2 * linux/kernel/time/ntp.c
4 * NTP state machine interfaces and logic.
6 * This code was mainly moved from kernel/timer.c and kernel/time.c
7 * Please see those files for relevant copyright info and historical
12 #include <linux/time.h>
13 #include <linux/timer.h>
14 #include <linux/timex.h>
15 #include <linux/jiffies.h>
16 #include <linux/hrtimer.h>
17 #include <linux/capability.h>
18 #include <asm/div64.h>
19 #include <asm/timex.h>
22 * Timekeeping variables
24 unsigned long tick_usec
= TICK_USEC
; /* USER_HZ period (usec) */
25 unsigned long tick_nsec
; /* ACTHZ period (nsec) */
26 static u64 tick_length
, tick_length_base
;
28 #define MAX_TICKADJ 500 /* microsecs */
29 #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
30 TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ)
33 * phase-lock loop variables
35 /* TIME_ERROR prevents overwriting the CMOS clock */
36 static int time_state
= TIME_OK
; /* clock synchronization status */
37 int time_status
= STA_UNSYNC
; /* clock status bits */
38 static s64 time_offset
; /* time adjustment (ns) */
39 static long time_constant
= 2; /* pll time constant */
40 long time_maxerror
= NTP_PHASE_LIMIT
; /* maximum error (us) */
41 long time_esterror
= NTP_PHASE_LIMIT
; /* estimated error (us) */
42 long time_freq
; /* frequency offset (scaled ppm)*/
43 static long time_reftime
; /* time at last adjustment (s) */
45 static long ntp_tick_adj
;
47 static void ntp_update_frequency(void)
49 u64 second_length
= (u64
)(tick_usec
* NSEC_PER_USEC
* USER_HZ
)
51 second_length
+= (s64
)ntp_tick_adj
<< TICK_LENGTH_SHIFT
;
52 second_length
+= (s64
)time_freq
<< (TICK_LENGTH_SHIFT
- SHIFT_NSEC
);
54 tick_length_base
= second_length
;
56 do_div(second_length
, HZ
);
57 tick_nsec
= second_length
>> TICK_LENGTH_SHIFT
;
59 do_div(tick_length_base
, NTP_INTERVAL_FREQ
);
63 * ntp_clear - Clears the NTP state variables
65 * Must be called while holding a write on the xtime_lock
69 time_adjust
= 0; /* stop active adjtime() */
70 time_status
|= STA_UNSYNC
;
71 time_maxerror
= NTP_PHASE_LIMIT
;
72 time_esterror
= NTP_PHASE_LIMIT
;
74 ntp_update_frequency();
76 tick_length
= tick_length_base
;
81 * this routine handles the overflow of the microsecond field
83 * The tricky bits of code to handle the accurate clock support
84 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
85 * They were originally developed for SUN and DEC kernels.
86 * All the kudos should go to Dave for this stuff.
88 void second_overflow(void)
92 /* Bump the maxerror field */
93 time_maxerror
+= MAXFREQ
>> SHIFT_USEC
;
94 if (time_maxerror
> NTP_PHASE_LIMIT
) {
95 time_maxerror
= NTP_PHASE_LIMIT
;
96 time_status
|= STA_UNSYNC
;
100 * Leap second processing. If in leap-insert state at the end of the
101 * day, the system clock is set back one second; if in leap-delete
102 * state, the system clock is set ahead one second. The microtime()
103 * routine or external clock driver will insure that reported time is
104 * always monotonic. The ugly divides should be replaced.
106 switch (time_state
) {
108 if (time_status
& STA_INS
)
109 time_state
= TIME_INS
;
110 else if (time_status
& STA_DEL
)
111 time_state
= TIME_DEL
;
114 if (xtime
.tv_sec
% 86400 == 0) {
116 wall_to_monotonic
.tv_sec
++;
117 time_state
= TIME_OOP
;
118 printk(KERN_NOTICE
"Clock: inserting leap second "
123 if ((xtime
.tv_sec
+ 1) % 86400 == 0) {
125 wall_to_monotonic
.tv_sec
--;
126 time_state
= TIME_WAIT
;
127 printk(KERN_NOTICE
"Clock: deleting leap second "
132 time_state
= TIME_WAIT
;
135 if (!(time_status
& (STA_INS
| STA_DEL
)))
136 time_state
= TIME_OK
;
140 * Compute the phase adjustment for the next second. The offset is
141 * reduced by a fixed factor times the time constant.
143 tick_length
= tick_length_base
;
144 time_adj
= shift_right(time_offset
, SHIFT_PLL
+ time_constant
);
145 time_offset
-= time_adj
;
146 tick_length
+= (s64
)time_adj
<< (TICK_LENGTH_SHIFT
- SHIFT_UPDATE
);
148 if (unlikely(time_adjust
)) {
149 if (time_adjust
> MAX_TICKADJ
) {
150 time_adjust
-= MAX_TICKADJ
;
151 tick_length
+= MAX_TICKADJ_SCALED
;
152 } else if (time_adjust
< -MAX_TICKADJ
) {
153 time_adjust
+= MAX_TICKADJ
;
154 tick_length
-= MAX_TICKADJ_SCALED
;
156 tick_length
+= (s64
)(time_adjust
* NSEC_PER_USEC
/
157 NTP_INTERVAL_FREQ
) << TICK_LENGTH_SHIFT
;
164 * Return how long ticks are at the moment, that is, how much time
165 * update_wall_time_one_tick will add to xtime next time we call it
166 * (assuming no calls to do_adjtimex in the meantime).
167 * The return value is in fixed-point nanoseconds shifted by the
168 * specified number of bits to the right of the binary point.
169 * This function has no side-effects.
171 u64
current_tick_length(void)
176 #ifdef CONFIG_GENERIC_CMOS_UPDATE
178 /* Disable the cmos update - used by virtualization and embedded */
179 int no_sync_cmos_clock __read_mostly
;
181 static void sync_cmos_clock(unsigned long dummy
);
183 static DEFINE_TIMER(sync_cmos_timer
, sync_cmos_clock
, 0, 0);
185 static void sync_cmos_clock(unsigned long dummy
)
187 struct timespec now
, next
;
191 * If we have an externally synchronized Linux clock, then update
192 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
193 * called as close as possible to 500 ms before the new second starts.
194 * This code is run on a timer. If the clock is set, that timer
195 * may not expire at the correct time. Thus, we adjust...
199 * Not synced, exit, do not restart a timer (if one is
200 * running, let it run out).
204 getnstimeofday(&now
);
205 if (abs(now
.tv_nsec
- (NSEC_PER_SEC
/ 2)) <= tick_nsec
/ 2)
206 fail
= update_persistent_clock(now
);
208 next
.tv_nsec
= (NSEC_PER_SEC
/ 2) - now
.tv_nsec
;
209 if (next
.tv_nsec
<= 0)
210 next
.tv_nsec
+= NSEC_PER_SEC
;
217 if (next
.tv_nsec
>= NSEC_PER_SEC
) {
219 next
.tv_nsec
-= NSEC_PER_SEC
;
221 mod_timer(&sync_cmos_timer
, jiffies
+ timespec_to_jiffies(&next
));
224 static void notify_cmos_timer(void)
226 if (!no_sync_cmos_clock
)
227 mod_timer(&sync_cmos_timer
, jiffies
+ 1);
231 static inline void notify_cmos_timer(void) { }
234 /* adjtimex mainly allows reading (and writing, if superuser) of
235 * kernel time-keeping variables. used by xntpd.
237 int do_adjtimex(struct timex
*txc
)
239 long mtemp
, save_adjust
, rem
;
240 s64 freq_adj
, temp64
;
243 /* In order to modify anything, you gotta be super-user! */
244 if (txc
->modes
&& !capable(CAP_SYS_TIME
))
247 /* Now we validate the data before disabling interrupts */
249 if ((txc
->modes
& ADJ_OFFSET_SINGLESHOT
) == ADJ_OFFSET_SINGLESHOT
) {
250 /* singleshot must not be used with any other mode bits */
251 if (txc
->modes
!= ADJ_OFFSET_SINGLESHOT
&&
252 txc
->modes
!= ADJ_OFFSET_SS_READ
)
256 if (txc
->modes
!= ADJ_OFFSET_SINGLESHOT
&& (txc
->modes
& ADJ_OFFSET
))
257 /* adjustment Offset limited to +- .512 seconds */
258 if (txc
->offset
<= - MAXPHASE
|| txc
->offset
>= MAXPHASE
)
261 /* if the quartz is off by more than 10% something is VERY wrong ! */
262 if (txc
->modes
& ADJ_TICK
)
263 if (txc
->tick
< 900000/USER_HZ
||
264 txc
->tick
> 1100000/USER_HZ
)
267 write_seqlock_irq(&xtime_lock
);
268 result
= time_state
; /* mostly `TIME_OK' */
270 /* Save for later - semantics of adjtime is to return old value */
271 save_adjust
= time_adjust
;
273 #if 0 /* STA_CLOCKERR is never set yet */
274 time_status
&= ~STA_CLOCKERR
; /* reset STA_CLOCKERR */
276 /* If there are input parameters, then process them */
279 if (txc
->modes
& ADJ_STATUS
) /* only set allowed bits */
280 time_status
= (txc
->status
& ~STA_RONLY
) |
281 (time_status
& STA_RONLY
);
283 if (txc
->modes
& ADJ_FREQUENCY
) { /* p. 22 */
284 if (txc
->freq
> MAXFREQ
|| txc
->freq
< -MAXFREQ
) {
288 time_freq
= ((s64
)txc
->freq
* NSEC_PER_USEC
)
289 >> (SHIFT_USEC
- SHIFT_NSEC
);
292 if (txc
->modes
& ADJ_MAXERROR
) {
293 if (txc
->maxerror
< 0 || txc
->maxerror
>= NTP_PHASE_LIMIT
) {
297 time_maxerror
= txc
->maxerror
;
300 if (txc
->modes
& ADJ_ESTERROR
) {
301 if (txc
->esterror
< 0 || txc
->esterror
>= NTP_PHASE_LIMIT
) {
305 time_esterror
= txc
->esterror
;
308 if (txc
->modes
& ADJ_TIMECONST
) { /* p. 24 */
309 if (txc
->constant
< 0) { /* NTP v4 uses values > 6 */
313 time_constant
= min(txc
->constant
+ 4, (long)MAXTC
);
316 if (txc
->modes
& ADJ_OFFSET
) { /* values checked earlier */
317 if (txc
->modes
== ADJ_OFFSET_SINGLESHOT
) {
318 /* adjtime() is independent from ntp_adjtime() */
319 time_adjust
= txc
->offset
;
321 else if (time_status
& STA_PLL
) {
322 time_offset
= txc
->offset
* NSEC_PER_USEC
;
325 * Scale the phase adjustment and
326 * clamp to the operating range.
328 time_offset
= min(time_offset
, (s64
)MAXPHASE
* NSEC_PER_USEC
);
329 time_offset
= max(time_offset
, (s64
)-MAXPHASE
* NSEC_PER_USEC
);
332 * Select whether the frequency is to be controlled
333 * and in which mode (PLL or FLL). Clamp to the operating
334 * range. Ugly multiply/divide should be replaced someday.
337 if (time_status
& STA_FREQHOLD
|| time_reftime
== 0)
338 time_reftime
= xtime
.tv_sec
;
339 mtemp
= xtime
.tv_sec
- time_reftime
;
340 time_reftime
= xtime
.tv_sec
;
342 freq_adj
= time_offset
* mtemp
;
343 freq_adj
= shift_right(freq_adj
, time_constant
* 2 +
344 (SHIFT_PLL
+ 2) * 2 - SHIFT_NSEC
);
345 if (mtemp
>= MINSEC
&& (time_status
& STA_FLL
|| mtemp
> MAXSEC
)) {
347 temp64
= time_offset
<< (SHIFT_NSEC
- SHIFT_FLL
);
348 if (time_offset
< 0) {
350 do_div(utemp64
, mtemp
);
354 do_div(utemp64
, mtemp
);
358 freq_adj
+= time_freq
;
359 freq_adj
= min(freq_adj
, (s64
)MAXFREQ_NSEC
);
360 time_freq
= max(freq_adj
, (s64
)-MAXFREQ_NSEC
);
361 time_offset
= div_long_long_rem_signed(time_offset
,
364 time_offset
<<= SHIFT_UPDATE
;
366 } /* txc->modes & ADJ_OFFSET */
367 if (txc
->modes
& ADJ_TICK
)
368 tick_usec
= txc
->tick
;
370 if (txc
->modes
& (ADJ_TICK
|ADJ_FREQUENCY
|ADJ_OFFSET
))
371 ntp_update_frequency();
373 leave
: if ((time_status
& (STA_UNSYNC
|STA_CLOCKERR
)) != 0)
376 if ((txc
->modes
== ADJ_OFFSET_SINGLESHOT
) ||
377 (txc
->modes
== ADJ_OFFSET_SS_READ
))
378 txc
->offset
= save_adjust
;
380 txc
->offset
= ((long)shift_right(time_offset
, SHIFT_UPDATE
)) *
381 NTP_INTERVAL_FREQ
/ 1000;
382 txc
->freq
= (time_freq
/ NSEC_PER_USEC
) <<
383 (SHIFT_USEC
- SHIFT_NSEC
);
384 txc
->maxerror
= time_maxerror
;
385 txc
->esterror
= time_esterror
;
386 txc
->status
= time_status
;
387 txc
->constant
= time_constant
;
389 txc
->tolerance
= MAXFREQ
;
390 txc
->tick
= tick_usec
;
392 /* PPS is not implemented, so these are zero */
401 write_sequnlock_irq(&xtime_lock
);
402 do_gettimeofday(&txc
->time
);
407 static int __init
ntp_tick_adj_setup(char *str
)
409 ntp_tick_adj
= simple_strtol(str
, NULL
, 0);
413 __setup("ntp_tick_adj=", ntp_tick_adj_setup
);