x86, delay: tsc based udelay should have rdtsc_barrier
[linux-2.6/mini2440.git] / drivers / misc / sgi-gru / grukservices.c
blobeedbf9c32760f68b76a34726a8358244e1834389
1 /*
2 * SN Platform GRU Driver
4 * KERNEL SERVICES THAT USE THE GRU
6 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/smp_lock.h>
28 #include <linux/spinlock.h>
29 #include <linux/device.h>
30 #include <linux/miscdevice.h>
31 #include <linux/proc_fs.h>
32 #include <linux/interrupt.h>
33 #include <linux/uaccess.h>
34 #include <linux/delay.h>
35 #include "gru.h"
36 #include "grulib.h"
37 #include "grutables.h"
38 #include "grukservices.h"
39 #include "gru_instructions.h"
40 #include <asm/uv/uv_hub.h>
43 * Kernel GRU Usage
45 * The following is an interim algorithm for management of kernel GRU
46 * resources. This will likely be replaced when we better understand the
47 * kernel/user requirements.
49 * Blade percpu resources reserved for kernel use. These resources are
50 * reserved whenever the the kernel context for the blade is loaded. Note
51 * that the kernel context is not guaranteed to be always available. It is
52 * loaded on demand & can be stolen by a user if the user demand exceeds the
53 * kernel demand. The kernel can always reload the kernel context but
54 * a SLEEP may be required!!!.
56 * Async Overview:
58 * Each blade has one "kernel context" that owns GRU kernel resources
59 * located on the blade. Kernel drivers use GRU resources in this context
60 * for sending messages, zeroing memory, etc.
62 * The kernel context is dynamically loaded on demand. If it is not in
63 * use by the kernel, the kernel context can be unloaded & given to a user.
64 * The kernel context will be reloaded when needed. This may require that
65 * a context be stolen from a user.
66 * NOTE: frequent unloading/reloading of the kernel context is
67 * expensive. We are depending on batch schedulers, cpusets, sane
68 * drivers or some other mechanism to prevent the need for frequent
69 * stealing/reloading.
71 * The kernel context consists of two parts:
72 * - 1 CB & a few DSRs that are reserved for each cpu on the blade.
73 * Each cpu has it's own private resources & does not share them
74 * with other cpus. These resources are used serially, ie,
75 * locked, used & unlocked on each call to a function in
76 * grukservices.
77 * (Now that we have dynamic loading of kernel contexts, I
78 * may rethink this & allow sharing between cpus....)
80 * - Additional resources can be reserved long term & used directly
81 * by UV drivers located in the kernel. Drivers using these GRU
82 * resources can use asynchronous GRU instructions that send
83 * interrupts on completion.
84 * - these resources must be explicitly locked/unlocked
85 * - locked resources prevent (obviously) the kernel
86 * context from being unloaded.
87 * - drivers using these resource directly issue their own
88 * GRU instruction and must wait/check completion.
90 * When these resources are reserved, the caller can optionally
91 * associate a wait_queue with the resources and use asynchronous
92 * GRU instructions. When an async GRU instruction completes, the
93 * driver will do a wakeup on the event.
98 #define ASYNC_HAN_TO_BID(h) ((h) - 1)
99 #define ASYNC_BID_TO_HAN(b) ((b) + 1)
100 #define ASYNC_HAN_TO_BS(h) gru_base[ASYNC_HAN_TO_BID(h)]
101 #define KCB_TO_GID(cb) ((cb - gru_start_vaddr) / \
102 (GRU_SIZE * GRU_CHIPLETS_PER_BLADE))
103 #define KCB_TO_BS(cb) gru_base[KCB_TO_GID(cb)]
105 #define GRU_NUM_KERNEL_CBR 1
106 #define GRU_NUM_KERNEL_DSR_BYTES 256
107 #define GRU_NUM_KERNEL_DSR_CL (GRU_NUM_KERNEL_DSR_BYTES / \
108 GRU_CACHE_LINE_BYTES)
110 /* GRU instruction attributes for all instructions */
111 #define IMA IMA_CB_DELAY
113 /* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */
114 #define __gru_cacheline_aligned__ \
115 __attribute__((__aligned__(GRU_CACHE_LINE_BYTES)))
117 #define MAGIC 0x1234567887654321UL
119 /* Default retry count for GRU errors on kernel instructions */
120 #define EXCEPTION_RETRY_LIMIT 3
122 /* Status of message queue sections */
123 #define MQS_EMPTY 0
124 #define MQS_FULL 1
125 #define MQS_NOOP 2
127 /*----------------- RESOURCE MANAGEMENT -------------------------------------*/
128 /* optimized for x86_64 */
129 struct message_queue {
130 union gru_mesqhead head __gru_cacheline_aligned__; /* CL 0 */
131 int qlines; /* DW 1 */
132 long hstatus[2];
133 void *next __gru_cacheline_aligned__;/* CL 1 */
134 void *limit;
135 void *start;
136 void *start2;
137 char data ____cacheline_aligned; /* CL 2 */
140 /* First word in every message - used by mesq interface */
141 struct message_header {
142 char present;
143 char present2;
144 char lines;
145 char fill;
148 #define HSTATUS(mq, h) ((mq) + offsetof(struct message_queue, hstatus[h]))
151 * Reload the blade's kernel context into a GRU chiplet. Called holding
152 * the bs_kgts_sema for READ. Will steal user contexts if necessary.
154 static void gru_load_kernel_context(struct gru_blade_state *bs, int blade_id)
156 struct gru_state *gru;
157 struct gru_thread_state *kgts;
158 void *vaddr;
159 int ctxnum, ncpus;
161 up_read(&bs->bs_kgts_sema);
162 down_write(&bs->bs_kgts_sema);
164 if (!bs->bs_kgts)
165 bs->bs_kgts = gru_alloc_gts(NULL, 0, 0, 0, 0);
166 kgts = bs->bs_kgts;
168 if (!kgts->ts_gru) {
169 STAT(load_kernel_context);
170 ncpus = uv_blade_nr_possible_cpus(blade_id);
171 kgts->ts_cbr_au_count = GRU_CB_COUNT_TO_AU(
172 GRU_NUM_KERNEL_CBR * ncpus + bs->bs_async_cbrs);
173 kgts->ts_dsr_au_count = GRU_DS_BYTES_TO_AU(
174 GRU_NUM_KERNEL_DSR_BYTES * ncpus +
175 bs->bs_async_dsr_bytes);
176 while (!gru_assign_gru_context(kgts, blade_id)) {
177 msleep(1);
178 gru_steal_context(kgts, blade_id);
180 gru_load_context(kgts);
181 gru = bs->bs_kgts->ts_gru;
182 vaddr = gru->gs_gru_base_vaddr;
183 ctxnum = kgts->ts_ctxnum;
184 bs->kernel_cb = get_gseg_base_address_cb(vaddr, ctxnum, 0);
185 bs->kernel_dsr = get_gseg_base_address_ds(vaddr, ctxnum, 0);
187 downgrade_write(&bs->bs_kgts_sema);
191 * Free all kernel contexts that are not currently in use.
192 * Returns 0 if all freed, else number of inuse context.
194 static int gru_free_kernel_contexts(void)
196 struct gru_blade_state *bs;
197 struct gru_thread_state *kgts;
198 int bid, ret = 0;
200 for (bid = 0; bid < GRU_MAX_BLADES; bid++) {
201 bs = gru_base[bid];
202 if (!bs)
203 continue;
204 if (down_write_trylock(&bs->bs_kgts_sema)) {
205 kgts = bs->bs_kgts;
206 if (kgts && kgts->ts_gru)
207 gru_unload_context(kgts, 0);
208 kfree(kgts);
209 bs->bs_kgts = NULL;
210 up_write(&bs->bs_kgts_sema);
211 } else {
212 ret++;
215 return ret;
219 * Lock & load the kernel context for the specified blade.
221 static struct gru_blade_state *gru_lock_kernel_context(int blade_id)
223 struct gru_blade_state *bs;
225 STAT(lock_kernel_context);
226 bs = gru_base[blade_id];
228 down_read(&bs->bs_kgts_sema);
229 if (!bs->bs_kgts || !bs->bs_kgts->ts_gru)
230 gru_load_kernel_context(bs, blade_id);
231 return bs;
236 * Unlock the kernel context for the specified blade. Context is not
237 * unloaded but may be stolen before next use.
239 static void gru_unlock_kernel_context(int blade_id)
241 struct gru_blade_state *bs;
243 bs = gru_base[blade_id];
244 up_read(&bs->bs_kgts_sema);
245 STAT(unlock_kernel_context);
249 * Reserve & get pointers to the DSR/CBRs reserved for the current cpu.
250 * - returns with preemption disabled
252 static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr)
254 struct gru_blade_state *bs;
255 int lcpu;
257 BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES);
258 preempt_disable();
259 bs = gru_lock_kernel_context(uv_numa_blade_id());
260 lcpu = uv_blade_processor_id();
261 *cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE;
262 *dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES;
263 return 0;
267 * Free the current cpus reserved DSR/CBR resources.
269 static void gru_free_cpu_resources(void *cb, void *dsr)
271 gru_unlock_kernel_context(uv_numa_blade_id());
272 preempt_enable();
276 * Reserve GRU resources to be used asynchronously.
277 * Note: currently supports only 1 reservation per blade.
279 * input:
280 * blade_id - blade on which resources should be reserved
281 * cbrs - number of CBRs
282 * dsr_bytes - number of DSR bytes needed
283 * output:
284 * handle to identify resource
285 * (0 = async resources already reserved)
287 unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes,
288 struct completion *cmp)
290 struct gru_blade_state *bs;
291 struct gru_thread_state *kgts;
292 int ret = 0;
294 bs = gru_base[blade_id];
296 down_write(&bs->bs_kgts_sema);
298 /* Verify no resources already reserved */
299 if (bs->bs_async_dsr_bytes + bs->bs_async_cbrs)
300 goto done;
301 bs->bs_async_dsr_bytes = dsr_bytes;
302 bs->bs_async_cbrs = cbrs;
303 bs->bs_async_wq = cmp;
304 kgts = bs->bs_kgts;
306 /* Resources changed. Unload context if already loaded */
307 if (kgts && kgts->ts_gru)
308 gru_unload_context(kgts, 0);
309 ret = ASYNC_BID_TO_HAN(blade_id);
311 done:
312 up_write(&bs->bs_kgts_sema);
313 return ret;
317 * Release async resources previously reserved.
319 * input:
320 * han - handle to identify resources
322 void gru_release_async_resources(unsigned long han)
324 struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
326 down_write(&bs->bs_kgts_sema);
327 bs->bs_async_dsr_bytes = 0;
328 bs->bs_async_cbrs = 0;
329 bs->bs_async_wq = NULL;
330 up_write(&bs->bs_kgts_sema);
334 * Wait for async GRU instructions to complete.
336 * input:
337 * han - handle to identify resources
339 void gru_wait_async_cbr(unsigned long han)
341 struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
343 wait_for_completion(bs->bs_async_wq);
344 mb();
348 * Lock previous reserved async GRU resources
350 * input:
351 * han - handle to identify resources
352 * output:
353 * cb - pointer to first CBR
354 * dsr - pointer to first DSR
356 void gru_lock_async_resource(unsigned long han, void **cb, void **dsr)
358 struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
359 int blade_id = ASYNC_HAN_TO_BID(han);
360 int ncpus;
362 gru_lock_kernel_context(blade_id);
363 ncpus = uv_blade_nr_possible_cpus(blade_id);
364 if (cb)
365 *cb = bs->kernel_cb + ncpus * GRU_HANDLE_STRIDE;
366 if (dsr)
367 *dsr = bs->kernel_dsr + ncpus * GRU_NUM_KERNEL_DSR_BYTES;
371 * Unlock previous reserved async GRU resources
373 * input:
374 * han - handle to identify resources
376 void gru_unlock_async_resource(unsigned long han)
378 int blade_id = ASYNC_HAN_TO_BID(han);
380 gru_unlock_kernel_context(blade_id);
383 /*----------------------------------------------------------------------*/
384 int gru_get_cb_exception_detail(void *cb,
385 struct control_block_extended_exc_detail *excdet)
387 struct gru_control_block_extended *cbe;
388 struct gru_blade_state *bs;
389 int cbrnum;
391 bs = KCB_TO_BS(cb);
392 cbrnum = thread_cbr_number(bs->bs_kgts, get_cb_number(cb));
393 cbe = get_cbe(GRUBASE(cb), cbrnum);
394 gru_flush_cache(cbe); /* CBE not coherent */
395 excdet->opc = cbe->opccpy;
396 excdet->exopc = cbe->exopccpy;
397 excdet->ecause = cbe->ecause;
398 excdet->exceptdet0 = cbe->idef1upd;
399 excdet->exceptdet1 = cbe->idef3upd;
400 gru_flush_cache(cbe);
401 return 0;
404 char *gru_get_cb_exception_detail_str(int ret, void *cb,
405 char *buf, int size)
407 struct gru_control_block_status *gen = (void *)cb;
408 struct control_block_extended_exc_detail excdet;
410 if (ret > 0 && gen->istatus == CBS_EXCEPTION) {
411 gru_get_cb_exception_detail(cb, &excdet);
412 snprintf(buf, size,
413 "GRU exception: cb %p, opc %d, exopc %d, ecause 0x%x,"
414 "excdet0 0x%lx, excdet1 0x%x",
415 gen, excdet.opc, excdet.exopc, excdet.ecause,
416 excdet.exceptdet0, excdet.exceptdet1);
417 } else {
418 snprintf(buf, size, "No exception");
420 return buf;
423 static int gru_wait_idle_or_exception(struct gru_control_block_status *gen)
425 while (gen->istatus >= CBS_ACTIVE) {
426 cpu_relax();
427 barrier();
429 return gen->istatus;
432 static int gru_retry_exception(void *cb)
434 struct gru_control_block_status *gen = (void *)cb;
435 struct control_block_extended_exc_detail excdet;
436 int retry = EXCEPTION_RETRY_LIMIT;
438 while (1) {
439 if (gru_wait_idle_or_exception(gen) == CBS_IDLE)
440 return CBS_IDLE;
441 if (gru_get_cb_message_queue_substatus(cb))
442 return CBS_EXCEPTION;
443 gru_get_cb_exception_detail(cb, &excdet);
444 if ((excdet.ecause & ~EXCEPTION_RETRY_BITS) ||
445 (excdet.cbrexecstatus & CBR_EXS_ABORT_OCC))
446 break;
447 if (retry-- == 0)
448 break;
449 gen->icmd = 1;
450 gru_flush_cache(gen);
452 return CBS_EXCEPTION;
455 int gru_check_status_proc(void *cb)
457 struct gru_control_block_status *gen = (void *)cb;
458 int ret;
460 ret = gen->istatus;
461 if (ret != CBS_EXCEPTION)
462 return ret;
463 return gru_retry_exception(cb);
467 int gru_wait_proc(void *cb)
469 struct gru_control_block_status *gen = (void *)cb;
470 int ret;
472 ret = gru_wait_idle_or_exception(gen);
473 if (ret == CBS_EXCEPTION)
474 ret = gru_retry_exception(cb);
476 return ret;
479 void gru_abort(int ret, void *cb, char *str)
481 char buf[GRU_EXC_STR_SIZE];
483 panic("GRU FATAL ERROR: %s - %s\n", str,
484 gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf)));
487 void gru_wait_abort_proc(void *cb)
489 int ret;
491 ret = gru_wait_proc(cb);
492 if (ret)
493 gru_abort(ret, cb, "gru_wait_abort");
497 /*------------------------------ MESSAGE QUEUES -----------------------------*/
499 /* Internal status . These are NOT returned to the user. */
500 #define MQIE_AGAIN -1 /* try again */
504 * Save/restore the "present" flag that is in the second line of 2-line
505 * messages
507 static inline int get_present2(void *p)
509 struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
510 return mhdr->present;
513 static inline void restore_present2(void *p, int val)
515 struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
516 mhdr->present = val;
520 * Create a message queue.
521 * qlines - message queue size in cache lines. Includes 2-line header.
523 int gru_create_message_queue(struct gru_message_queue_desc *mqd,
524 void *p, unsigned int bytes, int nasid, int vector, int apicid)
526 struct message_queue *mq = p;
527 unsigned int qlines;
529 qlines = bytes / GRU_CACHE_LINE_BYTES - 2;
530 memset(mq, 0, bytes);
531 mq->start = &mq->data;
532 mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES;
533 mq->next = &mq->data;
534 mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES;
535 mq->qlines = qlines;
536 mq->hstatus[0] = 0;
537 mq->hstatus[1] = 1;
538 mq->head = gru_mesq_head(2, qlines / 2 + 1);
539 mqd->mq = mq;
540 mqd->mq_gpa = uv_gpa(mq);
541 mqd->qlines = qlines;
542 mqd->interrupt_pnode = UV_NASID_TO_PNODE(nasid);
543 mqd->interrupt_vector = vector;
544 mqd->interrupt_apicid = apicid;
545 return 0;
547 EXPORT_SYMBOL_GPL(gru_create_message_queue);
550 * Send a NOOP message to a message queue
551 * Returns:
552 * 0 - if queue is full after the send. This is the normal case
553 * but various races can change this.
554 * -1 - if mesq sent successfully but queue not full
555 * >0 - unexpected error. MQE_xxx returned
557 static int send_noop_message(void *cb, struct gru_message_queue_desc *mqd,
558 void *mesg)
560 const struct message_header noop_header = {
561 .present = MQS_NOOP, .lines = 1};
562 unsigned long m;
563 int substatus, ret;
564 struct message_header save_mhdr, *mhdr = mesg;
566 STAT(mesq_noop);
567 save_mhdr = *mhdr;
568 *mhdr = noop_header;
569 gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), 1, IMA);
570 ret = gru_wait(cb);
572 if (ret) {
573 substatus = gru_get_cb_message_queue_substatus(cb);
574 switch (substatus) {
575 case CBSS_NO_ERROR:
576 STAT(mesq_noop_unexpected_error);
577 ret = MQE_UNEXPECTED_CB_ERR;
578 break;
579 case CBSS_LB_OVERFLOWED:
580 STAT(mesq_noop_lb_overflow);
581 ret = MQE_CONGESTION;
582 break;
583 case CBSS_QLIMIT_REACHED:
584 STAT(mesq_noop_qlimit_reached);
585 ret = 0;
586 break;
587 case CBSS_AMO_NACKED:
588 STAT(mesq_noop_amo_nacked);
589 ret = MQE_CONGESTION;
590 break;
591 case CBSS_PUT_NACKED:
592 STAT(mesq_noop_put_nacked);
593 m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
594 gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1,
595 IMA);
596 if (gru_wait(cb) == CBS_IDLE)
597 ret = MQIE_AGAIN;
598 else
599 ret = MQE_UNEXPECTED_CB_ERR;
600 break;
601 case CBSS_PAGE_OVERFLOW:
602 default:
603 BUG();
606 *mhdr = save_mhdr;
607 return ret;
611 * Handle a gru_mesq full.
613 static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd,
614 void *mesg, int lines)
616 union gru_mesqhead mqh;
617 unsigned int limit, head;
618 unsigned long avalue;
619 int half, qlines;
621 /* Determine if switching to first/second half of q */
622 avalue = gru_get_amo_value(cb);
623 head = gru_get_amo_value_head(cb);
624 limit = gru_get_amo_value_limit(cb);
626 qlines = mqd->qlines;
627 half = (limit != qlines);
629 if (half)
630 mqh = gru_mesq_head(qlines / 2 + 1, qlines);
631 else
632 mqh = gru_mesq_head(2, qlines / 2 + 1);
634 /* Try to get lock for switching head pointer */
635 gru_gamir(cb, EOP_IR_CLR, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA);
636 if (gru_wait(cb) != CBS_IDLE)
637 goto cberr;
638 if (!gru_get_amo_value(cb)) {
639 STAT(mesq_qf_locked);
640 return MQE_QUEUE_FULL;
643 /* Got the lock. Send optional NOP if queue not full, */
644 if (head != limit) {
645 if (send_noop_message(cb, mqd, mesg)) {
646 gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half),
647 XTYPE_DW, IMA);
648 if (gru_wait(cb) != CBS_IDLE)
649 goto cberr;
650 STAT(mesq_qf_noop_not_full);
651 return MQIE_AGAIN;
653 avalue++;
656 /* Then flip queuehead to other half of queue. */
657 gru_gamer(cb, EOP_ERR_CSWAP, mqd->mq_gpa, XTYPE_DW, mqh.val, avalue,
658 IMA);
659 if (gru_wait(cb) != CBS_IDLE)
660 goto cberr;
662 /* If not successfully in swapping queue head, clear the hstatus lock */
663 if (gru_get_amo_value(cb) != avalue) {
664 STAT(mesq_qf_switch_head_failed);
665 gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW,
666 IMA);
667 if (gru_wait(cb) != CBS_IDLE)
668 goto cberr;
670 return MQIE_AGAIN;
671 cberr:
672 STAT(mesq_qf_unexpected_error);
673 return MQE_UNEXPECTED_CB_ERR;
677 * Send a cross-partition interrupt to the SSI that contains the target
678 * message queue. Normally, the interrupt is automatically delivered by hardware
679 * but some error conditions require explicit delivery.
681 static void send_message_queue_interrupt(struct gru_message_queue_desc *mqd)
683 if (mqd->interrupt_vector)
684 uv_hub_send_ipi(mqd->interrupt_pnode, mqd->interrupt_apicid,
685 mqd->interrupt_vector);
689 * Handle a PUT failure. Note: if message was a 2-line message, one of the
690 * lines might have successfully have been written. Before sending the
691 * message, "present" must be cleared in BOTH lines to prevent the receiver
692 * from prematurely seeing the full message.
694 static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd,
695 void *mesg, int lines)
697 unsigned long m;
699 m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
700 if (lines == 2) {
701 gru_vset(cb, m, 0, XTYPE_CL, lines, 1, IMA);
702 if (gru_wait(cb) != CBS_IDLE)
703 return MQE_UNEXPECTED_CB_ERR;
705 gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA);
706 if (gru_wait(cb) != CBS_IDLE)
707 return MQE_UNEXPECTED_CB_ERR;
708 send_message_queue_interrupt(mqd);
709 return MQE_OK;
713 * Handle a gru_mesq failure. Some of these failures are software recoverable
714 * or retryable.
716 static int send_message_failure(void *cb, struct gru_message_queue_desc *mqd,
717 void *mesg, int lines)
719 int substatus, ret = 0;
721 substatus = gru_get_cb_message_queue_substatus(cb);
722 switch (substatus) {
723 case CBSS_NO_ERROR:
724 STAT(mesq_send_unexpected_error);
725 ret = MQE_UNEXPECTED_CB_ERR;
726 break;
727 case CBSS_LB_OVERFLOWED:
728 STAT(mesq_send_lb_overflow);
729 ret = MQE_CONGESTION;
730 break;
731 case CBSS_QLIMIT_REACHED:
732 STAT(mesq_send_qlimit_reached);
733 ret = send_message_queue_full(cb, mqd, mesg, lines);
734 break;
735 case CBSS_AMO_NACKED:
736 STAT(mesq_send_amo_nacked);
737 ret = MQE_CONGESTION;
738 break;
739 case CBSS_PUT_NACKED:
740 STAT(mesq_send_put_nacked);
741 ret = send_message_put_nacked(cb, mqd, mesg, lines);
742 break;
743 default:
744 BUG();
746 return ret;
750 * Send a message to a message queue
751 * mqd message queue descriptor
752 * mesg message. ust be vaddr within a GSEG
753 * bytes message size (<= 2 CL)
755 int gru_send_message_gpa(struct gru_message_queue_desc *mqd, void *mesg,
756 unsigned int bytes)
758 struct message_header *mhdr;
759 void *cb;
760 void *dsr;
761 int istatus, clines, ret;
763 STAT(mesq_send);
764 BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES);
766 clines = DIV_ROUND_UP(bytes, GRU_CACHE_LINE_BYTES);
767 if (gru_get_cpu_resources(bytes, &cb, &dsr))
768 return MQE_BUG_NO_RESOURCES;
769 memcpy(dsr, mesg, bytes);
770 mhdr = dsr;
771 mhdr->present = MQS_FULL;
772 mhdr->lines = clines;
773 if (clines == 2) {
774 mhdr->present2 = get_present2(mhdr);
775 restore_present2(mhdr, MQS_FULL);
778 do {
779 ret = MQE_OK;
780 gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), clines, IMA);
781 istatus = gru_wait(cb);
782 if (istatus != CBS_IDLE)
783 ret = send_message_failure(cb, mqd, dsr, clines);
784 } while (ret == MQIE_AGAIN);
785 gru_free_cpu_resources(cb, dsr);
787 if (ret)
788 STAT(mesq_send_failed);
789 return ret;
791 EXPORT_SYMBOL_GPL(gru_send_message_gpa);
794 * Advance the receive pointer for the queue to the next message.
796 void gru_free_message(struct gru_message_queue_desc *mqd, void *mesg)
798 struct message_queue *mq = mqd->mq;
799 struct message_header *mhdr = mq->next;
800 void *next, *pnext;
801 int half = -1;
802 int lines = mhdr->lines;
804 if (lines == 2)
805 restore_present2(mhdr, MQS_EMPTY);
806 mhdr->present = MQS_EMPTY;
808 pnext = mq->next;
809 next = pnext + GRU_CACHE_LINE_BYTES * lines;
810 if (next == mq->limit) {
811 next = mq->start;
812 half = 1;
813 } else if (pnext < mq->start2 && next >= mq->start2) {
814 half = 0;
817 if (half >= 0)
818 mq->hstatus[half] = 1;
819 mq->next = next;
821 EXPORT_SYMBOL_GPL(gru_free_message);
824 * Get next message from message queue. Return NULL if no message
825 * present. User must call next_message() to move to next message.
826 * rmq message queue
828 void *gru_get_next_message(struct gru_message_queue_desc *mqd)
830 struct message_queue *mq = mqd->mq;
831 struct message_header *mhdr = mq->next;
832 int present = mhdr->present;
834 /* skip NOOP messages */
835 STAT(mesq_receive);
836 while (present == MQS_NOOP) {
837 gru_free_message(mqd, mhdr);
838 mhdr = mq->next;
839 present = mhdr->present;
842 /* Wait for both halves of 2 line messages */
843 if (present == MQS_FULL && mhdr->lines == 2 &&
844 get_present2(mhdr) == MQS_EMPTY)
845 present = MQS_EMPTY;
847 if (!present) {
848 STAT(mesq_receive_none);
849 return NULL;
852 if (mhdr->lines == 2)
853 restore_present2(mhdr, mhdr->present2);
855 return mhdr;
857 EXPORT_SYMBOL_GPL(gru_get_next_message);
859 /* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/
862 * Copy a block of data using the GRU resources
864 int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa,
865 unsigned int bytes)
867 void *cb;
868 void *dsr;
869 int ret;
871 STAT(copy_gpa);
872 if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
873 return MQE_BUG_NO_RESOURCES;
874 gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr),
875 XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_CL, IMA);
876 ret = gru_wait(cb);
877 gru_free_cpu_resources(cb, dsr);
878 return ret;
880 EXPORT_SYMBOL_GPL(gru_copy_gpa);
882 /* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/
883 /* Temp - will delete after we gain confidence in the GRU */
885 static int quicktest0(unsigned long arg)
887 unsigned long word0;
888 unsigned long word1;
889 void *cb;
890 void *dsr;
891 unsigned long *p;
892 int ret = -EIO;
894 if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES, &cb, &dsr))
895 return MQE_BUG_NO_RESOURCES;
896 p = dsr;
897 word0 = MAGIC;
898 word1 = 0;
900 gru_vload(cb, uv_gpa(&word0), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
901 if (gru_wait(cb) != CBS_IDLE) {
902 printk(KERN_DEBUG "GRU quicktest0: CBR failure 1\n");
903 goto done;
906 if (*p != MAGIC) {
907 printk(KERN_DEBUG "GRU: quicktest0 bad magic 0x%lx\n", *p);
908 goto done;
910 gru_vstore(cb, uv_gpa(&word1), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
911 if (gru_wait(cb) != CBS_IDLE) {
912 printk(KERN_DEBUG "GRU quicktest0: CBR failure 2\n");
913 goto done;
916 if (word0 != word1 || word1 != MAGIC) {
917 printk(KERN_DEBUG
918 "GRU quicktest0 err: found 0x%lx, expected 0x%lx\n",
919 word1, MAGIC);
920 goto done;
922 ret = 0;
924 done:
925 gru_free_cpu_resources(cb, dsr);
926 return ret;
929 #define ALIGNUP(p, q) ((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1)))
931 static int quicktest1(unsigned long arg)
933 struct gru_message_queue_desc mqd;
934 void *p, *mq;
935 unsigned long *dw;
936 int i, ret = -EIO;
937 char mes[GRU_CACHE_LINE_BYTES], *m;
939 /* Need 1K cacheline aligned that does not cross page boundary */
940 p = kmalloc(4096, 0);
941 mq = ALIGNUP(p, 1024);
942 memset(mes, 0xee, sizeof(mes));
943 dw = mq;
945 gru_create_message_queue(&mqd, mq, 8 * GRU_CACHE_LINE_BYTES, 0, 0, 0);
946 for (i = 0; i < 6; i++) {
947 mes[8] = i;
948 do {
949 ret = gru_send_message_gpa(&mqd, mes, sizeof(mes));
950 } while (ret == MQE_CONGESTION);
951 if (ret)
952 break;
954 if (ret != MQE_QUEUE_FULL || i != 4)
955 goto done;
957 for (i = 0; i < 6; i++) {
958 m = gru_get_next_message(&mqd);
959 if (!m || m[8] != i)
960 break;
961 gru_free_message(&mqd, m);
963 ret = (i == 4) ? 0 : -EIO;
965 done:
966 kfree(p);
967 return ret;
970 static int quicktest2(unsigned long arg)
972 static DECLARE_COMPLETION(cmp);
973 unsigned long han;
974 int blade_id = 0;
975 int numcb = 4;
976 int ret = 0;
977 unsigned long *buf;
978 void *cb0, *cb;
979 int i, k, istatus, bytes;
981 bytes = numcb * 4 * 8;
982 buf = kmalloc(bytes, GFP_KERNEL);
983 if (!buf)
984 return -ENOMEM;
986 ret = -EBUSY;
987 han = gru_reserve_async_resources(blade_id, numcb, 0, &cmp);
988 if (!han)
989 goto done;
991 gru_lock_async_resource(han, &cb0, NULL);
992 memset(buf, 0xee, bytes);
993 for (i = 0; i < numcb; i++)
994 gru_vset(cb0 + i * GRU_HANDLE_STRIDE, uv_gpa(&buf[i * 4]), 0,
995 XTYPE_DW, 4, 1, IMA_INTERRUPT);
997 ret = 0;
998 for (k = 0; k < numcb; k++) {
999 gru_wait_async_cbr(han);
1000 for (i = 0; i < numcb; i++) {
1001 cb = cb0 + i * GRU_HANDLE_STRIDE;
1002 istatus = gru_check_status(cb);
1003 if (istatus == CBS_ACTIVE)
1004 continue;
1005 if (istatus == CBS_EXCEPTION)
1006 ret = -EFAULT;
1007 else if (buf[i] || buf[i + 1] || buf[i + 2] ||
1008 buf[i + 3])
1009 ret = -EIO;
1012 BUG_ON(cmp.done);
1014 gru_unlock_async_resource(han);
1015 gru_release_async_resources(han);
1016 done:
1017 kfree(buf);
1018 return ret;
1022 * Debugging only. User hook for various kernel tests
1023 * of driver & gru.
1025 int gru_ktest(unsigned long arg)
1027 int ret = -EINVAL;
1029 switch (arg & 0xff) {
1030 case 0:
1031 ret = quicktest0(arg);
1032 break;
1033 case 1:
1034 ret = quicktest1(arg);
1035 break;
1036 case 2:
1037 ret = quicktest2(arg);
1038 break;
1039 case 99:
1040 ret = gru_free_kernel_contexts();
1041 break;
1043 return ret;
1047 int gru_kservices_init(void)
1049 return 0;
1052 void gru_kservices_exit(void)
1054 if (gru_free_kernel_contexts())
1055 BUG();