2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/oom.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 #include <linux/stop_machine.h>
41 #include <linux/sort.h>
42 #include <linux/pfn.h>
43 #include <linux/backing-dev.h>
44 #include <linux/fault-inject.h>
45 #include <linux/page-isolation.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
52 * Array of node states.
54 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
55 [N_POSSIBLE
] = NODE_MASK_ALL
,
56 [N_ONLINE
] = { { [0] = 1UL } },
58 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
60 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
62 [N_CPU
] = { { [0] = 1UL } },
65 EXPORT_SYMBOL(node_states
);
67 unsigned long totalram_pages __read_mostly
;
68 unsigned long totalreserve_pages __read_mostly
;
70 int percpu_pagelist_fraction
;
72 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
73 int pageblock_order __read_mostly
;
76 static void __free_pages_ok(struct page
*page
, unsigned int order
);
79 * results with 256, 32 in the lowmem_reserve sysctl:
80 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
81 * 1G machine -> (16M dma, 784M normal, 224M high)
82 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
83 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
86 * TBD: should special case ZONE_DMA32 machines here - in those we normally
87 * don't need any ZONE_NORMAL reservation
89 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
90 #ifdef CONFIG_ZONE_DMA
93 #ifdef CONFIG_ZONE_DMA32
102 EXPORT_SYMBOL(totalram_pages
);
104 static char * const zone_names
[MAX_NR_ZONES
] = {
105 #ifdef CONFIG_ZONE_DMA
108 #ifdef CONFIG_ZONE_DMA32
112 #ifdef CONFIG_HIGHMEM
118 int min_free_kbytes
= 1024;
120 unsigned long __meminitdata nr_kernel_pages
;
121 unsigned long __meminitdata nr_all_pages
;
122 static unsigned long __meminitdata dma_reserve
;
124 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
126 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
127 * ranges of memory (RAM) that may be registered with add_active_range().
128 * Ranges passed to add_active_range() will be merged if possible
129 * so the number of times add_active_range() can be called is
130 * related to the number of nodes and the number of holes
132 #ifdef CONFIG_MAX_ACTIVE_REGIONS
133 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
134 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
136 #if MAX_NUMNODES >= 32
137 /* If there can be many nodes, allow up to 50 holes per node */
138 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
140 /* By default, allow up to 256 distinct regions */
141 #define MAX_ACTIVE_REGIONS 256
145 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
146 static int __meminitdata nr_nodemap_entries
;
147 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
148 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
149 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
150 static unsigned long __meminitdata node_boundary_start_pfn
[MAX_NUMNODES
];
151 static unsigned long __meminitdata node_boundary_end_pfn
[MAX_NUMNODES
];
152 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
153 unsigned long __initdata required_kernelcore
;
154 static unsigned long __initdata required_movablecore
;
155 unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
159 EXPORT_SYMBOL(movable_zone
);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
164 EXPORT_SYMBOL(nr_node_ids
);
167 int page_group_by_mobility_disabled __read_mostly
;
169 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
171 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
172 PB_migrate
, PB_migrate_end
);
175 #ifdef CONFIG_DEBUG_VM
176 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
180 unsigned long pfn
= page_to_pfn(page
);
183 seq
= zone_span_seqbegin(zone
);
184 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
186 else if (pfn
< zone
->zone_start_pfn
)
188 } while (zone_span_seqretry(zone
, seq
));
193 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
195 if (!pfn_valid_within(page_to_pfn(page
)))
197 if (zone
!= page_zone(page
))
203 * Temporary debugging check for pages not lying within a given zone.
205 static int bad_range(struct zone
*zone
, struct page
*page
)
207 if (page_outside_zone_boundaries(zone
, page
))
209 if (!page_is_consistent(zone
, page
))
215 static inline int bad_range(struct zone
*zone
, struct page
*page
)
221 static void bad_page(struct page
*page
)
223 printk(KERN_EMERG
"Bad page state in process '%s'\n"
224 KERN_EMERG
"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
225 KERN_EMERG
"Trying to fix it up, but a reboot is needed\n"
226 KERN_EMERG
"Backtrace:\n",
227 current
->comm
, page
, (int)(2*sizeof(unsigned long)),
228 (unsigned long)page
->flags
, page
->mapping
,
229 page_mapcount(page
), page_count(page
));
231 page
->flags
&= ~(1 << PG_lru
|
241 set_page_count(page
, 0);
242 reset_page_mapcount(page
);
243 page
->mapping
= NULL
;
244 add_taint(TAINT_BAD_PAGE
);
248 * Higher-order pages are called "compound pages". They are structured thusly:
250 * The first PAGE_SIZE page is called the "head page".
252 * The remaining PAGE_SIZE pages are called "tail pages".
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
262 static void free_compound_page(struct page
*page
)
264 __free_pages_ok(page
, compound_order(page
));
267 static void prep_compound_page(struct page
*page
, unsigned long order
)
270 int nr_pages
= 1 << order
;
272 set_compound_page_dtor(page
, free_compound_page
);
273 set_compound_order(page
, order
);
275 for (i
= 1; i
< nr_pages
; i
++) {
276 struct page
*p
= page
+ i
;
279 p
->first_page
= page
;
283 static void destroy_compound_page(struct page
*page
, unsigned long order
)
286 int nr_pages
= 1 << order
;
288 if (unlikely(compound_order(page
) != order
))
291 if (unlikely(!PageHead(page
)))
293 __ClearPageHead(page
);
294 for (i
= 1; i
< nr_pages
; i
++) {
295 struct page
*p
= page
+ i
;
297 if (unlikely(!PageTail(p
) |
298 (p
->first_page
!= page
)))
304 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
309 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 * and __GFP_HIGHMEM from hard or soft interrupt context.
312 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
313 for (i
= 0; i
< (1 << order
); i
++)
314 clear_highpage(page
+ i
);
317 static inline void set_page_order(struct page
*page
, int order
)
319 set_page_private(page
, order
);
320 __SetPageBuddy(page
);
323 static inline void rmv_page_order(struct page
*page
)
325 __ClearPageBuddy(page
);
326 set_page_private(page
, 0);
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
336 * For example, if the starting buddy (buddy2) is #8 its order
338 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
346 static inline struct page
*
347 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
349 unsigned long buddy_idx
= page_idx
^ (1 << order
);
351 return page
+ (buddy_idx
- page_idx
);
354 static inline unsigned long
355 __find_combined_index(unsigned long page_idx
, unsigned int order
)
357 return (page_idx
& ~(1 << order
));
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
363 * (a) the buddy is not in a hole &&
364 * (b) the buddy is in the buddy system &&
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
371 * For recording page's order, we use page_private(page).
373 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
376 if (!pfn_valid_within(page_to_pfn(buddy
)))
379 if (page_zone_id(page
) != page_zone_id(buddy
))
382 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
383 BUG_ON(page_count(buddy
) != 0);
390 * Freeing function for a buddy system allocator.
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
403 * order is recorded in page_private(page) field.
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other. That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
413 static inline void __free_one_page(struct page
*page
,
414 struct zone
*zone
, unsigned int order
)
416 unsigned long page_idx
;
417 int order_size
= 1 << order
;
418 int migratetype
= get_pageblock_migratetype(page
);
420 if (unlikely(PageCompound(page
)))
421 destroy_compound_page(page
, order
);
423 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
425 VM_BUG_ON(page_idx
& (order_size
- 1));
426 VM_BUG_ON(bad_range(zone
, page
));
428 __mod_zone_page_state(zone
, NR_FREE_PAGES
, order_size
);
429 while (order
< MAX_ORDER
-1) {
430 unsigned long combined_idx
;
433 buddy
= __page_find_buddy(page
, page_idx
, order
);
434 if (!page_is_buddy(page
, buddy
, order
))
435 break; /* Move the buddy up one level. */
437 list_del(&buddy
->lru
);
438 zone
->free_area
[order
].nr_free
--;
439 rmv_page_order(buddy
);
440 combined_idx
= __find_combined_index(page_idx
, order
);
441 page
= page
+ (combined_idx
- page_idx
);
442 page_idx
= combined_idx
;
445 set_page_order(page
, order
);
447 &zone
->free_area
[order
].free_list
[migratetype
]);
448 zone
->free_area
[order
].nr_free
++;
451 static inline int free_pages_check(struct page
*page
)
453 if (unlikely(page_mapcount(page
) |
454 (page
->mapping
!= NULL
) |
455 (page_count(page
) != 0) |
468 __ClearPageDirty(page
);
470 * For now, we report if PG_reserved was found set, but do not
471 * clear it, and do not free the page. But we shall soon need
472 * to do more, for when the ZERO_PAGE count wraps negative.
474 return PageReserved(page
);
478 * Frees a list of pages.
479 * Assumes all pages on list are in same zone, and of same order.
480 * count is the number of pages to free.
482 * If the zone was previously in an "all pages pinned" state then look to
483 * see if this freeing clears that state.
485 * And clear the zone's pages_scanned counter, to hold off the "all pages are
486 * pinned" detection logic.
488 static void free_pages_bulk(struct zone
*zone
, int count
,
489 struct list_head
*list
, int order
)
491 spin_lock(&zone
->lock
);
492 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
493 zone
->pages_scanned
= 0;
497 VM_BUG_ON(list_empty(list
));
498 page
= list_entry(list
->prev
, struct page
, lru
);
499 /* have to delete it as __free_one_page list manipulates */
500 list_del(&page
->lru
);
501 __free_one_page(page
, zone
, order
);
503 spin_unlock(&zone
->lock
);
506 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
)
508 spin_lock(&zone
->lock
);
509 zone_clear_flag(zone
, ZONE_ALL_UNRECLAIMABLE
);
510 zone
->pages_scanned
= 0;
511 __free_one_page(page
, zone
, order
);
512 spin_unlock(&zone
->lock
);
515 static void __free_pages_ok(struct page
*page
, unsigned int order
)
521 for (i
= 0 ; i
< (1 << order
) ; ++i
)
522 reserved
+= free_pages_check(page
+ i
);
526 if (!PageHighMem(page
))
527 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
528 arch_free_page(page
, order
);
529 kernel_map_pages(page
, 1 << order
, 0);
531 local_irq_save(flags
);
532 __count_vm_events(PGFREE
, 1 << order
);
533 free_one_page(page_zone(page
), page
, order
);
534 local_irq_restore(flags
);
538 * permit the bootmem allocator to evade page validation on high-order frees
540 void fastcall __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
543 __ClearPageReserved(page
);
544 set_page_count(page
, 0);
545 set_page_refcounted(page
);
551 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
552 struct page
*p
= &page
[loop
];
554 if (loop
+ 1 < BITS_PER_LONG
)
556 __ClearPageReserved(p
);
557 set_page_count(p
, 0);
560 set_page_refcounted(page
);
561 __free_pages(page
, order
);
567 * The order of subdivision here is critical for the IO subsystem.
568 * Please do not alter this order without good reasons and regression
569 * testing. Specifically, as large blocks of memory are subdivided,
570 * the order in which smaller blocks are delivered depends on the order
571 * they're subdivided in this function. This is the primary factor
572 * influencing the order in which pages are delivered to the IO
573 * subsystem according to empirical testing, and this is also justified
574 * by considering the behavior of a buddy system containing a single
575 * large block of memory acted on by a series of small allocations.
576 * This behavior is a critical factor in sglist merging's success.
580 static inline void expand(struct zone
*zone
, struct page
*page
,
581 int low
, int high
, struct free_area
*area
,
584 unsigned long size
= 1 << high
;
590 VM_BUG_ON(bad_range(zone
, &page
[size
]));
591 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
593 set_page_order(&page
[size
], high
);
598 * This page is about to be returned from the page allocator
600 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
602 if (unlikely(page_mapcount(page
) |
603 (page
->mapping
!= NULL
) |
604 (page_count(page
) != 0) |
619 * For now, we report if PG_reserved was found set, but do not
620 * clear it, and do not allocate the page: as a safety net.
622 if (PageReserved(page
))
625 page
->flags
&= ~(1 << PG_uptodate
| 1 << PG_error
| 1 << PG_readahead
|
626 1 << PG_referenced
| 1 << PG_arch_1
|
627 1 << PG_owner_priv_1
| 1 << PG_mappedtodisk
);
628 set_page_private(page
, 0);
629 set_page_refcounted(page
);
631 arch_alloc_page(page
, order
);
632 kernel_map_pages(page
, 1 << order
, 1);
634 if (gfp_flags
& __GFP_ZERO
)
635 prep_zero_page(page
, order
, gfp_flags
);
637 if (order
&& (gfp_flags
& __GFP_COMP
))
638 prep_compound_page(page
, order
);
644 * Go through the free lists for the given migratetype and remove
645 * the smallest available page from the freelists
647 static struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
650 unsigned int current_order
;
651 struct free_area
* area
;
654 /* Find a page of the appropriate size in the preferred list */
655 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
656 area
= &(zone
->free_area
[current_order
]);
657 if (list_empty(&area
->free_list
[migratetype
]))
660 page
= list_entry(area
->free_list
[migratetype
].next
,
662 list_del(&page
->lru
);
663 rmv_page_order(page
);
665 __mod_zone_page_state(zone
, NR_FREE_PAGES
, - (1UL << order
));
666 expand(zone
, page
, order
, current_order
, area
, migratetype
);
675 * This array describes the order lists are fallen back to when
676 * the free lists for the desirable migrate type are depleted
678 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
679 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
680 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
681 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
682 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
686 * Move the free pages in a range to the free lists of the requested type.
687 * Note that start_page and end_pages are not aligned on a pageblock
688 * boundary. If alignment is required, use move_freepages_block()
690 int move_freepages(struct zone
*zone
,
691 struct page
*start_page
, struct page
*end_page
,
698 #ifndef CONFIG_HOLES_IN_ZONE
700 * page_zone is not safe to call in this context when
701 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
702 * anyway as we check zone boundaries in move_freepages_block().
703 * Remove at a later date when no bug reports exist related to
704 * grouping pages by mobility
706 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
709 for (page
= start_page
; page
<= end_page
;) {
710 if (!pfn_valid_within(page_to_pfn(page
))) {
715 if (!PageBuddy(page
)) {
720 order
= page_order(page
);
721 list_del(&page
->lru
);
723 &zone
->free_area
[order
].free_list
[migratetype
]);
725 pages_moved
+= 1 << order
;
731 int move_freepages_block(struct zone
*zone
, struct page
*page
, int migratetype
)
733 unsigned long start_pfn
, end_pfn
;
734 struct page
*start_page
, *end_page
;
736 start_pfn
= page_to_pfn(page
);
737 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
738 start_page
= pfn_to_page(start_pfn
);
739 end_page
= start_page
+ pageblock_nr_pages
- 1;
740 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
742 /* Do not cross zone boundaries */
743 if (start_pfn
< zone
->zone_start_pfn
)
745 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
748 return move_freepages(zone
, start_page
, end_page
, migratetype
);
751 /* Remove an element from the buddy allocator from the fallback list */
752 static struct page
*__rmqueue_fallback(struct zone
*zone
, int order
,
753 int start_migratetype
)
755 struct free_area
* area
;
760 /* Find the largest possible block of pages in the other list */
761 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
763 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
764 migratetype
= fallbacks
[start_migratetype
][i
];
766 /* MIGRATE_RESERVE handled later if necessary */
767 if (migratetype
== MIGRATE_RESERVE
)
770 area
= &(zone
->free_area
[current_order
]);
771 if (list_empty(&area
->free_list
[migratetype
]))
774 page
= list_entry(area
->free_list
[migratetype
].next
,
779 * If breaking a large block of pages, move all free
780 * pages to the preferred allocation list. If falling
781 * back for a reclaimable kernel allocation, be more
782 * agressive about taking ownership of free pages
784 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
785 start_migratetype
== MIGRATE_RECLAIMABLE
) {
787 pages
= move_freepages_block(zone
, page
,
790 /* Claim the whole block if over half of it is free */
791 if (pages
>= (1 << (pageblock_order
-1)))
792 set_pageblock_migratetype(page
,
795 migratetype
= start_migratetype
;
798 /* Remove the page from the freelists */
799 list_del(&page
->lru
);
800 rmv_page_order(page
);
801 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
804 if (current_order
== pageblock_order
)
805 set_pageblock_migratetype(page
,
808 expand(zone
, page
, order
, current_order
, area
, migratetype
);
813 /* Use MIGRATE_RESERVE rather than fail an allocation */
814 return __rmqueue_smallest(zone
, order
, MIGRATE_RESERVE
);
818 * Do the hard work of removing an element from the buddy allocator.
819 * Call me with the zone->lock already held.
821 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
826 page
= __rmqueue_smallest(zone
, order
, migratetype
);
829 page
= __rmqueue_fallback(zone
, order
, migratetype
);
835 * Obtain a specified number of elements from the buddy allocator, all under
836 * a single hold of the lock, for efficiency. Add them to the supplied list.
837 * Returns the number of new pages which were placed at *list.
839 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
840 unsigned long count
, struct list_head
*list
,
845 spin_lock(&zone
->lock
);
846 for (i
= 0; i
< count
; ++i
) {
847 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
848 if (unlikely(page
== NULL
))
850 list_add(&page
->lru
, list
);
851 set_page_private(page
, migratetype
);
853 spin_unlock(&zone
->lock
);
859 * Called from the vmstat counter updater to drain pagesets of this
860 * currently executing processor on remote nodes after they have
863 * Note that this function must be called with the thread pinned to
864 * a single processor.
866 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
871 local_irq_save(flags
);
872 if (pcp
->count
>= pcp
->batch
)
873 to_drain
= pcp
->batch
;
875 to_drain
= pcp
->count
;
876 free_pages_bulk(zone
, to_drain
, &pcp
->list
, 0);
877 pcp
->count
-= to_drain
;
878 local_irq_restore(flags
);
882 static void __drain_pages(unsigned int cpu
)
888 for_each_zone(zone
) {
889 struct per_cpu_pageset
*pset
;
891 if (!populated_zone(zone
))
894 pset
= zone_pcp(zone
, cpu
);
895 for (i
= 0; i
< ARRAY_SIZE(pset
->pcp
); i
++) {
896 struct per_cpu_pages
*pcp
;
899 local_irq_save(flags
);
900 free_pages_bulk(zone
, pcp
->count
, &pcp
->list
, 0);
902 local_irq_restore(flags
);
907 #ifdef CONFIG_HIBERNATION
909 void mark_free_pages(struct zone
*zone
)
911 unsigned long pfn
, max_zone_pfn
;
914 struct list_head
*curr
;
916 if (!zone
->spanned_pages
)
919 spin_lock_irqsave(&zone
->lock
, flags
);
921 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
922 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
923 if (pfn_valid(pfn
)) {
924 struct page
*page
= pfn_to_page(pfn
);
926 if (!swsusp_page_is_forbidden(page
))
927 swsusp_unset_page_free(page
);
930 for_each_migratetype_order(order
, t
) {
931 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
934 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
935 for (i
= 0; i
< (1UL << order
); i
++)
936 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
939 spin_unlock_irqrestore(&zone
->lock
, flags
);
941 #endif /* CONFIG_PM */
944 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
946 void drain_local_pages(void)
950 local_irq_save(flags
);
951 __drain_pages(smp_processor_id());
952 local_irq_restore(flags
);
955 void smp_drain_local_pages(void *arg
)
961 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
963 void drain_all_local_pages(void)
967 local_irq_save(flags
);
968 __drain_pages(smp_processor_id());
969 local_irq_restore(flags
);
971 smp_call_function(smp_drain_local_pages
, NULL
, 0, 1);
975 * Free a 0-order page
977 static void fastcall
free_hot_cold_page(struct page
*page
, int cold
)
979 struct zone
*zone
= page_zone(page
);
980 struct per_cpu_pages
*pcp
;
984 page
->mapping
= NULL
;
985 if (free_pages_check(page
))
988 if (!PageHighMem(page
))
989 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
990 arch_free_page(page
, 0);
991 kernel_map_pages(page
, 1, 0);
993 pcp
= &zone_pcp(zone
, get_cpu())->pcp
[cold
];
994 local_irq_save(flags
);
995 __count_vm_event(PGFREE
);
996 list_add(&page
->lru
, &pcp
->list
);
997 set_page_private(page
, get_pageblock_migratetype(page
));
999 if (pcp
->count
>= pcp
->high
) {
1000 free_pages_bulk(zone
, pcp
->batch
, &pcp
->list
, 0);
1001 pcp
->count
-= pcp
->batch
;
1003 local_irq_restore(flags
);
1007 void fastcall
free_hot_page(struct page
*page
)
1009 free_hot_cold_page(page
, 0);
1012 void fastcall
free_cold_page(struct page
*page
)
1014 free_hot_cold_page(page
, 1);
1018 * split_page takes a non-compound higher-order page, and splits it into
1019 * n (1<<order) sub-pages: page[0..n]
1020 * Each sub-page must be freed individually.
1022 * Note: this is probably too low level an operation for use in drivers.
1023 * Please consult with lkml before using this in your driver.
1025 void split_page(struct page
*page
, unsigned int order
)
1029 VM_BUG_ON(PageCompound(page
));
1030 VM_BUG_ON(!page_count(page
));
1031 for (i
= 1; i
< (1 << order
); i
++)
1032 set_page_refcounted(page
+ i
);
1036 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1037 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1040 static struct page
*buffered_rmqueue(struct zonelist
*zonelist
,
1041 struct zone
*zone
, int order
, gfp_t gfp_flags
)
1043 unsigned long flags
;
1045 int cold
= !!(gfp_flags
& __GFP_COLD
);
1047 int migratetype
= allocflags_to_migratetype(gfp_flags
);
1051 if (likely(order
== 0)) {
1052 struct per_cpu_pages
*pcp
;
1054 pcp
= &zone_pcp(zone
, cpu
)->pcp
[cold
];
1055 local_irq_save(flags
);
1057 pcp
->count
= rmqueue_bulk(zone
, 0,
1058 pcp
->batch
, &pcp
->list
, migratetype
);
1059 if (unlikely(!pcp
->count
))
1063 /* Find a page of the appropriate migrate type */
1064 list_for_each_entry(page
, &pcp
->list
, lru
)
1065 if (page_private(page
) == migratetype
)
1068 /* Allocate more to the pcp list if necessary */
1069 if (unlikely(&page
->lru
== &pcp
->list
)) {
1070 pcp
->count
+= rmqueue_bulk(zone
, 0,
1071 pcp
->batch
, &pcp
->list
, migratetype
);
1072 page
= list_entry(pcp
->list
.next
, struct page
, lru
);
1075 list_del(&page
->lru
);
1078 spin_lock_irqsave(&zone
->lock
, flags
);
1079 page
= __rmqueue(zone
, order
, migratetype
);
1080 spin_unlock(&zone
->lock
);
1085 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1086 zone_statistics(zonelist
, zone
);
1087 local_irq_restore(flags
);
1090 VM_BUG_ON(bad_range(zone
, page
));
1091 if (prep_new_page(page
, order
, gfp_flags
))
1096 local_irq_restore(flags
);
1101 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1102 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1103 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1104 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1105 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1106 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1107 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1109 #ifdef CONFIG_FAIL_PAGE_ALLOC
1111 static struct fail_page_alloc_attr
{
1112 struct fault_attr attr
;
1114 u32 ignore_gfp_highmem
;
1115 u32 ignore_gfp_wait
;
1118 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1120 struct dentry
*ignore_gfp_highmem_file
;
1121 struct dentry
*ignore_gfp_wait_file
;
1122 struct dentry
*min_order_file
;
1124 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1126 } fail_page_alloc
= {
1127 .attr
= FAULT_ATTR_INITIALIZER
,
1128 .ignore_gfp_wait
= 1,
1129 .ignore_gfp_highmem
= 1,
1133 static int __init
setup_fail_page_alloc(char *str
)
1135 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1137 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1139 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1141 if (order
< fail_page_alloc
.min_order
)
1143 if (gfp_mask
& __GFP_NOFAIL
)
1145 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1147 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1150 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1153 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1155 static int __init
fail_page_alloc_debugfs(void)
1157 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1161 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1165 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1167 fail_page_alloc
.ignore_gfp_wait_file
=
1168 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1169 &fail_page_alloc
.ignore_gfp_wait
);
1171 fail_page_alloc
.ignore_gfp_highmem_file
=
1172 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1173 &fail_page_alloc
.ignore_gfp_highmem
);
1174 fail_page_alloc
.min_order_file
=
1175 debugfs_create_u32("min-order", mode
, dir
,
1176 &fail_page_alloc
.min_order
);
1178 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1179 !fail_page_alloc
.ignore_gfp_highmem_file
||
1180 !fail_page_alloc
.min_order_file
) {
1182 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1183 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1184 debugfs_remove(fail_page_alloc
.min_order_file
);
1185 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1191 late_initcall(fail_page_alloc_debugfs
);
1193 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1195 #else /* CONFIG_FAIL_PAGE_ALLOC */
1197 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1202 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1205 * Return 1 if free pages are above 'mark'. This takes into account the order
1206 * of the allocation.
1208 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1209 int classzone_idx
, int alloc_flags
)
1211 /* free_pages my go negative - that's OK */
1213 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1216 if (alloc_flags
& ALLOC_HIGH
)
1218 if (alloc_flags
& ALLOC_HARDER
)
1221 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1223 for (o
= 0; o
< order
; o
++) {
1224 /* At the next order, this order's pages become unavailable */
1225 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1227 /* Require fewer higher order pages to be free */
1230 if (free_pages
<= min
)
1238 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1239 * skip over zones that are not allowed by the cpuset, or that have
1240 * been recently (in last second) found to be nearly full. See further
1241 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1242 * that have to skip over a lot of full or unallowed zones.
1244 * If the zonelist cache is present in the passed in zonelist, then
1245 * returns a pointer to the allowed node mask (either the current
1246 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1248 * If the zonelist cache is not available for this zonelist, does
1249 * nothing and returns NULL.
1251 * If the fullzones BITMAP in the zonelist cache is stale (more than
1252 * a second since last zap'd) then we zap it out (clear its bits.)
1254 * We hold off even calling zlc_setup, until after we've checked the
1255 * first zone in the zonelist, on the theory that most allocations will
1256 * be satisfied from that first zone, so best to examine that zone as
1257 * quickly as we can.
1259 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1261 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1262 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1264 zlc
= zonelist
->zlcache_ptr
;
1268 if (jiffies
- zlc
->last_full_zap
> 1 * HZ
) {
1269 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1270 zlc
->last_full_zap
= jiffies
;
1273 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1274 &cpuset_current_mems_allowed
:
1275 &node_states
[N_HIGH_MEMORY
];
1276 return allowednodes
;
1280 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1281 * if it is worth looking at further for free memory:
1282 * 1) Check that the zone isn't thought to be full (doesn't have its
1283 * bit set in the zonelist_cache fullzones BITMAP).
1284 * 2) Check that the zones node (obtained from the zonelist_cache
1285 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1286 * Return true (non-zero) if zone is worth looking at further, or
1287 * else return false (zero) if it is not.
1289 * This check -ignores- the distinction between various watermarks,
1290 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1291 * found to be full for any variation of these watermarks, it will
1292 * be considered full for up to one second by all requests, unless
1293 * we are so low on memory on all allowed nodes that we are forced
1294 * into the second scan of the zonelist.
1296 * In the second scan we ignore this zonelist cache and exactly
1297 * apply the watermarks to all zones, even it is slower to do so.
1298 * We are low on memory in the second scan, and should leave no stone
1299 * unturned looking for a free page.
1301 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1302 nodemask_t
*allowednodes
)
1304 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1305 int i
; /* index of *z in zonelist zones */
1306 int n
; /* node that zone *z is on */
1308 zlc
= zonelist
->zlcache_ptr
;
1312 i
= z
- zonelist
->zones
;
1315 /* This zone is worth trying if it is allowed but not full */
1316 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1320 * Given 'z' scanning a zonelist, set the corresponding bit in
1321 * zlc->fullzones, so that subsequent attempts to allocate a page
1322 * from that zone don't waste time re-examining it.
1324 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1326 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1327 int i
; /* index of *z in zonelist zones */
1329 zlc
= zonelist
->zlcache_ptr
;
1333 i
= z
- zonelist
->zones
;
1335 set_bit(i
, zlc
->fullzones
);
1338 #else /* CONFIG_NUMA */
1340 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1345 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zone
**z
,
1346 nodemask_t
*allowednodes
)
1351 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zone
**z
)
1354 #endif /* CONFIG_NUMA */
1357 * get_page_from_freelist goes through the zonelist trying to allocate
1360 static struct page
*
1361 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
,
1362 struct zonelist
*zonelist
, int alloc_flags
)
1365 struct page
*page
= NULL
;
1366 int classzone_idx
= zone_idx(zonelist
->zones
[0]);
1368 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1369 int zlc_active
= 0; /* set if using zonelist_cache */
1370 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1371 enum zone_type highest_zoneidx
= -1; /* Gets set for policy zonelists */
1375 * Scan zonelist, looking for a zone with enough free.
1376 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1378 z
= zonelist
->zones
;
1382 * In NUMA, this could be a policy zonelist which contains
1383 * zones that may not be allowed by the current gfp_mask.
1384 * Check the zone is allowed by the current flags
1386 if (unlikely(alloc_should_filter_zonelist(zonelist
))) {
1387 if (highest_zoneidx
== -1)
1388 highest_zoneidx
= gfp_zone(gfp_mask
);
1389 if (zone_idx(*z
) > highest_zoneidx
)
1393 if (NUMA_BUILD
&& zlc_active
&&
1394 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1397 if ((alloc_flags
& ALLOC_CPUSET
) &&
1398 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1401 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1403 if (alloc_flags
& ALLOC_WMARK_MIN
)
1404 mark
= zone
->pages_min
;
1405 else if (alloc_flags
& ALLOC_WMARK_LOW
)
1406 mark
= zone
->pages_low
;
1408 mark
= zone
->pages_high
;
1409 if (!zone_watermark_ok(zone
, order
, mark
,
1410 classzone_idx
, alloc_flags
)) {
1411 if (!zone_reclaim_mode
||
1412 !zone_reclaim(zone
, gfp_mask
, order
))
1413 goto this_zone_full
;
1417 page
= buffered_rmqueue(zonelist
, zone
, order
, gfp_mask
);
1422 zlc_mark_zone_full(zonelist
, z
);
1424 if (NUMA_BUILD
&& !did_zlc_setup
) {
1425 /* we do zlc_setup after the first zone is tried */
1426 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1430 } while (*(++z
) != NULL
);
1432 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1433 /* Disable zlc cache for second zonelist scan */
1441 * This is the 'heart' of the zoned buddy allocator.
1443 struct page
* fastcall
1444 __alloc_pages(gfp_t gfp_mask
, unsigned int order
,
1445 struct zonelist
*zonelist
)
1447 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1450 struct reclaim_state reclaim_state
;
1451 struct task_struct
*p
= current
;
1454 int did_some_progress
;
1456 might_sleep_if(wait
);
1458 if (should_fail_alloc_page(gfp_mask
, order
))
1462 z
= zonelist
->zones
; /* the list of zones suitable for gfp_mask */
1464 if (unlikely(*z
== NULL
)) {
1466 * Happens if we have an empty zonelist as a result of
1467 * GFP_THISNODE being used on a memoryless node
1472 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1473 zonelist
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
);
1478 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1479 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1480 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1481 * using a larger set of nodes after it has established that the
1482 * allowed per node queues are empty and that nodes are
1485 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1488 for (z
= zonelist
->zones
; *z
; z
++)
1489 wakeup_kswapd(*z
, order
);
1492 * OK, we're below the kswapd watermark and have kicked background
1493 * reclaim. Now things get more complex, so set up alloc_flags according
1494 * to how we want to proceed.
1496 * The caller may dip into page reserves a bit more if the caller
1497 * cannot run direct reclaim, or if the caller has realtime scheduling
1498 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1499 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1501 alloc_flags
= ALLOC_WMARK_MIN
;
1502 if ((unlikely(rt_task(p
)) && !in_interrupt()) || !wait
)
1503 alloc_flags
|= ALLOC_HARDER
;
1504 if (gfp_mask
& __GFP_HIGH
)
1505 alloc_flags
|= ALLOC_HIGH
;
1507 alloc_flags
|= ALLOC_CPUSET
;
1510 * Go through the zonelist again. Let __GFP_HIGH and allocations
1511 * coming from realtime tasks go deeper into reserves.
1513 * This is the last chance, in general, before the goto nopage.
1514 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1515 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1517 page
= get_page_from_freelist(gfp_mask
, order
, zonelist
, alloc_flags
);
1521 /* This allocation should allow future memory freeing. */
1524 if (((p
->flags
& PF_MEMALLOC
) || unlikely(test_thread_flag(TIF_MEMDIE
)))
1525 && !in_interrupt()) {
1526 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
1528 /* go through the zonelist yet again, ignoring mins */
1529 page
= get_page_from_freelist(gfp_mask
, order
,
1530 zonelist
, ALLOC_NO_WATERMARKS
);
1533 if (gfp_mask
& __GFP_NOFAIL
) {
1534 congestion_wait(WRITE
, HZ
/50);
1541 /* Atomic allocations - we can't balance anything */
1547 /* We now go into synchronous reclaim */
1548 cpuset_memory_pressure_bump();
1549 p
->flags
|= PF_MEMALLOC
;
1550 reclaim_state
.reclaimed_slab
= 0;
1551 p
->reclaim_state
= &reclaim_state
;
1553 did_some_progress
= try_to_free_pages(zonelist
->zones
, order
, gfp_mask
);
1555 p
->reclaim_state
= NULL
;
1556 p
->flags
&= ~PF_MEMALLOC
;
1561 drain_all_local_pages();
1563 if (likely(did_some_progress
)) {
1564 page
= get_page_from_freelist(gfp_mask
, order
,
1565 zonelist
, alloc_flags
);
1568 } else if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1569 if (!try_set_zone_oom(zonelist
)) {
1570 schedule_timeout_uninterruptible(1);
1575 * Go through the zonelist yet one more time, keep
1576 * very high watermark here, this is only to catch
1577 * a parallel oom killing, we must fail if we're still
1578 * under heavy pressure.
1580 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, order
,
1581 zonelist
, ALLOC_WMARK_HIGH
|ALLOC_CPUSET
);
1583 clear_zonelist_oom(zonelist
);
1587 /* The OOM killer will not help higher order allocs so fail */
1588 if (order
> PAGE_ALLOC_COSTLY_ORDER
) {
1589 clear_zonelist_oom(zonelist
);
1593 out_of_memory(zonelist
, gfp_mask
, order
);
1594 clear_zonelist_oom(zonelist
);
1599 * Don't let big-order allocations loop unless the caller explicitly
1600 * requests that. Wait for some write requests to complete then retry.
1602 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1603 * <= 3, but that may not be true in other implementations.
1606 if (!(gfp_mask
& __GFP_NORETRY
)) {
1607 if ((order
<= PAGE_ALLOC_COSTLY_ORDER
) ||
1608 (gfp_mask
& __GFP_REPEAT
))
1610 if (gfp_mask
& __GFP_NOFAIL
)
1614 congestion_wait(WRITE
, HZ
/50);
1619 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1620 printk(KERN_WARNING
"%s: page allocation failure."
1621 " order:%d, mode:0x%x\n",
1622 p
->comm
, order
, gfp_mask
);
1630 EXPORT_SYMBOL(__alloc_pages
);
1633 * Common helper functions.
1635 fastcall
unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
1638 page
= alloc_pages(gfp_mask
, order
);
1641 return (unsigned long) page_address(page
);
1644 EXPORT_SYMBOL(__get_free_pages
);
1646 fastcall
unsigned long get_zeroed_page(gfp_t gfp_mask
)
1651 * get_zeroed_page() returns a 32-bit address, which cannot represent
1654 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
1656 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, 0);
1658 return (unsigned long) page_address(page
);
1662 EXPORT_SYMBOL(get_zeroed_page
);
1664 void __pagevec_free(struct pagevec
*pvec
)
1666 int i
= pagevec_count(pvec
);
1669 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
1672 fastcall
void __free_pages(struct page
*page
, unsigned int order
)
1674 if (put_page_testzero(page
)) {
1676 free_hot_page(page
);
1678 __free_pages_ok(page
, order
);
1682 EXPORT_SYMBOL(__free_pages
);
1684 fastcall
void free_pages(unsigned long addr
, unsigned int order
)
1687 VM_BUG_ON(!virt_addr_valid((void *)addr
));
1688 __free_pages(virt_to_page((void *)addr
), order
);
1692 EXPORT_SYMBOL(free_pages
);
1694 static unsigned int nr_free_zone_pages(int offset
)
1696 /* Just pick one node, since fallback list is circular */
1697 pg_data_t
*pgdat
= NODE_DATA(numa_node_id());
1698 unsigned int sum
= 0;
1700 struct zonelist
*zonelist
= pgdat
->node_zonelists
+ offset
;
1701 struct zone
**zonep
= zonelist
->zones
;
1704 for (zone
= *zonep
++; zone
; zone
= *zonep
++) {
1705 unsigned long size
= zone
->present_pages
;
1706 unsigned long high
= zone
->pages_high
;
1715 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1717 unsigned int nr_free_buffer_pages(void)
1719 return nr_free_zone_pages(gfp_zone(GFP_USER
));
1721 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
1724 * Amount of free RAM allocatable within all zones
1726 unsigned int nr_free_pagecache_pages(void)
1728 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
1731 static inline void show_node(struct zone
*zone
)
1734 printk("Node %d ", zone_to_nid(zone
));
1737 void si_meminfo(struct sysinfo
*val
)
1739 val
->totalram
= totalram_pages
;
1741 val
->freeram
= global_page_state(NR_FREE_PAGES
);
1742 val
->bufferram
= nr_blockdev_pages();
1743 val
->totalhigh
= totalhigh_pages
;
1744 val
->freehigh
= nr_free_highpages();
1745 val
->mem_unit
= PAGE_SIZE
;
1748 EXPORT_SYMBOL(si_meminfo
);
1751 void si_meminfo_node(struct sysinfo
*val
, int nid
)
1753 pg_data_t
*pgdat
= NODE_DATA(nid
);
1755 val
->totalram
= pgdat
->node_present_pages
;
1756 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
1757 #ifdef CONFIG_HIGHMEM
1758 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
1759 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
1765 val
->mem_unit
= PAGE_SIZE
;
1769 #define K(x) ((x) << (PAGE_SHIFT-10))
1772 * Show free area list (used inside shift_scroll-lock stuff)
1773 * We also calculate the percentage fragmentation. We do this by counting the
1774 * memory on each free list with the exception of the first item on the list.
1776 void show_free_areas(void)
1781 for_each_zone(zone
) {
1782 if (!populated_zone(zone
))
1786 printk("%s per-cpu:\n", zone
->name
);
1788 for_each_online_cpu(cpu
) {
1789 struct per_cpu_pageset
*pageset
;
1791 pageset
= zone_pcp(zone
, cpu
);
1793 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1794 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1795 cpu
, pageset
->pcp
[0].high
,
1796 pageset
->pcp
[0].batch
, pageset
->pcp
[0].count
,
1797 pageset
->pcp
[1].high
, pageset
->pcp
[1].batch
,
1798 pageset
->pcp
[1].count
);
1802 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1803 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1804 global_page_state(NR_ACTIVE
),
1805 global_page_state(NR_INACTIVE
),
1806 global_page_state(NR_FILE_DIRTY
),
1807 global_page_state(NR_WRITEBACK
),
1808 global_page_state(NR_UNSTABLE_NFS
),
1809 global_page_state(NR_FREE_PAGES
),
1810 global_page_state(NR_SLAB_RECLAIMABLE
) +
1811 global_page_state(NR_SLAB_UNRECLAIMABLE
),
1812 global_page_state(NR_FILE_MAPPED
),
1813 global_page_state(NR_PAGETABLE
),
1814 global_page_state(NR_BOUNCE
));
1816 for_each_zone(zone
) {
1819 if (!populated_zone(zone
))
1831 " pages_scanned:%lu"
1832 " all_unreclaimable? %s"
1835 K(zone_page_state(zone
, NR_FREE_PAGES
)),
1838 K(zone
->pages_high
),
1839 K(zone_page_state(zone
, NR_ACTIVE
)),
1840 K(zone_page_state(zone
, NR_INACTIVE
)),
1841 K(zone
->present_pages
),
1842 zone
->pages_scanned
,
1843 (zone_is_all_unreclaimable(zone
) ? "yes" : "no")
1845 printk("lowmem_reserve[]:");
1846 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
1847 printk(" %lu", zone
->lowmem_reserve
[i
]);
1851 for_each_zone(zone
) {
1852 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
1854 if (!populated_zone(zone
))
1858 printk("%s: ", zone
->name
);
1860 spin_lock_irqsave(&zone
->lock
, flags
);
1861 for (order
= 0; order
< MAX_ORDER
; order
++) {
1862 nr
[order
] = zone
->free_area
[order
].nr_free
;
1863 total
+= nr
[order
] << order
;
1865 spin_unlock_irqrestore(&zone
->lock
, flags
);
1866 for (order
= 0; order
< MAX_ORDER
; order
++)
1867 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
1868 printk("= %lukB\n", K(total
));
1871 show_swap_cache_info();
1875 * Builds allocation fallback zone lists.
1877 * Add all populated zones of a node to the zonelist.
1879 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
1880 int nr_zones
, enum zone_type zone_type
)
1884 BUG_ON(zone_type
>= MAX_NR_ZONES
);
1889 zone
= pgdat
->node_zones
+ zone_type
;
1890 if (populated_zone(zone
)) {
1891 zonelist
->zones
[nr_zones
++] = zone
;
1892 check_highest_zone(zone_type
);
1895 } while (zone_type
);
1902 * 0 = automatic detection of better ordering.
1903 * 1 = order by ([node] distance, -zonetype)
1904 * 2 = order by (-zonetype, [node] distance)
1906 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1907 * the same zonelist. So only NUMA can configure this param.
1909 #define ZONELIST_ORDER_DEFAULT 0
1910 #define ZONELIST_ORDER_NODE 1
1911 #define ZONELIST_ORDER_ZONE 2
1913 /* zonelist order in the kernel.
1914 * set_zonelist_order() will set this to NODE or ZONE.
1916 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1917 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
1921 /* The value user specified ....changed by config */
1922 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1923 /* string for sysctl */
1924 #define NUMA_ZONELIST_ORDER_LEN 16
1925 char numa_zonelist_order
[16] = "default";
1928 * interface for configure zonelist ordering.
1929 * command line option "numa_zonelist_order"
1930 * = "[dD]efault - default, automatic configuration.
1931 * = "[nN]ode - order by node locality, then by zone within node
1932 * = "[zZ]one - order by zone, then by locality within zone
1935 static int __parse_numa_zonelist_order(char *s
)
1937 if (*s
== 'd' || *s
== 'D') {
1938 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
1939 } else if (*s
== 'n' || *s
== 'N') {
1940 user_zonelist_order
= ZONELIST_ORDER_NODE
;
1941 } else if (*s
== 'z' || *s
== 'Z') {
1942 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
1945 "Ignoring invalid numa_zonelist_order value: "
1952 static __init
int setup_numa_zonelist_order(char *s
)
1955 return __parse_numa_zonelist_order(s
);
1958 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
1961 * sysctl handler for numa_zonelist_order
1963 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
1964 struct file
*file
, void __user
*buffer
, size_t *length
,
1967 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
1971 strncpy(saved_string
, (char*)table
->data
,
1972 NUMA_ZONELIST_ORDER_LEN
);
1973 ret
= proc_dostring(table
, write
, file
, buffer
, length
, ppos
);
1977 int oldval
= user_zonelist_order
;
1978 if (__parse_numa_zonelist_order((char*)table
->data
)) {
1980 * bogus value. restore saved string
1982 strncpy((char*)table
->data
, saved_string
,
1983 NUMA_ZONELIST_ORDER_LEN
);
1984 user_zonelist_order
= oldval
;
1985 } else if (oldval
!= user_zonelist_order
)
1986 build_all_zonelists();
1992 #define MAX_NODE_LOAD (num_online_nodes())
1993 static int node_load
[MAX_NUMNODES
];
1996 * find_next_best_node - find the next node that should appear in a given node's fallback list
1997 * @node: node whose fallback list we're appending
1998 * @used_node_mask: nodemask_t of already used nodes
2000 * We use a number of factors to determine which is the next node that should
2001 * appear on a given node's fallback list. The node should not have appeared
2002 * already in @node's fallback list, and it should be the next closest node
2003 * according to the distance array (which contains arbitrary distance values
2004 * from each node to each node in the system), and should also prefer nodes
2005 * with no CPUs, since presumably they'll have very little allocation pressure
2006 * on them otherwise.
2007 * It returns -1 if no node is found.
2009 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2012 int min_val
= INT_MAX
;
2015 /* Use the local node if we haven't already */
2016 if (!node_isset(node
, *used_node_mask
)) {
2017 node_set(node
, *used_node_mask
);
2021 for_each_node_state(n
, N_HIGH_MEMORY
) {
2024 /* Don't want a node to appear more than once */
2025 if (node_isset(n
, *used_node_mask
))
2028 /* Use the distance array to find the distance */
2029 val
= node_distance(node
, n
);
2031 /* Penalize nodes under us ("prefer the next node") */
2034 /* Give preference to headless and unused nodes */
2035 tmp
= node_to_cpumask(n
);
2036 if (!cpus_empty(tmp
))
2037 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2039 /* Slight preference for less loaded node */
2040 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2041 val
+= node_load
[n
];
2043 if (val
< min_val
) {
2050 node_set(best_node
, *used_node_mask
);
2057 * Build zonelists ordered by node and zones within node.
2058 * This results in maximum locality--normal zone overflows into local
2059 * DMA zone, if any--but risks exhausting DMA zone.
2061 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2065 struct zonelist
*zonelist
;
2067 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2068 zonelist
= pgdat
->node_zonelists
+ i
;
2069 for (j
= 0; zonelist
->zones
[j
] != NULL
; j
++)
2071 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2072 zonelist
->zones
[j
] = NULL
;
2077 * Build gfp_thisnode zonelists
2079 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2083 struct zonelist
*zonelist
;
2085 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2086 zonelist
= pgdat
->node_zonelists
+ MAX_NR_ZONES
+ i
;
2087 j
= build_zonelists_node(pgdat
, zonelist
, 0, i
);
2088 zonelist
->zones
[j
] = NULL
;
2093 * Build zonelists ordered by zone and nodes within zones.
2094 * This results in conserving DMA zone[s] until all Normal memory is
2095 * exhausted, but results in overflowing to remote node while memory
2096 * may still exist in local DMA zone.
2098 static int node_order
[MAX_NUMNODES
];
2100 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2104 int zone_type
; /* needs to be signed */
2106 struct zonelist
*zonelist
;
2108 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2109 zonelist
= pgdat
->node_zonelists
+ i
;
2111 for (zone_type
= i
; zone_type
>= 0; zone_type
--) {
2112 for (j
= 0; j
< nr_nodes
; j
++) {
2113 node
= node_order
[j
];
2114 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2115 if (populated_zone(z
)) {
2116 zonelist
->zones
[pos
++] = z
;
2117 check_highest_zone(zone_type
);
2121 zonelist
->zones
[pos
] = NULL
;
2125 static int default_zonelist_order(void)
2128 unsigned long low_kmem_size
,total_size
;
2132 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2133 * If they are really small and used heavily, the system can fall
2134 * into OOM very easily.
2135 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2137 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2140 for_each_online_node(nid
) {
2141 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2142 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2143 if (populated_zone(z
)) {
2144 if (zone_type
< ZONE_NORMAL
)
2145 low_kmem_size
+= z
->present_pages
;
2146 total_size
+= z
->present_pages
;
2150 if (!low_kmem_size
|| /* there are no DMA area. */
2151 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2152 return ZONELIST_ORDER_NODE
;
2154 * look into each node's config.
2155 * If there is a node whose DMA/DMA32 memory is very big area on
2156 * local memory, NODE_ORDER may be suitable.
2158 average_size
= total_size
/
2159 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2160 for_each_online_node(nid
) {
2163 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2164 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2165 if (populated_zone(z
)) {
2166 if (zone_type
< ZONE_NORMAL
)
2167 low_kmem_size
+= z
->present_pages
;
2168 total_size
+= z
->present_pages
;
2171 if (low_kmem_size
&&
2172 total_size
> average_size
&& /* ignore small node */
2173 low_kmem_size
> total_size
* 70/100)
2174 return ZONELIST_ORDER_NODE
;
2176 return ZONELIST_ORDER_ZONE
;
2179 static void set_zonelist_order(void)
2181 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2182 current_zonelist_order
= default_zonelist_order();
2184 current_zonelist_order
= user_zonelist_order
;
2187 static void build_zonelists(pg_data_t
*pgdat
)
2191 nodemask_t used_mask
;
2192 int local_node
, prev_node
;
2193 struct zonelist
*zonelist
;
2194 int order
= current_zonelist_order
;
2196 /* initialize zonelists */
2197 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2198 zonelist
= pgdat
->node_zonelists
+ i
;
2199 zonelist
->zones
[0] = NULL
;
2202 /* NUMA-aware ordering of nodes */
2203 local_node
= pgdat
->node_id
;
2204 load
= num_online_nodes();
2205 prev_node
= local_node
;
2206 nodes_clear(used_mask
);
2208 memset(node_load
, 0, sizeof(node_load
));
2209 memset(node_order
, 0, sizeof(node_order
));
2212 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2213 int distance
= node_distance(local_node
, node
);
2216 * If another node is sufficiently far away then it is better
2217 * to reclaim pages in a zone before going off node.
2219 if (distance
> RECLAIM_DISTANCE
)
2220 zone_reclaim_mode
= 1;
2223 * We don't want to pressure a particular node.
2224 * So adding penalty to the first node in same
2225 * distance group to make it round-robin.
2227 if (distance
!= node_distance(local_node
, prev_node
))
2228 node_load
[node
] = load
;
2232 if (order
== ZONELIST_ORDER_NODE
)
2233 build_zonelists_in_node_order(pgdat
, node
);
2235 node_order
[j
++] = node
; /* remember order */
2238 if (order
== ZONELIST_ORDER_ZONE
) {
2239 /* calculate node order -- i.e., DMA last! */
2240 build_zonelists_in_zone_order(pgdat
, j
);
2243 build_thisnode_zonelists(pgdat
);
2246 /* Construct the zonelist performance cache - see further mmzone.h */
2247 static void build_zonelist_cache(pg_data_t
*pgdat
)
2251 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2252 struct zonelist
*zonelist
;
2253 struct zonelist_cache
*zlc
;
2256 zonelist
= pgdat
->node_zonelists
+ i
;
2257 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2258 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2259 for (z
= zonelist
->zones
; *z
; z
++)
2260 zlc
->z_to_n
[z
- zonelist
->zones
] = zone_to_nid(*z
);
2265 #else /* CONFIG_NUMA */
2267 static void set_zonelist_order(void)
2269 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2272 static void build_zonelists(pg_data_t
*pgdat
)
2274 int node
, local_node
;
2277 local_node
= pgdat
->node_id
;
2278 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
2279 struct zonelist
*zonelist
;
2281 zonelist
= pgdat
->node_zonelists
+ i
;
2283 j
= build_zonelists_node(pgdat
, zonelist
, 0, i
);
2285 * Now we build the zonelist so that it contains the zones
2286 * of all the other nodes.
2287 * We don't want to pressure a particular node, so when
2288 * building the zones for node N, we make sure that the
2289 * zones coming right after the local ones are those from
2290 * node N+1 (modulo N)
2292 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2293 if (!node_online(node
))
2295 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2297 for (node
= 0; node
< local_node
; node
++) {
2298 if (!node_online(node
))
2300 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
, i
);
2303 zonelist
->zones
[j
] = NULL
;
2307 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2308 static void build_zonelist_cache(pg_data_t
*pgdat
)
2312 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2313 pgdat
->node_zonelists
[i
].zlcache_ptr
= NULL
;
2316 #endif /* CONFIG_NUMA */
2318 /* return values int ....just for stop_machine_run() */
2319 static int __build_all_zonelists(void *dummy
)
2323 for_each_online_node(nid
) {
2324 pg_data_t
*pgdat
= NODE_DATA(nid
);
2326 build_zonelists(pgdat
);
2327 build_zonelist_cache(pgdat
);
2332 void build_all_zonelists(void)
2334 set_zonelist_order();
2336 if (system_state
== SYSTEM_BOOTING
) {
2337 __build_all_zonelists(NULL
);
2338 cpuset_init_current_mems_allowed();
2340 /* we have to stop all cpus to guarantee there is no user
2342 stop_machine_run(__build_all_zonelists
, NULL
, NR_CPUS
);
2343 /* cpuset refresh routine should be here */
2345 vm_total_pages
= nr_free_pagecache_pages();
2347 * Disable grouping by mobility if the number of pages in the
2348 * system is too low to allow the mechanism to work. It would be
2349 * more accurate, but expensive to check per-zone. This check is
2350 * made on memory-hotadd so a system can start with mobility
2351 * disabled and enable it later
2353 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2354 page_group_by_mobility_disabled
= 1;
2356 page_group_by_mobility_disabled
= 0;
2358 printk("Built %i zonelists in %s order, mobility grouping %s. "
2359 "Total pages: %ld\n",
2361 zonelist_order_name
[current_zonelist_order
],
2362 page_group_by_mobility_disabled
? "off" : "on",
2365 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2370 * Helper functions to size the waitqueue hash table.
2371 * Essentially these want to choose hash table sizes sufficiently
2372 * large so that collisions trying to wait on pages are rare.
2373 * But in fact, the number of active page waitqueues on typical
2374 * systems is ridiculously low, less than 200. So this is even
2375 * conservative, even though it seems large.
2377 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2378 * waitqueues, i.e. the size of the waitq table given the number of pages.
2380 #define PAGES_PER_WAITQUEUE 256
2382 #ifndef CONFIG_MEMORY_HOTPLUG
2383 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2385 unsigned long size
= 1;
2387 pages
/= PAGES_PER_WAITQUEUE
;
2389 while (size
< pages
)
2393 * Once we have dozens or even hundreds of threads sleeping
2394 * on IO we've got bigger problems than wait queue collision.
2395 * Limit the size of the wait table to a reasonable size.
2397 size
= min(size
, 4096UL);
2399 return max(size
, 4UL);
2403 * A zone's size might be changed by hot-add, so it is not possible to determine
2404 * a suitable size for its wait_table. So we use the maximum size now.
2406 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2408 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2409 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2410 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2412 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2413 * or more by the traditional way. (See above). It equals:
2415 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2416 * ia64(16K page size) : = ( 8G + 4M)byte.
2417 * powerpc (64K page size) : = (32G +16M)byte.
2419 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2426 * This is an integer logarithm so that shifts can be used later
2427 * to extract the more random high bits from the multiplicative
2428 * hash function before the remainder is taken.
2430 static inline unsigned long wait_table_bits(unsigned long size
)
2435 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2438 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2439 * of blocks reserved is based on zone->pages_min. The memory within the
2440 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2441 * higher will lead to a bigger reserve which will get freed as contiguous
2442 * blocks as reclaim kicks in
2444 static void setup_zone_migrate_reserve(struct zone
*zone
)
2446 unsigned long start_pfn
, pfn
, end_pfn
;
2448 unsigned long reserve
, block_migratetype
;
2450 /* Get the start pfn, end pfn and the number of blocks to reserve */
2451 start_pfn
= zone
->zone_start_pfn
;
2452 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2453 reserve
= roundup(zone
->pages_min
, pageblock_nr_pages
) >>
2456 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2457 if (!pfn_valid(pfn
))
2459 page
= pfn_to_page(pfn
);
2461 /* Blocks with reserved pages will never free, skip them. */
2462 if (PageReserved(page
))
2465 block_migratetype
= get_pageblock_migratetype(page
);
2467 /* If this block is reserved, account for it */
2468 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2473 /* Suitable for reserving if this block is movable */
2474 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2475 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2476 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2482 * If the reserve is met and this is a previous reserved block,
2485 if (block_migratetype
== MIGRATE_RESERVE
) {
2486 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2487 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2493 * Initially all pages are reserved - free ones are freed
2494 * up by free_all_bootmem() once the early boot process is
2495 * done. Non-atomic initialization, single-pass.
2497 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2498 unsigned long start_pfn
, enum memmap_context context
)
2501 unsigned long end_pfn
= start_pfn
+ size
;
2504 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
2506 * There can be holes in boot-time mem_map[]s
2507 * handed to this function. They do not
2508 * exist on hotplugged memory.
2510 if (context
== MEMMAP_EARLY
) {
2511 if (!early_pfn_valid(pfn
))
2513 if (!early_pfn_in_nid(pfn
, nid
))
2516 page
= pfn_to_page(pfn
);
2517 set_page_links(page
, zone
, nid
, pfn
);
2518 init_page_count(page
);
2519 reset_page_mapcount(page
);
2520 SetPageReserved(page
);
2523 * Mark the block movable so that blocks are reserved for
2524 * movable at startup. This will force kernel allocations
2525 * to reserve their blocks rather than leaking throughout
2526 * the address space during boot when many long-lived
2527 * kernel allocations are made. Later some blocks near
2528 * the start are marked MIGRATE_RESERVE by
2529 * setup_zone_migrate_reserve()
2531 if ((pfn
& (pageblock_nr_pages
-1)))
2532 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2534 INIT_LIST_HEAD(&page
->lru
);
2535 #ifdef WANT_PAGE_VIRTUAL
2536 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2537 if (!is_highmem_idx(zone
))
2538 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
2543 static void __meminit
zone_init_free_lists(struct pglist_data
*pgdat
,
2544 struct zone
*zone
, unsigned long size
)
2547 for_each_migratetype_order(order
, t
) {
2548 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
2549 zone
->free_area
[order
].nr_free
= 0;
2553 #ifndef __HAVE_ARCH_MEMMAP_INIT
2554 #define memmap_init(size, nid, zone, start_pfn) \
2555 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2558 static int __devinit
zone_batchsize(struct zone
*zone
)
2563 * The per-cpu-pages pools are set to around 1000th of the
2564 * size of the zone. But no more than 1/2 of a meg.
2566 * OK, so we don't know how big the cache is. So guess.
2568 batch
= zone
->present_pages
/ 1024;
2569 if (batch
* PAGE_SIZE
> 512 * 1024)
2570 batch
= (512 * 1024) / PAGE_SIZE
;
2571 batch
/= 4; /* We effectively *= 4 below */
2576 * Clamp the batch to a 2^n - 1 value. Having a power
2577 * of 2 value was found to be more likely to have
2578 * suboptimal cache aliasing properties in some cases.
2580 * For example if 2 tasks are alternately allocating
2581 * batches of pages, one task can end up with a lot
2582 * of pages of one half of the possible page colors
2583 * and the other with pages of the other colors.
2585 batch
= (1 << (fls(batch
+ batch
/2)-1)) - 1;
2590 inline void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
2592 struct per_cpu_pages
*pcp
;
2594 memset(p
, 0, sizeof(*p
));
2596 pcp
= &p
->pcp
[0]; /* hot */
2598 pcp
->high
= 6 * batch
;
2599 pcp
->batch
= max(1UL, 1 * batch
);
2600 INIT_LIST_HEAD(&pcp
->list
);
2602 pcp
= &p
->pcp
[1]; /* cold*/
2604 pcp
->high
= 2 * batch
;
2605 pcp
->batch
= max(1UL, batch
/2);
2606 INIT_LIST_HEAD(&pcp
->list
);
2610 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2611 * to the value high for the pageset p.
2614 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
2617 struct per_cpu_pages
*pcp
;
2619 pcp
= &p
->pcp
[0]; /* hot list */
2621 pcp
->batch
= max(1UL, high
/4);
2622 if ((high
/4) > (PAGE_SHIFT
* 8))
2623 pcp
->batch
= PAGE_SHIFT
* 8;
2629 * Boot pageset table. One per cpu which is going to be used for all
2630 * zones and all nodes. The parameters will be set in such a way
2631 * that an item put on a list will immediately be handed over to
2632 * the buddy list. This is safe since pageset manipulation is done
2633 * with interrupts disabled.
2635 * Some NUMA counter updates may also be caught by the boot pagesets.
2637 * The boot_pagesets must be kept even after bootup is complete for
2638 * unused processors and/or zones. They do play a role for bootstrapping
2639 * hotplugged processors.
2641 * zoneinfo_show() and maybe other functions do
2642 * not check if the processor is online before following the pageset pointer.
2643 * Other parts of the kernel may not check if the zone is available.
2645 static struct per_cpu_pageset boot_pageset
[NR_CPUS
];
2648 * Dynamically allocate memory for the
2649 * per cpu pageset array in struct zone.
2651 static int __cpuinit
process_zones(int cpu
)
2653 struct zone
*zone
, *dzone
;
2654 int node
= cpu_to_node(cpu
);
2656 node_set_state(node
, N_CPU
); /* this node has a cpu */
2658 for_each_zone(zone
) {
2660 if (!populated_zone(zone
))
2663 zone_pcp(zone
, cpu
) = kmalloc_node(sizeof(struct per_cpu_pageset
),
2665 if (!zone_pcp(zone
, cpu
))
2668 setup_pageset(zone_pcp(zone
, cpu
), zone_batchsize(zone
));
2670 if (percpu_pagelist_fraction
)
2671 setup_pagelist_highmark(zone_pcp(zone
, cpu
),
2672 (zone
->present_pages
/ percpu_pagelist_fraction
));
2677 for_each_zone(dzone
) {
2678 if (!populated_zone(dzone
))
2682 kfree(zone_pcp(dzone
, cpu
));
2683 zone_pcp(dzone
, cpu
) = NULL
;
2688 static inline void free_zone_pagesets(int cpu
)
2692 for_each_zone(zone
) {
2693 struct per_cpu_pageset
*pset
= zone_pcp(zone
, cpu
);
2695 /* Free per_cpu_pageset if it is slab allocated */
2696 if (pset
!= &boot_pageset
[cpu
])
2698 zone_pcp(zone
, cpu
) = NULL
;
2702 static int __cpuinit
pageset_cpuup_callback(struct notifier_block
*nfb
,
2703 unsigned long action
,
2706 int cpu
= (long)hcpu
;
2707 int ret
= NOTIFY_OK
;
2710 case CPU_UP_PREPARE
:
2711 case CPU_UP_PREPARE_FROZEN
:
2712 if (process_zones(cpu
))
2715 case CPU_UP_CANCELED
:
2716 case CPU_UP_CANCELED_FROZEN
:
2718 case CPU_DEAD_FROZEN
:
2719 free_zone_pagesets(cpu
);
2727 static struct notifier_block __cpuinitdata pageset_notifier
=
2728 { &pageset_cpuup_callback
, NULL
, 0 };
2730 void __init
setup_per_cpu_pageset(void)
2734 /* Initialize per_cpu_pageset for cpu 0.
2735 * A cpuup callback will do this for every cpu
2736 * as it comes online
2738 err
= process_zones(smp_processor_id());
2740 register_cpu_notifier(&pageset_notifier
);
2745 static noinline __init_refok
2746 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
2749 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2753 * The per-page waitqueue mechanism uses hashed waitqueues
2756 zone
->wait_table_hash_nr_entries
=
2757 wait_table_hash_nr_entries(zone_size_pages
);
2758 zone
->wait_table_bits
=
2759 wait_table_bits(zone
->wait_table_hash_nr_entries
);
2760 alloc_size
= zone
->wait_table_hash_nr_entries
2761 * sizeof(wait_queue_head_t
);
2763 if (system_state
== SYSTEM_BOOTING
) {
2764 zone
->wait_table
= (wait_queue_head_t
*)
2765 alloc_bootmem_node(pgdat
, alloc_size
);
2768 * This case means that a zone whose size was 0 gets new memory
2769 * via memory hot-add.
2770 * But it may be the case that a new node was hot-added. In
2771 * this case vmalloc() will not be able to use this new node's
2772 * memory - this wait_table must be initialized to use this new
2773 * node itself as well.
2774 * To use this new node's memory, further consideration will be
2777 zone
->wait_table
= vmalloc(alloc_size
);
2779 if (!zone
->wait_table
)
2782 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
2783 init_waitqueue_head(zone
->wait_table
+ i
);
2788 static __meminit
void zone_pcp_init(struct zone
*zone
)
2791 unsigned long batch
= zone_batchsize(zone
);
2793 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++) {
2795 /* Early boot. Slab allocator not functional yet */
2796 zone_pcp(zone
, cpu
) = &boot_pageset
[cpu
];
2797 setup_pageset(&boot_pageset
[cpu
],0);
2799 setup_pageset(zone_pcp(zone
,cpu
), batch
);
2802 if (zone
->present_pages
)
2803 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%lu\n",
2804 zone
->name
, zone
->present_pages
, batch
);
2807 __meminit
int init_currently_empty_zone(struct zone
*zone
,
2808 unsigned long zone_start_pfn
,
2810 enum memmap_context context
)
2812 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
2814 ret
= zone_wait_table_init(zone
, size
);
2817 pgdat
->nr_zones
= zone_idx(zone
) + 1;
2819 zone
->zone_start_pfn
= zone_start_pfn
;
2821 memmap_init(size
, pgdat
->node_id
, zone_idx(zone
), zone_start_pfn
);
2823 zone_init_free_lists(pgdat
, zone
, zone
->spanned_pages
);
2828 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2830 * Basic iterator support. Return the first range of PFNs for a node
2831 * Note: nid == MAX_NUMNODES returns first region regardless of node
2833 static int __meminit
first_active_region_index_in_nid(int nid
)
2837 for (i
= 0; i
< nr_nodemap_entries
; i
++)
2838 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
2845 * Basic iterator support. Return the next active range of PFNs for a node
2846 * Note: nid == MAX_NUMNODES returns next region regardless of node
2848 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
2850 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
2851 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
2857 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2859 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2860 * Architectures may implement their own version but if add_active_range()
2861 * was used and there are no special requirements, this is a convenient
2864 int __meminit
early_pfn_to_nid(unsigned long pfn
)
2868 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
2869 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
2870 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2872 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
2873 return early_node_map
[i
].nid
;
2878 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2880 /* Basic iterator support to walk early_node_map[] */
2881 #define for_each_active_range_index_in_nid(i, nid) \
2882 for (i = first_active_region_index_in_nid(nid); i != -1; \
2883 i = next_active_region_index_in_nid(i, nid))
2886 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2887 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2888 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2890 * If an architecture guarantees that all ranges registered with
2891 * add_active_ranges() contain no holes and may be freed, this
2892 * this function may be used instead of calling free_bootmem() manually.
2894 void __init
free_bootmem_with_active_regions(int nid
,
2895 unsigned long max_low_pfn
)
2899 for_each_active_range_index_in_nid(i
, nid
) {
2900 unsigned long size_pages
= 0;
2901 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
2903 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
2906 if (end_pfn
> max_low_pfn
)
2907 end_pfn
= max_low_pfn
;
2909 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
2910 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
2911 PFN_PHYS(early_node_map
[i
].start_pfn
),
2912 size_pages
<< PAGE_SHIFT
);
2917 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2918 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2920 * If an architecture guarantees that all ranges registered with
2921 * add_active_ranges() contain no holes and may be freed, this
2922 * function may be used instead of calling memory_present() manually.
2924 void __init
sparse_memory_present_with_active_regions(int nid
)
2928 for_each_active_range_index_in_nid(i
, nid
)
2929 memory_present(early_node_map
[i
].nid
,
2930 early_node_map
[i
].start_pfn
,
2931 early_node_map
[i
].end_pfn
);
2935 * push_node_boundaries - Push node boundaries to at least the requested boundary
2936 * @nid: The nid of the node to push the boundary for
2937 * @start_pfn: The start pfn of the node
2938 * @end_pfn: The end pfn of the node
2940 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2941 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2942 * be hotplugged even though no physical memory exists. This function allows
2943 * an arch to push out the node boundaries so mem_map is allocated that can
2946 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2947 void __init
push_node_boundaries(unsigned int nid
,
2948 unsigned long start_pfn
, unsigned long end_pfn
)
2950 printk(KERN_DEBUG
"Entering push_node_boundaries(%u, %lu, %lu)\n",
2951 nid
, start_pfn
, end_pfn
);
2953 /* Initialise the boundary for this node if necessary */
2954 if (node_boundary_end_pfn
[nid
] == 0)
2955 node_boundary_start_pfn
[nid
] = -1UL;
2957 /* Update the boundaries */
2958 if (node_boundary_start_pfn
[nid
] > start_pfn
)
2959 node_boundary_start_pfn
[nid
] = start_pfn
;
2960 if (node_boundary_end_pfn
[nid
] < end_pfn
)
2961 node_boundary_end_pfn
[nid
] = end_pfn
;
2964 /* If necessary, push the node boundary out for reserve hotadd */
2965 static void __meminit
account_node_boundary(unsigned int nid
,
2966 unsigned long *start_pfn
, unsigned long *end_pfn
)
2968 printk(KERN_DEBUG
"Entering account_node_boundary(%u, %lu, %lu)\n",
2969 nid
, *start_pfn
, *end_pfn
);
2971 /* Return if boundary information has not been provided */
2972 if (node_boundary_end_pfn
[nid
] == 0)
2975 /* Check the boundaries and update if necessary */
2976 if (node_boundary_start_pfn
[nid
] < *start_pfn
)
2977 *start_pfn
= node_boundary_start_pfn
[nid
];
2978 if (node_boundary_end_pfn
[nid
] > *end_pfn
)
2979 *end_pfn
= node_boundary_end_pfn
[nid
];
2982 void __init
push_node_boundaries(unsigned int nid
,
2983 unsigned long start_pfn
, unsigned long end_pfn
) {}
2985 static void __meminit
account_node_boundary(unsigned int nid
,
2986 unsigned long *start_pfn
, unsigned long *end_pfn
) {}
2991 * get_pfn_range_for_nid - Return the start and end page frames for a node
2992 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2993 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2994 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2996 * It returns the start and end page frame of a node based on information
2997 * provided by an arch calling add_active_range(). If called for a node
2998 * with no available memory, a warning is printed and the start and end
3001 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3002 unsigned long *start_pfn
, unsigned long *end_pfn
)
3008 for_each_active_range_index_in_nid(i
, nid
) {
3009 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3010 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3013 if (*start_pfn
== -1UL)
3016 /* Push the node boundaries out if requested */
3017 account_node_boundary(nid
, start_pfn
, end_pfn
);
3021 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3022 * assumption is made that zones within a node are ordered in monotonic
3023 * increasing memory addresses so that the "highest" populated zone is used
3025 void __init
find_usable_zone_for_movable(void)
3028 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3029 if (zone_index
== ZONE_MOVABLE
)
3032 if (arch_zone_highest_possible_pfn
[zone_index
] >
3033 arch_zone_lowest_possible_pfn
[zone_index
])
3037 VM_BUG_ON(zone_index
== -1);
3038 movable_zone
= zone_index
;
3042 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3043 * because it is sized independant of architecture. Unlike the other zones,
3044 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3045 * in each node depending on the size of each node and how evenly kernelcore
3046 * is distributed. This helper function adjusts the zone ranges
3047 * provided by the architecture for a given node by using the end of the
3048 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3049 * zones within a node are in order of monotonic increases memory addresses
3051 void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3052 unsigned long zone_type
,
3053 unsigned long node_start_pfn
,
3054 unsigned long node_end_pfn
,
3055 unsigned long *zone_start_pfn
,
3056 unsigned long *zone_end_pfn
)
3058 /* Only adjust if ZONE_MOVABLE is on this node */
3059 if (zone_movable_pfn
[nid
]) {
3060 /* Size ZONE_MOVABLE */
3061 if (zone_type
== ZONE_MOVABLE
) {
3062 *zone_start_pfn
= zone_movable_pfn
[nid
];
3063 *zone_end_pfn
= min(node_end_pfn
,
3064 arch_zone_highest_possible_pfn
[movable_zone
]);
3066 /* Adjust for ZONE_MOVABLE starting within this range */
3067 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3068 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3069 *zone_end_pfn
= zone_movable_pfn
[nid
];
3071 /* Check if this whole range is within ZONE_MOVABLE */
3072 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3073 *zone_start_pfn
= *zone_end_pfn
;
3078 * Return the number of pages a zone spans in a node, including holes
3079 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3081 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3082 unsigned long zone_type
,
3083 unsigned long *ignored
)
3085 unsigned long node_start_pfn
, node_end_pfn
;
3086 unsigned long zone_start_pfn
, zone_end_pfn
;
3088 /* Get the start and end of the node and zone */
3089 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3090 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3091 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3092 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3093 node_start_pfn
, node_end_pfn
,
3094 &zone_start_pfn
, &zone_end_pfn
);
3096 /* Check that this node has pages within the zone's required range */
3097 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3100 /* Move the zone boundaries inside the node if necessary */
3101 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3102 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3104 /* Return the spanned pages */
3105 return zone_end_pfn
- zone_start_pfn
;
3109 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3110 * then all holes in the requested range will be accounted for.
3112 unsigned long __meminit
__absent_pages_in_range(int nid
,
3113 unsigned long range_start_pfn
,
3114 unsigned long range_end_pfn
)
3117 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3118 unsigned long start_pfn
;
3120 /* Find the end_pfn of the first active range of pfns in the node */
3121 i
= first_active_region_index_in_nid(nid
);
3125 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3127 /* Account for ranges before physical memory on this node */
3128 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3129 hole_pages
= prev_end_pfn
- range_start_pfn
;
3131 /* Find all holes for the zone within the node */
3132 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3134 /* No need to continue if prev_end_pfn is outside the zone */
3135 if (prev_end_pfn
>= range_end_pfn
)
3138 /* Make sure the end of the zone is not within the hole */
3139 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3140 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3142 /* Update the hole size cound and move on */
3143 if (start_pfn
> range_start_pfn
) {
3144 BUG_ON(prev_end_pfn
> start_pfn
);
3145 hole_pages
+= start_pfn
- prev_end_pfn
;
3147 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3150 /* Account for ranges past physical memory on this node */
3151 if (range_end_pfn
> prev_end_pfn
)
3152 hole_pages
+= range_end_pfn
-
3153 max(range_start_pfn
, prev_end_pfn
);
3159 * absent_pages_in_range - Return number of page frames in holes within a range
3160 * @start_pfn: The start PFN to start searching for holes
3161 * @end_pfn: The end PFN to stop searching for holes
3163 * It returns the number of pages frames in memory holes within a range.
3165 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3166 unsigned long end_pfn
)
3168 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3171 /* Return the number of page frames in holes in a zone on a node */
3172 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3173 unsigned long zone_type
,
3174 unsigned long *ignored
)
3176 unsigned long node_start_pfn
, node_end_pfn
;
3177 unsigned long zone_start_pfn
, zone_end_pfn
;
3179 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3180 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3182 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3185 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3186 node_start_pfn
, node_end_pfn
,
3187 &zone_start_pfn
, &zone_end_pfn
);
3188 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3192 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3193 unsigned long zone_type
,
3194 unsigned long *zones_size
)
3196 return zones_size
[zone_type
];
3199 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3200 unsigned long zone_type
,
3201 unsigned long *zholes_size
)
3206 return zholes_size
[zone_type
];
3211 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3212 unsigned long *zones_size
, unsigned long *zholes_size
)
3214 unsigned long realtotalpages
, totalpages
= 0;
3217 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3218 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3220 pgdat
->node_spanned_pages
= totalpages
;
3222 realtotalpages
= totalpages
;
3223 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3225 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3227 pgdat
->node_present_pages
= realtotalpages
;
3228 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3232 #ifndef CONFIG_SPARSEMEM
3234 * Calculate the size of the zone->blockflags rounded to an unsigned long
3235 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3236 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3237 * round what is now in bits to nearest long in bits, then return it in
3240 static unsigned long __init
usemap_size(unsigned long zonesize
)
3242 unsigned long usemapsize
;
3244 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3245 usemapsize
= usemapsize
>> pageblock_order
;
3246 usemapsize
*= NR_PAGEBLOCK_BITS
;
3247 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3249 return usemapsize
/ 8;
3252 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3253 struct zone
*zone
, unsigned long zonesize
)
3255 unsigned long usemapsize
= usemap_size(zonesize
);
3256 zone
->pageblock_flags
= NULL
;
3258 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3259 memset(zone
->pageblock_flags
, 0, usemapsize
);
3263 static void inline setup_usemap(struct pglist_data
*pgdat
,
3264 struct zone
*zone
, unsigned long zonesize
) {}
3265 #endif /* CONFIG_SPARSEMEM */
3267 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3269 /* Return a sensible default order for the pageblock size. */
3270 static inline int pageblock_default_order(void)
3272 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3273 return HUGETLB_PAGE_ORDER
;
3278 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3279 static inline void __init
set_pageblock_order(unsigned int order
)
3281 /* Check that pageblock_nr_pages has not already been setup */
3282 if (pageblock_order
)
3286 * Assume the largest contiguous order of interest is a huge page.
3287 * This value may be variable depending on boot parameters on IA64
3289 pageblock_order
= order
;
3291 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3294 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3295 * and pageblock_default_order() are unused as pageblock_order is set
3296 * at compile-time. See include/linux/pageblock-flags.h for the values of
3297 * pageblock_order based on the kernel config
3299 static inline int pageblock_default_order(unsigned int order
)
3303 #define set_pageblock_order(x) do {} while (0)
3305 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3308 * Set up the zone data structures:
3309 * - mark all pages reserved
3310 * - mark all memory queues empty
3311 * - clear the memory bitmaps
3313 static void __meminit
free_area_init_core(struct pglist_data
*pgdat
,
3314 unsigned long *zones_size
, unsigned long *zholes_size
)
3317 int nid
= pgdat
->node_id
;
3318 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3321 pgdat_resize_init(pgdat
);
3322 pgdat
->nr_zones
= 0;
3323 init_waitqueue_head(&pgdat
->kswapd_wait
);
3324 pgdat
->kswapd_max_order
= 0;
3326 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3327 struct zone
*zone
= pgdat
->node_zones
+ j
;
3328 unsigned long size
, realsize
, memmap_pages
;
3330 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3331 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3335 * Adjust realsize so that it accounts for how much memory
3336 * is used by this zone for memmap. This affects the watermark
3337 * and per-cpu initialisations
3339 memmap_pages
= (size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3340 if (realsize
>= memmap_pages
) {
3341 realsize
-= memmap_pages
;
3343 " %s zone: %lu pages used for memmap\n",
3344 zone_names
[j
], memmap_pages
);
3347 " %s zone: %lu pages exceeds realsize %lu\n",
3348 zone_names
[j
], memmap_pages
, realsize
);
3350 /* Account for reserved pages */
3351 if (j
== 0 && realsize
> dma_reserve
) {
3352 realsize
-= dma_reserve
;
3353 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3354 zone_names
[0], dma_reserve
);
3357 if (!is_highmem_idx(j
))
3358 nr_kernel_pages
+= realsize
;
3359 nr_all_pages
+= realsize
;
3361 zone
->spanned_pages
= size
;
3362 zone
->present_pages
= realsize
;
3365 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3367 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3369 zone
->name
= zone_names
[j
];
3370 spin_lock_init(&zone
->lock
);
3371 spin_lock_init(&zone
->lru_lock
);
3372 zone_seqlock_init(zone
);
3373 zone
->zone_pgdat
= pgdat
;
3375 zone
->prev_priority
= DEF_PRIORITY
;
3377 zone_pcp_init(zone
);
3378 INIT_LIST_HEAD(&zone
->active_list
);
3379 INIT_LIST_HEAD(&zone
->inactive_list
);
3380 zone
->nr_scan_active
= 0;
3381 zone
->nr_scan_inactive
= 0;
3382 zap_zone_vm_stats(zone
);
3387 set_pageblock_order(pageblock_default_order());
3388 setup_usemap(pgdat
, zone
, size
);
3389 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3390 size
, MEMMAP_EARLY
);
3392 zone_start_pfn
+= size
;
3396 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3398 /* Skip empty nodes */
3399 if (!pgdat
->node_spanned_pages
)
3402 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3403 /* ia64 gets its own node_mem_map, before this, without bootmem */
3404 if (!pgdat
->node_mem_map
) {
3405 unsigned long size
, start
, end
;
3409 * The zone's endpoints aren't required to be MAX_ORDER
3410 * aligned but the node_mem_map endpoints must be in order
3411 * for the buddy allocator to function correctly.
3413 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3414 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3415 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3416 size
= (end
- start
) * sizeof(struct page
);
3417 map
= alloc_remap(pgdat
->node_id
, size
);
3419 map
= alloc_bootmem_node(pgdat
, size
);
3420 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3422 #ifndef CONFIG_NEED_MULTIPLE_NODES
3424 * With no DISCONTIG, the global mem_map is just set as node 0's
3426 if (pgdat
== NODE_DATA(0)) {
3427 mem_map
= NODE_DATA(0)->node_mem_map
;
3428 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3429 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3430 mem_map
-= pgdat
->node_start_pfn
;
3431 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3434 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3437 void __meminit
free_area_init_node(int nid
, struct pglist_data
*pgdat
,
3438 unsigned long *zones_size
, unsigned long node_start_pfn
,
3439 unsigned long *zholes_size
)
3441 pgdat
->node_id
= nid
;
3442 pgdat
->node_start_pfn
= node_start_pfn
;
3443 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3445 alloc_node_mem_map(pgdat
);
3447 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3450 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3452 #if MAX_NUMNODES > 1
3454 * Figure out the number of possible node ids.
3456 static void __init
setup_nr_node_ids(void)
3459 unsigned int highest
= 0;
3461 for_each_node_mask(node
, node_possible_map
)
3463 nr_node_ids
= highest
+ 1;
3466 static inline void setup_nr_node_ids(void)
3472 * add_active_range - Register a range of PFNs backed by physical memory
3473 * @nid: The node ID the range resides on
3474 * @start_pfn: The start PFN of the available physical memory
3475 * @end_pfn: The end PFN of the available physical memory
3477 * These ranges are stored in an early_node_map[] and later used by
3478 * free_area_init_nodes() to calculate zone sizes and holes. If the
3479 * range spans a memory hole, it is up to the architecture to ensure
3480 * the memory is not freed by the bootmem allocator. If possible
3481 * the range being registered will be merged with existing ranges.
3483 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3484 unsigned long end_pfn
)
3488 printk(KERN_DEBUG
"Entering add_active_range(%d, %lu, %lu) "
3489 "%d entries of %d used\n",
3490 nid
, start_pfn
, end_pfn
,
3491 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3493 /* Merge with existing active regions if possible */
3494 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3495 if (early_node_map
[i
].nid
!= nid
)
3498 /* Skip if an existing region covers this new one */
3499 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
3500 end_pfn
<= early_node_map
[i
].end_pfn
)
3503 /* Merge forward if suitable */
3504 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
3505 end_pfn
> early_node_map
[i
].end_pfn
) {
3506 early_node_map
[i
].end_pfn
= end_pfn
;
3510 /* Merge backward if suitable */
3511 if (start_pfn
< early_node_map
[i
].end_pfn
&&
3512 end_pfn
>= early_node_map
[i
].start_pfn
) {
3513 early_node_map
[i
].start_pfn
= start_pfn
;
3518 /* Check that early_node_map is large enough */
3519 if (i
>= MAX_ACTIVE_REGIONS
) {
3520 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
3521 MAX_ACTIVE_REGIONS
);
3525 early_node_map
[i
].nid
= nid
;
3526 early_node_map
[i
].start_pfn
= start_pfn
;
3527 early_node_map
[i
].end_pfn
= end_pfn
;
3528 nr_nodemap_entries
= i
+ 1;
3532 * shrink_active_range - Shrink an existing registered range of PFNs
3533 * @nid: The node id the range is on that should be shrunk
3534 * @old_end_pfn: The old end PFN of the range
3535 * @new_end_pfn: The new PFN of the range
3537 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3538 * The map is kept at the end physical page range that has already been
3539 * registered with add_active_range(). This function allows an arch to shrink
3540 * an existing registered range.
3542 void __init
shrink_active_range(unsigned int nid
, unsigned long old_end_pfn
,
3543 unsigned long new_end_pfn
)
3547 /* Find the old active region end and shrink */
3548 for_each_active_range_index_in_nid(i
, nid
)
3549 if (early_node_map
[i
].end_pfn
== old_end_pfn
) {
3550 early_node_map
[i
].end_pfn
= new_end_pfn
;
3556 * remove_all_active_ranges - Remove all currently registered regions
3558 * During discovery, it may be found that a table like SRAT is invalid
3559 * and an alternative discovery method must be used. This function removes
3560 * all currently registered regions.
3562 void __init
remove_all_active_ranges(void)
3564 memset(early_node_map
, 0, sizeof(early_node_map
));
3565 nr_nodemap_entries
= 0;
3566 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3567 memset(node_boundary_start_pfn
, 0, sizeof(node_boundary_start_pfn
));
3568 memset(node_boundary_end_pfn
, 0, sizeof(node_boundary_end_pfn
));
3569 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3572 /* Compare two active node_active_regions */
3573 static int __init
cmp_node_active_region(const void *a
, const void *b
)
3575 struct node_active_region
*arange
= (struct node_active_region
*)a
;
3576 struct node_active_region
*brange
= (struct node_active_region
*)b
;
3578 /* Done this way to avoid overflows */
3579 if (arange
->start_pfn
> brange
->start_pfn
)
3581 if (arange
->start_pfn
< brange
->start_pfn
)
3587 /* sort the node_map by start_pfn */
3588 static void __init
sort_node_map(void)
3590 sort(early_node_map
, (size_t)nr_nodemap_entries
,
3591 sizeof(struct node_active_region
),
3592 cmp_node_active_region
, NULL
);
3595 /* Find the lowest pfn for a node */
3596 unsigned long __init
find_min_pfn_for_node(unsigned long nid
)
3599 unsigned long min_pfn
= ULONG_MAX
;
3601 /* Assuming a sorted map, the first range found has the starting pfn */
3602 for_each_active_range_index_in_nid(i
, nid
)
3603 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
3605 if (min_pfn
== ULONG_MAX
) {
3607 "Could not find start_pfn for node %lu\n", nid
);
3615 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3617 * It returns the minimum PFN based on information provided via
3618 * add_active_range().
3620 unsigned long __init
find_min_pfn_with_active_regions(void)
3622 return find_min_pfn_for_node(MAX_NUMNODES
);
3626 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3628 * It returns the maximum PFN based on information provided via
3629 * add_active_range().
3631 unsigned long __init
find_max_pfn_with_active_regions(void)
3634 unsigned long max_pfn
= 0;
3636 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3637 max_pfn
= max(max_pfn
, early_node_map
[i
].end_pfn
);
3643 * early_calculate_totalpages()
3644 * Sum pages in active regions for movable zone.
3645 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3647 static unsigned long __init
early_calculate_totalpages(void)
3650 unsigned long totalpages
= 0;
3652 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3653 unsigned long pages
= early_node_map
[i
].end_pfn
-
3654 early_node_map
[i
].start_pfn
;
3655 totalpages
+= pages
;
3657 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
3663 * Find the PFN the Movable zone begins in each node. Kernel memory
3664 * is spread evenly between nodes as long as the nodes have enough
3665 * memory. When they don't, some nodes will have more kernelcore than
3668 void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
3671 unsigned long usable_startpfn
;
3672 unsigned long kernelcore_node
, kernelcore_remaining
;
3673 unsigned long totalpages
= early_calculate_totalpages();
3674 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
3677 * If movablecore was specified, calculate what size of
3678 * kernelcore that corresponds so that memory usable for
3679 * any allocation type is evenly spread. If both kernelcore
3680 * and movablecore are specified, then the value of kernelcore
3681 * will be used for required_kernelcore if it's greater than
3682 * what movablecore would have allowed.
3684 if (required_movablecore
) {
3685 unsigned long corepages
;
3688 * Round-up so that ZONE_MOVABLE is at least as large as what
3689 * was requested by the user
3691 required_movablecore
=
3692 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
3693 corepages
= totalpages
- required_movablecore
;
3695 required_kernelcore
= max(required_kernelcore
, corepages
);
3698 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3699 if (!required_kernelcore
)
3702 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3703 find_usable_zone_for_movable();
3704 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
3707 /* Spread kernelcore memory as evenly as possible throughout nodes */
3708 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3709 for_each_node_state(nid
, N_HIGH_MEMORY
) {
3711 * Recalculate kernelcore_node if the division per node
3712 * now exceeds what is necessary to satisfy the requested
3713 * amount of memory for the kernel
3715 if (required_kernelcore
< kernelcore_node
)
3716 kernelcore_node
= required_kernelcore
/ usable_nodes
;
3719 * As the map is walked, we track how much memory is usable
3720 * by the kernel using kernelcore_remaining. When it is
3721 * 0, the rest of the node is usable by ZONE_MOVABLE
3723 kernelcore_remaining
= kernelcore_node
;
3725 /* Go through each range of PFNs within this node */
3726 for_each_active_range_index_in_nid(i
, nid
) {
3727 unsigned long start_pfn
, end_pfn
;
3728 unsigned long size_pages
;
3730 start_pfn
= max(early_node_map
[i
].start_pfn
,
3731 zone_movable_pfn
[nid
]);
3732 end_pfn
= early_node_map
[i
].end_pfn
;
3733 if (start_pfn
>= end_pfn
)
3736 /* Account for what is only usable for kernelcore */
3737 if (start_pfn
< usable_startpfn
) {
3738 unsigned long kernel_pages
;
3739 kernel_pages
= min(end_pfn
, usable_startpfn
)
3742 kernelcore_remaining
-= min(kernel_pages
,
3743 kernelcore_remaining
);
3744 required_kernelcore
-= min(kernel_pages
,
3745 required_kernelcore
);
3747 /* Continue if range is now fully accounted */
3748 if (end_pfn
<= usable_startpfn
) {
3751 * Push zone_movable_pfn to the end so
3752 * that if we have to rebalance
3753 * kernelcore across nodes, we will
3754 * not double account here
3756 zone_movable_pfn
[nid
] = end_pfn
;
3759 start_pfn
= usable_startpfn
;
3763 * The usable PFN range for ZONE_MOVABLE is from
3764 * start_pfn->end_pfn. Calculate size_pages as the
3765 * number of pages used as kernelcore
3767 size_pages
= end_pfn
- start_pfn
;
3768 if (size_pages
> kernelcore_remaining
)
3769 size_pages
= kernelcore_remaining
;
3770 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
3773 * Some kernelcore has been met, update counts and
3774 * break if the kernelcore for this node has been
3777 required_kernelcore
-= min(required_kernelcore
,
3779 kernelcore_remaining
-= size_pages
;
3780 if (!kernelcore_remaining
)
3786 * If there is still required_kernelcore, we do another pass with one
3787 * less node in the count. This will push zone_movable_pfn[nid] further
3788 * along on the nodes that still have memory until kernelcore is
3792 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
3795 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3796 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
3797 zone_movable_pfn
[nid
] =
3798 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
3801 /* Any regular memory on that node ? */
3802 static void check_for_regular_memory(pg_data_t
*pgdat
)
3804 #ifdef CONFIG_HIGHMEM
3805 enum zone_type zone_type
;
3807 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
3808 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
3809 if (zone
->present_pages
)
3810 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
3816 * free_area_init_nodes - Initialise all pg_data_t and zone data
3817 * @max_zone_pfn: an array of max PFNs for each zone
3819 * This will call free_area_init_node() for each active node in the system.
3820 * Using the page ranges provided by add_active_range(), the size of each
3821 * zone in each node and their holes is calculated. If the maximum PFN
3822 * between two adjacent zones match, it is assumed that the zone is empty.
3823 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3824 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3825 * starts where the previous one ended. For example, ZONE_DMA32 starts
3826 * at arch_max_dma_pfn.
3828 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
3833 /* Sort early_node_map as initialisation assumes it is sorted */
3836 /* Record where the zone boundaries are */
3837 memset(arch_zone_lowest_possible_pfn
, 0,
3838 sizeof(arch_zone_lowest_possible_pfn
));
3839 memset(arch_zone_highest_possible_pfn
, 0,
3840 sizeof(arch_zone_highest_possible_pfn
));
3841 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
3842 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
3843 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
3844 if (i
== ZONE_MOVABLE
)
3846 arch_zone_lowest_possible_pfn
[i
] =
3847 arch_zone_highest_possible_pfn
[i
-1];
3848 arch_zone_highest_possible_pfn
[i
] =
3849 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
3851 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
3852 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
3854 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3855 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
3856 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
3858 /* Print out the zone ranges */
3859 printk("Zone PFN ranges:\n");
3860 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3861 if (i
== ZONE_MOVABLE
)
3863 printk(" %-8s %8lu -> %8lu\n",
3865 arch_zone_lowest_possible_pfn
[i
],
3866 arch_zone_highest_possible_pfn
[i
]);
3869 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3870 printk("Movable zone start PFN for each node\n");
3871 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
3872 if (zone_movable_pfn
[i
])
3873 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
3876 /* Print out the early_node_map[] */
3877 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
3878 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3879 printk(" %3d: %8lu -> %8lu\n", early_node_map
[i
].nid
,
3880 early_node_map
[i
].start_pfn
,
3881 early_node_map
[i
].end_pfn
);
3883 /* Initialise every node */
3884 setup_nr_node_ids();
3885 for_each_online_node(nid
) {
3886 pg_data_t
*pgdat
= NODE_DATA(nid
);
3887 free_area_init_node(nid
, pgdat
, NULL
,
3888 find_min_pfn_for_node(nid
), NULL
);
3890 /* Any memory on that node */
3891 if (pgdat
->node_present_pages
)
3892 node_set_state(nid
, N_HIGH_MEMORY
);
3893 check_for_regular_memory(pgdat
);
3897 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
3899 unsigned long long coremem
;
3903 coremem
= memparse(p
, &p
);
3904 *core
= coremem
>> PAGE_SHIFT
;
3906 /* Paranoid check that UL is enough for the coremem value */
3907 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
3913 * kernelcore=size sets the amount of memory for use for allocations that
3914 * cannot be reclaimed or migrated.
3916 static int __init
cmdline_parse_kernelcore(char *p
)
3918 return cmdline_parse_core(p
, &required_kernelcore
);
3922 * movablecore=size sets the amount of memory for use for allocations that
3923 * can be reclaimed or migrated.
3925 static int __init
cmdline_parse_movablecore(char *p
)
3927 return cmdline_parse_core(p
, &required_movablecore
);
3930 early_param("kernelcore", cmdline_parse_kernelcore
);
3931 early_param("movablecore", cmdline_parse_movablecore
);
3933 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3936 * set_dma_reserve - set the specified number of pages reserved in the first zone
3937 * @new_dma_reserve: The number of pages to mark reserved
3939 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3940 * In the DMA zone, a significant percentage may be consumed by kernel image
3941 * and other unfreeable allocations which can skew the watermarks badly. This
3942 * function may optionally be used to account for unfreeable pages in the
3943 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3944 * smaller per-cpu batchsize.
3946 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
3948 dma_reserve
= new_dma_reserve
;
3951 #ifndef CONFIG_NEED_MULTIPLE_NODES
3952 static bootmem_data_t contig_bootmem_data
;
3953 struct pglist_data contig_page_data
= { .bdata
= &contig_bootmem_data
};
3955 EXPORT_SYMBOL(contig_page_data
);
3958 void __init
free_area_init(unsigned long *zones_size
)
3960 free_area_init_node(0, NODE_DATA(0), zones_size
,
3961 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
3964 static int page_alloc_cpu_notify(struct notifier_block
*self
,
3965 unsigned long action
, void *hcpu
)
3967 int cpu
= (unsigned long)hcpu
;
3969 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
3970 local_irq_disable();
3972 vm_events_fold_cpu(cpu
);
3974 refresh_cpu_vm_stats(cpu
);
3979 void __init
page_alloc_init(void)
3981 hotcpu_notifier(page_alloc_cpu_notify
, 0);
3985 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3986 * or min_free_kbytes changes.
3988 static void calculate_totalreserve_pages(void)
3990 struct pglist_data
*pgdat
;
3991 unsigned long reserve_pages
= 0;
3992 enum zone_type i
, j
;
3994 for_each_online_pgdat(pgdat
) {
3995 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
3996 struct zone
*zone
= pgdat
->node_zones
+ i
;
3997 unsigned long max
= 0;
3999 /* Find valid and maximum lowmem_reserve in the zone */
4000 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4001 if (zone
->lowmem_reserve
[j
] > max
)
4002 max
= zone
->lowmem_reserve
[j
];
4005 /* we treat pages_high as reserved pages. */
4006 max
+= zone
->pages_high
;
4008 if (max
> zone
->present_pages
)
4009 max
= zone
->present_pages
;
4010 reserve_pages
+= max
;
4013 totalreserve_pages
= reserve_pages
;
4017 * setup_per_zone_lowmem_reserve - called whenever
4018 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4019 * has a correct pages reserved value, so an adequate number of
4020 * pages are left in the zone after a successful __alloc_pages().
4022 static void setup_per_zone_lowmem_reserve(void)
4024 struct pglist_data
*pgdat
;
4025 enum zone_type j
, idx
;
4027 for_each_online_pgdat(pgdat
) {
4028 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4029 struct zone
*zone
= pgdat
->node_zones
+ j
;
4030 unsigned long present_pages
= zone
->present_pages
;
4032 zone
->lowmem_reserve
[j
] = 0;
4036 struct zone
*lower_zone
;
4040 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4041 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4043 lower_zone
= pgdat
->node_zones
+ idx
;
4044 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4045 sysctl_lowmem_reserve_ratio
[idx
];
4046 present_pages
+= lower_zone
->present_pages
;
4051 /* update totalreserve_pages */
4052 calculate_totalreserve_pages();
4056 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4058 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4059 * with respect to min_free_kbytes.
4061 void setup_per_zone_pages_min(void)
4063 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4064 unsigned long lowmem_pages
= 0;
4066 unsigned long flags
;
4068 /* Calculate total number of !ZONE_HIGHMEM pages */
4069 for_each_zone(zone
) {
4070 if (!is_highmem(zone
))
4071 lowmem_pages
+= zone
->present_pages
;
4074 for_each_zone(zone
) {
4077 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4078 tmp
= (u64
)pages_min
* zone
->present_pages
;
4079 do_div(tmp
, lowmem_pages
);
4080 if (is_highmem(zone
)) {
4082 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4083 * need highmem pages, so cap pages_min to a small
4086 * The (pages_high-pages_low) and (pages_low-pages_min)
4087 * deltas controls asynch page reclaim, and so should
4088 * not be capped for highmem.
4092 min_pages
= zone
->present_pages
/ 1024;
4093 if (min_pages
< SWAP_CLUSTER_MAX
)
4094 min_pages
= SWAP_CLUSTER_MAX
;
4095 if (min_pages
> 128)
4097 zone
->pages_min
= min_pages
;
4100 * If it's a lowmem zone, reserve a number of pages
4101 * proportionate to the zone's size.
4103 zone
->pages_min
= tmp
;
4106 zone
->pages_low
= zone
->pages_min
+ (tmp
>> 2);
4107 zone
->pages_high
= zone
->pages_min
+ (tmp
>> 1);
4108 setup_zone_migrate_reserve(zone
);
4109 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4112 /* update totalreserve_pages */
4113 calculate_totalreserve_pages();
4117 * Initialise min_free_kbytes.
4119 * For small machines we want it small (128k min). For large machines
4120 * we want it large (64MB max). But it is not linear, because network
4121 * bandwidth does not increase linearly with machine size. We use
4123 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4124 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4140 static int __init
init_per_zone_pages_min(void)
4142 unsigned long lowmem_kbytes
;
4144 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4146 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4147 if (min_free_kbytes
< 128)
4148 min_free_kbytes
= 128;
4149 if (min_free_kbytes
> 65536)
4150 min_free_kbytes
= 65536;
4151 setup_per_zone_pages_min();
4152 setup_per_zone_lowmem_reserve();
4155 module_init(init_per_zone_pages_min
)
4158 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4159 * that we can call two helper functions whenever min_free_kbytes
4162 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4163 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4165 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
4167 setup_per_zone_pages_min();
4172 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4173 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4178 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4183 zone
->min_unmapped_pages
= (zone
->present_pages
*
4184 sysctl_min_unmapped_ratio
) / 100;
4188 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4189 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4194 rc
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4199 zone
->min_slab_pages
= (zone
->present_pages
*
4200 sysctl_min_slab_ratio
) / 100;
4206 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4207 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4208 * whenever sysctl_lowmem_reserve_ratio changes.
4210 * The reserve ratio obviously has absolutely no relation with the
4211 * pages_min watermarks. The lowmem reserve ratio can only make sense
4212 * if in function of the boot time zone sizes.
4214 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4215 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4217 proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4218 setup_per_zone_lowmem_reserve();
4223 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4224 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4225 * can have before it gets flushed back to buddy allocator.
4228 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4229 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4235 ret
= proc_dointvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
4236 if (!write
|| (ret
== -EINVAL
))
4238 for_each_zone(zone
) {
4239 for_each_online_cpu(cpu
) {
4241 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4242 setup_pagelist_highmark(zone_pcp(zone
, cpu
), high
);
4248 int hashdist
= HASHDIST_DEFAULT
;
4251 static int __init
set_hashdist(char *str
)
4255 hashdist
= simple_strtoul(str
, &str
, 0);
4258 __setup("hashdist=", set_hashdist
);
4262 * allocate a large system hash table from bootmem
4263 * - it is assumed that the hash table must contain an exact power-of-2
4264 * quantity of entries
4265 * - limit is the number of hash buckets, not the total allocation size
4267 void *__init
alloc_large_system_hash(const char *tablename
,
4268 unsigned long bucketsize
,
4269 unsigned long numentries
,
4272 unsigned int *_hash_shift
,
4273 unsigned int *_hash_mask
,
4274 unsigned long limit
)
4276 unsigned long long max
= limit
;
4277 unsigned long log2qty
, size
;
4280 /* allow the kernel cmdline to have a say */
4282 /* round applicable memory size up to nearest megabyte */
4283 numentries
= nr_kernel_pages
;
4284 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4285 numentries
>>= 20 - PAGE_SHIFT
;
4286 numentries
<<= 20 - PAGE_SHIFT
;
4288 /* limit to 1 bucket per 2^scale bytes of low memory */
4289 if (scale
> PAGE_SHIFT
)
4290 numentries
>>= (scale
- PAGE_SHIFT
);
4292 numentries
<<= (PAGE_SHIFT
- scale
);
4294 /* Make sure we've got at least a 0-order allocation.. */
4295 if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4296 numentries
= PAGE_SIZE
/ bucketsize
;
4298 numentries
= roundup_pow_of_two(numentries
);
4300 /* limit allocation size to 1/16 total memory by default */
4302 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4303 do_div(max
, bucketsize
);
4306 if (numentries
> max
)
4309 log2qty
= ilog2(numentries
);
4312 size
= bucketsize
<< log2qty
;
4313 if (flags
& HASH_EARLY
)
4314 table
= alloc_bootmem(size
);
4316 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4318 unsigned long order
;
4319 for (order
= 0; ((1UL << order
) << PAGE_SHIFT
) < size
; order
++)
4321 table
= (void*) __get_free_pages(GFP_ATOMIC
, order
);
4323 * If bucketsize is not a power-of-two, we may free
4324 * some pages at the end of hash table.
4327 unsigned long alloc_end
= (unsigned long)table
+
4328 (PAGE_SIZE
<< order
);
4329 unsigned long used
= (unsigned long)table
+
4331 split_page(virt_to_page(table
), order
);
4332 while (used
< alloc_end
) {
4338 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4341 panic("Failed to allocate %s hash table\n", tablename
);
4343 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4346 ilog2(size
) - PAGE_SHIFT
,
4350 *_hash_shift
= log2qty
;
4352 *_hash_mask
= (1 << log2qty
) - 1;
4357 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4358 struct page
*pfn_to_page(unsigned long pfn
)
4360 return __pfn_to_page(pfn
);
4362 unsigned long page_to_pfn(struct page
*page
)
4364 return __page_to_pfn(page
);
4366 EXPORT_SYMBOL(pfn_to_page
);
4367 EXPORT_SYMBOL(page_to_pfn
);
4368 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4370 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4371 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4374 #ifdef CONFIG_SPARSEMEM
4375 return __pfn_to_section(pfn
)->pageblock_flags
;
4377 return zone
->pageblock_flags
;
4378 #endif /* CONFIG_SPARSEMEM */
4381 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4383 #ifdef CONFIG_SPARSEMEM
4384 pfn
&= (PAGES_PER_SECTION
-1);
4385 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4387 pfn
= pfn
- zone
->zone_start_pfn
;
4388 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4389 #endif /* CONFIG_SPARSEMEM */
4393 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4394 * @page: The page within the block of interest
4395 * @start_bitidx: The first bit of interest to retrieve
4396 * @end_bitidx: The last bit of interest
4397 * returns pageblock_bits flags
4399 unsigned long get_pageblock_flags_group(struct page
*page
,
4400 int start_bitidx
, int end_bitidx
)
4403 unsigned long *bitmap
;
4404 unsigned long pfn
, bitidx
;
4405 unsigned long flags
= 0;
4406 unsigned long value
= 1;
4408 zone
= page_zone(page
);
4409 pfn
= page_to_pfn(page
);
4410 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4411 bitidx
= pfn_to_bitidx(zone
, pfn
);
4413 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4414 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
4421 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4422 * @page: The page within the block of interest
4423 * @start_bitidx: The first bit of interest
4424 * @end_bitidx: The last bit of interest
4425 * @flags: The flags to set
4427 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
4428 int start_bitidx
, int end_bitidx
)
4431 unsigned long *bitmap
;
4432 unsigned long pfn
, bitidx
;
4433 unsigned long value
= 1;
4435 zone
= page_zone(page
);
4436 pfn
= page_to_pfn(page
);
4437 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4438 bitidx
= pfn_to_bitidx(zone
, pfn
);
4440 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4442 __set_bit(bitidx
+ start_bitidx
, bitmap
);
4444 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
4448 * This is designed as sub function...plz see page_isolation.c also.
4449 * set/clear page block's type to be ISOLATE.
4450 * page allocater never alloc memory from ISOLATE block.
4453 int set_migratetype_isolate(struct page
*page
)
4456 unsigned long flags
;
4459 zone
= page_zone(page
);
4460 spin_lock_irqsave(&zone
->lock
, flags
);
4462 * In future, more migrate types will be able to be isolation target.
4464 if (get_pageblock_migratetype(page
) != MIGRATE_MOVABLE
)
4466 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
4467 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
4470 spin_unlock_irqrestore(&zone
->lock
, flags
);
4472 drain_all_local_pages();
4476 void unset_migratetype_isolate(struct page
*page
)
4479 unsigned long flags
;
4480 zone
= page_zone(page
);
4481 spin_lock_irqsave(&zone
->lock
, flags
);
4482 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
4484 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
4485 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
4487 spin_unlock_irqrestore(&zone
->lock
, flags
);
4490 #ifdef CONFIG_MEMORY_HOTREMOVE
4492 * All pages in the range must be isolated before calling this.
4495 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
4501 unsigned long flags
;
4502 /* find the first valid pfn */
4503 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
4508 zone
= page_zone(pfn_to_page(pfn
));
4509 spin_lock_irqsave(&zone
->lock
, flags
);
4511 while (pfn
< end_pfn
) {
4512 if (!pfn_valid(pfn
)) {
4516 page
= pfn_to_page(pfn
);
4517 BUG_ON(page_count(page
));
4518 BUG_ON(!PageBuddy(page
));
4519 order
= page_order(page
);
4520 #ifdef CONFIG_DEBUG_VM
4521 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
4522 pfn
, 1 << order
, end_pfn
);
4524 list_del(&page
->lru
);
4525 rmv_page_order(page
);
4526 zone
->free_area
[order
].nr_free
--;
4527 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
4529 for (i
= 0; i
< (1 << order
); i
++)
4530 SetPageReserved((page
+i
));
4531 pfn
+= (1 << order
);
4533 spin_unlock_irqrestore(&zone
->lock
, flags
);