp = netdev_priv(dev);
435 void __iomem *ioaddr = rp->base;
436 u32 intr_status;
438 intr_status = ioread16(ioaddr + IntrStatus);
439 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
440 if (rp->quirks & rqStatusWBRace)
441 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
442 return intr_status;
446 * Get power related registers into sane state.
447 * Notify user about past WOL event.
449 static void rhine_power_init(struct net_device *dev)
451 struct rhine_private *rp = netdev_priv(dev);
452 void __iomem *ioaddr = rp->base;
453 u16 wolstat;
455 if (rp->quirks & rqWOL) {
456 /* Make sure chip is in power state D0 */
457 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
459 /* Disable "force PME-enable" */
460 iowrite8(0x80, ioaddr + WOLcgClr);
462 /* Clear power-event config bits (WOL) */
463 iowrite8(0xFF, ioaddr + WOLcrClr);
464 /* More recent cards can manage two additional patterns */
465 if (rp->quirks & rq6patterns)
466 iowrite8(0x03, ioaddr + WOLcrClr1);
468 /* Save power-event status bits */
469 wolstat = ioread8(ioaddr + PwrcsrSet);
470 if (rp->quirks & rq6patterns)
471 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
473 /* Clear power-event status bits */
474 iowrite8(0xFF, ioaddr + PwrcsrClr);
475 if (rp->quirks & rq6patterns)
476 iowrite8(0x03, ioaddr + PwrcsrClr1);
478 if (wolstat) {
479 char *reason;
480 switch (wolstat) {
481 case WOLmagic:
482 reason = "Magic packet";
483 break;
484 case WOLlnkon:
485 reason = "Link went up";
486 break;
487 case WOLlnkoff:
488 reason = "Link went down";
489 break;
490 case WOLucast:
491 reason = "Unicast packet";
492 break;
493 case WOLbmcast:
494 reason = "Multicast/broadcast packet";
495 break;
496 default:
497 reason = "Unknown";
499 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
500 DRV_NAME, reason);
505 static void rhine_chip_reset(struct net_device *dev)
507 struct rhine_private *rp = netdev_priv(dev);
508 void __iomem *ioaddr = rp->base;
510 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
511 IOSYNC;
513 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
514 printk(KERN_INFO "%s: Reset not complete yet. "
515 "Trying harder.\n", DRV_NAME);
517 /* Force reset */
518 if (rp->quirks & rqForceReset)
519 iowrite8(0x40, ioaddr + MiscCmd);
521 /* Reset can take somewhat longer (rare) */
522 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
525 if (debug > 1)
526 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
527 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
528 "failed" : "succeeded");
531 #ifdef USE_MMIO
532 static void enable_mmio(long pioaddr, u32 quirks)
534 int n;
535 if (quirks & rqRhineI) {
536 /* More recent docs say that this bit is reserved ... */
537 n = inb(pioaddr + ConfigA) | 0x20;
538 outb(n, pioaddr + ConfigA);
539 } else {
540 n = inb(pioaddr + ConfigD) | 0x80;
541 outb(n, pioaddr + ConfigD);
544 #endif
547 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
548 * (plus 0x6C for Rhine-I/II)
550 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
552 struct rhine_private *rp = netdev_priv(dev);
553 void __iomem *ioaddr = rp->base;
555 outb(0x20, pioaddr + MACRegEEcsr);
556 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
558 #ifdef USE_MMIO
560 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
561 * MMIO. If reloading EEPROM was done first this could be avoided, but
562 * it is not known if that still works with the "win98-reboot" problem.
564 enable_mmio(pioaddr, rp->quirks);
565 #endif
567 /* Turn off EEPROM-controlled wake-up (magic packet) */
568 if (rp->quirks & rqWOL)
569 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
573 #ifdef CONFIG_NET_POLL_CONTROLLER
574 static void rhine_poll(struct net_device *dev)
576 disable_irq(dev->irq);
577 rhine_interrupt(dev->irq, (void *)dev);
578 enable_irq(dev->irq);
580 #endif
582 static int rhine_napipoll(struct napi_struct *napi, int budget)
584 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
585 struct net_device *dev = rp->dev;
586 void __iomem *ioaddr = rp->base;
587 int work_done;
589 work_done = rhine_rx(dev, budget);
591 if (work_done < budget) {
592 napi_complete(napi);
594 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
595 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
596 IntrTxDone | IntrTxError | IntrTxUnderrun |
597 IntrPCIErr | IntrStatsMax | IntrLinkChange,
598 ioaddr + IntrEnable);
600 return work_done;
603 static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
605 struct rhine_private *rp = netdev_priv(dev);
607 /* Reset the chip to erase previous misconfiguration. */
608 rhine_chip_reset(dev);
610 /* Rhine-I needs extra time to recuperate before EEPROM reload */
611 if (rp->quirks & rqRhineI)
612 msleep(5);
614 /* Reload EEPROM controlled bytes cleared by soft reset */
615 rhine_reload_eeprom(pioaddr, dev);
618 static const struct net_device_ops rhine_netdev_ops = {
619 .ndo_open = rhine_open,
620 .ndo_stop = rhine_close,
621 .ndo_start_xmit = rhine_start_tx,
622 .ndo_get_stats = rhine_get_stats,
623 .ndo_set_multicast_list = rhine_set_rx_mode,
624 .ndo_validate_addr = eth_validate_addr,
625 .ndo_set_mac_address = eth_mac_addr,
626 .ndo_do_ioctl = netdev_ioctl,
627 .ndo_tx_timeout = rhine_tx_timeout,
628 #ifdef CONFIG_NET_POLL_CONTROLLER
629 .ndo_poll_controller = rhine_poll,
630 #endif
633 static int __devinit rhine_init_one(struct pci_dev *pdev,
634 const struct pci_device_id *ent)
636 struct net_device *dev;
637 struct rhine_private *rp;
638 int i, rc;
639 u32 quirks;
640 long pioaddr;
641 long memaddr;
642 void __iomem *ioaddr;
643 int io_size, phy_id;
644 const char *name;
645 #ifdef USE_MMIO
646 int bar = 1;
647 #else
648 int bar = 0;
649 #endif
651 /* when built into the kernel, we only print version if device is found */
652 #ifndef MODULE
653 static int printed_version;
654 if (!printed_version++)
655 printk(version);
656 #endif
658 io_size = 256;
659 phy_id = 0;
660 quirks = 0;
661 name = "Rhine";
662 if (pdev->revision < VTunknown0) {
663 quirks = rqRhineI;
664 io_size = 128;
666 else if (pdev->revision >= VT6102) {
667 quirks = rqWOL | rqForceReset;
668 if (pdev->revision < VT6105) {
669 name = "Rhine II";
670 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
672 else {
673 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
674 if (pdev->revision >= VT6105_B0)
675 quirks |= rq6patterns;
676 if (pdev->revision < VT6105M)
677 name = "Rhine III";
678 else
679 name = "Rhine III (Management Adapter)";
683 rc = pci_enable_device(pdev);
684 if (rc)
685 goto err_out;
687 /* this should always be supported */
688 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
689 if (rc) {
690 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
691 "the card!?\n");
692 goto err_out;
695 /* sanity check */
696 if ((pci_resource_len(pdev, 0) < io_size) ||
697 (pci_resource_len(pdev, 1) < io_size)) {
698 rc = -EIO;
699 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
700 goto err_out;
703 pioaddr = pci_resource_start(pdev, 0);
704 memaddr = pci_resource_start(pdev, 1);
706 pci_set_master(pdev);
708 dev = alloc_etherdev(sizeof(struct rhine_private));
709 if (!dev) {
710 rc = -ENOMEM;
711 printk(KERN_ERR "alloc_etherdev failed\n");
712 goto err_out;
714 SET_NETDEV_DEV(dev, &pdev->dev);
716 rp = netdev_priv(dev);
717 rp->dev = dev;
718 rp->quirks = quirks;
719 rp->pioaddr = pioaddr;
720 rp->pdev = pdev;
722 rc = pci_request_regions(pdev, DRV_NAME);
723 if (rc)
724 goto err_out_free_netdev;
726 ioaddr = pci_iomap(pdev, bar, io_size);
727 if (!ioaddr) {
728 rc = -EIO;
729 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
730 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
731 goto err_out_free_res;
734 #ifdef USE_MMIO
735 enable_mmio(pioaddr, quirks);
737 /* Check that selected MMIO registers match the PIO ones */
738 i = 0;
739 while (mmio_verify_registers[i]) {
740 int reg = mmio_verify_registers[i++];
741 unsigned char a = inb(pioaddr+reg);
742 unsigned char b = readb(ioaddr+reg);
743 if (a != b) {
744 rc = -EIO;
745 printk(KERN_ERR "MMIO do not match PIO [%02x] "
746 "(%02x != %02x)\n", reg, a, b);
747 goto err_out_unmap;
750 #endif /* USE_MMIO */
752 dev->base_addr = (unsigned long)ioaddr;
753 rp->base = ioaddr;
755 /* Get chip registers into a sane state */
756 rhine_power_init(dev);
757 rhine_hw_init(dev, pioaddr);
759 for (i = 0; i < 6; i++)
760 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
761 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
763 if (!is_valid_ether_addr(dev->perm_addr)) {
764 rc = -EIO;
765 printk(KERN_ERR "Invalid MAC address\n");
766 goto err_out_unmap;
769 /* For Rhine-I/II, phy_id is loaded from EEPROM */
770 if (!phy_id)
771 phy_id = ioread8(ioaddr + 0x6C);
773 dev->irq = pdev->irq;
775 spin_lock_init(&rp->lock);
776 rp->mii_if.dev = dev;
777 rp->mii_if.mdio_read = mdio_read;
778 rp->mii_if.mdio_write = mdio_write;
779 rp->mii_if.phy_id_mask = 0x1f;
780 rp->mii_if.reg_num_mask = 0x1f;
782 /* The chip-specific entries in the device structure. */
783 dev->netdev_ops = &rhine_netdev_ops;
784 dev->ethtool_ops = &netdev_ethtool_ops,
785 dev->watchdog_timeo = TX_TIMEOUT;
787 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
789 if (rp->quirks & rqRhineI)
790 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
792 /* dev->name not defined before register_netdev()! */
793 rc = register_netdev(dev);
794 if (rc)
795 goto err_out_unmap;
797 printk(KERN_INFO "%s: VIA %s at 0x%lx, %pM, IRQ %d.\n",
798 dev->name, name,
799 #ifdef USE_MMIO
800 memaddr,
801 #else
802 (long)ioaddr,
803 #endif
804 dev->dev_addr, pdev->irq);
806 pci_set_drvdata(pdev, dev);
809 u16 mii_cmd;
810 int mii_status = mdio_read(dev, phy_id, 1);
811 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
812 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
813 if (mii_status != 0xffff && mii_status != 0x0000) {
814 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
815 printk(KERN_INFO "%s: MII PHY found at address "
816 "%d, status 0x%4.4x advertising %4.4x "
817 "Link %4.4x.\n", dev->name, phy_id,
818 mii_status, rp->mii_if.advertising,
819 mdio_read(dev, phy_id, 5));
821 /* set IFF_RUNNING */
822 if (mii_status & BMSR_LSTATUS)
823 netif_carrier_on(dev);
824 else
825 netif_carrier_off(dev);
829 rp->mii_if.phy_id = phy_id;
830 if (debug > 1 && avoid_D3)
831 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
832 dev->name);
834 return 0;
836 err_out_unmap:
837 pci_iounmap(pdev, ioaddr);
838 err_out_free_res:
839 pci_release_regions(pdev);
840 err_out_free_netdev:
841 free_netdev(dev);
842 err_out:
843 return rc;
846 static int alloc_ring(struct net_device* dev)
848 struct rhine_private *rp = netdev_priv(dev);
849 void *ring;
850 dma_addr_t ring_dma;
852 ring = pci_alloc_consistent(rp->pdev,
853 RX_RING_SIZE * sizeof(struct rx_desc) +
854 TX_RING_SIZE * sizeof(struct tx_desc),
855 &ring_dma);
856 if (!ring) {
857 printk(KERN_ERR "Could not allocate DMA memory.\n");
858 return -ENOMEM;
860 if (rp->quirks & rqRhineI) {
861 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
862 PKT_BUF_SZ * TX_RING_SIZE,
863 &rp->tx_bufs_dma);
864 if (rp->tx_bufs == NULL) {
865 pci_free_consistent(rp->pdev,
866 RX_RING_SIZE * sizeof(struct rx_desc) +
867 TX_RING_SIZE * sizeof(struct tx_desc),
868 ring, ring_dma);
869 return -ENOMEM;
873 rp->rx_ring = ring;
874 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
875 rp->rx_ring_dma = ring_dma;
876 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
878 return 0;
881 static void free_ring(struct net_device* dev)
883 struct rhine_private *rp = netdev_priv(dev);
885 pci_free_consistent(rp->pdev,
886 RX_RING_SIZE * sizeof(struct rx_desc) +
887 TX_RING_SIZE * sizeof(struct tx_desc),
888 rp->rx_ring, rp->rx_ring_dma);
889 rp->tx_ring = NULL;
891 if (rp->tx_bufs)
892 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
893 rp->tx_bufs, rp->tx_bufs_dma);
895 rp->tx_bufs = NULL;
899 static void alloc_rbufs(struct net_device *dev)
901 struct rhine_private *rp = netdev_priv(dev);
902 dma_addr_t next;
903 int i;
905 rp->dirty_rx = rp->cur_rx = 0;
907 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
908 rp->rx_head_desc = &rp->rx_ring[0];
909 next = rp->rx_ring_dma;
911 /* Init the ring entries */
912 for (i = 0; i < RX_RING_SIZE; i++) {
913 rp->rx_ring[i].rx_status = 0;
914 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
915 next += sizeof(struct rx_desc);
916 rp->rx_ring[i].next_desc = cpu_to_le32(next);
917 rp->rx_skbuff[i] = NULL;
919 /* Mark the last entry as wrapping the ring. */
920 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
922 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
923 for (i = 0; i < RX_RING_SIZE; i++) {
924 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
925 rp->rx_skbuff[i] = skb;
926 if (skb == NULL)
927 break;
928 skb->dev = dev; /* Mark as being used by this device. */
930 rp->rx_skbuff_dma[i] =
931 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
932 PCI_DMA_FROMDEVICE);
934 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
935 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
937 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
940 static void free_rbufs(struct net_device* dev)
942 struct rhine_private *rp = netdev_priv(dev);
943 int i;
945 /* Free all the skbuffs in the Rx queue. */
946 for (i = 0; i < RX_RING_SIZE; i++) {
947 rp->rx_ring[i].rx_status = 0;
948 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
949 if (rp->rx_skbuff[i]) {
950 pci_unmap_single(rp->pdev,
951 rp->rx_skbuff_dma[i],
952 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
953 dev_kfree_skb(rp->rx_skbuff[i]);
955 rp->rx_skbuff[i] = NULL;
959 static void alloc_tbufs(struct net_device* dev)
961 struct rhine_private *rp = netdev_priv(dev);
962 dma_addr_t next;
963 int i;
965 rp->dirty_tx = rp->cur_tx = 0;
966 next = rp->tx_ring_dma;
967 for (i = 0; i < TX_RING_SIZE; i++) {
968 rp->tx_skbuff[i] = NULL;
969 rp->tx_ring[i].tx_status = 0;
970 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
971 next += sizeof(struct tx_desc);
972 rp->tx_ring[i].next_desc = cpu_to_le32(next);
973 if (rp->quirks & rqRhineI)
974 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
976 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
980 static void free_tbufs(struct net_device* dev)
982 struct rhine_private *rp = netdev_priv(dev);
983 int i;
985 for (i = 0; i < TX_RING_SIZE; i++) {
986 rp->tx_ring[i].tx_status = 0;
987 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
988 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
989 if (rp->tx_skbuff[i]) {
990 if (rp->tx_skbuff_dma[i]) {
991 pci_unmap_single(rp->pdev,
992 rp->tx_skbuff_dma[i],
993 rp->tx_skbuff[i]->len,
994 PCI_DMA_TODEVICE);
996 dev_kfree_skb(rp->tx_skbuff[i]);
998 rp->tx_skbuff[i] = NULL;
999 rp->tx_buf[i] = NULL;
1003 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1005 struct rhine_private *rp = netdev_priv(dev);
1006 void __iomem *ioaddr = rp->base;
1008 mii_check_media(&rp->mii_if, debug, init_media);
1010 if (rp->mii_if.full_duplex)
1011 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1012 ioaddr + ChipCmd1);
1013 else
1014 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1015 ioaddr + ChipCmd1);
1016 if (debug > 1)
1017 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1018 rp->mii_if.force_media, netif_carrier_ok(dev));
1021 /* Called after status of force_media possibly changed */
1022 static void rhine_set_carrier(struct mii_if_info *mii)
1024 if (mii->force_media) {
1025 /* autoneg is off: Link is always assumed to be up */
1026 if (!netif_carrier_ok(mii->dev))
1027 netif_carrier_on(mii->dev);
1029 else /* Let MMI library update carrier status */
1030 rhine_check_media(mii->dev, 0);
1031 if (debug > 1)
1032 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1033 mii->dev->name, mii->force_media,
1034 netif_carrier_ok(mii->dev));
1037 static void init_registers(struct net_device *dev)
1039 struct rhine_private *rp = netdev_priv(dev);
1040 void __iomem *ioaddr = rp->base;
1041 int i;
1043 for (i = 0; i < 6; i++)
1044 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1046 /* Initialize other registers. */
1047 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1048 /* Configure initial FIFO thresholds. */
1049 iowrite8(0x20, ioaddr + TxConfig);
1050 rp->tx_thresh = 0x20;
1051 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1053 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1054 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1056 rhine_set_rx_mode(dev);
1058 napi_enable(&rp->napi);
1060 /* Enable interrupts by setting the interrupt mask. */
1061 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1062 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1063 IntrTxDone | IntrTxError | IntrTxUnderrun |
1064 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1065 ioaddr + IntrEnable);
1067 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1068 ioaddr + ChipCmd);
1069 rhine_check_media(dev, 1);
1072 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1073 static void rhine_enable_linkmon(void __iomem *ioaddr)
1075 iowrite8(0, ioaddr + MIICmd);
1076 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1077 iowrite8(0x80, ioaddr + MIICmd);
1079 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1081 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1084 /* Disable MII link status auto-polling (required for MDIO access) */
1085 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1087 iowrite8(0, ioaddr + MIICmd);
1089 if (quirks & rqRhineI) {
1090 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1092 /* Can be called from ISR. Evil. */
1093 mdelay(1);
1095 /* 0x80 must be set immediately before turning it off */
1096 iowrite8(0x80, ioaddr + MIICmd);
1098 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1100 /* Heh. Now clear 0x80 again. */
1101 iowrite8(0, ioaddr + MIICmd);
1103 else
1104 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1107 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1109 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1111 struct rhine_private *rp = netdev_priv(dev);
1112 void __iomem *ioaddr = rp->base;
1113 int result;
1115 rhine_disable_linkmon(ioaddr, rp->quirks);
1117 /* rhine_disable_linkmon already cleared MIICmd */
1118 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1119 iowrite8(regnum, ioaddr + MIIRegAddr);
1120 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1121 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1122 result = ioread16(ioaddr + MIIData);
1124 rhine_enable_linkmon(ioaddr);
1125 return result;
1128 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1130 struct rhine_private *rp = netdev_priv(dev);
1131 void __iomem *ioaddr = rp->base;
1133 rhine_disable_linkmon(ioaddr, rp->quirks);
1135 /* rhine_disable_linkmon already cleared MIICmd */
1136 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1137 iowrite8(regnum, ioaddr + MIIRegAddr);
1138 iowrite16(value, ioaddr + MIIData);
1139 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1140 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1142 rhine_enable_linkmon(ioaddr);
1145 static int rhine_open(struct net_device *dev)
1147 struct rhine_private *rp = netdev_priv(dev);
1148 void __iomem *ioaddr = rp->base;
1149 int rc;
1151 rc = request_irq(rp->pdev->irq, &rhine_interrupt, IRQF_SHARED, dev->name,
1152 dev);
1153 if (rc)
1154 return rc;
1156 if (debug > 1)
1157 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1158 dev->name, rp->pdev->irq);
1160 rc = alloc_ring(dev);
1161 if (rc) {
1162 free_irq(rp->pdev->irq, dev);
1163 return rc;
1165 alloc_rbufs(dev);
1166 alloc_tbufs(dev);
1167 rhine_chip_reset(dev);
1168 init_registers(dev);
1169 if (debug > 2)
1170 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1171 "MII status: %4.4x.\n",
1172 dev->name, ioread16(ioaddr + ChipCmd),
1173 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1175 netif_start_queue(dev);
1177 return 0;
1180 static void rhine_tx_timeout(struct net_device *dev)
1182 struct rhine_private *rp = netdev_priv(dev);
1183 void __iomem *ioaddr = rp->base;
1185 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1186 "%4.4x, resetting...\n",
1187 dev->name, ioread16(ioaddr + IntrStatus),
1188 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1190 /* protect against concurrent rx interrupts */
1191 disable_irq(rp->pdev->irq);
1193 napi_disable(&rp->napi);
1195 spin_lock(&rp->lock);
1197 /* clear all descriptors */
1198 free_tbufs(dev);
1199 free_rbufs(dev);
1200 alloc_tbufs(dev);
1201 alloc_rbufs(dev);
1203 /* Reinitialize the hardware. */
1204 rhine_chip_reset(dev);
1205 init_registers(dev);
1207 spin_unlock(&rp->lock);
1208 enable_irq(rp->pdev->irq);
1210 dev->trans_start = jiffies;
1211 dev->stats.tx_errors++;
1212 netif_wake_queue(dev);
1215 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1217 struct rhine_private *rp = netdev_priv(dev);
1218 void __iomem *ioaddr = rp->base;
1219 unsigned entry;
1221 /* Caution: the write order is important here, set the field
1222 with the "ownership" bits last. */
1224 /* Calculate the next Tx descriptor entry. */
1225 entry = rp->cur_tx % TX_RING_SIZE;
1227 if (skb_padto(skb, ETH_ZLEN))
1228 return 0;
1230 rp->tx_skbuff[entry] = skb;
1232 if ((rp->quirks & rqRhineI) &&
1233 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1234 /* Must use alignment buffer. */
1235 if (skb->len > PKT_BUF_SZ) {
1236 /* packet too long, drop it */
1237 dev_kfree_skb(skb);
1238 rp->tx_skbuff[entry] = NULL;
1239 dev->stats.tx_dropped++;
1240 return 0;
1243 /* Padding is not copied and so must be redone. */
1244 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1245 if (skb->len < ETH_ZLEN)
1246 memset(rp->tx_buf[entry] + skb->len, 0,
1247 ETH_ZLEN - skb->len);
1248 rp->tx_skbuff_dma[entry] = 0;
1249 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1250 (rp->tx_buf[entry] -
1251 rp->tx_bufs));
1252 } else {
1253 rp->tx_skbuff_dma[entry] =
1254 pci_map_single(rp->pdev, skb->data, skb->len,
1255 PCI_DMA_TODEVICE);
1256 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1259 rp->tx_ring[entry].desc_length =
1260 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1262 /* lock eth irq */
1263 spin_lock_irq(&rp->lock);
1264 wmb();
1265 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1266 wmb();
1268 rp->cur_tx++;
1270 /* Non-x86 Todo: explicitly flush cache lines here. */
1272 /* Wake the potentially-idle transmit channel */
1273 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1274 ioaddr + ChipCmd1);
1275 IOSYNC;
1277 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1278 netif_stop_queue(dev);
1280 dev->trans_start = jiffies;
1282 spin_unlock_irq(&rp->lock);
1284 if (debug > 4) {
1285 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1286 dev->name, rp->cur_tx-1, entry);
1288 return 0;
1291 /* The interrupt handler does all of the Rx thread work and cleans up
1292 after the Tx thread. */
1293 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1295 struct net_device *dev = dev_instance;
1296 struct rhine_private *rp = netdev_priv(dev);
1297 void __iomem *ioaddr = rp->base;
1298 u32 intr_status;
1299 int boguscnt = max_interrupt_work;
1300 int handled = 0;
1302 while ((intr_status = get_intr_status(dev))) {
1303 handled = 1;
1305 /* Acknowledge all of the current interrupt sources ASAP. */
1306 if (intr_status & IntrTxDescRace)
1307 iowrite8(0x08, ioaddr + IntrStatus2);
1308 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1309 IOSYNC;
1311 if (debug > 4)
1312 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1313 dev->name, intr_status);
1315 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1316 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
1317 iowrite16(IntrTxAborted |
1318 IntrTxDone | IntrTxError | IntrTxUnderrun |
1319 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1320 ioaddr + IntrEnable);
1322 napi_schedule(&rp->napi);
1325 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1326 if (intr_status & IntrTxErrSummary) {
1327 /* Avoid scavenging before Tx engine turned off */
1328 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1329 if (debug > 2 &&
1330 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1331 printk(KERN_WARNING "%s: "
1332 "rhine_interrupt() Tx engine "
1333 "still on.\n", dev->name);
1335 rhine_tx(dev);
1338 /* Abnormal error summary/uncommon events handlers. */
1339 if (intr_status & (IntrPCIErr | IntrLinkChange |
1340 IntrStatsMax | IntrTxError | IntrTxAborted |
1341 IntrTxUnderrun | IntrTxDescRace))
1342 rhine_error(dev, intr_status);
1344 if (--boguscnt < 0) {
1345 printk(KERN_WARNING "%s: Too much work at interrupt, "
1346 "status=%#8.8x.\n",
1347 dev->name, intr_status);
1348 break;
1352 if (debug > 3)
1353 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1354 dev->name, ioread16(ioaddr + IntrStatus));
1355 return IRQ_RETVAL(handled);
1358 /* This routine is logically part of the interrupt handler, but isolated
1359 for clarity. */
1360 static void rhine_tx(struct net_device *dev)
1362 struct rhine_private *rp = netdev_priv(dev);
1363 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1365 spin_lock(&rp->lock);
1367 /* find and cleanup dirty tx descriptors */
1368 while (rp->dirty_tx != rp->cur_tx) {
1369 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1370 if (debug > 6)
1371 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1372 entry, txstatus);
1373 if (txstatus & DescOwn)
1374 break;
1375 if (txstatus & 0x8000) {
1376 if (debug > 1)
1377 printk(KERN_DEBUG "%s: Transmit error, "
1378 "Tx status %8.8x.\n",
1379 dev->name, txstatus);
1380 dev->stats.tx_errors++;
1381 if (txstatus & 0x0400)
1382 dev->stats.tx_carrier_errors++;
1383 if (txstatus & 0x0200)
1384 dev->stats.tx_window_errors++;
1385 if (txstatus & 0x0100)
1386 dev->stats.tx_aborted_errors++;
1387 if (txstatus & 0x0080)
1388 dev->stats.tx_heartbeat_errors++;
1389 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1390 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1391 dev->stats.tx_fifo_errors++;
1392 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1393 break; /* Keep the skb - we try again */
1395 /* Transmitter restarted in 'abnormal' handler. */
1396 } else {
1397 if (rp->quirks & rqRhineI)
1398 dev->stats.collisions += (txstatus >> 3) & 0x0F;
1399 else
1400 dev->stats.collisions += txstatus & 0x0F;
1401 if (debug > 6)
1402 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1403 (txstatus >> 3) & 0xF,
1404 txstatus & 0xF);
1405 dev->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1406 dev->stats.tx_packets++;
1408 /* Free the original skb. */
1409 if (rp->tx_skbuff_dma[entry]) {
1410 pci_unmap_single(rp->pdev,
1411 rp->tx_skbuff_dma[entry],
1412 rp->tx_skbuff[entry]->len,
1413 PCI_DMA_TODEVICE);
1415 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1416 rp->tx_skbuff[entry] = NULL;
1417 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1419 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1420 netif_wake_queue(dev);
1422 spin_unlock(&rp->lock);
1425 /* Process up to limit frames from receive ring */
1426 static int rhine_rx(struct net_device *dev, int limit)
1428 struct rhine_private *rp = netdev_priv(dev);
1429 int count;
1430 int entry = rp->cur_rx % RX_RING_SIZE;
1432 if (debug > 4) {
1433 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1434 dev->name, entry,
1435 le32_to_cpu(rp->rx_head_desc->rx_status));
1438 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1439 for (count = 0; count < limit; ++count) {
1440 struct rx_desc *desc = rp->rx_head_desc;
1441 u32 desc_status = le32_to_cpu(desc->rx_status);
1442 int data_size = desc_status >> 16;
1444 if (desc_status & DescOwn)
1445 break;
1447 if (debug > 4)
1448 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1449 desc_status);
1451 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1452 if ((desc_status & RxWholePkt) != RxWholePkt) {
1453 printk(KERN_WARNING "%s: Oversized Ethernet "
1454 "frame spanned multiple buffers, entry "
1455 "%#x length %d status %8.8x!\n",
1456 dev->name, entry, data_size,
1457 desc_status);
1458 printk(KERN_WARNING "%s: Oversized Ethernet "
1459 "frame %p vs %p.\n", dev->name,
1460 rp->rx_head_desc, &rp->rx_ring[entry]);
1461 dev->stats.rx_length_errors++;
1462 } else if (desc_status & RxErr) {
1463 /* There was a error. */
1464 if (debug > 2)
1465 printk(KERN_DEBUG "rhine_rx() Rx "
1466 "error was %8.8x.\n",
1467 desc_status);
1468 dev->stats.rx_errors++;
1469 if (desc_status & 0x0030)
1470 dev->stats.rx_length_errors++;
1471 if (desc_status & 0x0048)
1472 dev->stats.rx_fifo_errors++;
1473 if (desc_status & 0x0004)
1474 dev->stats.rx_frame_errors++;
1475 if (desc_status & 0x0002) {
1476 /* this can also be updated outside the interrupt handler */
1477 spin_lock(&rp->lock);
1478 dev->stats.rx_crc_errors++;
1479 spin_unlock(&rp->lock);
1482 } else {
1483 struct sk_buff *skb;
1484 /* Length should omit the CRC */
1485 int pkt_len = data_size - 4;
1487 /* Check if the packet is long enough to accept without
1488 copying to a minimally-sized skbuff. */
1489 if (pkt_len < rx_copybreak &&
1490 (skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN)) != NULL) {
1491 skb_reserve(skb, NET_IP_ALIGN); /* 16 byte align the IP header */
1492 pci_dma_sync_single_for_cpu(rp->pdev,
1493 rp->rx_skbuff_dma[entry],
1494 rp->rx_buf_sz,
1495 PCI_DMA_FROMDEVICE);
1497 skb_copy_to_linear_data(skb,
1498 rp->rx_skbuff[entry]->data,
1499 pkt_len);
1500 skb_put(skb, pkt_len);
1501 pci_dma_sync_single_for_device(rp->pdev,
1502 rp->rx_skbuff_dma[entry],
1503 rp->rx_buf_sz,
1504 PCI_DMA_FROMDEVICE);
1505 } else {
1506 skb = rp->rx_skbuff[entry];
1507 if (skb == NULL) {
1508 printk(KERN_ERR "%s: Inconsistent Rx "
1509 "descriptor chain.\n",
1510 dev->name);
1511 break;
1513 rp->rx_skbuff[entry] = NULL;
1514 skb_put(skb, pkt_len);
1515 pci_unmap_single(rp->pdev,
1516 rp->rx_skbuff_dma[entry],
1517 rp->rx_buf_sz,
1518 PCI_DMA_FROMDEVICE);
1520 skb->protocol = eth_type_trans(skb, dev);
1521 netif_receive_skb(skb);
1522 dev->stats.rx_bytes += pkt_len;
1523 dev->stats.rx_packets++;
1525 entry = (++rp->cur_rx) % RX_RING_SIZE;
1526 rp->rx_head_desc = &rp->rx_ring[entry];
1529 /* Refill the Rx ring buffers. */
1530 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1531 struct sk_buff *skb;
1532 entry = rp->dirty_rx % RX_RING_SIZE;
1533 if (rp->rx_skbuff[entry] == NULL) {
1534 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1535 rp->rx_skbuff[entry] = skb;
1536 if (skb == NULL)
1537 break; /* Better luck next round. */
1538 skb->dev = dev; /* Mark as being used by this device. */
1539 rp->rx_skbuff_dma[entry] =
1540 pci_map_single(rp->pdev, skb->data,
1541 rp->rx_buf_sz,
1542 PCI_DMA_FROMDEVICE);
1543 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1545 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1548 return count;
1552 * Clears the "tally counters" for CRC errors and missed frames(?).
1553 * It has been reported that some chips need a write of 0 to clear
1554 * these, for others the counters are set to 1 when written to and
1555 * instead cleared when read. So we clear them both ways ...
1557 static inline void clear_tally_counters(void __iomem *ioaddr)
1559 iowrite32(0, ioaddr + RxMissed);
1560 ioread16(ioaddr + RxCRCErrs);
1561 ioread16(ioaddr + RxMissed);
1564 static void rhine_restart_tx(struct net_device *dev) {
1565 struct rhine_private *rp = netdev_priv(dev);
1566 void __iomem *ioaddr = rp->base;
1567 int entry = rp->dirty_tx % TX_RING_SIZE;
1568 u32 intr_status;
1571 * If new errors occured, we need to sort them out before doing Tx.
1572 * In that case the ISR will be back here RSN anyway.
1574 intr_status = get_intr_status(dev);
1576 if ((intr_status & IntrTxErrSummary) == 0) {
1578 /* We know better than the chip where it should continue. */
1579 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1580 ioaddr + TxRingPtr);
1582 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1583 ioaddr + ChipCmd);
1584 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1585 ioaddr + ChipCmd1);
1586 IOSYNC;
1588 else {
1589 /* This should never happen */
1590 if (debug > 1)
1591 printk(KERN_WARNING "%s: rhine_restart_tx() "
1592 "Another error occured %8.8x.\n",
1593 dev->name, intr_status);
1598 static void rhine_error(struct net_device *dev, int intr_status)
1600 struct rhine_private *rp = netdev_priv(dev);
1601 void __iomem *ioaddr = rp->base;
1603 spin_lock(&rp->lock);
1605 if (intr_status & IntrLinkChange)
1606 rhine_check_media(dev, 0);
1607 if (intr_status & IntrStatsMax) {
1608 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1609 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1610 clear_tally_counters(ioaddr);
1612 if (intr_status & IntrTxAborted) {
1613 if (debug > 1)
1614 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1615 dev->name, intr_status);
1617 if (intr_status & IntrTxUnderrun) {
1618 if (rp->tx_thresh < 0xE0)
1619 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1620 if (debug > 1)
1621 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1622 "threshold now %2.2x.\n",
1623 dev->name, rp->tx_thresh);
1625 if (intr_status & IntrTxDescRace) {
1626 if (debug > 2)
1627 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1628 dev->name);
1630 if ((intr_status & IntrTxError) &&
1631 (intr_status & (IntrTxAborted |
1632 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1633 if (rp->tx_thresh < 0xE0) {
1634 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1636 if (debug > 1)
1637 printk(KERN_INFO "%s: Unspecified error. Tx "
1638 "threshold now %2.2x.\n",
1639 dev->name, rp->tx_thresh);
1641 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1642 IntrTxError))
1643 rhine_restart_tx(dev);
1645 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1646 IntrTxError | IntrTxAborted | IntrNormalSummary |
1647 IntrTxDescRace)) {
1648 if (debug > 1)
1649 printk(KERN_ERR "%s: Something Wicked happened! "
1650 "%8.8x.\n", dev->name, intr_status);
1653 spin_unlock(&rp->lock);
1656 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1658 struct rhine_private *rp = netdev_priv(dev);
1659 void __iomem *ioaddr = rp->base;
1660 unsigned long flags;
1662 spin_lock_irqsave(&rp->lock, flags);
1663 dev->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1664 dev->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1665 clear_tally_counters(ioaddr);
1666 spin_unlock_irqrestore(&rp->lock, flags);
1668 return &dev->stats;
1671 static void rhine_set_rx_mode(struct net_device *dev)
1673 struct rhine_private *rp = netdev_priv(dev);
1674 void __iomem *ioaddr = rp->base;
1675 u32 mc_filter[2]; /* Multicast hash filter */
1676 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1678 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1679 rx_mode = 0x1C;
1680 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1681 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1682 } else if ((dev->mc_count > multicast_filter_limit)
1683 || (dev->flags & IFF_ALLMULTI)) {
1684 /* Too many to match, or accept all multicasts. */
1685 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1686 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1687 rx_mode = 0x0C;
1688 } else {
1689 struct dev_mc_list *mclist;
1690 int i;
1691 memset(mc_filter, 0, sizeof(mc_filter));
1692 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1693 i++, mclist = mclist->next) {
1694 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1696 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1698 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1699 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1700 rx_mode = 0x0C;
1702 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1705 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1707 struct rhine_private *rp = netdev_priv(dev);
1709 strcpy(info->driver, DRV_NAME);
1710 strcpy(info->version, DRV_VERSION);
1711 strcpy(info->bus_info, pci_name(rp->pdev));
1714 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1716 struct rhine_private *rp = netdev_priv(dev);
1717 int rc;
1719 spin_lock_irq(&rp->lock);
1720 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1721 spin_unlock_irq(&rp->lock);
1723 return rc;
1726 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1728 struct rhine_private *rp = netdev_priv(dev);
1729 int rc;
1731 spin_lock_irq(&rp->lock);
1732 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1733 spin_unlock_irq(&rp->lock);
1734 rhine_set_carrier(&rp->mii_if);
1736 return rc;
1739 static int netdev_nway_reset(struct net_device *dev)
1741 struct rhine_private *rp = netdev_priv(dev);
1743 return mii_nway_restart(&rp->mii_if);
1746 static u32 netdev_get_link(struct net_device *dev)
1748 struct rhine_private *rp = netdev_priv(dev);
1750 return mii_link_ok(&rp->mii_if);
1753 static u32 netdev_get_msglevel(struct net_device *dev)
1755 return debug;
1758 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1760 debug = value;
1763 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1765 struct rhine_private *rp = netdev_priv(dev);
1767 if (!(rp->quirks & rqWOL))
1768 return;
1770 spin_lock_irq(&rp->lock);
1771 wol->supported = WAKE_PHY | WAKE_MAGIC |
1772 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1773 wol->wolopts = rp->wolopts;
1774 spin_unlock_irq(&rp->lock);
1777 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1779 struct rhine_private *rp = netdev_priv(dev);
1780 u32 support = WAKE_PHY | WAKE_MAGIC |
1781 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1783 if (!(rp->quirks & rqWOL))
1784 return -EINVAL;
1786 if (wol->wolopts & ~support)
1787 return -EINVAL;
1789 spin_lock_irq(&rp->lock);
1790 rp->wolopts = wol->wolopts;
1791 spin_unlock_irq(&rp->lock);
1793 return 0;
1796 static const struct ethtool_ops netdev_ethtool_ops = {
1797 .get_drvinfo = netdev_get_drvinfo,
1798 .get_settings = netdev_get_settings,
1799 .set_settings = netdev_set_settings,
1800 .nway_reset = netdev_nway_reset,
1801 .get_link = netdev_get_link,
1802 .get_msglevel = netdev_get_msglevel,
1803 .set_msglevel = netdev_set_msglevel,
1804 .get_wol = rhine_get_wol,
1805 .set_wol = rhine_set_wol,
1808 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1810 struct rhine_private *rp = netdev_priv(dev);
1811 int rc;
1813 if (!netif_running(dev))
1814 return -EINVAL;
1816 spin_lock_irq(&rp->lock);
1817 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1818 spin_unlock_irq(&rp->lock);
1819 rhine_set_carrier(&rp->mii_if);
1821 return rc;
1824 static int rhine_close(struct net_device *dev)
1826 struct rhine_private *rp = netdev_priv(dev);
1827 void __iomem *ioaddr = rp->base;
1829 spin_lock_irq(&rp->lock);
1831 netif_stop_queue(dev);
1832 napi_disable(&rp->napi);
1834 if (debug > 1)
1835 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1836 "status was %4.4x.\n",
1837 dev->name, ioread16(ioaddr + ChipCmd));
1839 /* Switch to loopback mode to avoid hardware races. */
1840 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1842 /* Disable interrupts by clearing the interrupt mask. */
1843 iowrite16(0x0000, ioaddr + IntrEnable);
1845 /* Stop the chip's Tx and Rx processes. */
1846 iowrite16(CmdStop, ioaddr + ChipCmd);
1848 spin_unlock_irq(&rp->lock);
1850 free_irq(rp->pdev->irq, dev);
1851 free_rbufs(dev);
1852 free_tbufs(dev);
1853 free_ring(dev);
1855 return 0;
1859 static void __devexit rhine_remove_one(struct pci_dev *pdev)
1861 struct net_device *dev = pci_get_drvdata(pdev);
1862 struct rhine_private *rp = netdev_priv(dev);
1864 unregister_netdev(dev);
1866 pci_iounmap(pdev, rp->base);
1867 pci_release_regions(pdev);
1869 free_netdev(dev);
1870 pci_disable_device(pdev);
1871 pci_set_drvdata(pdev, NULL);
1874 static void rhine_shutdown (struct pci_dev *pdev)
1876 struct net_device *dev = pci_get_drvdata(pdev);
1877 struct rhine_private *rp = netdev_priv(dev);
1878 void __iomem *ioaddr = rp->base;
1880 if (!(rp->quirks & rqWOL))
1881 return; /* Nothing to do for non-WOL adapters */
1883 rhine_power_init(dev);
1885 /* Make sure we use pattern 0, 1 and not 4, 5 */
1886 if (rp->quirks & rq6patterns)
1887 iowrite8(0x04, ioaddr + WOLcgClr);
1889 if (rp->wolopts & WAKE_MAGIC) {
1890 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1892 * Turn EEPROM-controlled wake-up back on -- some hardware may
1893 * not cooperate otherwise.
1895 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1898 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1899 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1901 if (rp->wolopts & WAKE_PHY)
1902 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1904 if (rp->wolopts & WAKE_UCAST)
1905 iowrite8(WOLucast, ioaddr + WOLcrSet);
1907 if (rp->wolopts) {
1908 /* Enable legacy WOL (for old motherboards) */
1909 iowrite8(0x01, ioaddr + PwcfgSet);
1910 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1913 /* Hit power state D3 (sleep) */
1914 if (!avoid_D3)
1915 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1917 /* TODO: Check use of pci_enable_wake() */
1921 #ifdef CONFIG_PM
1922 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1924 struct net_device *dev = pci_get_drvdata(pdev);
1925 struct rhine_private *rp = netdev_priv(dev);
1926 unsigned long flags;
1928 if (!netif_running(dev))
1929 return 0;
1931 napi_disable(&rp->napi);
1933 netif_device_detach(dev);
1934 pci_save_state(pdev);
1936 spin_lock_irqsave(&rp->lock, flags);
1937 rhine_shutdown(pdev);
1938 spin_unlock_irqrestore(&rp->lock, flags);
1940 free_irq(dev->irq, dev);
1941 return 0;
1944 static int rhine_resume(struct pci_dev *pdev)
1946 struct net_device *dev = pci_get_drvdata(pdev);
1947 struct rhine_private *rp = netdev_priv(dev);
1948 unsigned long flags;
1949 int ret;
1951 if (!netif_running(dev))
1952 return 0;
1954 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1955 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1957 ret = pci_set_power_state(pdev, PCI_D0);
1958 if (debug > 1)
1959 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1960 dev->name, ret ? "failed" : "succeeded", ret);
1962 pci_restore_state(pdev);
1964 spin_lock_irqsave(&rp->lock, flags);
1965 #ifdef USE_MMIO
1966 enable_mmio(rp->pioaddr, rp->quirks);
1967 #endif
1968 rhine_power_init(dev);
1969 free_tbufs(dev);
1970 free_rbufs(dev);
1971 alloc_tbufs(dev);
1972 alloc_rbufs(dev);
1973 init_registers(dev);
1974 spin_unlock_irqrestore(&rp->lock, flags);
1976 netif_device_attach(dev);
1978 return 0;
1980 #endif /* CONFIG_PM */
1982 static struct pci_driver rhine_driver = {
1983 .name = DRV_NAME,
1984 .id_table = rhine_pci_tbl,
1985 .probe = rhine_init_one,
1986 .remove = __devexit_p(rhine_remove_one),
1987 #ifdef CONFIG_PM
1988 .suspend = rhine_suspend,
1989 .resume = rhine_resume,
1990 #endif /* CONFIG_PM */
1991 .shutdown = rhine_shutdown,
1994 static struct dmi_system_id __initdata rhine_dmi_table[] = {
1996 .ident = "EPIA-M",
1997 .matches = {
1998 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
1999 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2003 .ident = "KV7",
2004 .matches = {
2005 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
2006 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2009 { NULL }
2012 static int __init rhine_init(void)
2014 /* when a module, this is printed whether or not devices are found in probe */
2015 #ifdef MODULE
2016 printk(version);
2017 #endif
2018 if (dmi_check_system(rhine_dmi_table)) {
2019 /* these BIOSes fail at PXE boot if chip is in D3 */
2020 avoid_D3 = 1;
2021 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2022 "enabled.\n",
2023 DRV_NAME);
2025 else if (avoid_D3)
2026 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2028 return pci_register_driver(&rhine_driver);
2032 static void __exit rhine_cleanup(void)
2034 pci_unregister_driver(&rhine_driver);
2038 module_init(rhine_init);
2039 module_exit(rhine_cleanup);