Merge branch 'splice-2.6.22' of git://git.kernel.dk/data/git/linux-2.6-block
[linux-2.6/mini2440.git] / drivers / acpi / processor_idle.c
blobee5759bef9454df682d7520032e8c33f5bfbc0b8
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
45 * Include the apic definitions for x86 to have the APIC timer related defines
46 * available also for UP (on SMP it gets magically included via linux/smp.h).
47 * asm/acpi.h is not an option, as it would require more include magic. Also
48 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50 #ifdef CONFIG_X86
51 #include <asm/apic.h>
52 #endif
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
57 #include <acpi/acpi_bus.h>
58 #include <acpi/processor.h>
60 #define ACPI_PROCESSOR_COMPONENT 0x01000000
61 #define ACPI_PROCESSOR_CLASS "processor"
62 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
63 ACPI_MODULE_NAME("processor_idle");
64 #define ACPI_PROCESSOR_FILE_POWER "power"
65 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
66 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
67 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
68 static void (*pm_idle_save) (void) __read_mostly;
69 module_param(max_cstate, uint, 0644);
71 static unsigned int nocst __read_mostly;
72 module_param(nocst, uint, 0000);
75 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
76 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
77 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
78 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
79 * reduce history for more aggressive entry into C3
81 static unsigned int bm_history __read_mostly =
82 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
83 module_param(bm_history, uint, 0644);
84 /* --------------------------------------------------------------------------
85 Power Management
86 -------------------------------------------------------------------------- */
89 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
90 * For now disable this. Probably a bug somewhere else.
92 * To skip this limit, boot/load with a large max_cstate limit.
94 static int set_max_cstate(struct dmi_system_id *id)
96 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
97 return 0;
99 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
100 " Override with \"processor.max_cstate=%d\"\n", id->ident,
101 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
103 max_cstate = (long)id->driver_data;
105 return 0;
108 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
109 callers to only run once -AK */
110 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
111 { set_max_cstate, "IBM ThinkPad R40e", {
112 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
113 DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
114 { set_max_cstate, "IBM ThinkPad R40e", {
115 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
116 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
117 { set_max_cstate, "IBM ThinkPad R40e", {
118 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
119 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
120 { set_max_cstate, "IBM ThinkPad R40e", {
121 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
122 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
123 { set_max_cstate, "IBM ThinkPad R40e", {
124 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
125 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
126 { set_max_cstate, "IBM ThinkPad R40e", {
127 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
128 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
129 { set_max_cstate, "IBM ThinkPad R40e", {
130 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
132 { set_max_cstate, "IBM ThinkPad R40e", {
133 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
135 { set_max_cstate, "IBM ThinkPad R40e", {
136 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
138 { set_max_cstate, "IBM ThinkPad R40e", {
139 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
141 { set_max_cstate, "IBM ThinkPad R40e", {
142 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
144 { set_max_cstate, "IBM ThinkPad R40e", {
145 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
147 { set_max_cstate, "IBM ThinkPad R40e", {
148 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
150 { set_max_cstate, "IBM ThinkPad R40e", {
151 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
153 { set_max_cstate, "IBM ThinkPad R40e", {
154 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
156 { set_max_cstate, "IBM ThinkPad R40e", {
157 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
159 { set_max_cstate, "Medion 41700", {
160 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
161 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
162 { set_max_cstate, "Clevo 5600D", {
163 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
164 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
165 (void *)2},
169 static inline u32 ticks_elapsed(u32 t1, u32 t2)
171 if (t2 >= t1)
172 return (t2 - t1);
173 else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
174 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
175 else
176 return ((0xFFFFFFFF - t1) + t2);
179 static void
180 acpi_processor_power_activate(struct acpi_processor *pr,
181 struct acpi_processor_cx *new)
183 struct acpi_processor_cx *old;
185 if (!pr || !new)
186 return;
188 old = pr->power.state;
190 if (old)
191 old->promotion.count = 0;
192 new->demotion.count = 0;
194 /* Cleanup from old state. */
195 if (old) {
196 switch (old->type) {
197 case ACPI_STATE_C3:
198 /* Disable bus master reload */
199 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
200 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
201 break;
205 /* Prepare to use new state. */
206 switch (new->type) {
207 case ACPI_STATE_C3:
208 /* Enable bus master reload */
209 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
210 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
211 break;
214 pr->power.state = new;
216 return;
219 static void acpi_safe_halt(void)
221 current_thread_info()->status &= ~TS_POLLING;
223 * TS_POLLING-cleared state must be visible before we
224 * test NEED_RESCHED:
226 smp_mb();
227 if (!need_resched())
228 safe_halt();
229 current_thread_info()->status |= TS_POLLING;
232 static atomic_t c3_cpu_count;
234 /* Common C-state entry for C2, C3, .. */
235 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
237 if (cstate->space_id == ACPI_CSTATE_FFH) {
238 /* Call into architectural FFH based C-state */
239 acpi_processor_ffh_cstate_enter(cstate);
240 } else {
241 int unused;
242 /* IO port based C-state */
243 inb(cstate->address);
244 /* Dummy wait op - must do something useless after P_LVL2 read
245 because chipsets cannot guarantee that STPCLK# signal
246 gets asserted in time to freeze execution properly. */
247 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
251 #ifdef ARCH_APICTIMER_STOPS_ON_C3
254 * Some BIOS implementations switch to C3 in the published C2 state.
255 * This seems to be a common problem on AMD boxen, but other vendors
256 * are affected too. We pick the most conservative approach: we assume
257 * that the local APIC stops in both C2 and C3.
259 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
260 struct acpi_processor_cx *cx)
262 struct acpi_processor_power *pwr = &pr->power;
263 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
266 * Check, if one of the previous states already marked the lapic
267 * unstable
269 if (pwr->timer_broadcast_on_state < state)
270 return;
272 if (cx->type >= type)
273 pr->power.timer_broadcast_on_state = state;
276 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
278 #ifdef CONFIG_GENERIC_CLOCKEVENTS
279 unsigned long reason;
281 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
282 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
284 clockevents_notify(reason, &pr->id);
285 #else
286 cpumask_t mask = cpumask_of_cpu(pr->id);
288 if (pr->power.timer_broadcast_on_state < INT_MAX)
289 on_each_cpu(switch_APIC_timer_to_ipi, &mask, 1, 1);
290 else
291 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
292 #endif
295 /* Power(C) State timer broadcast control */
296 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
297 struct acpi_processor_cx *cx,
298 int broadcast)
300 #ifdef CONFIG_GENERIC_CLOCKEVENTS
302 int state = cx - pr->power.states;
304 if (state >= pr->power.timer_broadcast_on_state) {
305 unsigned long reason;
307 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
308 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
309 clockevents_notify(reason, &pr->id);
311 #endif
314 #else
316 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
317 struct acpi_processor_cx *cstate) { }
318 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
319 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
320 struct acpi_processor_cx *cx,
321 int broadcast)
325 #endif
327 static void acpi_processor_idle(void)
329 struct acpi_processor *pr = NULL;
330 struct acpi_processor_cx *cx = NULL;
331 struct acpi_processor_cx *next_state = NULL;
332 int sleep_ticks = 0;
333 u32 t1, t2 = 0;
335 pr = processors[smp_processor_id()];
336 if (!pr)
337 return;
340 * Interrupts must be disabled during bus mastering calculations and
341 * for C2/C3 transitions.
343 local_irq_disable();
346 * Check whether we truly need to go idle, or should
347 * reschedule:
349 if (unlikely(need_resched())) {
350 local_irq_enable();
351 return;
354 cx = pr->power.state;
355 if (!cx) {
356 if (pm_idle_save)
357 pm_idle_save();
358 else
359 acpi_safe_halt();
360 return;
364 * Check BM Activity
365 * -----------------
366 * Check for bus mastering activity (if required), record, and check
367 * for demotion.
369 if (pr->flags.bm_check) {
370 u32 bm_status = 0;
371 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
373 if (diff > 31)
374 diff = 31;
376 pr->power.bm_activity <<= diff;
378 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
379 if (bm_status) {
380 pr->power.bm_activity |= 0x1;
381 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
384 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
385 * the true state of bus mastering activity; forcing us to
386 * manually check the BMIDEA bit of each IDE channel.
388 else if (errata.piix4.bmisx) {
389 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
390 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
391 pr->power.bm_activity |= 0x1;
394 pr->power.bm_check_timestamp = jiffies;
397 * If bus mastering is or was active this jiffy, demote
398 * to avoid a faulty transition. Note that the processor
399 * won't enter a low-power state during this call (to this
400 * function) but should upon the next.
402 * TBD: A better policy might be to fallback to the demotion
403 * state (use it for this quantum only) istead of
404 * demoting -- and rely on duration as our sole demotion
405 * qualification. This may, however, introduce DMA
406 * issues (e.g. floppy DMA transfer overrun/underrun).
408 if ((pr->power.bm_activity & 0x1) &&
409 cx->demotion.threshold.bm) {
410 local_irq_enable();
411 next_state = cx->demotion.state;
412 goto end;
416 #ifdef CONFIG_HOTPLUG_CPU
418 * Check for P_LVL2_UP flag before entering C2 and above on
419 * an SMP system. We do it here instead of doing it at _CST/P_LVL
420 * detection phase, to work cleanly with logical CPU hotplug.
422 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
423 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
424 cx = &pr->power.states[ACPI_STATE_C1];
425 #endif
428 * Sleep:
429 * ------
430 * Invoke the current Cx state to put the processor to sleep.
432 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
433 current_thread_info()->status &= ~TS_POLLING;
435 * TS_POLLING-cleared state must be visible before we
436 * test NEED_RESCHED:
438 smp_mb();
439 if (need_resched()) {
440 current_thread_info()->status |= TS_POLLING;
441 local_irq_enable();
442 return;
446 switch (cx->type) {
448 case ACPI_STATE_C1:
450 * Invoke C1.
451 * Use the appropriate idle routine, the one that would
452 * be used without acpi C-states.
454 if (pm_idle_save)
455 pm_idle_save();
456 else
457 acpi_safe_halt();
460 * TBD: Can't get time duration while in C1, as resumes
461 * go to an ISR rather than here. Need to instrument
462 * base interrupt handler.
464 sleep_ticks = 0xFFFFFFFF;
465 break;
467 case ACPI_STATE_C2:
468 /* Get start time (ticks) */
469 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
470 /* Invoke C2 */
471 acpi_state_timer_broadcast(pr, cx, 1);
472 acpi_cstate_enter(cx);
473 /* Get end time (ticks) */
474 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
476 #ifdef CONFIG_GENERIC_TIME
477 /* TSC halts in C2, so notify users */
478 mark_tsc_unstable("possible TSC halt in C2");
479 #endif
480 /* Re-enable interrupts */
481 local_irq_enable();
482 current_thread_info()->status |= TS_POLLING;
483 /* Compute time (ticks) that we were actually asleep */
484 sleep_ticks =
485 ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
486 acpi_state_timer_broadcast(pr, cx, 0);
487 break;
489 case ACPI_STATE_C3:
491 if (pr->flags.bm_check) {
492 if (atomic_inc_return(&c3_cpu_count) ==
493 num_online_cpus()) {
495 * All CPUs are trying to go to C3
496 * Disable bus master arbitration
498 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
500 } else {
501 /* SMP with no shared cache... Invalidate cache */
502 ACPI_FLUSH_CPU_CACHE();
505 /* Get start time (ticks) */
506 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
507 /* Invoke C3 */
508 acpi_state_timer_broadcast(pr, cx, 1);
509 acpi_cstate_enter(cx);
510 /* Get end time (ticks) */
511 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
512 if (pr->flags.bm_check) {
513 /* Enable bus master arbitration */
514 atomic_dec(&c3_cpu_count);
515 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
518 #ifdef CONFIG_GENERIC_TIME
519 /* TSC halts in C3, so notify users */
520 mark_tsc_unstable("TSC halts in C3");
521 #endif
522 /* Re-enable interrupts */
523 local_irq_enable();
524 current_thread_info()->status |= TS_POLLING;
525 /* Compute time (ticks) that we were actually asleep */
526 sleep_ticks =
527 ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
528 acpi_state_timer_broadcast(pr, cx, 0);
529 break;
531 default:
532 local_irq_enable();
533 return;
535 cx->usage++;
536 if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
537 cx->time += sleep_ticks;
539 next_state = pr->power.state;
541 #ifdef CONFIG_HOTPLUG_CPU
542 /* Don't do promotion/demotion */
543 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
544 !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
545 next_state = cx;
546 goto end;
548 #endif
551 * Promotion?
552 * ----------
553 * Track the number of longs (time asleep is greater than threshold)
554 * and promote when the count threshold is reached. Note that bus
555 * mastering activity may prevent promotions.
556 * Do not promote above max_cstate.
558 if (cx->promotion.state &&
559 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
560 if (sleep_ticks > cx->promotion.threshold.ticks &&
561 cx->promotion.state->latency <= system_latency_constraint()) {
562 cx->promotion.count++;
563 cx->demotion.count = 0;
564 if (cx->promotion.count >=
565 cx->promotion.threshold.count) {
566 if (pr->flags.bm_check) {
567 if (!
568 (pr->power.bm_activity & cx->
569 promotion.threshold.bm)) {
570 next_state =
571 cx->promotion.state;
572 goto end;
574 } else {
575 next_state = cx->promotion.state;
576 goto end;
583 * Demotion?
584 * ---------
585 * Track the number of shorts (time asleep is less than time threshold)
586 * and demote when the usage threshold is reached.
588 if (cx->demotion.state) {
589 if (sleep_ticks < cx->demotion.threshold.ticks) {
590 cx->demotion.count++;
591 cx->promotion.count = 0;
592 if (cx->demotion.count >= cx->demotion.threshold.count) {
593 next_state = cx->demotion.state;
594 goto end;
599 end:
601 * Demote if current state exceeds max_cstate
602 * or if the latency of the current state is unacceptable
604 if ((pr->power.state - pr->power.states) > max_cstate ||
605 pr->power.state->latency > system_latency_constraint()) {
606 if (cx->demotion.state)
607 next_state = cx->demotion.state;
611 * New Cx State?
612 * -------------
613 * If we're going to start using a new Cx state we must clean up
614 * from the previous and prepare to use the new.
616 if (next_state != pr->power.state)
617 acpi_processor_power_activate(pr, next_state);
620 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
622 unsigned int i;
623 unsigned int state_is_set = 0;
624 struct acpi_processor_cx *lower = NULL;
625 struct acpi_processor_cx *higher = NULL;
626 struct acpi_processor_cx *cx;
629 if (!pr)
630 return -EINVAL;
633 * This function sets the default Cx state policy (OS idle handler).
634 * Our scheme is to promote quickly to C2 but more conservatively
635 * to C3. We're favoring C2 for its characteristics of low latency
636 * (quick response), good power savings, and ability to allow bus
637 * mastering activity. Note that the Cx state policy is completely
638 * customizable and can be altered dynamically.
641 /* startup state */
642 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
643 cx = &pr->power.states[i];
644 if (!cx->valid)
645 continue;
647 if (!state_is_set)
648 pr->power.state = cx;
649 state_is_set++;
650 break;
653 if (!state_is_set)
654 return -ENODEV;
656 /* demotion */
657 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
658 cx = &pr->power.states[i];
659 if (!cx->valid)
660 continue;
662 if (lower) {
663 cx->demotion.state = lower;
664 cx->demotion.threshold.ticks = cx->latency_ticks;
665 cx->demotion.threshold.count = 1;
666 if (cx->type == ACPI_STATE_C3)
667 cx->demotion.threshold.bm = bm_history;
670 lower = cx;
673 /* promotion */
674 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
675 cx = &pr->power.states[i];
676 if (!cx->valid)
677 continue;
679 if (higher) {
680 cx->promotion.state = higher;
681 cx->promotion.threshold.ticks = cx->latency_ticks;
682 if (cx->type >= ACPI_STATE_C2)
683 cx->promotion.threshold.count = 4;
684 else
685 cx->promotion.threshold.count = 10;
686 if (higher->type == ACPI_STATE_C3)
687 cx->promotion.threshold.bm = bm_history;
690 higher = cx;
693 return 0;
696 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
699 if (!pr)
700 return -EINVAL;
702 if (!pr->pblk)
703 return -ENODEV;
705 /* if info is obtained from pblk/fadt, type equals state */
706 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
707 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
709 #ifndef CONFIG_HOTPLUG_CPU
711 * Check for P_LVL2_UP flag before entering C2 and above on
712 * an SMP system.
714 if ((num_online_cpus() > 1) &&
715 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
716 return -ENODEV;
717 #endif
719 /* determine C2 and C3 address from pblk */
720 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
721 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
723 /* determine latencies from FADT */
724 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
725 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
727 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
728 "lvl2[0x%08x] lvl3[0x%08x]\n",
729 pr->power.states[ACPI_STATE_C2].address,
730 pr->power.states[ACPI_STATE_C3].address));
732 return 0;
735 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
737 if (!pr->power.states[ACPI_STATE_C1].valid) {
738 /* set the first C-State to C1 */
739 /* all processors need to support C1 */
740 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
741 pr->power.states[ACPI_STATE_C1].valid = 1;
743 /* the C0 state only exists as a filler in our array */
744 pr->power.states[ACPI_STATE_C0].valid = 1;
745 return 0;
748 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
750 acpi_status status = 0;
751 acpi_integer count;
752 int current_count;
753 int i;
754 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
755 union acpi_object *cst;
758 if (nocst)
759 return -ENODEV;
761 current_count = 0;
763 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
764 if (ACPI_FAILURE(status)) {
765 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
766 return -ENODEV;
769 cst = buffer.pointer;
771 /* There must be at least 2 elements */
772 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
773 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
774 status = -EFAULT;
775 goto end;
778 count = cst->package.elements[0].integer.value;
780 /* Validate number of power states. */
781 if (count < 1 || count != cst->package.count - 1) {
782 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
783 status = -EFAULT;
784 goto end;
787 /* Tell driver that at least _CST is supported. */
788 pr->flags.has_cst = 1;
790 for (i = 1; i <= count; i++) {
791 union acpi_object *element;
792 union acpi_object *obj;
793 struct acpi_power_register *reg;
794 struct acpi_processor_cx cx;
796 memset(&cx, 0, sizeof(cx));
798 element = &(cst->package.elements[i]);
799 if (element->type != ACPI_TYPE_PACKAGE)
800 continue;
802 if (element->package.count != 4)
803 continue;
805 obj = &(element->package.elements[0]);
807 if (obj->type != ACPI_TYPE_BUFFER)
808 continue;
810 reg = (struct acpi_power_register *)obj->buffer.pointer;
812 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
813 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
814 continue;
816 /* There should be an easy way to extract an integer... */
817 obj = &(element->package.elements[1]);
818 if (obj->type != ACPI_TYPE_INTEGER)
819 continue;
821 cx.type = obj->integer.value;
823 * Some buggy BIOSes won't list C1 in _CST -
824 * Let acpi_processor_get_power_info_default() handle them later
826 if (i == 1 && cx.type != ACPI_STATE_C1)
827 current_count++;
829 cx.address = reg->address;
830 cx.index = current_count + 1;
832 cx.space_id = ACPI_CSTATE_SYSTEMIO;
833 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
834 if (acpi_processor_ffh_cstate_probe
835 (pr->id, &cx, reg) == 0) {
836 cx.space_id = ACPI_CSTATE_FFH;
837 } else if (cx.type != ACPI_STATE_C1) {
839 * C1 is a special case where FIXED_HARDWARE
840 * can be handled in non-MWAIT way as well.
841 * In that case, save this _CST entry info.
842 * That is, we retain space_id of SYSTEM_IO for
843 * halt based C1.
844 * Otherwise, ignore this info and continue.
846 continue;
850 obj = &(element->package.elements[2]);
851 if (obj->type != ACPI_TYPE_INTEGER)
852 continue;
854 cx.latency = obj->integer.value;
856 obj = &(element->package.elements[3]);
857 if (obj->type != ACPI_TYPE_INTEGER)
858 continue;
860 cx.power = obj->integer.value;
862 current_count++;
863 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
866 * We support total ACPI_PROCESSOR_MAX_POWER - 1
867 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
869 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
870 printk(KERN_WARNING
871 "Limiting number of power states to max (%d)\n",
872 ACPI_PROCESSOR_MAX_POWER);
873 printk(KERN_WARNING
874 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
875 break;
879 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
880 current_count));
882 /* Validate number of power states discovered */
883 if (current_count < 2)
884 status = -EFAULT;
886 end:
887 kfree(buffer.pointer);
889 return status;
892 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
895 if (!cx->address)
896 return;
899 * C2 latency must be less than or equal to 100
900 * microseconds.
902 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
903 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
904 "latency too large [%d]\n", cx->latency));
905 return;
909 * Otherwise we've met all of our C2 requirements.
910 * Normalize the C2 latency to expidite policy
912 cx->valid = 1;
913 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
915 return;
918 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
919 struct acpi_processor_cx *cx)
921 static int bm_check_flag;
924 if (!cx->address)
925 return;
928 * C3 latency must be less than or equal to 1000
929 * microseconds.
931 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
932 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
933 "latency too large [%d]\n", cx->latency));
934 return;
938 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
939 * DMA transfers are used by any ISA device to avoid livelock.
940 * Note that we could disable Type-F DMA (as recommended by
941 * the erratum), but this is known to disrupt certain ISA
942 * devices thus we take the conservative approach.
944 else if (errata.piix4.fdma) {
945 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
946 "C3 not supported on PIIX4 with Type-F DMA\n"));
947 return;
950 /* All the logic here assumes flags.bm_check is same across all CPUs */
951 if (!bm_check_flag) {
952 /* Determine whether bm_check is needed based on CPU */
953 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
954 bm_check_flag = pr->flags.bm_check;
955 } else {
956 pr->flags.bm_check = bm_check_flag;
959 if (pr->flags.bm_check) {
960 /* bus mastering control is necessary */
961 if (!pr->flags.bm_control) {
962 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
963 "C3 support requires bus mastering control\n"));
964 return;
966 } else {
968 * WBINVD should be set in fadt, for C3 state to be
969 * supported on when bm_check is not required.
971 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
972 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
973 "Cache invalidation should work properly"
974 " for C3 to be enabled on SMP systems\n"));
975 return;
977 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
981 * Otherwise we've met all of our C3 requirements.
982 * Normalize the C3 latency to expidite policy. Enable
983 * checking of bus mastering status (bm_check) so we can
984 * use this in our C3 policy
986 cx->valid = 1;
987 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
989 return;
992 static int acpi_processor_power_verify(struct acpi_processor *pr)
994 unsigned int i;
995 unsigned int working = 0;
997 pr->power.timer_broadcast_on_state = INT_MAX;
999 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1000 struct acpi_processor_cx *cx = &pr->power.states[i];
1002 switch (cx->type) {
1003 case ACPI_STATE_C1:
1004 cx->valid = 1;
1005 break;
1007 case ACPI_STATE_C2:
1008 acpi_processor_power_verify_c2(cx);
1009 if (cx->valid)
1010 acpi_timer_check_state(i, pr, cx);
1011 break;
1013 case ACPI_STATE_C3:
1014 acpi_processor_power_verify_c3(pr, cx);
1015 if (cx->valid)
1016 acpi_timer_check_state(i, pr, cx);
1017 break;
1020 if (cx->valid)
1021 working++;
1024 acpi_propagate_timer_broadcast(pr);
1026 return (working);
1029 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1031 unsigned int i;
1032 int result;
1035 /* NOTE: the idle thread may not be running while calling
1036 * this function */
1038 /* Zero initialize all the C-states info. */
1039 memset(pr->power.states, 0, sizeof(pr->power.states));
1041 result = acpi_processor_get_power_info_cst(pr);
1042 if (result == -ENODEV)
1043 result = acpi_processor_get_power_info_fadt(pr);
1045 if (result)
1046 return result;
1048 acpi_processor_get_power_info_default(pr);
1050 pr->power.count = acpi_processor_power_verify(pr);
1053 * Set Default Policy
1054 * ------------------
1055 * Now that we know which states are supported, set the default
1056 * policy. Note that this policy can be changed dynamically
1057 * (e.g. encourage deeper sleeps to conserve battery life when
1058 * not on AC).
1060 result = acpi_processor_set_power_policy(pr);
1061 if (result)
1062 return result;
1065 * if one state of type C2 or C3 is available, mark this
1066 * CPU as being "idle manageable"
1068 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1069 if (pr->power.states[i].valid) {
1070 pr->power.count = i;
1071 if (pr->power.states[i].type >= ACPI_STATE_C2)
1072 pr->flags.power = 1;
1076 return 0;
1079 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1081 int result = 0;
1084 if (!pr)
1085 return -EINVAL;
1087 if (nocst) {
1088 return -ENODEV;
1091 if (!pr->flags.power_setup_done)
1092 return -ENODEV;
1094 /* Fall back to the default idle loop */
1095 pm_idle = pm_idle_save;
1096 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1098 pr->flags.power = 0;
1099 result = acpi_processor_get_power_info(pr);
1100 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1101 pm_idle = acpi_processor_idle;
1103 return result;
1106 /* proc interface */
1108 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1110 struct acpi_processor *pr = seq->private;
1111 unsigned int i;
1114 if (!pr)
1115 goto end;
1117 seq_printf(seq, "active state: C%zd\n"
1118 "max_cstate: C%d\n"
1119 "bus master activity: %08x\n"
1120 "maximum allowed latency: %d usec\n",
1121 pr->power.state ? pr->power.state - pr->power.states : 0,
1122 max_cstate, (unsigned)pr->power.bm_activity,
1123 system_latency_constraint());
1125 seq_puts(seq, "states:\n");
1127 for (i = 1; i <= pr->power.count; i++) {
1128 seq_printf(seq, " %cC%d: ",
1129 (&pr->power.states[i] ==
1130 pr->power.state ? '*' : ' '), i);
1132 if (!pr->power.states[i].valid) {
1133 seq_puts(seq, "<not supported>\n");
1134 continue;
1137 switch (pr->power.states[i].type) {
1138 case ACPI_STATE_C1:
1139 seq_printf(seq, "type[C1] ");
1140 break;
1141 case ACPI_STATE_C2:
1142 seq_printf(seq, "type[C2] ");
1143 break;
1144 case ACPI_STATE_C3:
1145 seq_printf(seq, "type[C3] ");
1146 break;
1147 default:
1148 seq_printf(seq, "type[--] ");
1149 break;
1152 if (pr->power.states[i].promotion.state)
1153 seq_printf(seq, "promotion[C%zd] ",
1154 (pr->power.states[i].promotion.state -
1155 pr->power.states));
1156 else
1157 seq_puts(seq, "promotion[--] ");
1159 if (pr->power.states[i].demotion.state)
1160 seq_printf(seq, "demotion[C%zd] ",
1161 (pr->power.states[i].demotion.state -
1162 pr->power.states));
1163 else
1164 seq_puts(seq, "demotion[--] ");
1166 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1167 pr->power.states[i].latency,
1168 pr->power.states[i].usage,
1169 (unsigned long long)pr->power.states[i].time);
1172 end:
1173 return 0;
1176 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1178 return single_open(file, acpi_processor_power_seq_show,
1179 PDE(inode)->data);
1182 static const struct file_operations acpi_processor_power_fops = {
1183 .open = acpi_processor_power_open_fs,
1184 .read = seq_read,
1185 .llseek = seq_lseek,
1186 .release = single_release,
1189 #ifdef CONFIG_SMP
1190 static void smp_callback(void *v)
1192 /* we already woke the CPU up, nothing more to do */
1196 * This function gets called when a part of the kernel has a new latency
1197 * requirement. This means we need to get all processors out of their C-state,
1198 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1199 * wakes them all right up.
1201 static int acpi_processor_latency_notify(struct notifier_block *b,
1202 unsigned long l, void *v)
1204 smp_call_function(smp_callback, NULL, 0, 1);
1205 return NOTIFY_OK;
1208 static struct notifier_block acpi_processor_latency_notifier = {
1209 .notifier_call = acpi_processor_latency_notify,
1211 #endif
1213 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1214 struct acpi_device *device)
1216 acpi_status status = 0;
1217 static int first_run;
1218 struct proc_dir_entry *entry = NULL;
1219 unsigned int i;
1222 if (!first_run) {
1223 dmi_check_system(processor_power_dmi_table);
1224 if (max_cstate < ACPI_C_STATES_MAX)
1225 printk(KERN_NOTICE
1226 "ACPI: processor limited to max C-state %d\n",
1227 max_cstate);
1228 first_run++;
1229 #ifdef CONFIG_SMP
1230 register_latency_notifier(&acpi_processor_latency_notifier);
1231 #endif
1234 if (!pr)
1235 return -EINVAL;
1237 if (acpi_gbl_FADT.cst_control && !nocst) {
1238 status =
1239 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1240 if (ACPI_FAILURE(status)) {
1241 ACPI_EXCEPTION((AE_INFO, status,
1242 "Notifying BIOS of _CST ability failed"));
1246 acpi_processor_get_power_info(pr);
1249 * Install the idle handler if processor power management is supported.
1250 * Note that we use previously set idle handler will be used on
1251 * platforms that only support C1.
1253 if ((pr->flags.power) && (!boot_option_idle_override)) {
1254 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1255 for (i = 1; i <= pr->power.count; i++)
1256 if (pr->power.states[i].valid)
1257 printk(" C%d[C%d]", i,
1258 pr->power.states[i].type);
1259 printk(")\n");
1261 if (pr->id == 0) {
1262 pm_idle_save = pm_idle;
1263 pm_idle = acpi_processor_idle;
1267 /* 'power' [R] */
1268 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1269 S_IRUGO, acpi_device_dir(device));
1270 if (!entry)
1271 return -EIO;
1272 else {
1273 entry->proc_fops = &acpi_processor_power_fops;
1274 entry->data = acpi_driver_data(device);
1275 entry->owner = THIS_MODULE;
1278 pr->flags.power_setup_done = 1;
1280 return 0;
1283 int acpi_processor_power_exit(struct acpi_processor *pr,
1284 struct acpi_device *device)
1287 pr->flags.power_setup_done = 0;
1289 if (acpi_device_dir(device))
1290 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1291 acpi_device_dir(device));
1293 /* Unregister the idle handler when processor #0 is removed. */
1294 if (pr->id == 0) {
1295 pm_idle = pm_idle_save;
1298 * We are about to unload the current idle thread pm callback
1299 * (pm_idle), Wait for all processors to update cached/local
1300 * copies of pm_idle before proceeding.
1302 cpu_idle_wait();
1303 #ifdef CONFIG_SMP
1304 unregister_latency_notifier(&acpi_processor_latency_notifier);
1305 #endif
1308 return 0;